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CHARACTERIZATION OF G-REGULARITY FOR
SUPER-BROWNIAN MOTION AND CONSEQUENCES

FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

By Jean-François Delmas1 and Jean-Stéphane Dhersin

MSRI and Université René Descartes

We give a characterization of G-regularity for super-Brownian motion
and the Brownian snake. More precisely, we define a capacity on E =
�0�∞�×R

d, which is not invariant by translation. We then prove that the
measure of hitting a Borel set A ⊂ E for the graph of the Brownian snake
excursion starting at �0�0� is comparable, up to multiplicative constants,
to its capacity. This implies that super-Brownian motion started at time 0
at the Dirac mass δ0 hits immediately A [i.e., �0�0� is G-regular for Ac] if
and only if its capacity is infinite. As a direct consequence, if Q ⊂ E is a
domain such that �0�0� ∈ ∂Q, we give a necessary and sufficient condition
for the existence on Q of a positive solution of ∂tu + 1

2�u = 2u2� which
blows up at �0�0�. We also give an estimate of the hitting probabilities
for the support of super-Brownian motion at fixed time. We prove that if
d ≥ 2, the support of super-Brownian motion is intersection-equivalent to
the range of Brownian motion.

1. Introduction. The purpose of this paper is to give a characteriza-
tion of the so-called G-regularity for super-Brownian motion introduced by
Dynkin [8]. Thus we say that a point �r� x� ∈ R× R

d is G-regular for a Borel
set A ⊂ R×R

d� if a.s. the graph of a super-Brownian motion started at time r
with the Dirac mass at x immediately intersects Ac, the complementary of A.
In case A = Q is an open set, this is equivalent to the existence of nonnegative
solutions of the equation �∂u/∂t� + 1

2�u = 2u2 on the open set Q, which blow
up at �r� x� ∈ ∂Q (cf. [8]).

Let E = �0�∞� × R
d. We prove that �0�0� is G-regular for a Borel set

A ⊂ R × R
d if and only if the capacity of Ac ∩E is infinite, for the following

capacity: for any Borel set A′ ⊂ E,

cap�A′� = �inf I�ν�−1

where

I�ν� =
∫ ∫

E
dsdyp�s� y�

(∫ ∫
E
ν�dt�dx�p�t− s� x− y�

p�t� x�
)2

�

and p denotes the heat kernel,

p�t� x� =
{
�2πt�−d/2 exp�−∣∣x∣∣2/2t�� if �t� x� ∈ E�

0� if �t� x� ∈ �−∞�0 × R
d�
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[� · � denotes the Euclidean norm on R
d.] The infimum is taken over all prob-

ability measures ν on E such that ν�A′� = 1. Notice that this capacity is not
invariant by translation in time or space. This capacity arises naturally when
one considers the Brownian snake, a useful tool to study super-Brownian mo-
tion. Indeed, using potential theory of symmetric Markov process, I�ν� can
be viewed as the energy, with respect to the Brownian snake, of a certain
probability measure (see Section 4 for more details).

We extend a result due to Dhersin and Le Gall [6] where the authors study
G-regularity of �0�0� for sets Q = ��s� y� ∈ E� �y� < √

sh�s��, where h is a
positive decreasing function defined on �0�∞�. Our result can also be viewed
as a parabolic extension of the Wiener’s test in [5] in an elliptic setting.

The proof of our results relies on the Brownian snake introduced by Le Gall.
We only give the definition and some properties for completeness in this paper
and refer to [10], [12] for detailed presentations. We will use time inhomoge-
neous notations.

Let �r� x� ∈ R×R
d be a fixed point. We denote by �r� x the set of all stopped

paths in R
d started at x at time r. An element w of �r� x is a continuous

mapping w� �r� ζ → R
d such that w�r� = x, and ζ = ζ�w� ∈ �r�∞� is called

its lifetime. We denote by ŵ the end point w�ζ�. With the metric d�w�w′� =∣∣ζ�w� −ζ�w′�
∣∣+sups≥r

∣∣w�s∧ζ�w��−w′�s∧ζ�w′��
∣∣, the space �r� x is a Polish space.

The Brownian snake started at x at time r is a continuous strong Markov
process W = �Ws� s ≥ 0� with values in �r� x, whose law is characterized by
the following two properties.

