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Abstract We consider the height process of a Lévy process with no negative jumps,
and its associated continuous tree representation. Using Lévy snake tools developed
by Le Gall-Le Jan and Duquesne-Le Gall, with an underlying Poisson process, we
construct a fragmentation process, which in the stable case corresponds to the self-
similar fragmentation described by Miermont. For the general fragmentation process
we compute a family of dislocation measures as well as the law of the size of a tagged
fragment. We also give a special Markov property for the snake which is of its own
interest.

Keywords Fragmentation · Lévy snake · Dislocation measure · Stable processes ·
Special Markov property
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1 Introduction

We present a fragmentation process associated with continuous random trees (CRT)
with general critical or sub-critical branching mechanismψ , which were introduced by
Le Gall and Le Jan [15] and developed later by Duquesne and Le Gall [11]. This extends
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previous work from Miermont [18] on stable CRT (i.e. ψ(λ) = λα for α ∈ (1, 2)).
Although the underlying ideas are the same in both constructions, the arguments in
the proofs are very different. Following Abraham and Serlet [3] who deal with the par-
ticular case of Brownian CRT, our arguments rely on Lévy Poisson snake processes.
Those path processes are Lévy snakes (see [11]) with underlying spatial motion a
Poisson process. This Lévy Poisson snake puts marks on the CRT where it is cut
in order to construct the fragmentation process. In [3], the CRT is associated with
Brownian motion (i.e. ψ(λ) = λ2) and the marks are put on the skeleton of the
tree. On the contrary, we focus here on the case where the branching mechanism has
no Brownian part, which implies that the marks lie on the nodes of the CRT. The
construction of the Lévy Poisson snake can surely be extended to the case of a branch-
ing mechanism that contains a Brownian part but some marks would then be on the
skeleton whereas the others would lie on the nodes, which makes the study of the
fragmentation more involved.

This construction provides non trivial examples of non self-similar fragmentations,
and the tools developed here could give further results on the fragmentation associated
with CRT. For instance, using this construction in [1], we gave the asymptotics for the
small fragments which was an open question even for the fragmentation at nodes of
the stable CRT.

The next three subsections give a brief presentation of the mathematical objects
and state the mains results. The last one describes the organization of the paper.

1.1 Exploration process

The coding of a tree by its height process is now well-known. For instance, the height
process of Aldous’ CRT [4] is a normalized Brownian excursion. In [15], Le Gall and
Le Jan associated with a Lévy process X = (Xt , t ≥ 0) with no negative jumps that
does not drift to infinity, a continuous state branching process (CSBP) and a Lévy CRT
which keeps track of the genealogy of the CSBP. Let ψ denote the Laplace exponent
of X . We shall assume here that there is no Brownian part, that is

ψ(λ) = α0λ+
∫

(0,+∞)

π(d�)
[
e−λ� −1 + λ�

]
,

with α0 ≥ 0 and the Lévy measure π is a positive σ -finite measure on (0,+∞) such
that

∫
(0,+∞)

(� ∧ �2)π(d�) < ∞. Following [11], we shall also assume that X is of
infinite variation a.s. which implies that

∫
(0,1) �π(d�) = ∞. Notice those assumptions

are fulfilled in the stable case: ψ(λ) = λα , α ∈ (1, 2).
Informally, for the height process H = (Ht , t ≥ 0) associated with X , Ht gives the

distance (which can be understood as the number of generations) between the individ-
ual labeled t and the root 0 of the CRT. An individual labeled t is an ancestor of s ≥ t
if Ht = inf{Hr , r ∈ [t, s]}, and inf{Hr , r ∈ [s, t]} is the “generation” of the most
recent common ancestor of s and t . The height process is a key tool in this construction
but it is not a Markov process. The so-called exploration process ρ = (ρt , t ≥ 0) is
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a càd-làg Markov process taking values in M f (R+), the set of measures with finite
mass on R+ endowed with the topology of weak convergence. The height process
can easily be recovered from the exploration process as Ht = H(ρt ), where H(µ)
denotes the supremum of the closed support of the measure µ (with the convention
that H(0) = 0).

To understand what the exploration process means, let us use the queuing system
representation of [15]. We consider a LIFO (Last In, First Out) queue with one server.
A jump of X at time s corresponds to the arrival of a new customer requiring a service
equal to�s := Xs − Xs−. The server interrupts his current job and starts immediately
the service of this new customer (LIFO procedure). When this new service is finished,
the server will resume the previous job. As we assume that π is infinite, all services
will suffer interruptions. The customer (arrived at time) s will still be in the system
at time t > s if and only if Xs− < infs≤r≤t Xr and, in this case, the quantity ρt (Hs)

represents the remaining service required by the customer s at time t . Observe that
ρt ([0, Ht ]) corresponds to the load of the server at time t and is equal to Xt − It where

It = inf{Xu, 0 ≤ u ≤ t}.

Another process of interest will be the dual process (ηt , t ≥ 0)which is also a mea-
sure-valued process. In the queuing system description, for a customer s still present in
the system at time t , the quantity ηt (Hs) represents the amount of service of customer
s already completed at time t , so that ρt (Hs)+ ηt (Hs) = �s holds for any customer
s still present in the system at time t .

Definition and properties of the height process, the exploration process and the dual
process are recalled in Sect. 2.

1.2 Fragmentation

A fragmentation process is a Markov process which describes how an object with
given total mass evolves as it breaks into several fragments randomly as time passes.
Notice there may be loss of mass but no creation. This kind of processes has been
widely studied in the recent years, see Bertoin [9] and references therein. To be more
precise, the state space of a fragmentation process is the set of the non-increasing
sequences of masses with finite total mass

S↓ =
{

s = (s1, s2, . . .); s1 ≥ s2 ≥ · · · ≥ 0 and 
(s) =
+∞∑
k=1

sk < +∞
}
.

If we denote by Ps the law of a S↓-valued process � = (�θ , θ ≥ 0) starting at
s = (s1, s2, . . .) ∈ S↓, we say that � is a fragmentation process if it is a Markov
process such that θ �→ 
(�θ) is non-increasing and if it fulfills the fragmentation
property: the law of (�θ , θ ≥ 0) under Ps is the non-increasing reordering of the
fragments of independent processes of respective laws P(s1,0,...),P(s2,0,...), … In other
words, each fragment behaves independently of the others, and its evolution depends
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only on its initial mass. As a consequence, to describe the law of the fragmentation
process with any initial condition, it suffices to study the laws Pr := P(r,0,...) for any
r ∈ (0,+∞), that is the law of the fragmentation process starting with a single mass r .

A fragmentation process is said to be self-similar of index α ∈ R if, for any r > 0,
the law of the process (�θ , θ ≥ 0) under Pr is the law of the process (r�rαθ , θ ≥ 0)
under P1. Bertoin [8] proved that the law of a self-similar fragmentation is charac-
terized by: the index of self-similarity α, an erosion coefficient which corresponds
(when α = 0) to a deterministic rate of loss of mass, and a dislocation measure ν on
S↓ which describes sudden dislocations of a fragment of mass 1.

Connections between fragmentation processes and random trees or Brownian excur-
sion have been pointed out by several authors. Let us mention the work of Bertoin [7]
who constructed a fragmentation process by looking at the lengths of the excur-
sions above level t of a Brownian excursion. Aldous and Pitman [5] constructed
another fragmentation process, which is related to the additive coalescent process,
by cutting Aldous’ Brownian CRT. Their proofs rely on projective limits on trees.
These results have been generalized by Miermont [17,18] to CRT associated with sta-
ble Lévy processes, using path transformations of the Lévy process. Concerning the
Aldous-Pitman’s fragmentation process, Abraham and Serlet [3] gave an alternative
construction using Poisson snakes. Our presentation follows their ideas. However, we
give next a more intuitive presentation which is in fact equivalent.

We set I the infimum process of the Lévy process X and we consider an excursion of
the reflected process X − I away from 0, which corresponds also to an excursion of the
exploration process (and the height process) away from 0. Let N be the corresponding
excursion measure and σ denote the length of those excursions under N. Intuitively, σ
represents the “size” of the total progeny of the root 0. Let J = {t ∈ [0, σ ]; Xt 	= Xt−}
be the set of jumping times of X or nodes of the CRT, and consider (Tt ; t ∈ J ) a
countable family of independent random variables such that Tt is distributed (condi-
tionally on X ) according to an exponential law with parameter �t = Xt − Xt−. At
time Tt , the node corresponding to the jump�t is cut from the CRT. Two individuals,
say u ≤ v, belong to the same fragment at time θ if no node has been cut before
time θ between them and their most recent common ancestor which is defined as
u � v = inf

{
t ∈ [0, u]; min{Hr , r ∈ [u, v]} = min{Hr , r ∈ [t, u]}}. Let �θ denote

the family of decreasing positive Lebesgue measures of the fragments, completed by
zeros if necessary so that �θ ∈ S↓. See Sect. 4.4 for a precise construction.

Cutting nodes at time θ > 0 may also be viewed as adding horizontal lines under
the epigraph of H (see Fig. 1). We then consider the excursions obtained after cutting
the initial excursion along the horizontal lines and gluing together the corresponding
pieces of paths (for instance, the bold piece of the path of H in Fig. 1 corresponds to the
bold excursion in Fig. 2). The lengths of these excursions, ranked in decreasing order,
form the fragmentation process as θ increases. Of course, the figures are caricatures
as the process H is very irregular and the number of fragments is infinite.

Remark that, for θ = 0, no mark has appeared and�0 has only one non-zero term:
the length of the initial excursion. In order to study the fragmentation starting from a
single fixed mass, we need to work under the law of an excursion conditioned by its
length. We know, (cf [6], Sect. VII) that the right continuous inverse, (τr , r ≥ 0), of
−I is a subordinator with Laplace exponent ψ−1. This subordinator has no drift as
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Fig. 1 Cutting at nodes
Hs

σ0

Fig. 2 Fragmentation of the
excursion

limλ→∞ λ−1ψ−1(λ) = 0 (see (3)). We denote by π∗ its Lévy measure: for λ ≥ 0

ψ−1(λ) =
∫

(0,∞)

π∗(d�)(1 − e−λ�).

And the length of the excursion, σ , under the excursion measure N is distributed
according to the measure π∗. By decomposing the measure N w.r.t. the distribution of
σ , we get that N[dE] = ∫

(0,∞)
π∗(dr)Nr [dE], where (Nr , r ∈ (0,∞)) is a measur-

able family of probability measures on the set of excursions such that Nr [σ = r ] = 1
for π∗-a.e. r > 0. One can use Theorem V.8.1 in [19] and the fact that the set of
excursions can be seen as a Borel subset of Skorohod space of càd-làg functions with
compact support, to ensure the existence of a regular version of such a decomposition.

The next theorem asserts that the process (�θ , θ ≥ 0) is a fragmentation process:
let us denote by Pr the law of the process (�θ , θ ≥ 0) under Nr .

Theorem 1.1 For π∗(dr)-almost every r , under Pr , the process � = (�θ , θ ≥ 0)
is a S↓-valued fragmentation process. More precisely, the law under Pr of the pro-
cess (�θ+θ ′

, θ ′ ≥ 0) conditionally on �θ = (�1,�2, . . .) is given by the decreasing
reordering of independent processes of respective law P�1 ,P�2 , . . . .

The proof of this Theorem relies on the study of a tagged fragment, in fact the one
which contains 0, and the corresponding height process (that is the dashed lines of
Figs. 1 and 2) and exploration process. We shall refer to this exploration process as
the pruned exploration process. Another key ingredient is the special Markov property
for the underlying exploration process, see Sect. 3.5 for precise statements. This result
has the same flavor as the special Markov property of [11] but for the fact that the
cutting is on the nodes instead of being on the branches.

There is no loss of mass thanks to the following proposition:
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Proposition 1.2 For π∗(dr) almost every r , Pr -a.s., for every θ ≥ 0,
∑+∞

i=1 �
θ
i = r .

Remark 1.3 A more regular version of the family of conditional probability laws
(Nr , r > 0) would allow us to get results in Theorem 1.1 and Proposition 1.2 for all
r ≥ 0 instead of π∗(dr) almost everywhere. This is for instance the case when the
Lévy process is stable (for which it is possible to construct the measure Nr from N1
by a scaling property) or when we can construct this family via a Vervaat’s transform
of the Lévy bridge (see [16]).

