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VERY FAT GEOMETRIC GALTON-WATSON TREES

Romain Abraham1, Aymen Bouaziz2 and Jean-François Delmas3,*

Abstract. Let τn be a random tree distributed as a Galton-Watson tree with geometric offspring
distribution conditioned on {Zn = an} where Zn is the size of the nth generation and (an, n ∈ N∗) is
a deterministic positive sequence. We study the local limit of these trees τn as n → ∞ and observe
three distinct regimes: if (an, n ∈ N∗) grows slowly, the limit consists in an infinite spine decorated with
finite trees (which corresponds to the size-biased tree for critical or subcritical offspring distributions),
in an intermediate regime, the limiting tree is composed of an infinite skeleton (that does not satisfy
the branching property) still decorated with finite trees and, if the sequence (an, n ∈ N∗) increases
rapidly, a condensation phenomenon appears and the root of the limiting tree has an infinite number
of offspring.
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1. Introduction

A Galton-Watson (GW for short) process (Zn, n ≥ 0) describes the size of an evolving population where, at
each generation, every extant individual reproduces according to the same offspring distribution p independently
of the rest of the population. The associated genealogical tree τ is called a GW tree. Let µ denote the mean
number of offspring per individual, that is the mean of p. When p is non degenerate, a classical result states
that if µ < 1 (sub-critical case) or µ = 1 (critical case), then the population becomes a.s. extinct (i.e. Zn = 0
for some n ≥ 0 a.s.) whereas if µ > 1 (super-critical case), the population has a positive probability of non
extinction.

Another classical result from Kesten’s work [7] describes the local limit in distribution of a critical or sub-
critical GW tree conditioned on {Zn > 0} as n → ∞, which can be seen as a critical or sub-critical GW tree
conditioned on non-extinction. The limiting tree is the so-called sized-biased tree or Kesten tree, and it can also
be viewed as a two-type GW tree.

There are other ways of conditioning the tree of being large: conditioning on having a large total population
size, or a large number of leaves... In the critical case, all these conditionings lead to the same local limit, see [2]
and the references therein. In the sub-critical case, a condensation phenomenon (i.e. a vertex with an infinite
number of offspring at the limit) may happen. This phenomenon has been pointed out first in [6], see also [5],
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[1] or [8]. But even there, there can be only two different limiting trees, a size-biased GW tree or a condensation
tree.

In order to have different limits, an idea is to condition the tree to be even bigger, i.e. to consider conditionings
of the form {Zn = an} for some positive deterministic sequence (an, n ∈ N∗) possibly converging to infinity.
Some results on branching processes conditioned on their limit behaviour already appeared in previous works,
see for instance [10] where the distributions of the conditioned Yule process (which corresponds to a super-
critical branching process) or a critical binary branching process are described via an infinitesimal generator
and a martingale problem. The first study of local limits for GW trees with such a conditioning appears in [2]
where it is proven that, if p is a critical offspring distribution with finite variance, then the tree conditioned on
{Zn = an} converges in distribution to the associated sized-biased tree if and only if limn→∞ ann

−2 = 0.
The goal of this paper is to study what happens beyond that condition and to consider the sub-critical and

super-critical cases. We give a complete description of all the cases when the offspring distribution is a geometric
distribution with a Dirac mass at 0 (in that case, the distribution of Zn is explicit). We observe three regimes
according to the speed of growth of (an, n ∈ N∗). We set:

cn =


µ−n if µ < 1 (sub-critical case),

n2 if µ = 1 (critical case),

µn if µ > 1 (super-critical case),

and we shall consider that:

lim
n→∞

an
cn

= θ ∈ [0,+∞].

Let τ0,0 denote the GW tree τ conditioned on the extinction event E =
⋃
n∈N∗{Zn = 0}. Notice that τ0,0 is

distributed as τ in the sub-critical and critical cases.

– In the Kesten regime (θ = 0), the limiting tree, τ0, is the Kesten tree, which is a two-type GW tree, with
an infinite spine corresponding to the individuals having an infinite progeny (called the survivor type), on
which are grafted independent GW trees distributed as τ0,0 corresponding to individuals having a finite
progeny (called extinction type).

– In the Poisson regime (θ ∈ (0,+∞)), the limiting tree, τθ, is no more a GW tree, but it still has two
types, with a backbone without leaves corresponding to individuals having an infinite progeny (also called
the survivor type), on which are grafted independent GW trees distributed as τ0,0. However, the backbone
can not be seen as a GW tree, as it lacks the branching property. This is more like a random tree with
a Poissonian immigration at each generation with rates depending on θ and with all the configurations
having the same probability.

– In the condensation regime (θ = +∞), the limiting tree τ∞ is again a two-type GW tree, with a
backbone without leaves corresponding to individuals having an infinite progeny (also called the survivor
type), on which are grafted independent GW trees distributed as τ0,0. The backbone can be seen as an
inhomogeneous GW tree with the root having an infinite number of children (condensation regime), and
super-critical offspring distribution at level h > 0 with finite mean µh which decreases to 1 as h goes to
infinity.

We also prove that the family (τθ, θ ∈ [0,+∞]) is continuous in distribution (the most interesting cases are
the continuity at 0 and +∞), see Remark 5.2 and Proposition 6.3.

Remark 1.1. The main ingredient of the proofs is equation (2.3) and hence is the limit of the ratio

lim
n→+∞

Pk(Zn−h = an)

P(Zn = an)
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which is closely related to the extremal space-time harmonic functions associated with the GW process, see
[10]. This limit is computed in the Kesten regime at the end of the proof of Proposition 4.2, and at the end of
the proof of Proposition 5.3 in the Poisson regime. In the condensation regime, this limit is 0. Notice that in
this regime, the conditioned Galton-Watson process converges to a trivial process which is always equal to +∞
(except at n = 0) but considering the genealogical tree gives a non-trivial limit.

Partial results in a more general setting for super-critical and some sub-critical cases are given in [3]: conver-
gence of τn in the Kesten and the Poisson regimes for general offspring distributions, and in the condensation
regime in the Harris case (offspring distribution with bounded support), the continuity in distribution of the
family of limiting trees at θ = 0 and some partial results at θ = +∞. Some similar results can also be derived
for sub-critical offspring distributions under strong additional assumptions.

The rest of the paper is organized as follows: Section 2 introduces the framework of discrete trees with
the notion of local convergence for sequences of trees, the GW trees and some properties of the geometric
distribution. Section 3 describes the GW tree with geometric offspring distribution with some technical lemmas
that are used in the proofs of the main theorems. Section 4 studies the Kesten regime, where the Kesten tree τ0

is defined and the convergence in distribution of τn to τ0 is stated (Prop. 4.2). In Section 5, the family of random
trees (τθ, θ ∈ (0,+∞)) is introduced and a convergence result is obtained for the Poisson regime (Prop. 5.3)
as well as the continuity in distribution of (τθ, θ ∈ (0,+∞)) at θ = 0 (Rem. 5.2). Finally, Section 6 introduces
the condensation tree τ∞, proves the convergence of τn to τ∞ in the condensation regime (Prop. 6.4) and the
continuity in distribution of (τθ, θ ∈ (0,+∞)) at θ = +∞ (Prop. 6.3).