1. The lifetime process ζ = �ζs = ζ�Ws�� s ≥ 0� is a reflecting Brownian motion
in �r�∞�.

2. Conditionally given �ζs� s ≥ 0�, the process �Ws� s ≥ 0� is a time-inhomo-
geneous continuous Markov process, such that for s′ ≥ s,
Ws′ �t� =Ws�t� for r ≤ t ≤m�s� s′� = inf v∈�s� s′  ζv.
�Ws′ �m�s� s′�+t�−Ws′ �m�s� s′��, 0 ≤ t ≤ ζs′ −m�s� s′�� is a Brownian motion
in R

d independent of Ws.

From now on we shall consider the canonical realization of the process W
defined on the space � = C�R+��r� x�, and denote by �w the law of W started at
w ∈ �r� x. The trivial path xr such that ζ�xr� = r, xr�r� = x is clearly a regular
point for the process �W��w�. We denote by Nr� x the excursion measure outside
�xr�, normalized by the following: for every ε > 0,

Nr� x

[
sup
s≥0

ζs > ε+ r
]
= 1

2ε
�

Notice that Nr� x is an infinite measure. The distribution of W under Nr� x can
be characterized as above, except that now the lifetime process ζ is distributed
according to the Itô measure of excursions of linear reflecting Brownian motion
in �r�∞�. Let σ = inf�s > 0� ζs = r� denote the duration of the excursion of ζ
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under Nr� x. The graph � ∗ of W is defined under Nr� x by

� ∗ = {�t�Ws�t��� r < t ≤ ζs�0 < s < σ
} = {�ζs� Ŵs��0 < s < σ

}
�

We write � ∗�W� for � ∗ when there is a risk of confusion.
Let us now explain the connection between the Brownian snake and super-

Brownian motion. First, we introduce some notations. We denote by �Mf��f�
the space of all finite measures on R

d, endowed with the topology of weak
convergence. We denote by ��S� (resp., �b+�S�) the set of all real measur-
able [resp., bounded nonnegative measurable] functions defined on a Polish
space S. We also denote by ��S� the Borel σ-field on S. For every measure
ν ∈Mf, and f ∈ �b+�Rd�, we shall write �ν� f� = ∫

f�y�ν�dy�. We also denote
by supp ν the closed support of the measure ν.

We consider under Nr� x the continuous version �lts� t > r� s ≥ 0� of the local
time of ζ at level t and time s and define the measure-valued process Y on R

d

by setting for every t > r, for every ϕ ∈ �b+�Rd�,

�Yt�ϕ� =
∫ σ

0
dlts ϕ�Ŵs��

Let �r = ⋃
x∈R

d �r� x. Let µ be a finite measure on R
d and

∑
i∈I δWi be a

Poisson measure on C�R+��r� with intensity
∫
µ�dx�Nr� x�·. Then the process

X defined by Xr = µ and Xt =
∑

i∈I Yt�Wi� if t > r, is a super-Brownian
motion started at time r at µ (see [10], [12]). We shall denote by Pr�µ (resp.,
Pr� x) the law of the super-Brownian motion started at time r at µ (resp., at
the Dirac mass δx). We deduce from the normalization of Nr� x that, for every
t > r, Nr� x�Yt �= 0 = 1/2�t−r� <∞. This implies that, for t > r, there is only
a finite number of indices i ∈ I such that � ∗�Wi� ∩ �t�∞�× R

d is nonempty.
We consider the graph of X,

� �X� = ⋃
ε>r

( ⋃
t≥ε
�t� × suppXt

)
= ⋃

i∈I
� ∗�Wi��

where Ā denotes the closure of A. A set A ⊂ ��R × R
d� is called G-polar if

Pr� x�� �X� ∩ A �= � = 0 for every �r� x� ∈ R × R
d. From Poisson measure

theory, we have

Pr� x

[
� �X� ∩A �= �

] = 1− exp
(−Nr� x�� ∗ ∩A �= �) �

Hence A is G-polar if and only if Nr� x�� ∗ ∩A �= � = 0 for all �r� x� ∈ R×R
d.

We consider the capacity defined by the following: for A ∈ ��R× R
d�,

cap′�A� =
[
inf

∫ ∫
R×R

d
dsdy

(∫ ∫
�s�∞�×R

d
ν�dt�dx�p�t− s� x− y� exp �−�t− s�/2�

)2]−1

�
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where the infimum is taken over all probability measures ν on R×R
d such that

ν�A� = 1. Dynkin proved (see Theorem 3.2 in [7]) that A ∈ ��R × R
d� is G-

polar if and only if cap′�A� = 0. (We have cap′�A� = 0 ⇔ Nr� x�� ∗ ∩A �= � = 0
for all �r� x� ∈ R×R

d.) It is easy to check that if A ⊂ E is a compact set, then

cap′�A� = 0 ⇔ cap�A� = 0�

This can be extended to all Borel subsets of E since the two capacities are
inner capacities (see [13]). In fact, it seems more relevant to consider the ca-
pacity cap to characterize G-regularity, as we shall see. We have the following
quantitative theorem.