We now describe the dislocation measures of the fragmentation at nodes. Let T =
{θ ≥ 0;�θ 	= �θ−} denote the jumping times of the process� and consider the dislo-
cation process of the CRT fragmentation at nodes:

∑
θ∈T

δ(θ,�θ ). As a direct consequence

of Sect. 4.6, the dislocation process is a point process with intensity ν̃�θ−(ds)dθ , where
(ν̃x , x ∈ S↓) is a family of σ -finite measures on S↓. We refer to [13] for the definition
of intensity of a random point measure. Furthermore there exists a family (νr , r > 0)
of σ -finite measures on S↓, which we call dislocation measures of the fragmentation
�, such that νr (ds)-a.e. 
(s) = r (i.e. there is no loss of mass at the fragmentation)
and for any x = (x1, x2, . . .) ∈ S↓ and any non-negative measurable function, F ,
defined on S↓,

∫
F(s)ν̃x (ds) =

∑
i≥1;xi>0

∫
F(xi,s)νxi (ds),

where xi,s is the decreasing reordering of the merging of the sequences s ∈ S↓ and x ,
where xi has been removed of the sequence x . This last property means that only one
element of x fragments and the fragmentation depends only on the size of this very
fragment. The same family of dislocation measures, up to a scaling factor, appears for
the fragmentation at height of the CRT, see [10].

In the general case, the fragmentation is not self-similar. But in the stable case,
ψ(λ) = λα with α ∈ (1, 2), using scaling properties, we get that the fragmenta-
tion is self-similar with index 1/α and we recover the results of Miermont [18], see
Corollary 4.6. In particular the dislocation measure ν of a fragment of size 1 is given
by: for any measurable non-negative function F on S↓,

∫
F(x)ν(dx) = α(α − 1)�

(
1 − α−1

)
�(2 − α)

E [S1 F(�St/S1, t ≤ 1)] ,

where (St , t ≥ 0) is a stable subordinator with Laplace exponent ψ−1(λ) = λ1/α , and
F(�St/S1, t ≤ 1) has to be understood as F applied to the decreasing reordering
of the sequence (�St/S1, 0 ≤ t ≤ 1), where (�St , t ≥ 0) are the jumps of the
subordinator.

In order to give the corresponding dislocation measures for the CRT fragmentation
at nodes in general, we need to consider (�St , t ≥ 0) the jumps of a subordinator
S with Laplace exponent ψ−1. Let µ be the measure on R+ × S↓ such that for any
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non-negative measurable function, F , on R+ × S↓,

∫

R+×S↓

F(r, x)µ(dr, dx) =
∫
π(dv)E[F(Sv, (�St , t ≤ v))], (1)

where (�St , t ≤ v) has to be understood as the family of jumps of the subordinator
up to time v ranked in decreasing size.

Intuitively, µ is the joint law of ST and the jumps of S up to time T , where T and
S are independent, and T is distributed according to the infinite measure π .

Theorem 1.4 There exists a family of dislocation measures (νr , r > 0) on S↓ s.t.

rµ(dr, dx) = νr (dx)π∗(dr).

In particular, π∗(dr)-a.e. we have that νr (dx)-a.e.
(x) = r . The dislocation process
of the CRT fragmentation at nodes (�θ = (�θi , i ≥ 1), θ ≥ 0) is under N a point

process with intensity
∑
i≥1

1{�θ−i >0}ν�θ−i
(dx) dθ .

For self-similar fragmentations with no loss of mass, the dislocation measure
(together with the index of self-similarity) characterizes the law of the fragmenta-
tion process. In the general case, although we can define the family of dislocation
measures in a similar way, the fact that this family of measures characterizes the law
of the fragmentation remains an open problem.

1.3 Law of the pruned exploration process

In order to use snake techniques, we define a measure-valued process S := ((ρt ,Mt ),

t ≥ 0) called the Lévy Poisson snake, where the process ρ is the usual exploration
process whereas the process M keeps track of the cut nodes on the CRT which allows
to construct the fragmentation (see Sect. 3 for a precise definition).

In order to prove the fragmentation property (Theorem 1.1), we need several inter-
mediate results on the Lévy Poisson snake that are interesting on their own. As they
are not the main purpose of this paper, their proofs are postponed at the end of the
paper.

In particular, we study the size of a tagged fragment, for instance the one that
contains the root of the CRT. So, we set At the Lebesgue measure of the set of the
individuals prior to t who belongs to the tagged fragment at a given time θ > 0 (see
(19) for a precise definition), its right-continuous inverse Ct = inf{r > 0; Ar ≥ t}
and we define the pruned exploration process ρ̃ by

ρ̃t = ρCt for t ≥ 0.

The pruned exploration process ρ̃ corresponds to the exploration process associated
with the dashed height process of Figs. 1 and 2. We introduce the following Laplace
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exponent of a Lévy process (with no negative jumps that does not drift to infinity),
ψ(θ) defined for λ ≥ 0

ψ(θ)(λ) = ψ(θ + λ)− ψ(θ).

Notice that ψ(θ) = α
(θ)
0 +

∫

(0,∞)

π(θ)(d�)
[
e−λ� −1 + λ�

]
, where

α(θ) = α0 +
∫

(0,∞)

(1 − e−θ�)�π(d�) and π(θ)(d�) = e−θ� π(d�).

Theorem 1.5 The pruned exploration process ρ̃ is distributed as the exploration pro-
cess associated with a Lévy process with Laplace exponent ψ(θ).

The proof relies on the description of the height process given in [15], see (4).
An alternative proof would be, as in [3], to use a martingale problem for ρ̃, see
Remark (3.9).

Let σ̃ be the length of the excursion of ρ̃. In order to prove the fragmentation prop-
erty, we need the law of ρ̃ conditionally on σ̃ = r . The next result seems to be well
known but, as we did not find any good reference for it, we will give a complete proof
in Sect. 5.2.

Lemma 1.6 The distribution of ρ̃ (resp. of a Lévy process with Laplace exponent
ψ(θ)) under the excursion measure, N, is absolutely continuous w.r.t. to distribution
of ρ (resp. of X ) with density given by e−σψ(θ), where σ denotes the length of the
excursion under N. Equivalently, for any non-negative measurable function G on the
space of excursions, we have

N

[
eψ(θ)σ̃ [1 − e−G(ρ̃)]

]
= N

[
1 − e−G(ρ)

]
.

We deduce that π(θ)∗ (dr) = e−rψ(θ) π∗(dr), where π(θ)∗ is the Lévy measure corre-
sponding to the Laplace exponent (ψ(θ))−1. And we have π∗(dr)-a.e., conditionally
on the length of the excursion being equal to r , the law of the excursion of the pruned
exploration process is the law of the excursion of the exploration process.

Finally, we give the joint law of length of the exploration process and the length
of the pruned exploration process. This result allows to compute the law of a tagged
fragment for the fragmentation process (that is the law of σ̃ conditionally on σ = r )
at a given time θ > 0.

Proposition 1.7 For all non-negative γ, κ, θ , we have

N

[
1 − e−ψ(γ )σ−κσ̃ ] = ψ−1(κ + ψ(γ + θ))− θ.
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1.4 Organization of the paper

In Sect. 2, we recall the construction of the Lévy CRT and give the properties we shall
use in this paper. Section 3 is devoted to the definition and some properties of the
Lévy Poisson snake and the special Markov property. From this Lévy Poisson snake,
we define in Sect. 4 the fragmentation process associated with the Lévy CRT and
prove the fragmentation property, Theorem 1.1, and check there is no loss of mass,
Proposition 1.2. The proof relies on the special Markov property. We also compute
in this section the dislocation measures of this fragmentation. Finally, we collect in
Sect. 5 most of the technical proofs on the Lévy Poisson snake as well as the proof of
the special Markov property (Sect. 5.3). In particular proofs of Theorem 1.5 (restated
in Theorem 3.8), Lemma 1.6 are given in Sect. 5.2 and the proof of Proposition 1.7 is
given in Sect. 5.4 as it relies on the special Markov property.

2 Lévy snake: notations and properties

We recall here the construction of the Lévy continuous random tree (CRT) introduced
in [14,15] and developed later in [11]. We will emphasize on the height process and
the exploration process which are the key tools to handle this tree. The results of this
section are mainly extracted from [11].

2.1 The underlying Lévy process

We consider a R-valued Lévy process X = (Xt , t ≥ 0) with no negative jumps,
starting from 0. Its law is characterized by its Laplace transform: for λ ≥ 0

E

[
e−λXt

]
= etψ(λ),

where its Laplace exponent ψ is given by

ψ(λ) = αλ+ βλ2 +
∫

(0,+∞)

π(d�)
[
e−λ� −1 + 1{�<1}λ�

]
,

where β ≥ 0 and the Lévy measure π is a positive σ -finite measure on (0,+∞) such
that

∫
(0,+∞)

(1 ∧ �2)π(d�) < ∞. In this paper, we assume that X

• has first moments (i.e.
∫
(0,+∞)

(� ∧ �2)π(d�) < ∞),
• has no Brownian part (i.e. β = 0),
• is of infinite variation (i.e.

∫
(0,1) �π(d�) = +∞),

• does not drift to +∞.

The Laplace exponent of X can then be written as

ψ(λ) = α0λ+
∫

(0,+∞)

π(d�)
[
e−λ� −1 + λ�

]
,

123



122 R. Abraham, J.-F. Delmas

with α0 ≥ 0 (as X does not drift to +∞) and the Lévy measure π is a positive σ -finite
measure on (0,+∞) such that

∫

(0,+∞)

(� ∧ �2)π(d�) < ∞ and
∫

(0,1)

�π(d�) = ∞. (2)

For λ ≥ 1/ε > 0, we have e−λ� −1 + λ� ≥ 1
2λ�1{�≥2ε}, which implies that

λ−1ψ(λ) ≥ α0 + ∫
(2ε,∞)

� π(d�). We deduce that

lim
λ→∞

λ

ψ(λ)
= 0. (3)

We introduce some processes related to X . Let J = {s ≥ 0; Xs 	= Xs−} be the set
of jumping times of X . For s ∈ J , we denote by

�s = Xs − Xs−

the jump of X at time s and �s = 0 otherwise. Let I = (It , t ≥ 0) be the infimum
process of X , It = inf0≤s≤t Xs , and let S = (St , t ≥ 0) be the supremum process,
St = sup0≤s≤t Xs . We will also consider for every 0 ≤ s ≤ t the infimum of X over
[s, t]:

I s
t = inf

s≤r≤t
Xr .

The point 0 is regular for the Markov process X − I , and −I is the local time of
X − I at 0 (see [6], Chap. VII). Let N be the associated excursion measure of the
process X − I away from 0, and let σ = inf{t > 0; Xt − It = 0} be the length of the
excursion of X − I under N. We will assume that under N, X0 = I0 = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S − X . The
local time, L = (Lt , t ≥ 0), of S − X at 0 will be normalized so that

E[e−βS
L−1

t ] = e−tψ(β)/β,

where L−1
t = inf{s ≥ 0; Ls ≥ t} (see also [6] Theorem VII.4 (ii)).

2.2 The height process and the Lévy CRT

For each t ≥ 0, we consider the reversed process at time t , X̂ (t) = (X̂ (t)s , 0 ≤ s ≤ t)
by:

X̂ (t)s = Xt − X(t−s)− if 0 ≤ s < t,
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and X̂ (t)t = Xt . The two processes (X̂ (t)s , 0 ≤ s ≤ t) and (Xs, 0 ≤ s ≤ t) have the
same law. Let Ŝ(t) be the supremum process of X̂ (t) and L̂(t) be the local time at 0 of
Ŝ(t) − X̂ (t) with the same normalization as L .

Definition 2.1 ([11], Definition 1.2.1, Lemma 1.2.1 and Lemma 1.2.4) There exists
a [0,∞]-valued lower semi-continuous process H = (Ht , t ≥ 0), called the height
process, such that H0 = 0 and for all t ≥ 0, a.s. Ht = L̂(t)t . And a.s. for all s < t s.t.
Xs− ≤ I s

t and for s = t if �t > 0 then Ht < ∞ and for all t ′ > t ≥ 0, the process
H takes all the values between Ht and Ht ′ on the time interval [t, t ′].

Remark 2.2 Those results can also be found in [15], see Proposition 4.3 and Lemma 4.6
as we assumed there is no Brownian part in X . We shall also use the following formula
(see formula (4.5) in [15]): a.s. for a.e. t ≥ 0,

Ht = lim
ε↓0

1

βε
Card

{
s ∈ [0, t], Xs− < I s

t , �Xs > ε
}
, (4)

where βε = ∫
(ε,+∞)

�π(d�).