2. Notations

We denote by N = {0, 1, 2, . . .} the set of non-negative integers, by N∗ = {1, 2, . . .} the set of positive integers
and N̄ = N ∪ {+∞}. For any finite set E, we denote by ]E its cardinal.

2.1. The set of discrete trees

We recall Neveu’s formalism [9] for ordered rooted trees. Let U =
⋃
n≥0(N∗)n be the set of finite sequences

of positive integers with the convention (N∗)0 = {∅}. We also set U∗ =
⋃
n≥1(N∗)n = U\{∅}.

For u ∈ U , let |u| be the length or the generation of u defined as the integer n such that u ∈ (N∗)n. If u
and v are two sequences of U , we denote by uv the concatenation of two sequences, with the convention that
uv = vu = u if v = ∅.

The set of strict ancestors of u ∈ U∗ is defined by:

Anc(u) = {v ∈ U , ∃w ∈ U∗, u = vw},

and for S ⊂ U∗, being non-empty, we set Anc(S ) =
⋃
u∈S Anc(u).

A tree t is a subset of U that satisfies :

– ∅ ∈ t.
– If u ∈ t, then Anc(u) ⊂ t.
– For every u ∈ t, there exists ku(t) ∈ N̄ such that, for every positive integer i, ui ∈ t ⇐⇒ 1 ≤ i ≤ ku(t).

We denote by T∞ the set of trees. Let t ∈ T∞ be a tree. The vertex ∅ is called the root of the tree t and
we denote by t∗ = t\{∅} the tree without its root. For a vertex u ∈ t, the integer ku(t) represents the number
of offspring (also called the out-degree) of the vertex u ∈ t. By convention, we shall write ku(t) = −1 if u 6∈ t.
The height H(t) of the tree t is defined by:

H(t) = sup{|u|, u ∈ t} ∈ N̄.
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For n ∈ N, the size of the n-th generation of t is defined by:

zn(t) = ]{u ∈ t, |u| = n}.

We denote by T∗f the subset of trees with finite out-degrees except the root’s:

T∗f = {t ∈ T∞; ∀u ∈ t∗, ku(t) < +∞}

and by Tf = {t ∈ T∗f ; k∅(t) < +∞} the subset of trees with finite out-degrees.

Let h, k ∈ N∗. We define T(h)
f the subset of finite trees with height h:

T(h)
f = {t ∈ Tf ; H(t) = h}

and T(h)
k = {t ∈ T(h)

f ; k∅(t) = k} the subset of finite trees with height equal to h and out-degree of the root
equal to k. We also define the restriction operators rh and rh,k, for every t ∈ T∞, by:

rh(t) = {u ∈ t; |u| ≤ h} and rh,k(t) = {∅} ∪ {u ∈ rh(t)∗; u1 ≤ k},

where u1 represents the first term of the sequence u if u 6= ∅. In other words, rh(t) represents the tree t
truncated at height h and rh,k(t) represents the subtree of rh(t) where only the k-first offspring of the root are

kept. Remark that, for t ∈ Tf , if H(t) ≥ h then rh(t) ∈ T(h)
f and if furthermore k∅(t) ≥ k then rh,k(t) ∈ T(h)

k .

2.2. Convergence of trees

Set N1 = {−1} ∪ N̄, endowed with the usual topology of the one-point compactification of the discrete space
{−1} ∪N. For a tree t ∈ T∞, recall that by convention the out-degree ku(t) of u is set to -1 if u does not belong
to t. Thus a tree t ∈ T∞ is uniquely determined by the sequence (ku(t), u ∈ U) and then T∞ is a subset of
NU1 . By Tychonoff theorem, the set NU1 endowed with the product topology is compact. Since T∞ is closed it is
thus compact. In fact, the set T∞ is a Polish space (but we don’t need any precise metric at this point). The
convergence of sequences of trees is then characterized as follows. Let (tn, n ∈ N) and t be trees in T∞. We say
that limn→∞ tn = t if and only if limn→∞ ku(tn) = ku(t) for all u ∈ U . It is easy to see that:

– If (tn, n ∈ N) and t are trees in Tf , then we have limn→∞ tn = t if and only if limn→∞ rh(tn) = rh(t) for
all h ∈ N∗.

– If (tn, n ∈ N) and t are trees in T∗f , then we have limn→∞ tn = t if and only if limn→∞ rh,k(tn) = rh,k(t)
for all h, k ∈ N∗.

Let T be a Tf -valued (resp. T∗f -valued) random variable. It is easy to get that if a.s. H(T ) = +∞ (resp. a.s.

H(T ) = +∞ and k∅(T ) = +∞), then the distribution of T is characterized by
(
P(rh(T ) = t); h ∈ N∗, t ∈ T(h)

f

)
(resp.

(
P(rh,k(T ) = t); h, k ∈ N∗, t ∈ T(h)

k

)
). Using the Portmanteau theorem, we deduce the following results:

– Let (Tn, n ∈ N) and T be Tf -valued random variables. Then we have the following characterization of the
convergence in distribution if a.s. H(T ) = +∞:

Tn
(d)−−−−→
n→∞

T ⇐⇒ lim
n→∞

P(rh(Tn) = t) = P(rh(T ) = t) for all h ∈ N∗, t ∈ T(h)
f . (2.1)
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– Let (Tn, n ∈ N) and T be T∗f -valued random variables. Then we have the following characterization of the
convergence in distribution if a.s. H(T ) = +∞, k∅(T ) = +∞:

Tn
(d)−−−−→
n→∞

T ⇐⇒ lim
n→∞

P(rh,k(Tn) = t) = P(rh,k(T ) = t) for all h, k ∈ N∗, t ∈ T(h)
k . (2.2)

2.3. GW trees

Let p = (p(n), n ∈ N) be a probability distribution on N. A Tf -valued random variable τ is called a GW tree
with offspring distribution p if for all h ∈ N∗ and t ∈ Tf with H(t) ≤ h:

P(rh(τ) = t) =
∏

u∈rh−1(t)

p(ku(t)).

The generation size process defined by (Zn = zn(τ), n ∈ N) is the so called GW process. We refer to [4] for a
general study of GW processes. We set Pk the probability under which the GW process (Zn, n ∈ N) starts with
Z0 = k individuals and write P for P1 so that:

Pk(Zn = a) = P(Z(1)
n + · · ·+ Z(k)

n = a),

where the (Z(i), 1 ≤ i ≤ k) are independent copies of Z under P.
We consider a sequence (an, n ∈ N∗) of elements in N∗ and, when P(Zn = an) > 0, τn a random tree dis-

tributed as the GW tree τ conditionally on {Zn = an}. Let n ≥ h ≥ 1 and t ∈ T(h)
f . We have by the branching

property of GW-trees at height h, setting k = zh(t):

P(rh(τn) = t) = P(rh(τ) = t)
Pk(Zn−h = an)

P(Zn = an)
· (2.3)

2.4. Geometric distribution

Let η ∈ (0, 1] and q ∈ (0, 1). We define the geometric G(η, q) distribution p = (p(k), k ∈ N) by{
p(0) = 1− η,
p(k) = ηq(1− q)k−1 for k ∈ N∗.

(2.4)

We shall always consider that τ is a GW tree with geometric offspring distribution G(η, q).
The mean of G(η, q) is given by µ = η/q and its generating function f is given by:

f(s) =
(1− η)− s(1− q − η)

1− s(1− q)
, s ∈ [0, 1/(1− q)).