Theorem 1. There exists a constant C0 such that for any A ∈ ��E�,
4−1 cap�A� ≤ N0�0�� ∗ ∩A �= � ≤ C0 cap�A��

If Q is a domain of R × R
d, it is well known that the function �r� x� �→

Nr� x�� ∗ ∩Qc �= � is the maximal nonnegative solution uM of ∂u/∂t+ 1
2�u =

2u2 in Q. Hence, we deduce from Theorem 1 that if �0�0� ∈ Q, then uM�0�0�
and cap�Qc ∩ E� are comparable up to multiplicative constants which are
independent of Q.

The proof of Theorem 1 is split in two parts. In Section 2, we introduce
a capacity associated with a weighted Sobolev space, which is equivalent to
the capacity cap. In Section 3, using the connections between super-Brownian
motion and partial differential equations, we prove the upper bound with this
new capacity and hence for the capacity cap. The lower bound is obtained
in Section 4 by using additive functionals of the Brownian snake introduced
in [5].

Now, for A ∈ ��R× R
d�, we consider under Pr� x the random time

τA = inf
{
t > r� ��t� × suppXt� ∩A �= �

}
�

Arguments similar to those of [5] yield that τA is a stopping time for the
natural filtration of X completed the usual way. Thus we have Pr� x�τA = r� =
1 or 0. Following Dynkin [8], Section II-6, we say a point �r� x� ∈ R×R

d is G-
regular for Ac if Pr� x-a.s. τA = r. Let AGr denote the set of all points that are
G-regular for Ac. From the known path properties of super-Brownian motion
it is obvious that int�A� ⊂ AGr ⊂ Ā, where int�A� denotes the interior of A.
We set TA = inf�s > 0� �ζs� Ŵs� ∈ A�. Following [5], it is easy to deduce from
Theorem 1 the next result.

Proposition 2. Let A ∈ ��R × R
d�. The following properties are equiva-

lent:

(i) �r� x� is G-regular for Ac;
(ii) Nr� x�� ∗ ∩A �= � = ∞;

(iii) �xr
-a.s. TA = 0;

(iv) cap�Ar�x ∩E� = ∞, where Ar�x = ��s� y�� �s+ r� y+ x� ∈ A�.
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We can give a straightforward analytic consequence of Proposition 2 and
the link between super-Brownian motion and nonlinear differential equations.

Corollary 3. Let Q be a domain in E such that �0�0� ∈ ∂Q. The following
three conditions are equivalent:

(i) �0�0� is G-regular for Q;
(ii) cap�Qc ∩E� = ∞;

(iii) there exists a nonnegative solution of ∂u/∂t+ 1
2�u = 2u2 in Q such that

lim
�s� y�→�0�0�� �s� y�∈Q

u�s� y� = ∞�

The equivalence of assertions (i) and (iii) is due to Dynkin [8], Theorem
II.6.1. The equivalence of (i) and (ii) is given by Proposition 2.

Finally, using Theorem 1, we give in Section 5 an estimate of the hitting
probability of the support of X1, and we prove that in dimension d ≥ 2, the
support of super-Brownian motion and the range of d-dimensional Brownian
motion are intersection-equivalent.

2. Equivalence of capacities for a weighted Sobolev space. In this
section, we introduce a new capacity, associated with a weighted Sobolev space,
which is equivalent to the capacity cap. This capacity will be very useful in
the next section to prove the upper bound for Theorem 1.

If S is an open subset of R
r, we denote by C∞

0 �S� the set of all functions
of class C∞ defined on S with compact support. If f is a measurable function
defined on S then �f�∞ = supx∈S

∣∣f�s�∣∣. We consider the Hilbert space L2�p� =
�f ∈ ��E�� �f��p� <∞�, where �f�2

�p� =
∫∫

E dtdx p�t� x�f�t� x�2.
Notice the kernel defined on E×E by k�t� x� s� y� = p�t− s� x−y�p�t� x�−1

is nonnegative and lower semicontinuous. Thus we can introduce the operator
1 defined on the set of nonnegative functions f ∈ ��E� by

1�f� = p−1�p ∗ �pf� =
∫ ∫

E
dsdyk�·� ·� s� y�p�s� y�f�s� y��

where ∗ denotes the usual convolution product on E. Furthermore, the func-
tion 1�f� is even lower semicontinuous (see [9], Lemma 2.2.1).