The height process (Ht , t ∈ [0, σ ]) under N codes a continuous genealogical struc-
ture, the Lévy CRT, via the following procedure.

(i) To each t ∈ [0, σ ] corresponds a vertex at generation Ht .
(ii) Vertex t is an ancestor of vertex t ′ if Ht = Ht,t ′ , where

Ht,t ′ = inf{Hu, u ∈ [t ∧ t ′, t ∨ t ′]}. (5)

In general Ht,t ′ is the generation of the last common ancestor of t and t ′.
(iii) We put d(t, t ′) = Ht + Ht ′ − 2Ht,t ′ and identify t and t ′ (t ∼ t ′) if d(t, t ′) = 0.

The Lévy CRT coded by H is then the quotient set [0, σ ]/ ∼, equipped with the
distance d and the genealogical relation specified in (ii).

2.3 The exploration process

The height process is not Markov. But it is a very simple function of a measure-valued
Markov process, the so-called exploration process.

If E is a polish space, let B(E) (resp. B+(E)) be the set of real-valued measurable
(resp. and non-negative) functions defined on E endowed with its Borel σ -field, and
let M(E) (resp. M f (E)) be the set of σ -finite (resp. finite) measures on E , endowed
with the topology of vague (resp. weak) convergence. For any measure µ ∈ M(E)
and f ∈ B+(E), we write

〈µ, f 〉 =
∫

f (x) µ(dx).
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The exploration process ρ = (ρt , t ≥ 0) is a M f (R+)-valued process defined as
follows: for every f ∈ B+(R+), 〈ρt , f 〉 = ∫[0,t] ds I s

t f (Hs), or equivalently

ρt (dr) =
∑
0<s≤t

Xs−<I s
t

(I s
t − Xs−)δHs (dr). (6)

In particular, the total mass of ρt is 〈ρt , 1〉 = Xt − It .
For µ ∈ M(R+), we set

H(µ) = sup Supp µ, (7)

where Supp µ is the closed support of µ, with the convention H(0) = 0. We have

Proposition 2.3 ([11], Lemma 1.2.2 and formula (1.12)) Almost surely, for every
t > 0,

• H(ρt ) = Ht ,
• ρt = 0 if and only if Ht = 0,
• if ρt 	= 0, then Supp ρt = [0, Ht ].
• ρt = ρt− +�tδHt , where �t = 0 if t 	∈ J .

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0 a.s.
To state the Markov property of ρ, we must first define the process ρ started at any
initial measure µ ∈ M f (R+).

For a ∈ [0, 〈µ, 1〉], we define the erased measure kaµ by

kaµ([0, r ]) = µ([0, r ]) ∧ (〈µ, 1〉 − a), for r ≥ 0.

If a > 〈µ, 1〉, we set kaµ = 0. In other words, the measure kaµ is the measure µ
erased by a mass a backward from H(µ).

For ν, µ ∈ M f (R+), and µ with compact support, we define the concatenation
[µ, ν] ∈ M f (R+) of the two measures by:

〈[µ, ν], f
〉 = 〈µ, f

〉+ 〈ν, f (H(µ)+ ·)〉, f ∈ B+(R+).

Finally, we set for every µ ∈ M f (R+) and every t > 0, ρµt = [k−Itµ, ρt ]. We say
that (ρµt , t ≥ 0) is the process ρ started at ρµ0 = µ, and write Pµ for its law. Unless

there is an ambiguity, we shall write ρt for ρµt .

Proposition 2.4 ([11], Proposition 1.2.3) The process (ρt , t ≥ 0) is a càd-làg strong
Markov process in M f (R+).
Remark 2.5 From the construction of ρ, we get that a.s. ρt = 0 if and only if −It ≥
〈ρ0, 1〉 and Xt − It = 0. This implies that 0 is also a regular point for ρ. Notice that
N is also the excursion measure of the process ρ away from 0, and that σ , the length
of the excursion, is N-a.e. equal to inf{t > 0; ρt = 0}.
Remark 2.6 The process ρ is adapted to the filtration generated by the process X and
ρ0, completed the usual way. On the other hand, notice that a.s. the jumping times of ρ
are also the jumping times of X , and for s ∈ J , we have ρs({Hs}) = �s . We deduce
that (�u, u ∈ (s, t]) is measurable w.r.t. the σ -field σ(ρu, u ∈ [s, t]).
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2.4 The dual process and representation formula

We shall need the M f (R+)-valued process η = (ηt , t ≥ 0) defined by

ηt (dr) =
∑
0<s≤t

Xs−<I s
t

(Xs − I s
t )δHs (dr).

The process η is the dual process of ρ under N (see Corollary 3.1.6 in [11]). We write
(recall �s = Xs − Xs−)

κt (dr) = ρt (dr)+ ηt (dr) =
∑
0<s≤t

Xs−<I t
s

�sδHs (dr). (8)

We recall the Poisson representation of (ρ, η) under N. Let N (dx d� du) be a
Poisson point measure on [0,+∞)3 with intensity

dx �π(d�)1[0,1](u)du.

For every a > 0, let us denote by Ma the law of the pair (µa, νa) of measures on R+
with finite mass defined by: for any f ∈ B+(R+)

〈µa, f 〉 =
∫

N (dx d� du)1[0,a](x)u� f (x), (9)

〈νa, f 〉 =
∫

N (dx d� du)1[0,a](x)�(1 − u) f (x). (10)

Remark 2.7 In particular µa(dr)+ νa(dr) is defined as 1[0,a](r)dr Wr , where W is a
subordinator with Laplace exponent ψ ′ − α0.

We finally set M = ∫ +∞
0 da e−α0a

Ma .

Proposition 2.8 ([11], Proposition 3.1.3) For every non-negative measurable function
F on M f (R+)2,

N

⎡
⎣

σ∫

0

F(ρt , ηt ) dt

⎤
⎦ =

∫
M(dµ dν)F(µ, ν),

where σ = inf{s > 0; ρs = 0} denotes the length of the excursion.

We shall also give a Bismut formula for the height process. (Notice the proof of
Lemma 3.4 in [12] does not require the continuity of the height process, whereas this
assumption is done in [12] for other results.)
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Proposition 2.9 ([12], Lemma 3.4)
For every non-negative measurable function F defined on B+([0,∞])2

N

⎡
⎣

σ∫

0

ds F((H(s−t)+ , t ≥ 0), (H(s+t)∧σ , t ≥ 0))

⎤
⎦=

∫
M(dµ dν)E[F(H (µ)

1 , H (ν)
2 )],

where H (µ)
1 and H (ν)

2 are independent and distributed as H under P
∗
µ and P

∗
ν respec-

tively.

We shall also use later the next result.

Proposition 2.10 ([11], Lemma 3.2.2)
Let τ be an exponential variable of parameter λ > 0 independent of X defined

under the measure N. Then, for every F ∈ B+(M f (R+)), we have

N
(
F(ρτ )1τ≤σ

) = λ

∫
M(dµ dν)F(µ) e−ψ−1(λ)〈ν,1〉 .

Exponential formula for the Poisson point process of jumps of the inverse sub-
ordinator of −I gives (see also the beginning of Sect. 3.2.2. [11]) that for λ > 0

N
[
1 − e−λσ ] = ψ−1(λ). (11)

3 The Lévy Poisson snake

As in [3], we want to construct a Poisson snake in order to cut the Lévy CRT at its
nodes. For this, we will construct a consistent family (m(θ) = (m(θ)

t , t ≥ 0), θ ≥ 0)
of measure-valued processes. For fixed θ and t , m(θ)

t will be a point-measure whose

atoms mark the atoms of the measure ρt and such that the set of atoms of m(θ+θ ′)
t

contains those of m(θ)
t . To achieve this, we attach to each jump of X a Poisson process

indexed by θ , with intensity equal to this jump. In fact only the first jump of the Poisson
processes will be necessary to build the fragmentation process but we consider Poisson
processes in order to have the additive property of Proposition 3.2.

3.1 Definition and properties

Conditionally on the Lévy process X , we consider a family (
∑

u>0 δVs,u , s ∈ J ) of
independent Poisson point measures on R+ with respective intensity �s 1{u>0}du.
We define the M(R2+)-valued process M = (Mt , t ≥ 0) by

Mt (dr, dv) =
∑

0<s≤t
Xs−<I s

t

(I s
t − Xs−)

(∑
u>0

δVs,u (dv)

)
δHs (dr). (12)
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Notice that a.s.
Mt (dr, dv) = ρt (dr)Mt,r (dv), (13)

where Mt,r =∑u>0 δVs,u with s > 0 s.t. Xs− < I s
t and Hs = r .

Let θ > 0. For t ≥ 0, notice that

Mt (R+ × [0, θ ]) ≤
∑

0<s≤t

�sξs,

with ξs = Card {u > 0; Vs,u ≤ θ}. In particular, we have for T > 0,

sup
t∈[0,T ]

Mt (R+ × [0, θ ]) ≤
∑

0<s≤T

�sξs . (14)

Notice the variable ξs are, conditionally on X , independent and distributed as Poisson
random variables with parameter θ�s . We have E[∑0<s≤T �sξs |X ] = θ

∑
0<s≤T �

2
s .

As
∫
(0,∞)

(�2 ∧ �)π(d�) is finite, this implies the quantity
∑

0<s≤T �
2
s is finite a.s. In

particular we have a.s.

sup
t∈[0,T ]

Mt (R+ × [0, θ ]) < ∞,

and Mt is a σ -finite measure on R
2+.

We call the process S = ((ρt ,Mt ), t ≥ 0) the Lévy Poisson snake started at
ρ0 = 0,M0 = 0. To get the Markov property of the Lévy Poisson snake, we must
define the process S started at any initial value (µ,�) ∈ S, where S is the set of pair
(µ,�) such that µ ∈ M f (R+) and�(dr, dv) = µ(dr)�r (dv), (�r , r > 0) being a
measurable family of σ -finite measures on R+, such that�(R+ ×[0, θ ]) < ∞ for all
θ ≥ 0. We set Hµ

t = H(k−Itµ). Then, we define the process Mµ,� = (Mµ,�
t , t ≥ 0)

by: for any ϕ ∈ B+(R2+),

〈Mµ,�
t , ϕ〉 =

∫

(0,∞)2

ϕ(r, v)k−Itµ(dr)�r (dv)+
∫

(0,∞)2

ϕ(r + Hµ
t , v)Mt (dr, dv).

We shall write M for Mµ,�. By construction and since ρ is an homogeneous Markov
process, the Lévy Poisson snake S = (ρ,M) is an homogeneous Markov process.

We now denote by Pµ,� the law of the Lévy Poisson snake starting at time 0 from
(µ,�), and by P

∗
µ,� the law of the Lévy Poisson snake killed when ρ reaches 0. We

deduce from (14), that a.s.

Eµ,�

[
sup

t∈[0,T ]
Mt (R+ × [0, θ ])

∣∣∣ X

]
≤ θ

∑
0<s≤T

�2
s +�(R+ × [0, θ ]) < ∞. (15)

Let F = (Ft , t ≥ 0) be the filtration generated by S completed the usual way.
Notice this filtration is also generated by the processes X and (

∑
s∈J , s ≤ t
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∑
u ≥ 0 δVs,u , t ≥ 0). In particular the filtration F is right continuous. And by con-

struction, we have that ρ is Markovian with respect to F . The technical proof of the
next result is postponed to the appendix.

Proposition 3.1 The Lévy Poisson snake, S, is a càd-làg strong Markov process in
S ⊂ M f (R+)× M(R2+).

We shall use later the following property, which is a consequence of Poisson point
measure properties.

Proposition 3.2 Let θ > 0 and Mθ = (Mθ
t , t ≥ 0) be the measure-valued process

defined by

Mθ
t (dr, [0, a]) = Mt (dr, (θ, θ + a]), for all a ≥ 0.

Then, given ρ, Mθ is independent of M1R+×[0,θ] and is distributed as M.

3.2 Poisson representation of the snake

Notice that a.s. (ρt ,Mt ) = (0, 0) if and only if ρt = 0. In particular, (0, 0) is a regular
point for the Lévy Poisson snake. We still write N for the excursion measure of the
Lévy Poisson snake away from (0, 0), with the same normalization as in Sect. 2.4.