We set:

γ =
1

1− q
and κ =

1− η
1− q

(2.5)

where γ is the radius of convergence of f and κ and 1 are the only fixed points of f on [0, γ). If µ = 1 then
there is only one fixed point as κ = 1. We shall use frequently the following relations:

γ − κ = µ(γ − 1) and, if µ 6= 1, γ − 1 =
κ− 1

1− µ
· (2.6)
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Notice that κ ∈ [0,+∞) and γ ∈ (1,+∞) allow to recover η and q as:

η = 1− κ

γ
and q = 1− 1

γ
· (2.7)

For this reason, we shall also write G[κ, γ] for G(η, q). Notice that if µ < 1, then q > η and γ > κ > 1; and if
µ > 1, then η > q and γ > 1 > κ ≥ 0.

Since f is an homography, we get for s ∈ [0, γ)\{1}:

f(s)− κ
f(s)− 1

=
1

µ

s− κ
s− 1

· (2.8)

We set f1 = f and, for n ∈ N∗, fn+1 = f ◦ fn. Notice that κ is a fixed point of fn as it is a fixed point of f .
We deduce from (2.8) and the second equality of (2.6) if µ 6= 1 and by direct recurrence if µ = 1, that fn, for
n ∈ N∗, is the generating function of the geometric distribution G[κ, γn] = G(ηn, qn) with mean µn = µn and,
thanks to (2.7):

ηn = 1− κ

γn
, qn = 1− 1

γn
with γn =


κ− µn

1− µn
= 1 + (γ − 1)

qn−1(q − η)

qn − ηn
if µ 6= 1,

1 + (γ − 1) 1
n if µ = 1.

(2.9)

By convention, we set f0 the identity function defined on [0,+∞) and γ0 = +∞ so that for all n ∈ N, we
have γn = limr→+∞ f−1

n (r) that is in short γn = f−1
n (∞). We deduce that for all n ≥ ` ≥ 0:

f`(γn) = γn−`. (2.10)

We derive some asymptotics for γn for large n. It is easy to deduce from (2.9) that:

lim
n→∞

γn = max(1, κ) =

{
κ if µ ≤ 1,

1 if µ ≥ 1.
(2.11)

Using (2.6), we get for large n:

(γn − κ)(γn − 1) =


µn(κ− 1)2 +O(µ2n) if µ < 1,

(γ − 1)2n−2 if µ = 1,

µ−n(κ− 1)2 +O(µ−2n) if µ > 1.

(2.12)

We derive from (2.9) the logarithm asymptotics of γn/γn−h for given h ∈ N∗ and large n:

log(γn−h/γn) = log(γn−h)− log(γn) =


µn−h

(
1− µh

)
(κ− 1)/κ+O(µ2n) if µ < 1,

(γ − 1)hn−2 +O(n−3) if µ = 1,

µ−n
(
µh − 1

)
(1− κ) +O(µ−2n) if µ > 1.

(2.13)

We recall the following well-known equality which holds for all k ∈ N∗ and r ∈ (0, 1):

∑
`≥k

(
`− 1

k − 1

)
r` =

(
r

1− r

)k
. (2.14)
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And we end this section with an elementary lemma.

Lemma 2.1. Let (X`, ` ∈ N∗) be independent random variables with distribution G(η, q) = G[κ, γ].
For a ≥ k ≥ 1:

P

(
k∑
`=1

X` = a

)
=

k∑
i=1

(
k

i

)(
a− 1

i− 1

)
κk−i(γ − κ)i(γ − 1)iγ−a−k.

Proof. We have:

P

(
k∑
`=1

X` = a

)
=

k∑
i=1

(
k

i

)
P(X1 = 0)k−i P

(
i∑

`=1

X` = a, X` ≥ 1 for ` ∈ {1, . . . , i}

)
(2.15)

=
k∑
i=1

(
k

i

)
(1− η)k−i

(
a− 1

i− 1

)
(ηq)i(1− q)a−i.

Then use (2.7) to conclude.

3. The geometric GW tree

Let τ be a GW tree with geometric G(η, q) offspring distribution p given by (2.4), with η ∈ (0, 1] and q ∈ (0, 1).
Recall that (Zn, n ∈ N) is the associated GW process.

For k ∈ N∗, we denote by Pk the distribution of the geometric GW forest composed of k independent GW
trees with geometric offspring distribution G(η, q), and write P for P1. For convenience, we shall under P denote

by Z(k) = (Z
(k)
n , n ∈ N) a GW process distributed as Z = (Zn, n ∈ N) under Pk. For n ∈ N∗, we set:

Mn = γ−Z1
1 γZnn . (3.1)

Since Zn has generating function fn under P, we deduce from (2.10) that (Mn, n ∈ N∗) is a martingale with
M1 = 1.

For n > h ≥ 1, we set:

bn,h =

(
γn
γn−h

)an
. (3.2)

We shall use the following formula when limn→∞ bn,h exists and belongs to (0,∞).

Lemma 3.1. Let n > h ≥ 1 and k ∈ N∗. We have:

Pk(Zn−h = an)

P(Zn = an)
= bn,h

k∑
i=1

(
k

i

)
κk−iGn,h(k, i), (3.3)

with

Gn,h(k, i) =

(
an − 1

i− 1

)
γn
γkn−h

(γn−h − κ)i(γn−h − 1)i

(γn − κ)(γn − 1)
· (3.4)

Proof. Let n > h ≥ 1. Since Zn has distribution G[κ, γn], we obtain thanks to (2.5):

P(Zn = an) = ηnqn(1− qn)an−1 = (γn − κ)(γn − 1)γ−an−1
n .
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Using that Zn−h is under Pk distributed as the sum of k independent random variables with distribution
G[κ, γn−h], we deduce from Lemma 2.1 that:

Pk(Zn−h = an)

P(Zn = an)
=

k∑
i=1

(
k

i

)(
an − 1

i− 1

)
κk−i

(γn−h − κ)i(γn−h − 1)i

γan+k
n−h

γan+1
n

(γn − κ)(γn − 1)

= bn,h

k∑
i=1

(
k

i

)
κk−iGn,h(k, i).

This gives the result.

We shall use the following formula when limn→∞ bn,h = 0 and limn→∞ an = +∞.

Lemma 3.2. Let n > h ≥ 1, k0 ∈ N∗ and t ∈ T(h)
k0

. We have, with an ≥ k = zh(t):

P(rh,k0(τn) = t) =
1− q
ηq

P(rh(τ) = t)
(
γkh −R1

n,h(k)−R2
n,h(k)

)
, (3.5)

with αn = (γn−h − κ)(γn−h − 1), xn = γn/γn−h and:

0 ≤ R1
n,h(k) ≤ bn,h

αn
1− xn

max(1, κ)k−1 22k−1

(
2 +

(
αn

1− xn

)k−1

+ (αnan)k−1

)
, (3.6)

R2
n,h(k) = (κ+ 1− γ)

Pk(Zn−h = an)

P(Zn = an)
· (3.7)

Proof. Let n > h ≥ 1, k0 ∈ N∗ and t ∈ T(h)
k0

. We set k = zh(t). For every 1 ≤ j ≤ k0, we denote by tj the subtree
rooted at the j-th offspring of the root i.e.

u ∈ tj ⇐⇒ ju ∈ t.