We define the capacity Cap on E in the following way: if A ⊂ E, then

Cap�A� = inf
{∥∥f∥∥2

�p��f ≥ 0� f ∈ L2�p�� 1�f� ≥ 1 on A
}
�

with the convention inf � = ∞. Notice this capacity is not invariant by
translation in time or space. This capacity is an outer capacity (see [13],
Theorem 1). Moreover, it coincides with the capacity cap on the analytic sets
(see [13], Theorem 14). Now, we want to connect this capacity to an analytic
capacity (see [3] for similar results but with different norms). Therefore we
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consider the weighted Sobolev space WD which is the completion of C∞
0 �E�

with respect to the norm � · �D, defined by

∥∥ϕ∥∥2
D
= ∥∥∂tϕ∥∥2

�p� +
d∑

i=1

∥∥∂i�logp�∂iϕ
∥∥2
�p� +

d∑
i=1

∥∥∂2
iiϕ

∥∥2
�p�� ϕ ∈ C∞

0 �E��

with the usual notations ∂tg�t� x� = �∂g/∂t��t� x�, ∂ig�t� x� = �∂g/∂xi��t� x�
for x = �x1� � � � � xd� ∈ R

d and ∂2
ii = ∂i∂i. Notice the nonzero constants do not

belong to WD. We can introduce the outer capacity capD associated to WD

defined as follows. For any compact set K ⊂ E, we set

capD�K� = inf
{∥∥ϕ∥∥2

D
�ϕ ∈ C∞

0 �E�� ϕ ≥ 0� ϕ ≥ 1 on K
}

= inf
{∥∥ϕ∥∥2

D
�ϕ ∈ C∞

0 �E�� ϕ ≥ 0� ϕ ≥ 1 on a neighborhood of K
}
�

Then we set for any open set G ⊂ E,

capD�G� = sup
{
capD�K��K ⊂ G�K compact

}
�(1)

and, for any analytic set A ⊂ E,

capD�A� = inf
{
capD�G��A ⊂ G�G open

}
�

Notice the definition is consistent (see [2], for example).

Proposition 4. There exists a constant C such that for any set A ⊂ E,

Cap�A� ≤ capD�A� ≤ C Cap�A��

Proof. Since the two capacities are outer capacities, it is enough to con-
sider open sets. Now, using (1) and [13], Theorem 8, we see it is enough to
consider compact sets.

Let us introduce the operator H = ∂t− 1
2�. We consider a nonempty compact

set K ⊂ E. Let ϕ ∈ C∞
0 �E� be such that ϕ ≥ 0 and ϕ ≥ 1 on K. Notice that

(in the distribution sense) Hp = δ�0�0�, where δ�0�0� is the Dirac mass at
�0�0� ∈ R×R

d. Then we have p ∗ �H�pϕ� = �Hp� ∗ �pϕ� = pϕ. The function
f = p−1

∣∣H�pϕ�∣∣ = ∣∣H�ϕ� − �∇ logp�∇ϕ�∣∣ is nonnegative and

1�f� = p−1�p ∗ ∣∣H�pϕ�∣∣� ≥ p−1�p ∗H�pϕ�� = ϕ�

Thus we have 1�f� ≥ 1 on K. We also have∥∥f∥∥�p� ≤ ∥∥∂tϕ− 1
2�ϕ− �∇ logp�∇ϕ�∥∥�p� ≤ ∥∥ϕ∥∥

D
�

Hence we have Cap�K� ≤ �ϕ�2
D. The first inequality follows by taking a se-

quence �ϕn� such that �ϕn�2
D converges to capD�K�.

To prove the other inequality, let us consider a nonnegative function f1 ∈
L2�p�, such that 1�f1� ≥ 1 on K. Notice this implies �f1��p� > 0. Let δ > 0.
It is easy to construct a function ε ∈ L2�p� such that ε > 0 on E and �ε��p� ≤
δ�f1��p�. We set f2 = f1+ε. Since the function 1�f2� is lower semicontinuous,
the set ��t� x� ∈ E�1�f2� > 1� is open and it also contains K. It is then obvious



CHARACTERIZATION OF G-REGULARITY 737

that for δ′ > 0 small enough, if we set f3�t� x� = f2�t� x�1�δ′<t<δ′−1�
∣∣x∣∣<δ′−1� for

�t� x� ∈ E, we get 1�f3� > 1 on an open set containing K. Let us introduce a
nonnegative function h ∈ C∞

0 �E� such that
∫ ∫

E h�t� x�dtdx = 1. For θ > 0,
we write hθ�t� x� = θ−d−1h�t/θ� x/θ�. Now using the uniform continuity of p
on �δ′/2�∞�×R

d, it is easy to see that if f = hθ ∗f3, then 1�f� > 1 on an open
set containing K for θ small enough. The function f is nonnegative, belongs
to C∞

0 �E�� and the function 1�f� is of class C∞. We can choose δ and θ small
enough so that �f��p� ≤ 2�f1��p�.