We decompose the path of S under P
∗
µ,� according to excursions of the total mass

of ρ above its minimum, see Sect. 4.2.3 in [11]. More precisely let (αi , βi ), i ∈ I be
the excursion intervals of the process 〈ρ, 1〉 above its minimum under P

∗
µ,�. For every

i ∈ I , we define hi = Hαi and S i = (ρi ,Mi ) by the formulas

〈ρi
t , f 〉 =

∫

(hi ,+∞)

f (x − hi )ρ(αi +t)∧βi (dx)

〈Mi
t , ϕ〉 =

∫

(hi ,+∞)×[0,+∞)

ϕ(x − hi , v)M(αi +t)∧βi (dx, dv).

It is easy to adapt Lemma 4.2.4. of [11] to get the following Lemma.

Lemma 3.3 Let (µ,�) ∈ M f (R+) × M(R2+). The point measure
∑

i∈I δ(hi ,S i ) is
under P

∗
µ,� a Poisson point measure with intensity µ(dr)N[dS].

3.3 The process m(θ)

For θ ≥ 0, we define the M(R+)-valued process m(θ) = (m(θ)
t , t ≥ 0) by

m(θ)
t (dr) = Mt (dr, (0, θ ]). (16)
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We make two remarks. We have for s > 0,

P0,0(m
(θ)
s = 0|X) = e−θ∑0<r≤s, Xr−<I r

s
�r = e−θ〈κs ,1〉 . (17)

Notice that for s ∈ J , i.e. �s > 0, we have Ms({Hs}, dv) = �s
∑

u≥0 δVs,u (dv),
where conditionally on X ,

∑
u≥0 δVs,u (dv) is a Poisson point measure with intensity

�s1{u>0}du. In particular, we have

Pµ,�(m
(θ)
s ({Hs}) > 0|X) = P(Ms({Hs} × (0, θ ]) > 0|X) = 1 − e−θ�s .

Recall that
∑

s≥0 δ(s,�s ) is a Poisson point process with intensity π . From Poisson
point measure properties, we get the following Lemma.

Lemma 3.4 The random measure
∑

s≥0 1{m(θ)
s ({Hs })>0}δ(s,�s ) is a Poisson point pro-

cess with intensity
nθ (d�) = (1 − e−θ�)π(d�). (18)

Finally, the next Lemma on time reversibility can easily be deduced from
Corollary 3.1.6 of [11] and the construction of M .

Lemma 3.5 For every θ > 0, under N, the processes ((ρs, ηs, 1{m(θ)
s =0}), s ∈ [0, σ ])

and ((η(σ−s)−, ρ(σ−s)−, 1{m(θ)
(σ−s)−=0}), s ∈ [0, σ ]) have the same distribution.

3.4 The pruned exploration process

In this section, we fix θ > 0 and write m for m(θ). We define the following continuous
additive functional of the process ((ρt ,mt ), t ≥ 0): for t ≥ 0

At =
t∫

0

1{ms=0} ds, (19)

Lemma 3.6 We have the following properties.

(i) For λ > 0, N[1 − e−λAσ ] = ψ(θ)
−1
(λ).

(ii) N-a.e. 0 and σ are points of increase for A. More precisely, N-a.e. for all ε > 0,
we have Aε > 0 and Aσ − A(σ−ε)∨0 > 0.

(iii) N-a.e. the set {s; ms 	= 0} is dense in [0, σ ].
The proof of this Lemma is postponed to Sect. 5.2.
We set Ct = inf{r > 0; Ar > t} the right continuous inverse of A, with the

convention that inf ∅ = ∞. From excursion decomposition, see Lemma 3.3, (ii) of
Lemma 3.6 implies the following Corollary.

Corollary 3.7 For any initial measures µ,�, Pµ,�-a.s. the process (Ct , t ≥ 0) is
finite. If m0 = 0, then Pµ,�-a.s. C0 = 0.
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We define the pruned exploration process ρ̃ = (ρ̃t = ρCt , t ≥ 0) and the pruned
Lévy Poisson snake S̃ = (ρ̃, M̃), where M̃ = (MCt , t ≥ 0). Notice Ct is a F-stopping
time for any t ≥ 0 and is finite a.s. from Corollary 3.7. Notice the process ρ̃, and thus
the process S̃, is càd-làg. We also set H̃t = HCt and σ̃ = inf{t > 0; ρ̃t = 0}.

Let F̃ = (F̃t , t ≥ 0) be the filtration generated by the pruned Lévy Poisson snake
S̃ completed the usual way. In particular F̃t ⊂ FCt , where if τ is an F-stopping time,
then Fτ is the σ -field associated with τ .

We are now able to restate precisely Theorem 1.5.

Theorem 3.8 For every measureµwith finite mass, the law of the pruned exploration
process ρ̃ under Pµ,0 is the law of the exploration process associated with a Lévy
process with Laplace exponent ψ(θ) under Pµ.

The proof relies on the approximation formula (4) and is postponed to Sect. 5.2.

Remark 3.9 An alternative proof would be, as in [3], to use a martingale problem
for ρ̃. Indeed, there is a simple relation between the infinitesimal generator of ρ and
those of ρ̃: Let F, K ∈ B(M f (R+)) bounded such that, for any µ ∈ M f (R+),
Eµ

[∫ σ
0 |K (ρs)| ds

]
< ∞ and Mt = F(ρt∧σ ) − ∫ t∧σ

0 K (ρs), for t ≥ 0, define an
F-martingale. In particular, notice that Eµ

[
supt≥0 |Mt |

]
< ∞. Thus, we can define

for t ≥ 0,

Nt = E
∗
µ[MCt |F̃t ].

Proposition 3.10 The process N = (Nt , t ≥ 0) is an F̃-martingale. We have for all
µ ∈ M f (R+), Pµ-a.s.

σ̃∫

0

du
∫

(0,∞)

(
1 − e−θ�) π(d�) |F([ρ̃u, �δ0])− F(ρ̃u)| < ∞,

and the representation formula for Nt :

Nt = F(ρ̃t∧σ̃ )−
t∧σ̃∫

0

du

⎛
⎜⎝K (ρ̃u)+

∫

(0,∞)

(
1−e−θ�) π(d�)(F([ρ̃u, �δ0])−F(ρ̃u)

)
⎞
⎟⎠ .

(20)

Let us also mention that we have computed the infinitesimal generator of ρ for expo-
nential functionals in [2].

3.5 Special Markov property

We still work with fixed θ > 0 and write m for m(θ).
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In order to define the excursion of the Lévy Poisson snake away from {s ≥ 0; ms =
0}, we define O as the interior of {s ≥ 0, ms 	= 0}. We shall see that the complemen-
tary of O has positive Lebesgue measure. Its Lebesgue measure corresponds to the
length of the fragment at time θ which contains 0.

Lemma 3.11 N-a.e. the open set O is dense in [0, σ ].
Proof Thanks to Lemma 3.6, (iii), {s ≥ 0, ms 	= 0} is dense. For any element s of
this set, there exists u ≤ Hs such that ms([0, u]) 	= 0 and ρs({u}) > 0. Then we
consider τs = inf{t > s, ρt ({u}) = 0}. By the right continuity of ρ, τs > s and clearly
(s, τs) ⊂ O N-a.e. Therefore O in dense in [0, σ ]. ��

We write O = ⋃
i∈I (αi , βi ) and say that (αi , βi )i∈I are the excursions intervals

of the Lévy Poisson snake S = (ρ,M) away from {s ≥ 0, ms = 0}. Using the
right continuity of ρ and the definition of M , we get that for i ∈ I , αi > 0, αi ∈ J
that is ραi ({Hαi }) = �αi , Mαi ({Hαi }, [0, θ ]) ≥ 1 and Mαi ([0, Hαi ), [0, θ ]) = 0. For
every i ∈ I , let us define the measure-valued process S i = (ρi ,Mi ) by: for every
f ∈ B+(R+), ϕ ∈ B+(R2+), t ≥ 0,

〈ρi
t , f 〉 =

∫

[Hαi ,+∞)

f (x − Hαi )ρ(αi +t)∧βi (dx)

〈Mi
t , ϕ〉 =

∫

(Hαi ,+∞)×[0,+∞)

ϕ(x − Hαi , v)M(αi +t)∧βi (dx, dv).
(21)

Notice that the mass located at Hαi is kept in the definition of ρi whereas it is removed
in the definition of Mi . In particular, ρi

0 = �iδ0, with �αi > 0 and, for every
t < βi − αi , the measure ρi

t charges 0. On the contrary, as Mi
0 = 0 we have for every

t < βi − αi , Mi
t ({0} × R+) = 0. We call �αi the starting mass of S i .

Let F̃∞ be the σ -field generated by S̃ = ((ρCt ,MCt ), t ≥ 0) and P
∗
µ,�(dS)

denote the law of the snake S started at (µ,�) and stopped when ρ reaches 0. For
� ∈ [0,+∞), we will write P

∗
� for P

∗
δ�,0

. Recall (18) and define the measure N by

N(dS) =
∫

(0,+∞)

π(d�)
(

1 − e−θ�)
P

∗
�(dS) =

∫

(0,∞)

n(θ)(d�)P∗
�(dS). (22)

If Q is a measure on S and φ is a non-negative measurable function defined on a
measurable space R+ ×�× S, we denote by

Q[φ(u, ω, ·)] =
∫

S

φ(u, ω,S)Q(dS).

In other words, the integration concerns only the third component of the function φ.
We can now state the Special Markov Property.
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Theorem 3.12 (Special Markov property) Let φ be a non-negative measurable func-
tion defined on R+×�×S such that t �→ φ(t, ω,S) is progressively F̃∞-measurable
for any S ∈ S. Then, we have P0,0-a.e.

E0,0

[
exp

(
−
∑
i∈I

φ(Aαi , ω,S i )

) ∣∣∣∣ F̃∞

]

= exp

⎛
⎝−

∞∫

0

du
∫

N(dS)
[
1 − e−φ(u,ω,S)]

⎞
⎠ . (23)

Furthermore, the law of the excursion process
∑

i∈I δ(Aαi ,ραi −,S i ), given F̃∞, is the
law of a Poisson point measure of intensity 1{u≥0}du δρ̃u (dµ) N(dS).

Informally speaking, this theorem gives the law of the Lévy Poisson snake ‘above’
the tagged fragment that contains the root. It allows to prove that the fragments evolve
independently and have the same law.

The proof of this theorem is postponed to Sect. 5.3.

4 Link between Lévy snake and fragmentation processes at nodes

4.1 Construction of the fragmentation process

Let S = (ρ,M) be a Lévy Poisson snake. For fixed θ > 0, let us consider the follow-
ing equivalence relation Rθ on [0, σ ], defined under N or Nσ (see definition of the
law Nσ of the excursion conditioned to have length σ in the introduction) by:

sRθ t ⇐⇒ m(θ)
s

([Hs,t , Hs]
) = m(θ)

t
([Hs,t , Ht ]

) = 0, (24)

where Hs,t = infu∈[s,t] Hu (recall Definition (5)). Intuitively, two points s and t
belongs to the same class of equivalence (i.e. the same fragment) at time θ if there is
no cut on their lineage down to their most recent common ancestor (that is m(θ)

s puts
no mass on [Hs,t , Hs] nor m(θ)

t on [Hs,t , Ht ]). Notice cutting occurs on branching
points, that is at node of the CRT. Each node of the CRT corresponds to a jump of the
underlying Lévy process X . The cutting times are, conditionally on the CRT, indepen-
dent exponential random times, with parameter equal to the jump of the corresponding
node.

Let us index the different equivalent classes in the following way: For any s ≤ σ ,
let us define H0

s = 0 and recursively for k ∈ N,

Hk+1
s = inf

{
u ≥ 0

∣∣ mθ
s

(
(Hk

s , u]) > 0
}
,

with the usual convention inf ∅ = +∞. We set

Ks = sup{ j ∈ N, H j
s < +∞}.
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Remark 4.1 Notice that we have Ks = ∞ if Ms(·, [0, θ ]) has infinitely many atoms.
By construction of M using Poisson point measures, this happens N[dS] ds-a.e., if
and only if the intensity measure ρs + ηs is infinite. Since N[dS]-a.e., ρ and η are
processes taking values in the set of measures with finite mass, we get that N[dS]-a.e.,
Ks < ∞.

Let us remark that sRθ t implies Ks = Kt . We denote, for any j ∈ N, (R j,k, k ∈ J j )

the family of equivalent classes with positive Lebesgue measure such that Ks = j .
For j ∈ N, k ∈ J j we set

A j,k
t =

t∫

0

1{s∈R j,k }ds and C j,k
t = inf{u ≥ 0, A j,k

u > t},

with the convention inf ∅ = σ . And we define the corresponding Lévy snake, S̃ j,k =
(ρ̃ j,k, M̃ j,k) by: for every f ∈ B+(R+), ϕ ∈ B+(R+ × R+), t ≥ 0,

〈
ρ̃

j,k
t , f

〉 =
∫

(H
C

j,k
0
,+∞)

f (x − H
C j,k

0
)ρ

C j,k
t
(dx)

〈
M̃ j,k

t , ϕ
〉 =

∫

(H
C

j,k
0
,+∞)×(θ,+∞)

ϕ(x − H
C j,k

0
, v − θ)M

C j,k
t
(dx, dv).