In what follows, we denote by Z̃(i) a process distributed as Z(i) and independent of Z(k). We have:

P(rh,k0(τn) = t) =

+∞∑
i=0

p(i+ k0)

 k0∏
j=1

P(rh−1(τ) = tj)

 P(Z
(k)
n−h + Z̃

(i)
n−1 = an)

P(Zn = an)

= P(rh(τ) = t)

+∞∑
i=0

(1− q)i
P(Z

(k)
n−h + Z̃

(i)
n−1 = an)

P(Zn = an)

by the branching property

= P(rh(τ) = t)

+∞∑
i=1

1− q
ηq

p(i)

an∑
`=0

P(Z
(k)
n−h = `)P(Z

(i)
n−1 = an − `)

P(Zn = an)

+ P(rh(τ) = t)
P(Z

(k)
n−h = an)

P(Zn = an)

=
1− q
ηq

P(rh(τ) = t)(A+B),
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where

A = p(0)
P(Z

(k)
n−h = an)

P(Zn = an)
+

an∑
`=0

P(Z
(k)
n−h = `)

+∞∑
i=1

p(i)
P(Z

(i)
n−1 = an − `)
P(Zn = an)

=

an∑
`=0

P(Z
(k)
n−h = `)

+∞∑
i=0

p(i)
P(Z

(i)
n−1 = an − `)
P(Zn = an)

and

B =

(
ηq

1− q
− p(0)

) P(Z
(k)
n−h = an)

P(Zn = an)
·

We have:

A =

an∑
`=0

P(Z
(k)
n−h = `)

P(Zn = an − `)
P(Zn = an)

=

an∑
`=0

P(Z
(k)
n−h = `)γ`n =

(
fn−h (γn)

k −R1
n,h(k)

)
,

where we used that k∅(τ) has distribution p for the first equality, that Zn has distribution G[κ, γn] for the second

one and thus P(Zn = k) = ηnqnγ
−(k−1)
n , and for the last one that:

R1
n,h(k) =

∑
`>0

P(Z
(k)
n−h = `+ an)γ`+ann .

We have, with αn = (γn−h − κ)(γn−h − 1) and xn = γn/γn−h:

P(Z
(k)
n−h = `+ an)γ`+ann = bn,h

k∑
i=1

(
k

i

)(
`+ an − 1

i− 1

)
κk−i (γn−h − κ)i(γn−h − 1)iγ−`−kn−h γ`n

≤ bn,h x`n max(1, κ)k−1
k∑
i=1

(
k

i

)(
`+ an − 1

i− 1

)
αin,

where we used Lemma 2.1 for the first equality and γn−h ≥ max(1, κ) for the last. Using that (x + y)j ≤
2j−1(xj + yj) for j ∈ N∗ and x, y ∈ (0,+∞), we deduce that:(

`+ an − 1

i− 1

)
≤ 2i−1

(i− 1)!

(
`i−1 + ai−1

n

)
.

We have the following rough bounds:

0 ≤ R1
n,h(k) ≤ bn,h max(1, κ)k−1 2k−1

k∑
i=1

αin

(
k

i

)∑
`>0

(
`i−1

(i− 1)!
x`n + ai−1

n x`n

)

≤ bn,h
xnαn
1− xn

max(1, κ)k−1 2k−1
k∑
i=1

(
k

i

)((
αn

1− xn

)i−1

+ (αnan)i−1

)

≤ bn,h
αn

1− xn
max(1, κ)k−1 22k−1

(
2 +

(
αn

1− xn

)k−1

+ (αnan)k−1

)
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where we used that xn ∈ (0, 1) as the sequence (γm,m ∈ N∗) is non-increasing and that
∑
`>0 `

i−1x`/(i− 1)! ≤
x(1−x)i−1 for the last inequality but one. Then use (2.10), which gives fn−h (γn) = γh, to get A = γkh −R1

n,h(k)
as well as (3.6).

We can rewrite the constant in B as

ηq

1− q
− p(0) =

ηq

1− q
− (1− η) = −(κ+ 1− γ),

so that B = −R2
n,h(k), see (3.7), and thus A+B = γkh −R1

n,h(k)−R2
n,h(k). This ends the proof.

4. The Kesten regime or the not so fat case

4.1. The Kesten tree

In this section, we denote by τ a GW tree with geometric p = G(η, q) with η, q ∈ (0, 1). It is well known that
the extinction event E = {H(τ) < +∞} has probability c = min(1, κ). Moreover, as we assume η < 1, we have
c > 0. We define the probability distribution p = (p(n), n ∈ N) by:

p(n) = cn−1p(n) for n ∈ N. (4.1)

We denote by τ0,0 a random tree distributed as τ conditionally on the extinction event E , that is a GW tree
with offspring distribution p. We denote by m the mean of p. If µ ≤ 1, then we have p = p, m = µ, c = 1 and
that τ0,0 is distributed as τ . If µ > 1, then we have that p is the geometric distribution G(q, η), m = 1/µ and
c = κ.

Let k ∈ N∗. We define the k-th order size-biased probability distribution of p as p[k] = (p[k](n), n ∈ N) defined
by:

p[k](n) =
n!

(n− k)!f (k)(1)
p(n) for n ∈ N and n ≥ k. (4.2)

The generating function of p[k] is f[k](s) = skf (k)(s)/f (k)(1). The probability distribution p[1] is the so-called
size-biased probability distribution of p.

For the distribution G(η, q), we have f (k)(1) = k!ηq−k(1 − q)k−1, so the k-th order size-biased probability
distribution of p is given by:

p[k](n) =

(
n

k

)
qk+1(1− q)n−k for n ∈ N and n ≥ k. (4.3)

We now define the so-called Kesten tree τ̂0 associated with the offspring distribution p as a two-type GW
tree where the vertices are either of type s (for survivor) or of type e (for extinction). It is then characterized
as follows.

– The number of offspring of a vertex depends, conditionally on the vertices of lower or same height, only
on its own type (branching property).

– The root is of type s.
– A vertex of type e produces only vertices of type e with offspring distribution p.
– The random number of children of a vertex of type s has the size-biased distribution of p that is p[1]

defined by (4.2) with k = 1. Furthermore, all of the children are of type e but one, uniformly chosen at
random, which is of type s.
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Informally the individuals of type s in τ̂0 form an infinite spine on which are grafted independent GW trees
distributed as τ0,0.

We define τ0 = Ske(τ̂0) as the tree τ̂0 when one forgets the types of the vertices. The distribution of τ0 is
given in the following classical result.

Lemma 4.1. Let p = G(η, q) with η, q ∈ (0, 1). The distribution of τ0 is characterized by: for all n ≥ h ≥ 1 and

t ∈ T(h)
f with k = zh(t):

P(rh(τ0)) = t) = kck−1m−h P(rh(τ) = t). (4.4)

We give a short proof of this well-known result.

Proof. Since τ0 belongs to Tf and has infinite height, its distribution is indeed characterized by (4.4) for all

n ≥ h ≥ 1 and t ∈ T(h)
f with k = zh(t).