Let α ∈ C∞
0 ��0�∞�� such that 0 ≤ α ≤ 1, α = 1 on �0�1/2 and α = 0 on

�1�∞�. Let ξ ∈ C∞
0 �Rd� such that 0 ≤ ξ ≤ 1 and ξ = 1 in a neighborhood of 0.

We define αn�t� = α�t/n� and ξn�x� = ξ�x/n�. The function ϕn = αnξn1�f�
belongs to C∞

0 �E�, is nonnegative, and ϕn ≥ 1 on a neighborhood of K for n
large enough.

Let us now give two key lemmas. If M is a bounded operator from L2�p�
into itself, we denote by � M ��p�= sup��M�f���p��f ∈ L2�p�� �f��p� = 1� its
norm. We define the operator 10: for f ∈ ��E� nonnegative, 10�f��t� x� =
t−11�f��t� x�, �t� x� ∈ E. For T > 0, let us introduce ET = �0�T� × R

d.

Lemma 5. The operators 1ET
1 and 10 are bounded operators from L2�p�

into itself. Furthermore, we have � 1ET
1 ��p� ≤ T/

√
2 and � 10 ��p� ≤ 2.

Proof. Let f ∈ L2�p�. We have∥∥10�f�
∥∥2
�p� =

∫ ∫
E
dtdx t−2p�t� x�−1

[∫ ∫
E
dsdyp�t− s� x− y�p�s� y�f�s� y�

]2

≤
∫ ∫

E
dtdx t−2p�t� x�−1

[∫ ∫
E
dsdyp�t− s� x− y�p�s� y�

× (
s−1/21s≤t

)1/2(
s1/2f�s� y�21s≤t

)1/2
]2

≤
∫ ∫

E
dtdx t−2p�t� x�−1

×
∫ ∫

E
ds′ dy′ p�t− s′� x− y′�p�s′� y′�s′−1/21s′≤t

×
∫ ∫

E
dsdyp�t− s� x− y�p�s� y�s1/2f�s� y�21s≤t

≤
∫ ∫

E
dtdx t−2

∫ t

0
ds′s′−1/2

×
∫ ∫

E
dsdyp�t− s� x− y�p�s� y�s1/2f�s� y�21s≤t

= 2
∫ ∫

E
dtdx t−2t1/2

∫ ∫
E
dsdyp�t− s� x− y�p�s� y�s1/2f�s� y�21s≤t

≤ 2
∫ ∫

E
dsdyp�s� y�f�s� y�2s1/2

∫ ∞
s

t−3/2 dt ≤ 4
∥∥f∥∥2

�p��

where we used the Cauchy–Schwarz inequality for the second inequality.
Hence the operator 10 is a bounded operator from L2�p� into itself. And
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we have � 10 ��p�≤ 2. The operator 1ET
1 can be handled in a very similar

way. ✷

Lemma 6. The operators defined on C∞
0 �E� by g ∈ C∞

0 �E��
11�g� = ∂t1�g��

for i ∈ �1� � � � � d�� 12� i�g� = 1
2∂

2
ii1�g��

and for i ∈ �1� � � � � d�� 13� i�g� = ∂i�logp�∂i1�g��
can be uniquely extended into bounded operators from L2�p� into itself. More-
over we have

� 11 ��p� ≤ 1+ 3d�(2)

for i ∈ �1� � � � � d�� � 12� i ��p� ≤ 1�(3)

for i ∈ �1� � � � � d�� � 13� i ��p� ≤ 4�(4)

The proof of this lemma is given in the Appendix.
We now bound �ϕn�D. Lemma 5 provides an upper bound for �∂tϕn��p��∥∥∂tϕn

∥∥
�p� ≤

∥∥∂tαn

∥∥
∞
∥∥1En

1�f�∥∥�p� + ∥∥11f
∥∥
�p�

≤ (∥∥∂tα∥∥∞2−1/2+ � 11 ��p�
)∥∥f∥∥�p��(5)