Let σ̃ j,k = A j,k∞ be the length of the excursion S̃ j,k .

Remark 4.2 In view of the computation of the dislocation measures, we introduce the
set L(θ) = (ρ̃( j,k), j ∈ N, k ∈ J j ) of fragments of Lévy snake as well as the the set
L(θ−) defined similarly but for the equivalence relation where Rθ in (24) is replaced
by Rθ− defined as

sRθ−t ⇐⇒ Ms
([Hs,t , Hs] × (0, θ)

) = Ms
([Hs,t , Ht ] × (0, θ)

) = 0. (25)

Notice that m(θ)
s (·) = Ms

(·, (0, θ ]). So the two equivalence relations are equal N-a.e.
for fixed θ , but may differ if M has an atom in {θ} × R+.

Let us now define the process of interest. Let us denote by�θ = (�θ1,�
θ
2, . . .) the

sequence of positive Lebesgue measures of the equivalent classes of Rθ , (σ̃ j,k, j ∈
N, k ∈ J j ), ranked in decreasing order. Notice this sequence is at most countable. If
it is finite, we complete the sequence with zeros, so that N-a.s. and Nσ -a.s.

�θ ∈ S↓ = {(x1, x2, . . .), x1 ≥ x2 ≥ · · · ≥ 0,
∑

xi < ∞}.
For π∗(dσ)-a.e. σ > 0, let Pσ denote the law of (�θ , θ ≥ 0) under Nσ . By convention
P0 is the Dirac mass at (0, 0, . . .) ∈ S↓.
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4.2 The fragmentation property: proof of Theorem 1.1

We keep the notations of the previous Section. The fact that (�θ , θ ≥ 0) is a frag-
mentation process is a direct consequence of the Lemma 4.3 below and the fact that
N(·) = ∫

(0,+∞)
π∗(dr)Nr (·)which implies that the result of Lemma 4.3 holds Nr -a.s.

for π∗(dr) almost every r .

Lemma 4.3 Under N, the law of the family (S̃ j,k, j ∈ N, k ∈ J j ), conditionally
on (σ̃ j,k, j ∈ N, k ∈ J j ), is the law of independent Lévy Poisson snakes, and the
conditional law of S̃ j,k is Nσ̃ j,k .

Proof For j = 0, notice that J0 has only one element, say 0. And S̃0,0 is just the Lévy
snake S̃ := (ρCt ,MCt ) associated with the pruned exploration process and defined
in Sect. 1. Of course, we have σ̃ 0,0 = σ̃ . From the special Markov property (The-
orem 3.12) and Proposition 3.2, we deduce that conditionally on σ̃ 0,0, S̃0,0 and the
family (S i , i ∈ I ) of excursions of S away from {s ≥ 0; mθ

s = 0} (as defined in
Sect. 5.3) are independent.

From Lemma 1.6 (and the comments below this lemma) for the exploration process
and Proposition 3.2 for the underlying Poisson process, we deduce that, conditionally
on σ̃ 0,0, S̃0,0 is distributed according to Nσ̃ 0,0 .

Furthermore, from the special Markov property (Theorem 3.12), the conditional
law of S i is given by N, defined in (22). Now we give a Poisson decomposition of the
measure N.

For S ′ = (ρ′,M ′) distributed according to N, we consider (α′
l , β

′
l )l∈I ′ the excur-

sion intervals of the Lévy Poisson snake, S ′, away from {H ′
s = 0}. For l ∈ I ′, we set

S ′l = (ρ′l ,M ′l) where for s ≥ 0,

ρ′l
s(dr) = ρ′

(s+α′
l )∧β ′

l
(dr)1(0,+∞)(r),

M ′l
s(dr, dv) = M ′

(s+α′
l )∧β ′

l
(dr, dv)1(0,+∞)(r).

Let us remark that in the above definition ρ′l and M ′l do not have mass at {0} and
{0} × R+.

As a direct consequence of the Poisson decomposition of P
∗
� (see Lemma 3.3), we

get the following Lemma.

Lemma 4.4 Under N, the point measure
∑

i ′∈I ′ δS ′i ′ is a Poisson point measure with

intensity CθN(dS) where Cθ = ∫
(0,∞)

(1 − e−θ�)�π(d�) = ψ ′(θ)− ψ ′(0).

By this Poisson representation, each process S i is composed of i.i.d. excursions of
law N. Thus we get, conditionally on σ̃ 0,0, a family (S1,k, k ∈ J1) of i.i.d. excursions
distributed as the atoms of a Poisson point measure with intensity σ̃ 0,0CθN. Now, we
can repeat the above arguments for each excursion S1,k , k ∈ J1: so that conditionally
on σ̃ 0,0, we can
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• check that S̃1,k is built from S1,k as S̃ from S in Sect. 5.3,
• get a family (S2,k′,k, k′ ∈ J k

2 ), which are, conditionally on σ̃ 1,k , distributed as the
atoms of a Poisson point measure with intensity σ̃ 1,kCθN. and are independent of
S̃1,k .

If we set J2 = ∪k∈J1 J k
2 × {k}, we get that conditionally on σ̃ 0,0, and (σ̃ 1,k, k ∈ J1),

• the excursions S̃0,0 and (S̃1,k, k ∈ J1), are independent,
• S̃ i,k is distributed as Nσ̃ j,k , for j ∈ {0, 1}, k ∈ J j ,
• (S2,k′

, k′ ∈ J2), are distributed as the atoms of a Poisson point measure with
intensity

∑
k∈J1

σ̃ 1,kCθN, and are independent of S̃0,0 and (S̃1,k, k ∈ J1).

Finally, the result follows by induction. ��

4.3 There is no loss of mass: proof of Proposition 1.2

Let θ > 0. We use the notations of the proof of Lemma 4.3. For n ∈ N, we have N-a.e.

σ =
n∑

k=0

∑
j∈Jk

σ̃ j,k +
σ∫

0

1{Ks≥n+1} ds.

By monotone convergence, we deduce from Remark 4.1 that we get as n → +∞,
N-a.e. ,

σ =
∞∑

k=0

∑
j∈Jk

σ̃ j,k .

As the decreasing reordering of (σ̃ j,k, j ∈ N, k ∈ J j ) is �θ , we get that N-a.e.∑+∞
i=1 �

θ
i = σ . As the sequence (

∑∞
i=1�

θ
i , θ ≥ 0) is non increasing, we deduce that

the previous equality holds for any θ > 0, N-a.e.
Here again the result for Pr is deduced from the one under N.

4.4 Another representation of the fragmentation

Following the ideas in [3,5], we give an other representation of the fragmentation
process described in Sect. 4, using a Poisson point measure under the epigraph of the
height process.

We consider a fragmentation process, as time θ increases, of the CRT, by cutting
at nodes (set of points (s, a) such that κs({a}) > 0, where κ is defined in (8)). More
precisely, we consider, conditionally on the CRT or equivalently on the exploration
process ρ, a Poisson point process, Q(dθ, ds, da) under the epigraph of H , with
intensity dθ qρ(ds, da), where

qρ(ds, da) = ds κs(da)

ds,a − gs,a
, (26)
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with ds,a = sup{u ≥ s,min{Hv, v ∈ [s, u]} ≥ a} and gs,a = inf{u ≤ s,min{Hv, v ∈
[u, s]} ≥ a}. (The set [gs,a, ds,a] ⊂ [0, σ ] represent the individuals who have a
common ancestor with the individual s after or at generation a.)

Notice that from this representation, the cutting times of the nodes are, condition-
ally on the CRT, independent exponential random times, and their parameter is equal
to the mass of the node (defined as the mass of κ or equivalently as the value of the
jump of X corresponding to the given node).

We say two points s, s′ ∈ [0, σ ] belongs to the same fragment at time θ , if there is
no cut on their lineage down to their most recent common ancestor Hs,s′ : that is for
v = s and v = s′,

∫
1[Hs,s′ ,Hv](a)1[gv,a ,dv,a ](u)Q([0, θ ], du, da) = 0.

This define an equivalence relation, and we call fragment an equivalent class. Let
�θ be the sequences of Lebesgue measures of the corresponding equivalent classes
ranked in decreasing order.

It is clear that conditionally on the CRT, the process (�θ , θ ≥ 0) has the same dis-
tribution as the fragmentation process defined in Sect. 4. Roughly speaking, in Sect. 3
(which leads to the fragmentation of Sect. 4) we mark the node as they appear: that
is, for a given level a, the node {s; κs({a}) > 0} is marked at gs,a . Whereas in this
Section the same node is marked uniformly on [gs,a, ds,a]. In both case, the cutting
times of the nodes are, conditionally on the CRT, independent exponential random
times, and their parameter is equal to the mass of the node (defined as the common
value of κu({a}) for u ∈ {s; κs({a}) > 0}, or equivalently as the value of the jump of
X corresponding to the given node).

Now, we define the fragments of the Lévy snake corresponding to the cutting of ρ
according to the measure qρ . For (s, a) chosen according to the measure qρ(ds, da),
we can define the following Lévy snake fragments (ρi , i ∈ Ĩ ) of ρ by considering

• the open intervals of excursion after s of H above level a: ((αi , βi ), i ∈ Ĩ+), which
are such that αi > s, Hαi = Hβi = a, and for s′ ∈ (αi , βi ) we have Hs′ > a and
Hs′,s = a (recall Definition (5));

• the open intervals of excursion before s of H above level a: ((αi , βi ), i ∈ Ĩ−),
which are such that βi < s, Hαi = Hβi = a, and for s′ ∈ (αi , βi )we have Hs′ > a
and Hs′,s = a;

• the excursion, is , of H above level a that straddle s: (αis , βis ), which is such that
αis < s < βis , Hαis

= Hβis
= a, and for s′ ∈ (αis , βis ) we have Hs′ > a and

Hs′,s = a;
• the excursion, i0, of H under level a: {s ∈ [0, σ ]; Hs′,s < a} = [0, αi0)∪ (βi0 , σ ].

For i ∈ Ĩ+ ∪ Ĩ− ∪ {is}, we set ρi = (ρi
s, s ≥ 0) where

∫
f (r)ρi

s(dr) =
∫

f (r − a)1{r>a}ρ(αi +s)∧βi (dr)
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Fig. 3 Different fragments,
with j+ ∈ Ĩ+ and j− ∈ Ĩ− Hs

a

sσi0
− σi0

+

σis
+ σj+σj− σis

−

0 σ

for f ∈ B+(R). For i0, we set ρi0 = (ρ
i0
s , s ≥ 0) where ρi0

s = ρs if s < αi0 and
ρ

i0
s = ρs−βi0 +αi0

if s > βi0 . Finally, we set Ĩ = Ĩ+ ∪ Ĩ− ∪ {is, i0}. And (ρi , i ∈ Ĩ )
correspond to the fragments of the Lévy snake corresponding to the cutting ofρ accord-
ing to one point chosen with the measure qρ . We shall denote ν̃ρ the distribution of
(ρi , i ∈ Ĩ ) under N.

In Sect. 4.6, we shall use σ i , the length of fragment ρi . For i ∈ Ĩ− ∪ Ĩ+, we have
σ i = βi −αi . We also have σ is = σ

is− +σ is+ (resp. σ i0 = σ
i0− +σ i0+ ), where σ is− = s−αis

(resp. σ i0− = αi0 ) is the length of the fragment before s and σ is+ = βis − s (resp.

σ
i0+ = σ − βi0 ) is the length of the fragment after s. Notice that N-a.e. σ =∑i∈ Ĩ σ

i .
The Fig. 3 should help to visualize the different lengths.

4.5 The dislocation process is a point process

Let T be the set of jumping times of the Poisson process Q. For θ ∈ T , consider
L(θ−) = (ρi , i ∈ I (θ−)) and L(θ) = (ρi , i ∈ I (θ)) the families of Lévy snakes defined
in Remark 4.2. The lengths, ranked in decreasing order, of those families of Lévy
snakes correspond respectively to the fragmentation process just before time θ and at
time θ . Notice that for θ ∈ T the families L(θ−) and L(θ) agree but for only one snake
ρiθ ∈ L(θ−) which fragments in a family {ρi , i ∈ Ĩ (θ)} ⊂ L(θ). Thus we have

L(θ) =
(
L(θ−)\{ρiθ }

)⋃{
ρi , i ∈ Ĩ (θ)

}
.