Let n ≥ h ≥ 1, t ∈ T(h)
f and v ∈ t such that |v| = h. Let V be the vertex of type s at level h in τ̂0. We have,

with k = zh(t):

P(rh(τ0) = t, V = v) =
∏

u∈t\Anc({v}); |u|<h

p(ku(t))
∏

u∈Anc({v})

1

ku(t)
p[1](ku(t))

= m−hc
∑
u∈rh−1(t)(ku(t)−1)

∏
u∈rh−1(t)

p(ku(t))

= m−hck−1 P(rh(τ) = t),

where we used (4.2) (with k = 1, n = ku(t) and p replaced by p) and (4.1) (with n = ku(t)) for the second
equality and that

∑
u∈rh−1(t)(ku(t)− 1) = k− 1 for the last one. Summing over all v ∈ t such that |v| = h gives

the result.

4.2. Convergence of the not so fat geometric GW tree

We consider a sequence (an, n ∈ N∗) with an ∈ N∗ and a random tree τn distributed as the GW tree τ with
offspring distribution p = G(η, q) conditionally on {Zn = an}. We have the following result.

Proposition 4.2. Let η ∈ (0, 1) and q ∈ (0, 1). Assume that limn→∞ anµ
n = 0 if µ < 1, limn→∞ ann

−2 = 0 if
µ = 1 or limn→∞ anµ

−n = 0 if µ > 1. Then we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τ0.

The critical case, µ = 1, appears in Corollary 6.2 of [2] for general offspring distribution with second moment.

Proof. Let h ∈ N∗ and k ∈ N∗. Recall the definitions of bn,h in (3.2) and ofGn,h in (3.4). According to Lemma 3.1,
we have for n > h ≥ 1 and k ∈ N∗:

Pk(Zn−h = an)

P(Zn = an)
= bn,h

k∑
i=1

(
k

i

)
κk−iGn,h(k, i).

According to (3.2), we have bn,h = exp (−an log(γn−h/γn)). We deduce from (2.13) and the hypothesis on
(an, n ∈ N∗) that limn→∞ an log(γn−h/γn) = 0 and thus limn→∞ bn,h = 1. We deduce from (3.4), (2.11) and
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(2.12) that, for k ≥ i > 1, limn→∞Gn,h(k, i) = 0 and for k ≥ 1:

lim
n→∞

Gn,h(k, 1) =


κ1−kµ−h if µ < 1,

1 if µ = 1,

µh if µ > 1.

We deduce that:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
=

 kµ−h if µ < 1
k if µ = 1

kκk−1µh if µ > 1

 = kck−1m−h.

Then, as a.s. H(τ0) = +∞, we can use the characterization (2.1) of the convergence in Tf , as well as (2.3) and
Lemma 4.1 to conclude.

5. The Poisson regime or the fat case

5.1. An infinite Poisson tree

Let θ ∈ (0,+∞). We consider a two-type random tree τ̂θ where the vertices are either of type s (for survivor)
or of type e (for extinction). We define τθ = Ske(τ̂θ) as the tree τ̂θ when one forgets the types of the vertices of
τ̂θ. We denote by Sh = {u ∈ τθ; |u| = h and u is of type s in τ̂θ} the set of vertices of τ̂θ with type s at level
h ∈ N. Notice that (S`, 0 ≤ ` < h) = Anc(Sh) and that τ̂θ is completely characterized by τθ and (Sh, h ∈ N).
Recall p defined by (4.1) and the k-th order size-biased distribution, p[k], defined by (4.2). The random tree τ̂θ

is defined as follows.

– The root is of type s (i.e. S0 = {∅}).
– The number of offspring of a vertex of type e does not depend on the vertices of lower or same height

(branching property only for individuals of type e).
– A vertex of type e produces only vertices of type e with offspring distribution p (as in the Kesten tree).
– For h ∈ N, let ∆h = ]Sh+1 − ]Sh be the increase of number of vertices of type s between generations h

and h + 1. Conditionally on rh(τθ) and (S`, 0 ≤ ` ≤ h), ∆h is distributed as a Poisson random variable
with mean θζh, where:

ζh =


µ−h−1(1− µ)(κ− 1)/κ if µ < 1,

(γ − 1) if µ = 1,

µh(µ− 1)(1− κ) if µ > 1.

(5.1)

We denote by κs(u) the number of children of u of type s. Conditionally given rh(τθ), (S`, 0 ≤ ` ≤ h) and
∆h, the vector (κs(u), u ∈ Sh) is uniformly distributed on the set of vectors of positive integers (ni, 1 ≤
i ≤ ]Sh) that sum to ]Sh + ∆h, each configuration having hence probability 1/

(
]Sh+1−1
]Sh−1

)
= 1/

(
]Sh+1−1

∆h

)
.

(This breaks the branching property for the tree and the population process since the number of offspring
of type s of a vertex depends on the size of the whole population of type s at the same level). Furthermore,
conditionally on rh(τθ), Sh and (κs(v) = sv ≥ 1, v ∈ Sh), the vertex u ∈ Sh has κe(u) vertices of type
e such that ku(τθ) = κs(u) + κe(u) has distribution p[su] and the su individuals of type s are chosen

uniformly at random among the ku(τθ) children.
More precisely, for h ∈ N, n ∈ N, u ∈ Sh, ku ≥ su ≥ 1, Au ⊂ {1, . . . , ku} with ]Au = su and

∑
u∈Sh

su =
n+ ]Sh, we have with k =

∑
u∈Sh

ku:
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P
(
κs(u) + κe(u) = ku and Sh+1 ∩ {u1, . . . , uku} = uAu ∀u ∈ Sh | rh(τθ),Sh

)
=

(θζh)n

n!
e−θζh

1(
]Sh+n−1

n

) ∏
u∈Sh

1(
ku
su

) p[su](ku)

=
(]Sh − 1)!

(]Sh + n− 1)!
(θ(γ − 1)ζh)n e−θζh

∏
u∈Sh

p(ku)

{
µ−]Sh if µ ≤ 1,

µ]Sh
(
µ
κ

)n
if µ > 1,

(5.2)

where we used (4.3) and (4.1) as well as (2.7) for the last equality.

By construction, a.s. individuals of type s have a progeny which does not suffer extinction whereas individuals
of type e have a progeny which suffers extinction. Since the individuals of type s do not satisfy the branching
property, the random tree τ̂θ is not a multi-type GW tree. We stress out that τ̂θ truncated at level h can be
recovered from rh(τθ) and Sh as all the ancestors of a vertex of type s are also of type s and a vertex of type s
has at least one child of type s.

We have the following result.

Lemma 5.1. Let η ∈ (0, 1] and q ∈ (0, 1). Let θ ∈ (0,+∞). Let n ≥ h ≥ 1 and t ∈ T(h)
f . We have, with

k = zh(t):

P(rh(τθ) = t) = H(h, k, θ) P(rh(τ) = t),

where H(h, k, θ) is equal to

µ−h e−θ(µ
−h−1)(κ−1)/κ

k∑
i=1

(
k

i

) (
θµ−h(κ− 1)2/κ

)i−1

(i− 1)!
if µ < 1,

e−θ(γ−1)h
k∑
i=1

(
k

i

) (
θ(γ − 1)2

)i−1

(i− 1)!
if µ = 1,

µh e−θ(µ
h−1)(1−κ)

k∑
i=1

(
k

i

)
κk−i

(
θµh(1− κ)2

)i−1

(i− 1)!
if µ > 1.