Using Lemma 5 we derive an upper bound for
∑d

i=1 �∂i�logp�∂iϕn��p��
d∑

i=1

∥∥∂i�logp�∂iϕn

∥∥
�p� ≤

d∑
i=1

(∥∥13� i�f�
∥∥
�p� + sup

x∈R
d

∣∣xi∂iξ�x�
∣∣∥∥10�f�

∥∥
�p�

)

≤
d∑

i=1

(
� 13� i ��p� + sup

x∈R
d

∣∣xi∂iξ�x�
∣∣ � 10 ��p�

)∥∥f∥∥�p��
(6)

In order to give an upper bound for
∑d

i=1

∥∥∂2
iiϕn

∥∥
�p�, we need an intermediary

lemma.

Lemma 7. There exists a constant c1 (depending on ξ) such that for all
n ≥ 1, g ∈ C∞

0 �E�, i ∈ �1� � � � � d�,∥∥1En
∂iξn ∂i1�g�

∥∥
�p� ≤ c1n

−1/2
∥∥g∥∥�p��

Proof. Recall that ξn has compact support. Then, an integration by parts,
the Cauchy–Schwarz inequality and Lemma 5 give for 1 ≤ i ≤ d,∥∥1En

∂iξn∂i1�g�
∥∥2
�p� = −

∫ ∫
E
p1En

1�g��∂iξn�2∂2
ii1�g�

−
∫ ∫

E
p1En

1�g��∂iξn�2∂i1�g�∂i logp

− 2
∫ ∫

E
p1En

1�g�∂iξn∂i1�g�∂2
iiξn
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≤ ∥∥∂iξn∥∥2
∞
∥∥1En

1�g�∥∥�p�∥∥∂2
ii1�g�

∥∥
�p�

+ ∥∥∂iξn∥∥2
∞
∥∥1En

1�g�∥∥�p�∥∥∂i1�g�∂i logp
∥∥
�p�

+ 2
∥∥∂2

iiξn
∥∥
∞
∥∥1En

1�g�∥∥�p�∥∥1En
∂iξn∂i1�g�

∥∥
�p�

≤ 2−1/2n−1[2 � 12� i ��p� + � 13� i ��p�
]∥∥∂iξ∥∥2

∞
∥∥g∥∥2

�p�

+ 21/2n−1
∥∥∂2

iiξ
∥∥
∞
∥∥g∥∥�p�∥∥1En

∂iξn∂i1�g�
∥∥
�p��

Notice that if a� b� c are positive then a2 ≤ c2 + ba implies a ≤ c+ b. Thus we
get ∥∥1En

∂iξn∂i1�g�
∥∥
�p�

≤ 2−1/4n−1/2[2 � 12� i ��p� + � 13� i ��p�
]1/2∥∥∂iξ∥∥∞∥∥g∥∥�p�

+ 21/2n−1
∥∥∂2

i� iξ
∥∥
∞
∥∥g∥∥�p��

which, thanks to Lemma 6, ends the proof. ✷

Using this lemma and Lemma 5, we get that
d∑

i=1

∥∥∂2
iiϕn

∥∥
�p� ≤

d∑
i=1

[
2
∥∥12� i�f�

∥∥
�p� +

∥∥∂2
iiξn

∥∥
∞
∥∥1En

1�f�∥∥�p�
+ 2

∥∥1En
∂iξn∂i1�f��

∥∥
�p�

]

≤
d∑

i=1

[
2 � 12� i ��p� +2−1/2n−1

∥∥∂2
iiξ

∥∥
∞ + 2c1n

−1/2
]∥∥f∥∥�p��

(7)

Then we deduce from (5), (6), (7) and Lemma 6 that there exists a constant c2
independent of f and n ≥ 1 such that∥∥ϕn

∥∥
D
≤ c2

∥∥f∥∥�p��
Thus we have �ϕn�D ≤ 2c2�f1��p�. The second inequality of the proposition is
then obvious with C = 4 c2

2. ✷

We shall need the following lemma.

Lemma 8. For any compact set K ⊂ E with capD�K� > 0, there exists
ϕ ∈ C∞

0 �E� such that:

(i) 0 ≤ ϕ ≤ 1;
(ii) ϕ = 1 on a neighborhood of K;

(iii) �ϕ�2
D ≤ γ capD�K�,

where γ is a constant independent of K and ϕ.