From the representation of the previous Section, this fragmentation is given by cutting
the Lévy snake according to the measure qρ : that is the measure ν̃ρ defined at the end
of Sect. 4.4. We refer to [13] for the definition of intensity of a random point measure.
From Lemma 4.3 and the construction of the Lévy Poisson Snake, we deduce that

∑
θ∈T

δ(
θ,L(θ−),(ρi ,i∈ Ĩ (θ))

)
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is a point process with intensity dθ δL(θ−)
∑
ρ∈L(θ−) ν̃ρ . Using a projection argument

(by taking the expectation over the snakes conditionally on their length), we get that
the process

∑
θ∈T

δ(
θ,(σ (ρ),ρ∈L(θ−)),(σ (ρi ),i∈ Ĩ (θ))

)

is a point process with intensity dθ δ(σ(ρ),ρ∈L(θ−))
∑
ρ∈L(θ−) νσ(ρ), where νσ(ρ) is the

distribution of the decreasing lengths of Lévy snakes under ν̃ρ , integrated w.r.t. to the
law of ρ conditionally on σ(ρ). More precisely we have π∗(dr)-a.e.

∫

S↓

F(x)νr (dx) = Nr

[∫
F((σ i , i ∈ Ĩ ))ν̃ρ(d(ρ

i , i ∈ Ĩ ))

]
,

for any non-negative measurable function F defined on S↓, where (σ i , i ∈ Ĩ ) as to be
understood as the family of length, of the fragments (ρi , i ∈ Ĩ ), ranked in decreasing
size.

This prove that the dislocation process is a point process. And we will now explicit
the family of dislocation measures (νr , r > 0). As computations are more tractable
under N than under Nr , we shall compute for λ ≥ 0, and any non-negative measurable
function, F , defined on S↓

∫

R+×S↓

e−λr F(x)π∗(dr)νr (dx).

From the definition of ν̃ρ , and using the notation at the end of Sect. 4.4, we get that
this last quantity is equal to

A = N

[
e−λσ

∫
qρ(ds, da)F

(
(σ i , i ∈ Ĩ )

)]
, (27)

where (σ i , i ∈ Ĩ ) as to be understood as the family of lengths ranked in decreasing
size. As this family is completely characterized by the measure

∑
i∈ Ĩ

δσ i ,

we also write with a slight abuse of notation

A = N

⎡
⎣e−λσ

∫
qρ(ds, da)F

(∑
i∈ Ĩ

δσ i )
)
⎤
⎦ .
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4.6 Computation of dislocation measures

From Proposition 2.9 on Bismut formula, and Poisson representation formula for the
snake (see Lemma 3.3 or Sect. 4.2.3 in [11]), we get, thanks to Remark 2.7,

B := N

⎡
⎣

σ∫

0

ds
∫
κs(da)F1(σ

i0)F2(σ
is )F3

⎛
⎝ ∑

i∈ Ĩ−∪ Ĩ+

δσ i

⎞
⎠
⎤
⎦

=
+∞∫

0

db e−α0b
E

⎡
⎣ ∑

0≤a≤b;�Wa>0

�Wa F1(SWa−)F2(SWb − SWa )

× F3

⎛
⎝ ∑

Wa−<u≤Wa;�Su>0

δ�Su

⎞
⎠
⎤
⎦ ,

where W is a subordinator with Laplace exponentψ ′ −α0 and S is a subordinator with
Laplace exponent ψ−1 independent of W . Notice W has no drift and Lévy measure
�π(d�). Palm formula conditionally on S for the jumps of W and the independence
of the increments of S imply that

B =
+∞∫

0

db e−α0b

b∫

0

da
∫
�2π(d�)E

[
F1(SWa )

]
E
[
F2(SWb−a )

]

×E

⎡
⎣F3

⎛
⎝ ∑

0≤u≤�;�Su>0

δ�Su

⎞
⎠
⎤
⎦ .

Observe that
∫∞

0 e−α0u
E
[
e−λSWu

] = ∫
(0,∞)

rπ∗(dr) e−λr . Thus, we have

B =
∫
�2π(d�)

∫

(0,∞)

rπ∗(dr)F1(r)
∫

(0,∞)

r ′π∗(dr ′)F2(r
′)

×E

⎡
⎣F3

⎛
⎝ ∑

0≤u≤�;�Su>0

δ�Su

⎞
⎠
⎤
⎦ .
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So, we can use these results to compute A defined in (27). Notice that qρ(ds, da) =
κs(da)ds

ds,a − gs,a
and ds,a − gs,a = σ is +∑i∈ Ĩ−∪ Ĩ+ σ

i , to get

A =
∫
�2π(d�)

∫

(0,∞)

rπ∗(dr)
∫

(0,∞)

r ′π∗(dr ′)

× E

⎡
⎣e−λ(r+r ′+S�)

r ′ + S�
F

⎛
⎝δr + δr ′ +

∑
0≤u≤�;�Su>0

δ�Su

⎞
⎠
⎤
⎦ .

We now use the following fact. Fix t > 0 and (�Su, 0 ≤ u ≤ t); pick randomly a
jump L among the (�Su, 0 ≤ u ≤ t) in such a way that the probability L = �Su is
�Su/St . The Palm formula implies that

E

⎡
⎣F(L)G

⎛
⎝ ∑

0≤u≤t;�Su>0

δ�Su

⎞
⎠
⎤
⎦

= t
∫

(0,∞)

π∗(dr)F(r)E

⎡
⎣ r

r + St
G

⎛
⎝δr +

∑
0≤u≤t;�Su>0

δ�Su

⎞
⎠
⎤
⎦ .

Apply this result twice to finally get

A =
∫
π(d�)E

⎡
⎣S� e−λS� F

⎛
⎝ ∑

0≤u≤�;�Su>0

δ�Su

⎞
⎠
⎤
⎦ .

From Sect. 4.5, we deduce that

∫

R+×S↓

e−λr F(x)π∗(dr)νr (dx) =
∫
π(dv)E

[
Sv e−λSv F

(
(�Su, u ≤ v)

)]
.

From definition (1) of µ, we deduce that

∫

R+×S↓

e−λr F(x)π∗(dr)νr (dx) =
∫

e−λr F(x) rµ(dr, dx).

This ends the proof of Theorem 1.4.

Remark 4.5 It is easy to check that the dislocation measures of the fragmentation at
nodes associated to ψ(θ), (ν(θ)r , r > 0), is equal to (νr , r > 0), π∗(dr)-a.e.
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4.7 The stable case

For the stable CRT (with ψ(λ) = λα and α ∈ (1, 2)), thanks to scaling properties, the
corresponding fragmentation is self similar with index 1/α, and we can recover the
result of [18].

Corollary 4.6 Let ψ(λ) = λα and α ∈ (1, 2). The fragmentation at nodes is self-
similar, with index 1/α, that is

∫
S↓

r
F(x)νr (dx) = rγ

∫
S↓

1
F(r x)ν1(dx) holds for any

non-negative measurable function on S↓. And the dislocation measure ν1 on S↓
1 is s.t.

∫
F(x)ν1(dx) = α(α − 1)�(1 − α−1)

�(2 − α)
E[S1 F((�St/S1, t ≤ 1))],

holds for any non-negative measurable function F on S↓
1 , where (�St , t ≥ 0) are the

jumps of a stable subordinator S = (St , t ≥ 0) of Laplace exponent ψ−1(λ) = λ1/α ,
ranked by decreasing size.

Proof For ψ(λ) = λα , we get π(dr) = α(α − 1)�(2 − α)−1r−1−αdr as well as
π∗(dr) = [

α�(1 − α−1)
]−1

r−(1+α)/αdr . In particular, we have for a non-negative

measurable function, F , defined on R+ × S↓
1 ,

∫
F(r, x) rµ(dr, dx) = E

[∫
π(dv) SvF(Sv, (�St , t ≤ v))

]

= α(α − 1)

�(2 − α)
E

[∫
dv

v1+α SvF(Sv, (�St , t ≤ v))

]

= α(α − 1)

�(2 − α)
E

[∫
dv

v
S1 F(vαS1, v

αS1(�St/S1, t ≤ 1))

]

= α − 1

�(2 − α)

∫
E[S1 F(y, y(�St/S1, t ≤ 1))]dy

y
,

where we used the scaling property of S, that is (�St , t ≤ r) is distributed as
(rα�St , t ≤ 1), for the third equality, and the change of variable y = vαS1 for
the fourth equality. From Theorem 1.4, we have that

∫
1

α�(1 − α−1)

dr

r (1+α)/α νr (dx) F(r, x)

=
∫

α − 1

�(2 − α)
E[S1 F(y, (y�St , t ≤ 1))]dy

y
.

This implies that for a.e. r > 0,

∫
νr (dx) F(x) = α(α − 1)�(1 − α−1)

�(2 − α)
r1/α

E[S1 F(r(�St/S1, t ≤ 1))],
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and thus
∫
νr (dx) F(x) = r1/α

∫
ν1(dx) F(r x), with

∫
ν1(dx) F(x) = α(α − 1)�(1 − α−1)

�(2 − α)
E[S1 F((�St/S1, t ≤ 1))].

��
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5 Appendix

5.1 Proof of Proposition 3.1

We first check the process M is right continuous. Recall (13). We have by construction
a.s. for all t ′ > t ,

Mt ′(dr, dv) = kXt −I t
t ′
ρt (dr)Mt,r (dv)+ ρt ′(dr)1{r>Ht,t ′ }Mt ′,r (dv),

where Ht,t ′ is defined by (5). Thanks to (14), we have, for θ > 0,

∫

R+

ρt ′(dr)1{r>Ht,t ′ }Mt ′,r ([0, θ ]) ≤
∑

t<s≤t ′
�sξs .

In particular this quantity decreases to 0 as t ′ ↓ t a.s. By the properties of the explora-
tion process, we recall that a.s. kXt −I t

t ′
ρt = ρt ′′ , where t ′′ = inf{s ∈ [t, t ′]; I t

s = I t
t ′ }.

From the right continuity of ρ, we deduce that a.s. for the vague convergence

lim
t ′↓t

Mt ′ = Mt .

This implies the right continuity of the process M for the vague topology on M(R2+).
Now, we check the process M has left limits. Let t < t ′. For r ∈ [0, Ht,t ′ ], we have

kXt −I t
t ′
ρt (dr)Mt,r = 1{r≤Ht,t ′ }ρt ′(dr)Mt ′,r , as well as

Mt (dr, dv) = 1{r≤Ht,t ′ }ρt ′(dr)Mt ′,r (dv)+ [ρt (dr)− kXt −I t
t ′
ρt (dr)]Mt,r (dv).

If ρ is continuous at t ′, then either ρt ′({Ht ′ }) = 0 or Ht,t ′ = Ht ′ for t close enough to t ′.
In particular, since limt→t ′ Ht,t ′ = Ht ′ , we have limt↑t ′ 1{r≤Ht,t ′ }ρt ′(dr) = ρt ′(dr).
If ρ is not continuous at t ′, this implies that ρt ′(dr) = ρt ′−(dr) + �t ′δHt ′ (dr) and
for t close enough to t ′, Ht,t ′ < Ht ′ . Then, we get limt↑t ′ 1{r≤Ht,t ′ }ρt ′(dr) = ρt ′−(dr).
In any case, we have a.s. for the vague convergence

lim
t↑t ′

1{r≤Ht,t ′ }ρt ′(dr)Mt ′,r (dv) = ρt ′−(dr)Mt ′,r (dv).
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Now, we check that for the vague topology

lim
t↑t ′

[ρt (dr)− kXt −I t
t ′
ρt (dr)]Mt,r (dv) = 0.

For this purpose, we remark that

Eµ,�

⎡
⎢⎣
∫

R+

[ρt (dr)− kXt −I t
t ′
ρt (dr)]Mt,r ([0, θ ])|X

⎤
⎥⎦

= θ

∫

R+

[ρt (dr)− kXt −I t
t ′
ρt (dr)](ρt ({r})+ ηt ({r}))

≤ θ(〈ρt + ηt , 1〉)
∫

R+

[ρt (dr)− kXt −I t
t ′
ρt (dr)]

= θ (〈ρt + ηt , 1〉) (Xt − I t
t ′).