Remark 5.2. We deduce from Lemma 4.1 that τθ
(d)−−−→
θ→0

τ0. Therefore the trees τθ appear as a generalization

of the Kesten tree. We will also prove in Proposition 6.3 that a limit also exists when θ → +∞.

Proof. We consider only the super-critical case. The sub-critical case and the critical case can be handled in a
similar way.

Let h ∈ N∗, t ∈ T(h)
f and Sh ⊂ {u ∈ t; |u| = h} be non empty. In order to shorten the notations, we set

A = Anc(Sh). Notice that A is tree-like. We set, for ` ∈ {0, . . . , h − 1}, S` = {u ∈ A, |u| = `} the vertices at
level ` which have at least one descendant in Sh and ∆` = ]S`+1 − ]S`. We recall that τ̂θ truncated at level h
can be recovered from rh(τθ) and Sh. We compute CSh = P(rh(τθ) = t, Sh = Sh). We have, using (5.2) and
(5.1):

CSh =

 ∏
u∈rh−1(t),u 6∈A

p(ku(t))


h−1∏
`=0

[
(]S` − 1)!

(]S`+1 − 1)!
(θ(γ − 1)ζ`)

∆` e−θζ`

[ ∏
u∈S`

p(ku(t))

]
µ]S`

(µ
κ

)∆`

]
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=

 ∏
u∈rh−1(t)

p(ku(t))


(
θ(γ−1)(µ−1)(1−κ)

κ

)∑h−1
`=0 ∆`

(]Sh − 1)!
e−θ

∑h−1
`=1 ζ`

h−1∏
`=0

µ(`+1)∆`+]S`

=

 ∏
u∈rh−1(t)

κku(t)−1

  ∏
u∈rh−1(t)

p(ku(t))


(
θ(1−κ)2

κ

)]Sh−1

(]Sh − 1)!
e−θ(µ

h−1)(1−κ) µh]Sh

= κzh(t)−]Sh P(rh(τ) = t)
µh
(
θµh(1− κ)2

)]Sh−1

(]Sh − 1)!
e−θ(µ

h−1)(1−κ),

where we used for the third equality that
∑h−1
`=0 ∆` = ]Sh − 1,

∑h−1
`=1 ζ` = (µh − 1)(1 − κ) and

∑h−1
`=0 (` +

1)∆` + ]S` =
∑h−1
`=0 (`+ 1)]S`+1 − `]S` = h]Sh. Since CSh depends only of ]Sh, we shall write C]Sh for CSh . Set

k = zh(t) = ]{u ∈ t; |u| = h}. Since ]Sh ≥ 1 as the root if of type s, we obtain:

P(rh(τ̃θ) = t) =

k∑
i=1

∑
Sh⊂{u∈t; |u|=h}

1{]Sh=i} CSh =

k∑
i=1

(
k

i

)
Ci = P(rh(τ) = t)H(h, k, θ),

where we used the definition of H for the last equality.

5.2. Convergence of the fat geometric GW tree

We consider a sequence (an, n ∈ N∗), with an ∈ N∗ and τn a random tree distributed as the GW tree τ
conditionally on {Zn = an}. We have the following result.

Proposition 5.3. Let η ∈ (0, 1], q ∈ (0, 1) and θ ∈ (0,+∞). Assume that limn→∞ anµ
n = θ if µ < 1 or

limn→∞ ann
−2 = θ if µ = 1 or limn→∞ anµ

−n = θ if µ > 1. Then we have the following convergence in
distribution:

τn
(d)−−−−→
n→∞

τθ.

Proof. Recall the definitions of bn,h in (3.2) and of Gn,h in (3.4). According to Lemma 3.1, we have for n > h ≥ 1
and k ∈ N∗:

Pk(Zn−h = an)

P(Zn = an)
= bn,h

k∑
i=1

(
k

i

)
κk−iGn,h(k, i).

According to Definition (3.2), we have bn,h = exp (−an log(γn−h/γn)). We deduce from (2.13) and the
hypothesis on (an, n ∈ N∗) that

lim
n→∞

− log(bn,h) =


θ(µ−h − 1)(κ− 1)/κ if µ < 1,

θ(γ − 1)h if µ = 1,

θ(µh − 1)(1− κ) if µ > 1.
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We deduce from (3.4), (2.11) and (2.12), that for h ∈ N∗, k ≥ i ≥ 1:

lim
n→∞

(i− 1)!Gn,h(k, i) =


(
θµ−h(κ− 1)2

)i−1
µ−hκ1−k if µ < 1,(

θ(γ − 1)2
)i−1

if µ = 1,(
θµh(1− κ)2

)i−1
µh if µ > 1.

Using definition of H in Lemma 5.1, we obtain that:

lim
n→∞

Pk(Zn−h = an)

P(Zn = an)
= H(h, k, θ).

Then use the characterization of the convergence in Tf , (2.3) and Lemma 5.1 to conclude.

6. The condensation regime or the very fat case

6.1. An infinite geometric tree

Recall γn defined in (2.9). For n ∈ N∗, we define the probability p̃n = (p̃n(k), k ∈ N) by:

p̃n(k) =
γkn+1

γn
p(k).

Thanks to (2.10), we get
∑
k∈N p̃n(k) = f(γn+1)γ−1

n = 1, so that p̃ is indeed a probability distribution on N.
For n = 0, we set p̃0 the Dirac mass at +∞, which is a degenerate probability measure on N̄.

We define τ∞ as an inhomogeneous GW tree with reproduction distribution p̃h at generation h ∈ N. In
particular the root has an infinite number of children, whereas all the other individuals have a finite number of

children. More precisely, for all h ∈ N∗, k0 ∈ N∗ and t ∈ T(h)
k0

, we have:

P(rh,k0(τ∞) = t) =
∏

u∈rh−1(t)∗

p̃|u|(ku(t)), (6.1)

where we recall that t∗ = t \ {∅}. Remark that a.s. τ∞ ∈ T∗f .
We give a representation of the distribution of τ∞ as the distribution of τ with a martingale weight.

Lemma 6.1. Let η ∈ (0, 1] and q ∈ (0, 1). For all h ∈ N∗, k0 ∈ N∗ and F a non-negative function on T∞, we
have:

E [F (rh,k0(τ∞))] =
E
[
F (rh(τ))Mh1{k∅(τ)=k0}

]
P(k∅(τ) = k0)

,

where (Mh, h ∈ N∗) is the martingale defined by (3.1). Equivalently, for all h ∈ N∗, k0 ∈ N∗ and t ∈ T(h)
k0

, we
have with k = zh(t):

P (rh,k0(τ∞) = t) =
1− q
ηq

γkh P (rh(τ) = t) . (6.2)
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Proof. Let h ∈ N∗, k0 ∈ N∗ and t ∈ T(h)
k0

. Set k = zh(t). We have:

1− q
ηq

γkh P (rh(τ) = t) =
1− q
ηq

 ∏
u∈t, |u|=h−1

γ
ku(t)
h

  ∏
u∈rh−1(t)

p(ku(t))


=

1− q
ηq

γk01

 ∏
u∈rh−1(t)∗

γ−1
|u| γ

ku(t)
|u|+1

  ∏
u∈rh−1(t)

p(ku(t))


=

1− q
ηq

γk01 p(k0)

 ∏
u∈rh−1(t)∗

p̃|u|(ku(t))


= P(rh,k0(τ∞) = t),

where we used that
∑
u∈t, |u|=` ku(t) =

∑
u∈t, |u|=`+1 1 for the second equality and the definition of p(k0) and

γ1 = γ as well as (6.1) for the last one. To conclude, notice also that thanks to the definition of p(k0) and γ1 = γ
as well as (3.1), we have on {k∅(τ) = k0}:

1− q
ηq

γ
zh(τ)
h =

Mh

p(k0)
·

We give an alternative description of τ∞ as the skeleton of a two-type GW tree. We set for n ∈ N:

νn = 1− γn+1 − 1

γ1 − 1
=

{
µ(1− µn) (1− µn+1)−1 if µ 6= 1,

n(n+ 1)−1 if µ = 1.