The proof is classic, but we give it for completeness.
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Proof. Let h ∈ C∞��0�∞�� such that 0 ≤ h ≤ 1, h = 0 on �0�1/4 and
h = 1 on �3/4�∞�. Since capD�K� > 0, there exists g ∈ C∞

0 �E� such that
g ≥ 0, g ≥ 1 in a neighborhood of K, and 2 capD�K� ≥ �g�2

D. Let ϕ = h ◦ g.
The function ϕ ∈ C∞

0 �E� satisfies (i) and (ii). Let us check (iii). We have∥∥∂tϕ∥∥�p� ≤ ∥∥h′∥∥∞∥∥∂tg∥∥�p��∥∥∂i�logp�∂iϕ
∥∥
�p� ≤

∥∥h′∥∥∞∥∥∂i�logp�∂ig
∥∥
�p�∥∥∂2

iiϕ
∥∥
�p� ≤

∥∥h′∥∥∞∥∥∂2
iig

∥∥
�p� +

∥∥�h′′ ◦ g��∂ig�2∥∥�p��
Only the upper bound for the second right-hand side term of the last inequal-
ity is not obvious. We first search an upper bound for ��∂iϕ1�2/�1+ ϕ1���p�,
where ϕ1 ∈ C∞

0 �E� is a nonnegative function. An integration by parts and the
Cauchy–Schwarz inequality give∫ ∫

E
p
�∂iϕ1�4
�1+ ϕ1�2

= 3
∫ ∫

E
p∂2

iiϕ1
�∂iϕ1�2
1+ ϕ1

+
∫ ∫

E
p∂i�logp�∂iϕ1

�∂iϕ1�2
1+ ϕ1

≤
(
3
∥∥∂2

iiϕ1

∥∥
�p� +

∥∥∂i�logp� ∂iϕ1

∥∥
�p�

)∥∥�∂iϕ1�2/�1+ ϕ1�
∥∥
�p��

Thus we get∥∥�∂iϕ1�2/�1+ ϕ1�
∥∥
�p� ≤ 3

(∥∥∂2
iiϕ1

∥∥
�p� +

∥∥∂i�logp�∂iϕ1

∥∥
�p�

)
�(8)

Since we have
∣∣h′′�t�∣∣ ≤ 2�1+t�−1�h′′�∞, taking ϕ1 = g in the above inequality

we deduce that∥∥�h′′ ◦ g��∂ig�2∥∥�p� ≤ 2
∥∥�∂ig�2/�1+ g�∥∥�p�∥∥h′′∥∥∞

≤ 6
(∥∥∂2

iig
∥∥
�p� +

∥∥∂i�logp� ∂ig
∥∥
�p�

) ∥∥h′′∥∥∞�
The previous inequalities imply there exists a constant c depending only on h
and d such that �ϕ�D ≤ c�g�D. Thus (iii) holds with γ = 2c2. ✷

3. Upper bound for hitting probabilities. In this section we prove the
second inequality of Theorem 1 for compact sets. Let us introduce K ⊂ ET, a
compact set such that capD�K� > 0. Let ϕ be as in Lemma 8. We set ϕ = 0
outside E. We introduce the function ψ = 1− ϕ, which takes values in �0�1.
We consider the function u defined on R × R

d by u�t� x� = Nt� x�� ∗ ∩ K �=
� (∈ �0�∞). With the convention 0�∞ = 0, the function uψ4 is bounded
nonnegative and of class C∞ on R × R

d. Let �Bt� t ≥ 0� denote under P0 a
d-dimensional Brownian motion started from 0. Itô’s formula implies that for
all t ≥ 0, P0-a.s.,

uψ4�t�Bt� = uψ4�0�0� +
∫ t

0
∂t�uψ4��s�Bs�ds

+
∫ t

0

�

2
�uψ4��s�Bs�ds+

∫ t

0
∇�uψ4��s�Bs�dBs�
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Consider the stopping time Ta = T ∧ inf�t > 0� ∣∣Bt