As ρ and η are respectively càd-làg and càg-làd process, they are bounded over any
finite interval a.s. Since limt↑t ′ Xt − I t

t ′ = 0, we deduce that

lim
t↑t ′

Eµ,�

⎡
⎢⎣
∫

R+

[ρt (dr)− kXt −I t
t ′
ρt (dr)]Mt,r ([0, θ ])|X

⎤
⎥⎦ = 0.

Thanks to (15) and Fatou’s Lemma, we deduce that

lim
t↑t ′

∫

R+

[ρt (dr)− kXt −I t
t ′
ρt (dr)]Mt,r ([0, θ ]) = 0.

Therefore, we conclude that for vague topology,

lim
t↑t ′

Mt = Mt ′−.

We deduce that for the vague topology on M(R2+), the process M is a.s. càd-làg.
This implies the process S is a.s. càd-làg.

We check the strong Markov property of S. Mimicking the proof of Proposition
1.2.3 in [11], and using properties of Poisson point measure, one gets that, for any
F-stopping time T , we have a.s. for every t > 0,

ρT +t =
[
k−I (T )t

ρT , ρ
(T )
t

]

MT +t (dr, dv) = k−I (T )t
ρ
(T )
t (dr)MT,r (dv)+ M (T )

t (dr + H(k−I (T )t
ρT ), dv)
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where I (T ), ρ(T ) and M (T ) are the analogues of I , ρ and M with X replaced by the
shifted process X (T ) = (XT +t − XT , t ≥ 0). This implies the strong Markov property.

5.2 Law of the pruned exploration process

5.2.1 Proof of Lemma 3.6

We first prove (i). Let λ > 0. Before computing v = N[1 − exp −λAσ ], notice that
Aσ ≤ σ implies, thanks to (11), that v ≤ N[1 − exp −λσ ] = ψ−1(λ) < +∞. We
have

v = λN

⎡
⎣

σ∫

0

d At e−λ ∫ σt d Au

⎤
⎦ = λN

⎡
⎣

σ∫

0

d At E
∗
ρt ,0[e−λAσ ]

⎤
⎦ ,

where we replaced e−λ ∫ σt d Au in the last equality by E
∗
ρt ,Mt

[e−λAσ ], its optional pro-
jection, and used that Mt (R+, [0, θ ]) = 0d At -a.e. to replace E

∗
ρt ,Mt

by E
∗
ρt ,0

, as m
under Eµ,� is distributed as m under Eµ,0 if �(R+, [0, θ ]) = 0. In order to compute
this last expression, we use the decomposition of S under P

∗
µ,0 according to excursions

of the total mass of ρ above its minimum, see Lemma 3.3. Using the same notations
as in this Lemma, notice that under P

∗
µ,0, we have Aσ = A∞ =∑i∈I Ai∞, where for

every T ≥ 0,

Ai
T =

T∫

0

1{Mi
t (R+×[0,θ])=0}dt. (28)

By Lemma 3.3, we get

E
∗
µ,0[e−λAσ ] = e−〈µ,1〉N[1−exp −λAσ ] = e−v〈µ,1〉 .

Now, for fixed t , recall (17). By conditioning with respect to X or to ρ thanks to
Remark 2.6, we have

v = λN
[ σ∫

0

d At e−v〈ρt ,1〉 ] = λN
[ σ∫

0

dt 1{mt =0} e−v〈ρt ,1〉 ]

= λN
[ σ∫

0

dt e−(v+θ)〈ρt ,1〉−θ〈ηt ,1〉 ].
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Now we use Proposition 2.8 to get

v = λ

+∞∫

0

da e−α0a
Ma[e−(v+θ)〈µ,1〉−θ〈ν,1〉]

= λ

+∞∫

0

da e−α0a exp
{

−
a∫

0

dx

1∫

0

du
∫

(0,∞)

�π(d�)
[
1 − e−(v+θ)u�−θ(1−u)�

] }

= λ

+∞∫

0

da exp
{

− a

1∫

0

du ψ ′(θ + vu)
}

(29)

= λ
v

ψ(θ + v)− ψ(θ)
. (30)

where, for the third equality, we used

ψ ′(λ) = α0 +
∫

(0,∞)

π(d�) �(1 − e−λ�). (31)

Notice that if v = 0, then (29) implies v = λ/ψ ′(θ), which is absurd. Therefore we
have v ∈ (0,∞), and we can divide (30) by v to get ψ(θ)(v) = λ. This proves (i).

Now, we prove (ii). If we let λ → ∞ in (i) and use that limr→∞ ψ(θ)(r) = +∞,
then we get that N[Aσ > 0] = +∞. Notice that for (µ,�) ∈ S, we have under P

∗
µ,�,

A∞ ≥∑i∈I Ai∞, with Ai defined by (28). Thus Lemma 3.3 imply that if µ 	= 0, then
P

∗
µ,�-a.s. I is infinite and A∞ > 0. Using the Markov property at time t of the snake

under N, we get that for any t > 0, N-a.e. on {σ > t}, we have Aσ − At > 0. This
implies that σ is a point of increase of A N-a.e. By time reversibility, see Lemma 3.5,
we also get that 0 is a point of increase of A N-a.e.

To prove (iii), recall that
∫
(0,1) �π(d�) = +∞ implies that J = {s ≥ 0;�s > 0}

is dense in R+ a.s. Moreover, for every t > r ≥ 0,

∑
r≤s≤t

�s = +∞ a.s.

Now, by the properties of Poisson point measures, we have

P(∀s ∈ [r, t], ms = 0) = E

[
e−θ∑r≤s≤t �s

]
= 0

which proves (iii).
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5.2.2 Proof of Theorem 3.8 (and Theorem 1.5)

Let ε > 0. Let us define by induction the following stopping times:

T ε0 = 0

∀k ≥ 0, Sεk+1 = inf
{
s > T εk , ms({Hs}) > 0, ρs({Hs}) > ε

}
T εk+1 = inf

{
s > Sεk+1, Xs = X Sεk+1−

}
.

We set

Eε =
⋃
k∈N

[T εk , Sεk+1)

the set of times for which no mass of size greater than ε is marked, and, for every
t ≥ 0, we set

Rεt = inf

⎧⎨
⎩s ≥ 0,

s∫

0

1Eε (u)du > t

⎫⎬
⎭ .

Finally, let us define the process Xε= (Xεt , t ≥ 0) by Xεt = X Rεt . The strong Markov
property implies that Xε is a Lévy process. Informally Xε is distributed as X but for
the jumps of size larger than ε, say�, which are removed with probability 1 − e−θ�.
A standard calculation shows that the Laplace exponent of Xε is given by

ψθ,ε(λ) = ψ(λ)+
∫

(ε,+∞)

π(d�)
(

1 − e−θ�) (1 − e−λ�) .

Notice that the set Eε decreases to {s; ms = 0} as ε goes down to 0. This implies
the process Xε converges a.s. point wise to the process X̃ := (XCt , t ≥ 0) as ε goes
down to 0. Moreover, ψθ,ε converges to ψ(θ). This implies X̃ is a Lévy process with
Laplace exponent ψ(θ).

It remains to prove that ρ̃ is the exploration process associated with X̃ . Formulas (4)
and (6) provide a measurable functional ϒ such that ρ = ϒ(X). Recall that βε′ =∫
(ε′,+∞)

�π(d�). Formula (4) implies that a.s. for all t ≥ 0,

HCt = lim
ε′→0

1

βε′
Card

{
s ∈ [0,Ct ], Xs− < Is,Ct , �Xs > ε′

}
. (32)

By definition of T εk , for any integer k ≥ 1, all the jumps of X in the time interval
[Sεk , T εk ] are erased at time T εk , that is a.s. Xs− ≥ Is,t for all s ∈ Ec

ε , t ∈ Eε and s < t .
As Ct ∈ Eε, we get that

Card
{
s ∈ [0,Ct ], Xs− < Is,Ct ,�Xs > ε′

}
= Card

{
s ∈ [0,Ct ] ∩ Eε, Xs− < Is,Ct ,�Xs > ε′

}
.

123



Fragmentation associated with Lévy processes 147

Letting ε goes down to 0 and using an obvious time change, we get

Card
{
s ∈ [0,Ct ], Xs− < Is,Ct , �Xs > ε′

}
= Card

{
s ∈ [0, t], X̃s− < Ĩs,t , �X̃s > ε′

}
,

where Ĩs,t = infs≤r≤t X̃r . The Lévy measure of X̃ , π(θ) is given by π(θ)(d�) =
e−θ� π(d�). as

∫
(0,1) �π(d�) = ∞ and

∫
[1,∞)

�π(d�) < ∞, we deduce that lim
ε′→0

β
(θ)

ε′ /

βε′ = 1, where

β
(θ)

ε′ =
∫

(ε′,∞)

�π(θ)(d�).

We deduce from (32) that a.s. for all t ≥ 0,

H(ρ̃t ) = lim
ε′→0

1

β
(θ)

ε′
Card

{
s ∈ [0, t], X̃s− < Ĩs,t , �X̃s > ε′

}
.

This, combined with (6) implies that a.s., ρ̃ = ϒ(X̃), which proves Theorem 3.8.

5.2.3 Proof of Lemma 1.6

Let θ > 0. We set X (θ) = (X (θ)t , t ≥ 0) the Lévy process with Laplace exponentψ(θ).
Notice that (e−θXt −tψ(θ), t ≥ 0) is a martingale w.r.t. the natural filtration generated
by X , (Ht , t ≥ 0). We define a new probability by

dP
(θ)

|Ht
= e−θXt −tψ(θ) dP|Ht .

The law of (Xu, u ∈ [0, t]) under P
(θ) is the law of (X (θ)u , u ∈ [0, t]). Therefore, we

have for any non-negative measurable function on the path space

E

[
F(X (θ)≤t ) eθX (θ)t +tψ(θ)

]
= E[F(X≤t )]. (33)

We define −I (θ)t = − infu∈[0,t] X (θ)u , and τ (θ) its right-continuous inverse. In partic-

ular, it is a subordinator of Laplace exponent ψ(θ)
−1

. Since ψ(θ)
−1
(λ) = ψ−1(λ +

ψ(θ))− θ , we have

E

[
e−λτ (θ)r

]
= e−r [ψ−1(λ+ψ(θ))−θ] .

Furthermore, this equality holds for λ ≥ −ψ(θ). With λ = −ψ(θ), we get

E

[
eψ(θ)τ

(θ)
r

]
= eθr .
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From (33), we get that the process (Qt , t ≥ 0), where Qt = eθX (θ)t +tψ(θ) is a

martingale. Since M
τ
(θ)
r

= e−θr+ψ(θ)τ (θ)r is integrable and E[M
τ
(θ)
r

] = 1, we deduce
from (33) that

E

[
F(X (θ)≤τ (θ)r

) e−θr+ψ(θ)τ (θ)r
]

= E[F(X≤τr )]. (34)

Let Ei = (Xt+αi − Iαi , t ∈ [αi , αi + σi ]), i ∈ I , be the excursions of X above its
minimum, up to time τr . With F such that F(X≤τr ) = e−∑i∈I G(Ei ), we get

E[F(X≤τr ) e−λτr ] = e−rN[1−e−G(E)−λσ ] .

We deduce from (34) that

e−θr e−rN[1−e−G(E(θ))+ψ(θ)σ (θ) ] = e−rN[1−e−G(E)],

where E (θ) is an excursion of X (θ) above its minimum, that is

N[1 − e−G(E (θ))+ψ(θ)σ (θ) ] = N[1 − e−G(E)] − θ.

Subtracting N[1 − eψ(θ)σ
(θ) ] = −θ , in the above equality, we get

N

[
eψ(θ)σ

(θ) [1 − e−G(E (θ))]
]

= N

[
1 − e−G(E)

]
.

5.3 Proof of the Special Markov Property

In order to simplify the notations, we will write P instead of P0,0 and E instead of
E0,0. Recall that θ > 0 is fixed.

Fix t > 0. Let us remark that to prove Theorem 3.12, we may only consider func-
tions φ satisfying the assumptions of Theorem 3.12 and these three conditions:

(h1) φ(s, ω,S) = 0 if the starting mass of S is less than η, that is 〈ρ0, 1〉 ≤ η, for a
fixed positive real number η > 0.

(h2) s �→ φ(s, ω,S) is uniformly continuous.
(h3) φ(u, ω,S) = 0 for any u > t .

Indeed if (23) holds for such functions then by Monotone Class Theorem and mono-
tonicity it holds also for every function satisfying the assumptions of Theorem 3.12.