We have νn ∈ [0, 1). It is easy to check (using the first expression of νn−1 for the first equality and the second
expression for νn−1 and νn for the second equality) that for all n ∈ N∗:

1− qνn−1

1− q
= γn and

1

µ
(1− νn−1)

νn
1− νn

= 1. (6.3)

We consider an inhomogeneous two-type GW tree τ̂∞ where the vertices are either of type s (for survivor)
or of type e (for extinction). We define Ske(τ̂∞) as the tree τ̂∞ when one forgets the types of the vertices of
τ̂∞. We denote by Sh = {u ∈ Ske(τ̂∞); |u| = h and u is of type s in τ̂∞} the set of vertices of τ̂ with type s at
level h ∈ N. The random tree τ̂∞ is defined as follows:

– The number of offspring of a vertex depends, conditionally on the vertices of lower or same height, only
on its own type (branching property).

– The root is of type s (i.e. S0 = {∅}).
– A vertex of type e produces only vertices of type e with offspring distribution p defined by (4.1).
– A vertex u ∈ τ̂∞ at level h of type s produces κs(u) vertices of type s with probability distribution G(1, νh)

(with the convention that if h = 0, then κs(∅) = +∞) and κe(u) vertices of type e such that the type
of the vertices (ui, 1 ≤ i ≤ κs(u) + κe(u)) is a sequence of heads (type s) and tails (type e) where the
probability to get an head is q ∨ η and a tail is 1 − q ∨ η, stopped just before the (κs(u) + 1)-th head.
Equivalently, for |u| ≥ 1, conditionally on κs(u) = su ≥ 1, the vertex u has κe(u) vertices of type e such
that ku(Ske(τ̂∞)) = κs(u) + κe(u) has distribution p[su], defined in (4.3), and the su individuals of type
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s are chosen uniformly at random among the ku(Ske(τ̂∞)) children. More precisely, we have for k0 ∈ N∗
and S1 ⊂ {1, . . . , k0}:

P (S1 ∩ {1, . . . , k0} = S1) = (q ∨ η)]S1(1− (q ∨ η))k0−]S1 ,

and for h ≥ 2, k ∈ N∗, u ∈ U with |u| = h, su ∈ {1, . . . , k}, and A ⊂ {1, . . . , k} such that ]A = su:

P (κs(u) + κe(u) = k, Sh+1 ∩ {u1, . . . , uk} = uA | rh(Ske(τ̂∞)), Sh, u ∈ Sh)

= νh(1− νh)su−1 (q ∨ η)su+1(1− (q ∨ η))k−su .

By construction individuals of type s have a progeny which does not suffer extinction whereas individuals of
type e have a.s. a finite progeny.

We stress out that τ̂∞, truncated at level h and when considering only the first k0 children of the root, can
be recovered from rh,k0(Ske(τ̂∞)) and Sh as all the ancestors of a vertex of type s is also of a type s and a
vertex of type s has at least one children of type s.

We have the following result.

Lemma 6.2. Let η ∈ (0, 1] and q ∈ (0, 1). We have that τ∞ is distributed as Ske(τ̂∞).

Proof. We first suppose that η ≤ q. In that case, µ ≤ 1 and we have p = p and q ∨ η = q.

Let h ∈ N∗, k0 ∈ N∗, t ∈ T(h)
k0

and Sh ⊂ {u ∈ t; |u| = h} which might be empty. In order to shorten the
notations, we set A = Anc(Sh) which is a tree if Sh is non-empty. For u ∈ A, we set su = ]{i ∈ N; ui ∈ A∪ Sh}
the number of children of u which have at least one descendant in Sh. We set, for ` ∈ {0, . . . , h− 1}, S` = {u ∈
A, |u| = `} the vertices at level ` which have at least one descendant in Sh. Notice that

∑
u∈S` su = ]S`+1. Set

k = zh(t). We compute CSh = P(rh,k0(Ske(τ̂∞)) = t, Sh = Sh). If Sh is non-empty, we have:

CSh =

 ∏
u∈rh−1(t), u 6∈A

p(ku(t))

 q]S1(1− q)k0−]S1

∏
u∈A∗

ν|u|(1− ν|u|)su−1qsu+1(1− q)ku(t)−su

=

 ∏
u∈rh−1(t)∗

p(ku(t))

 q]S1(1− q)k0−]S1

∏
u∈A∗

ν|u|

1− ν|u|
1− q
η

(
q

1− q
(1− ν|u|)

)su

=
1− q
ηq

P(rh(τ) = t)

(
q

1− q

)]S1 h−1∏
`=1

(
ν`

1− ν`
1− q
η

)]S` ( q

1− q
(1− ν`)

)]S`+1

=
1− q
ηq

P(rh(τ) = t)

(
ν1

1− ν1

q

η

)]S1
(

q

1− q
(1− νh−1)

)]Sh h−1∏
`=2

(
ν`

1− ν`
q

η
(1− ν`−1)

)]S`
=

1− q
ηq

P(rh(τ) = t)

(
q

1− q
(1− νh−1)

)]Sh
,

where we used for the second equality that if u ∈ A and Sh = Sh, then kSke(τ̂∞)(u) ≥ 1; and for the fifth the
second equation from (6.3) as well as ν1/(1 − ν1) = µ = η/q (which comes also from the second equation in
(6.3) with n = 0). If Sh is empty, then we have:

C∅ = (1− q)k0
∏

u∈rh−1(t)∗

p(ku(t)) =
1− q
ηq

P(rh(τ) = t).
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Notice that CSh depends on Sh only trough ]Sh. We deduce that:

P(rh,k0(Ske(τ̂∞)) = t) =

k∑
i=0

∑
Sh⊂{u∈t; |u|=h}

1{]Sh=i} CSh

=
1− q
ηq

P(rh(τ) = t)

k∑
i=0

(
k

i

)(
q

1− q
(1− νh−1)

)i
=

1− q
ηq

P(rh(τ) = t)

(
1 +

q

1− q
(1− νh−1)

)k
=

1− q
ηq

P(rh(τ) = t)

(
1− qνh−1

1− q

)k
=

1− q
ηq

P(rh(τ) = t)γkh,

where we used the first equation from (6.3) for the last equality. Then we conclude using (6.2) from Lemma 6.1.
In the case q < η, we have that p is the G(q, η) distribution. So the computations are the same, inverting the

roles of q and η.

As in Remark 5.2, we also have the convergence of the trees τθ introduced in Section 5.1 to the infinite
geometric tree τ∞ as θ → +∞.

Proposition 6.3. Let η ∈ (0, 1] and q ∈ (0, 1). Then we have the following convergence in distribution:

τθ
(d)−−−→
θ→∞

τ∞.

Proof. We only deal with the supercritical case, the subcritical and critical cases can be handled in a similar
way.

For t, t′ ∈ Tf such that k∅(t) <∞, let us denote by t ∗ t′ the tree obtained by grafting t and t′ on the same
root i.e.:

t ∗ t′ = t ∪ {(u1 + k∅(t), u2, . . . , un), (u1, . . . , un) ∈ t′∗},

with the convention t ∗ t′ = t if t′ = {∅}.
We denote by T(≤h)

f the subset of Tf of trees with height less than or equal to h. Let h, k0 > 0 and let t ∈ T(h)
k0

.
Then using Lemma 5.1 with k = zh(t) and k′ = zh(t′), we have:

P(rh,k0(τθ) = t)

=
∑

t′∈T(≤h)
f

P(rh(τθ) = t ∗ t′)

=
∑

t′∈T(≤h)
f

µh e−θ(µ
h−1)(1−κ)

k+k′∑
i=1

(
k + k′

i

)
κk+k′−i (θµ

h(1− κ)2)i−1

(i− 1)!
P(rh(τ) = t ∗ t′).

Let us remark that, if t′ 6= {∅}, then

P(rh(τ) = t ∗ t′) =
P(rh(τ) = t)

p(k∅(t))

P(rh(τ) = t′)

p(k∅(t′))
p(k∅(t) + k∅(t

′))
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=
1− q
ηq

P(rh(τ) = t)P(rh(τ) = t′).

Since P(rh(τθ) = t) converges to 0 as θ increases to infinity, we deduce that for θ → +∞:

P(rh,k0(τθ) = t) =
1− q
ηq

µhP(rh(τ) = t) e−θ(µ
h−1)(1−κ) A1 + o(1),

with

A1 =
∑

t′∈T(≤h)
f \{∅}

k+k′∑
i=1

(
k + k′

i

)
κk+k′−i (θµ

h(1− κ)2)i−1

(i− 1)!
P(rh(τ) = t′).

We have, using for the third equality that Zh has distribution G[κ, γh], that:

A1 =

+∞∑
k′=0

k+k′∑
i=1

(
k + k′

i

)
κk+k′−i (θµ

h(1− κ)2)i−1

(i− 1)!

∑
{t′∈T(≤h)

f , zh(t′)=k′}

P(rh(τ) = t′)

=

+∞∑
k′=0

k+k′∑
i=1

(
k + k′

i

)
κk+k′−i (θµ

h(1− κ)2)i−1

(i− 1)!
P(Zh = k′)

=

+∞∑
k′=0

k+k′∑
i=1

(
k + k′

i

)
κk+k′−i (θµ

h(1− κ)2)i−1

(i− 1)!

(
1− 1

γh

)(
1− κ

γh

)
1

γk
′−1
h

=

(
1− 1

γh

)(
1− κ

γh

)
(A2 +A3),

where

A2 =

+∞∑
i=k+1

(
+∞∑

k′=i−k

(
k + k′

i

)(
κ

γh

)k′−1
)

(θµh(1− κ)2)i−1

(i− 1)!
κk−i+1

and

A3 =

k∑
i=1

(
+∞∑
k′=0

(
k + k′

i

)(
κ

γh

)k′−1
)

(θµh(1− κ)2)i−1

(i− 1)!
κk−i+1.

Using (2.14) and κ/γh < 1, we get limθ→+∞ e−θ(µ
h−1)(1−κ) A3 = 0. Using (2.14), we also have:

A2 =

+∞∑
i=k+1

1(
1− κ

γh

)i+1

(
κ

γh

)i−k−1
(θµh(1− κ)2)i−1

(i− 1)!
κk−i+1

=
γk+2
h

(γh − κ)2
e

(θµh(1−κ)2)
γh−κ +O(θk).
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Then, as (γh − 1)/(γh − κ) = µ−h and (1− κ)/(γh − κ) = 1− µ−h, we get that:

lim
θ→+∞

e−θ(µ
h−1)(1−κ) A1 = lim

θ→+∞
e−θ(µ

h−1)(1−κ)

(
1− 1

γh

)(
1− κ

γh

)
A2 = µ−hγkh.

We deduce that:

lim
θ→+∞

P(rh,k0(τθ) = t) =
1− q
ηq

γkh P(rh(τ) = t).

Using (6.2), this gives the result.

6.2. Convergence of the very fat geometric GW tree

We consider a sequence (an, n ∈ N∗), with an ∈ N∗ and τn a random tree distributed as the GW tree τ
conditionally on {Zn = an}. We have the following result.

Proposition 6.4. Let η ∈ (0, 1] and q ∈ (0, 1). Assume that limn→∞ anµ
n = +∞ if µ < 1 or limn→∞ ann

−2 =
+∞ if µ = 1 or limn→∞ anµ

−n = +∞ if µ > 1. Then we have the following convergence in distribution:

τn
(d)−−−−→
n→∞

τ∞.

Proof. First notice that a.s. H(τ∞) = +∞. Then, using the characterization (2.2) for the convergence in distri-
bution in T∗f , the result is a direct consequence of (3.5) in Lemma 3.2 and of (6.2) in Lemma 6.1, provided that
limn→∞Rin,h(k) = 0 for i ∈ {1, 2}, h ≥ 2 and k ∈ N∗, where Rin,h are defined in (3.6) and (3.7).

According to (3.2) and the definitions in Lemma 3.2, we have bn,h = exp (−an log(γn−h/γn)), αn = (γn−h −
κ)(γn−h − 1) and xn = γn/γn−h. Since κ > 1 (resp. γ > 1, resp. κ < 1) if µ < 1 (resp. µ = 1, resp. µ >
1), and since h ≥ 1, we deduce from (2.9), (2.12) and (2.13) that log(γn−h/γn), αn and 1 − xn are of the
same order µ−n (resp. n−2, resp. µn). In particular limn→∞ αn/(1 − xn) exists and is finite. Because of the
hypothesis on (an, n ∈ N∗), we deduce that limn→∞ an log(γn−h/γn) = +∞ and thus limn→∞ bn,h = 0 as well as
limn→∞ bn,h (αnan)k−1 = 0 as an log(γn−h/γn) and αnan are of the same order. This gives limn→∞R1

n,h(k) = 0
Since p(k)Pk(Zn−h = an) ≤

∑
i∈N p(i)Pi(Zn−h = an) = P(Zn−h+1 = an), we deduce that:

Pk(Zn−h = an)

P(Zn = an)
≤ 1

p(k)

P(Zn−h+1 = an)

P(Zn = an)

=
1

p(k)
bn,h−1

(γn−h+1 − κ)(γn−h+1 − 1)

(γn − κ)(γn − 1)

γn
γn−h+1

,

where we used that Z` has distribution G[κ, γ`] and (2.9) for the last equality. According to the previous
paragraph, we have limn→∞ bn,h−1 = 0 as h ≥ 2. Furthermore, using (2.13), we get that:

lim
n→∞

(γn−h+1 − κ)(γn−h+1 − 1)

(γn − κ)(γn − 1)

γn
γn−h+1

= µ−h+1.

This implies that limn→∞ Pk(Zn−h = an)/P(Zn = an) = 0 and thus limn→∞R2
n,h(k) = 0. This finishes the

proof.
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