The proof now goes along 3 steps.
Step 1. Approximation of the functional.
Recall the definition of the stopping times Sεk and T εk of Sect. 5.2.2. For every

k ≥ 1, we define the measure-valued process Sk,ε = (ρk,ε,Mk,ε) in a similar way as
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the processes (ρi ,Mi ) in (21): for every non-negative continuous functions f and ϕ,
and s ≥ 0,

〈ρk,ε
s , f 〉 =

∫

[HSεk
,+∞)

f (x − HSεk
)ρ(Sεk +s)∧T εk

(dx)

〈Mk,ε
s , ϕ〉 =

∫

(HSεk
,+∞)×[0,+∞)

ϕ(x − HSεk
, v)M(Sεk +s)∧T εk

(dx, dv).

We call �Sεk
the starting mass of Sk,ε. Notice that ρk,ε

0 = δ�Sεk
and �Sεk

≥ ε.

Lemma 5.1 P-a.s., we have for ε > 0 small enough

∑
i∈I

φ(Aαi , ω,S i ) =
∑
k≥1

φ(ASεk
, ω,Sk,ε). (35)

Proof Let Iη be the set of indexes i ∈ I , such that the starting mass of S i is larger
than η and Aαi ≤ t . Because of (h1) and (h3), we have

∑
i∈I

φ(Aαi , ω,S i ) =
∑
i∈Iη

φ(Aαi , ω,S i ).

Let ε < η. Then, for any i ∈ Iη, there exists k ∈ N
∗, such that Sk,ε = S i . Further-

more, all the others excursions Sk,ε which do not belong to {S i , i ∈ Iη} either have a
starting mass less than η or ASεk

≥ t (and thus φ(ASεk
, ω,Sk,ε) = 0), or have a starting

mass greater that η but mSεk
([0, HSεk

)) > 0. But, as the set {0 < s ≤ t,�s > η} is

finite, there exists only a finite number of excursions S i which straddle a time s ≤ t
such that �s > η. Therefore, the minimum over those excursions of their starting
mass, say η′, is positive a.s. and, if we choose ε < η′, there are no excursions Sk,ε

with initial mass greater than η and ASεk
< t which do not correspond to a S i for

i ∈ Iη.
Consequently, if we choose ε < η ∧ η′, we have

∑
i∈I

φ(Aαi , ω,S i ) =
∑
k≥1

φ(ASεk
, ω,Sk,ε).

��
For k ≥ 1, we consider the σ -field F (ε),k generated by the family of processes

(
S(T εl +s)∧Sεl+1−, s > 0

)
l∈{0,...,k−1} .

Notice that for k ≥ 1, F (ε),k ⊂ FSεk
. It is easy to check the following measurable

result.
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Lemma 5.2 For any ε > 0, k ∈ N
∗, the function φ(ASεk

, ω, ·) is F (ε),k-measurable.

Step 2. Computation of the conditional expectation of the approximation.

Lemma 5.3 For every F̃∞-measurable non-negative random variable Z, we have

E

⎡
⎣Z exp

⎛
⎝−

∑
k≥1

φ(ASεk
, ω,Sk,ε)

⎞
⎠
⎤
⎦ = E

⎡
⎣Z

∏
k≥1

N
[
e
−φ(ASεk

,ω,·) ∣∣∣ ρ0 > ε
]⎤⎦ .

Remark 5.4 Let us note that the right-hand side of the previous equality does not give
the conditional expectation of the functional given F̃∞ as the obtained random vari-
able is only F (ε),k-measurable according to Lemma 5.2. However, we will obtain the
desired result by letting ε goes down to 0 in the next Step.

Proof For every integer p ≥ 1, we consider a non-negative random variable Z of the
form Z = Z0 Z1, where Z0 ∈ F (ε),p and Z1 ∈ σ(S(T εk +s)∧Sεk+1−, s ≥ 0, k ≥ p) are
bounded non-negative.

To compute D = E

[
Z exp

(
−

p∑
k=1

φ(ASεk
, ω,Sk,ε)

)]
, we first apply the strong

Markov property at time T εp . We obtain

D = E

[
Z0 exp

(
−

p∑
k=1

φ(ASεk
, ω,Sk,ε)

)
E

∗
ρT εp

,0

[
Z1]
]
.

Notice that ρT εp = ρSεp−, and consequently ρT εp is measurable with respect to FSεp . So,
when we use the strong Markov property at time Sεp, we get thanks to Lemma 5.2 and

since F (ε),k ⊂ FSεk
,

D = E

⎡
⎣Z0 exp

⎛
⎝−

p−1∑
k=1

φ(ASεk
, ω,Sk,ε)

⎞
⎠E

∗
ρ

p,ε
0 ,0

[
e
−φ(ASεp

,ω,·)]
E

∗
ρT εp

,0[Z1]
⎤
⎦ .

Conditionally on FT εp−1
, the measure ρ p,ε

0 is a Dirac mass and, by the Poisson represen-

tation of Lemma 3.4, the mass ofρ p,ε
0 is distributed according to the law nθ (d� | � > ε).

From Poisson point measure properties, notice that ρ p,ε
0 is also independent of

σ(St , t < Sεp) and thus of F (ε),p.
Therefore, ρ p,ε

0 is independent of Z0, ρT εp = ρSεp− and, thanks to Lemma 5.2 of

φ(ASεp , ω, ·). So, by conditioning with respect to F (ε),p, we get

D = E

⎡
⎣Z0 exp

⎛
⎝−

p−1∑
k=1

φ(ASεk
, ω,Sk,ε)

⎞
⎠N

[
e
−φ(ASεp

,ω,·) ∣∣∣ ρ0 > ε
]

E
∗
ρT εp

,0[Z1]
⎤
⎦ .

(36)
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Now, using one more time the strong Markov property at time T εp , we get from (36)

D = E

⎡
⎣ZN

[
e
−φ(ASεp

,ω,·) ∣∣∣ ρ0 > ε
]

exp

⎛
⎝−

p−1∑
k=1

φ(ASεk
, ω,Sk,ε)

⎞
⎠
⎤
⎦ .

From monotone class Theorem, this equality holds also for any Z ∈ F (ε),∞ non-
negative. Thanks to Lemma 5.2, the non-negative random variable Z ′ =
ZN[e−φ(ASεp

,ω,·) |ρ0 > ε] is measurable w.r.t. F (ε),∞. So, we may iterate the previous
argument and eventually get that for any non-negative random variable Z ∈ F (ε),∞,
we have

E

[
Z exp

(
−

p∑
k=1

φ(ASεk
, ω,Sk,ε)

)]
= E

[
Z

p∏
k=1

N
[
e
−φ(ASεk

,ω,·) ∣∣∣ ρ0 > ε
]]
.

Let p goes to infinity and notice that F̃∞ ⊂ F (ε),∞ to end the proof. ��
Step 3. Computation of the limit.
We define

nε = nθ (� > ε) =
∫

(ε,+∞)

π(d�)
(

1 − e−θ�) . (37)

Let gε(u, ω) = −nε log(1 − n−1
ε N[1 − exp −φ(u, ω, ·)]) for ε > 0 u ≥ 0.

Lemma 5.5 There exists a positive sequence (ε j , j ∈ N
∗) decreasing to 0, such that

P-a.s.

lim
j→∞

1

nε j

∑
k≥1

gε j (AS
ε j
k
, ω) =

+∞∫

0

g(u, ω) du,

where g(u, ω) = N
[
1 − e−φ(u,ω,·)].

Proof The assumptions made on φ imply that gε uniformly converges to g.
Recall the definition of the set Eε of Sect. 5.2.2 and let us set

Aεt =
t∫

0

1Eε (u)du.

Then, we have AεSεk
= ∑k−1

l=0 eεl with eεl = Sεl+1 − T εl . From point Poisson mea-

sure property, notice that, conditionally on F̃∞, the random variables (eεk , k ≥ 1) are
independent and distributed as exponential variables with mean n−1

ε . Moreover, a.s.
for every s ≥ 0, limε→0 Aεs = As and, by Dini theorem, this convergence is uniform
on [0, t].
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Let N = ∑
j∈J δ(u j ,r j ) be a Poisson point process in [0,+∞)2 with intensity the

Lebesgue measure. We assume that N is independent of F̃∞. The previous remarks
show that, conditionally on F̃∞, the random variable

Bε = n−1
ε

∑
k≥1

gε(A
ε
Sεk
, ω)

has the same distribution as n−1
ε

∑
j∈J

gε(u j , ω)1[0,nε](r j ). The exponential formula

for Poisson point process implies that Bε converges in distribution to
∫∞

0 g(u, ω)du,
which is a F̃∞-measurable random variable. Therefore, we can find a sub-sequence
(ε j , j ≥ 1) (of F̃∞-measurable random variables) such that, a.s. conditionally on
F̃∞,

lim
j→+∞ Bε j =

∞∫

0

g(u)du.

Use that Aε converges uniformly to A over any compact set (with Aεt ≥ At ), the
uniform continuity of gε (see condition (h2)) and (h3) to end the proof. ��

We can now finish the proof of the theorem. Let Z ∈ F̃∞ bounded and non-negative.
We have

E

[
Z exp

(
−
∑
i∈I

φ(Aαi , ω,S i )

)]
= lim

j→∞ E

⎡
⎣Z exp

⎛
⎝−

∑
k≥1

φ(A
S
ε j
k
, ω,Sk,ε j )

⎞
⎠
⎤
⎦

= lim
j→∞ E

⎡
⎣Z

∏
k≥1

N

[
e
−φ(A

S
ε j
k
,ω,·) ∣∣∣ ρ0>ε j

]⎤
⎦ ,

where we used Lemma 5.1 and dominated convergence for the first equality, Lemma
5.3 for the second equality. We have

∏
k≥1

N

[
e
−φ(A

S
ε j
k
,ω,·) ∣∣∣ ρ0 > ε

]
=
∏
k≥1

(
1 − n−1

ε N

[
1 − e

−φ(A
S
ε j
k
,ω,·)])

= e
− 1

nε

∑
k≥1 gε(ASεk

,ω)
.

Using the sequence (ε j , j ≥ 1) of Lemma 5.5, we have that P-a.s.

lim
j→∞

∏
k≥1

N

[
e
−φ(A

S
ε j
k
,ω,·) ∣∣∣ ρ0 > ε j

]
= exp

⎛
⎝−

+∞∫

0

du N
[
1 − e−φ(u,ω,·)]

⎞
⎠ .
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Use dominated convergence to get

E

[
Z exp

(
−
∑
i∈I

φ(Aαi , ω,S i )

)]
= E

⎡
⎣Z exp

⎛
⎝−

∞∫

0

N
[
1 − e−φ(u,ω,·)] du

⎞
⎠
⎤
⎦ .

To end the proof, it suffices to remark that exp
(− ∫∞

0 N
[
1 − e−φ(u,ω,·)] du

)
is

F̃∞-measurable and so this is P-a.s. equal to the conditional expectation of

exp

(
−
∑
i∈I

φ(Aαi , ω,S i )

)
w.r.t. F̃∞. That is (23) holds.

5.4 Proof of Proposition 1.7

Using the special Markov property, Theorem 3.12, with φ(S) = ψ(γ )σ , we have

v = N

[
1 − e−κσ̃−ψ(γ )σ ]

= N

[
1 − e−(κ+ψ(γ ))σ̃−ψ(γ ) ∫ σ0 1{ms 	=0} ds

]

= N

[
1 − e−(κ+ψ(γ ))σ̃−σ̃ ∫(0,+∞) π(d�)(1−e−θ�)E∗

� [1−exp (−ψ(γ )σ)]]
.

Notice that σ under P
∗
� is distributed as τ�, the first time for which the infimum of

X , started at 0, reaches −�. Since τ� is distributed as a subordinator with Laplace
exponent ψ−1 at time �, we have

E
∗
�[1 − e−ψ(γ )σ ] = E

[
1 − e−ψ(γ )τ�

]
= 1 − e−�γ .

and

∫

(0,+∞)

π(d�)(1 − e−θ�)E∗
�[1 − e−ψ(γ )σ ] =

∫

(0,+∞)

π(d�)(1 − e−θ�)(1 − e−γ �)

= ψ(θ)(γ )− ψ(γ ).

We get

v = N

[
1 − e−σ̃ (κ+ψ(θ)(γ ))] = ψ(θ)

−1
(κ + ψ(θ)(γ )).

Using the definition of ψ(θ), we have ψ(v + θ) = κ + ψ(γ + θ), which gives the
result.
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