∣∣ ≥ a�. We can then apply
the optional stopping theorem at time Ta and get

E0 uψ
4�Ta�BTa

�

= u�0�0� + E0

∫ Ta

0
∂t�uψ4��s�Bs�ds+ E0

∫ Ta

0

�

2
�uψ4��s�Bs�ds

= u�0�0� + E0

∫ Ta

0

[
2u2ψ4 + 4uψ3∂tψ+ 4�∇u�∇ψ�ψ3

+ 6uψ2�∇ψ�∇ψ� + 2uψ3�ψ

]
�s�Bs�ds�

We have used that ∂tu+ 1
2�u = 2u2 to get the last equality. Notice that each

integrand is either nonnegative or bounded. By dominated convergence and
monotone convergence, we get, as a goes to infinity,

u�0�0� + 2
∥∥uψ2 1ET

∥∥2
�p�

= E0 uψ
4�T�BT�

−
∫ ∫

ET

p
[
4uψ3∂tψ+ 4�∇u�∇ψ�ψ3 + 6uψ2�∇ψ�∇ψ� + 2uψ3�ψ

]
�

Since K ⊂ ET, we deduce that u�t� x� = 0 for t ≥ T. Thus we have

u�0�0� + 2
∥∥uψ2

∥∥2
�p�

= −
∫ ∫

E
p
[
4uψ3∂tψ+ 4�∇u�∇ψ�ψ3 + 6uψ2�∇ψ�∇ψ� + 2uψ3�ψ

]
�

(9)

We now bound the right-hand side. Using the Cauchy–Schwarz inequality,
that 0 ≤ ψ ≤ 1 and that −ϕ and ψ have the same derivatives, we get

−
∫ ∫

E
puψ3∂tψ ≤ ∥∥uψ2

∥∥
�p�

∥∥∂tϕ∥∥�p��
−
∫ ∫

E
puψ3∂2

iiψ ≤ ∥∥uψ2
∥∥
�p�

∥∥∂2
iiϕ

∥∥
�p�

and

−
∫ ∫

E
puψ2�∇ψ�∇ψ� ≤ ∥∥uψ2

∥∥
�p�

d∑
i=1

∥∥�∂iϕ�2∥∥�p�
≤ 2

∥∥uψ2
∥∥
�p�

d∑
i=1

∥∥�∂iϕ�2/�1+ ϕ�∥∥�p�
≤ 6

∥∥uψ2
∥∥
�p�

d∑
i=1

(∥∥∂2
iiϕ

∥∥
�p� +

∥∥∂i�logp�∂iϕ
∥∥
�p�

)
�
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where we have used (8) with ϕ1 = ϕ for the last inequality. Now an integration
by parts and the Cauchy–Schwarz inequality give

−
∫ ∫

E
pψ3�∇u�∇ψ�

=
∫ ∫

E
puψ2[ψ�∇ logp�∇ψ� + 3�∇ψ�∇ψ� + ψ�ψ

]
≤ ∥∥uψ2

∥∥
�p�

d∑
i=1

[∥∥∂i�logp�∂iϕ
∥∥
�p� + 3

∥∥�∂iϕ�2∥∥�p� + ∥∥∂2
iiϕ

∥∥
�p�

]

≤ 19
∥∥uψ2

∥∥
�p�

d∑
i=1

[∥∥∂i�logp�∂iϕ
∥∥
�p� +

∥∥∂2
iiϕ

∥∥
�p�

]
�

where we have used again (8) for the last inequality. Taking those results
together, we deduce from (9) that

u�0�0� + 2
∥∥uψ2

∥∥2
�p� ≤ c3

∥∥uψ2
∥∥
�p�

∥∥ϕ∥∥
D
�

where the constant c3 depends only on d. Since �uψ2��p� is finite (recall uψ is
bounded, and zero on �T�∞� × R

d), this implies that �uψ2��p� ≤ c3�ϕ�D and
hence u�0�0� ≤ c2

3�ϕ�2
D. This last inequality and the definition of ϕ imply that

N0�0
[
� ∗ ∩K �= �

] = u�0�0� ≤ c2
3γ capD�K� ≤ c2

3γCCap�K� = c2
3γC cap�K��

4. Lower bound for hitting probabilities and proof of Theorem 1.
In this section, we prove the first inequality of Theorem 1 for compact sets.
Let us introduce a compact set K ⊂ E, ν a probability measure on K and
T > 0 such that K ⊂ ET. We consider the probability measure µ defined on
�0�0 by

µ�dw� =
∫ ∫

E
ν�dt�dx�Pt� x

0 �dw��
where P

t� x
0 is the law on �0�0 of the Brownian bridge starting at time 0 at

point 0 and ending at time t at point x. Notice that the measure µ is in fact a
measure on � ∗

0�0, the set of nontrivial path in �0�0 (a trivial path is a path of
lifetime zero). The measure P

t� x
0 can also be viewed as a probability measure

on the canonical space C�R+�R
d� endowed with the filtration ��t� generated

by the coordinate mappings. Let P0 be the law on the canonical space of the
standard Brownian motion. For s ∈ �0� t�, we have

Pt� x
0 �dw���s

= p�t− s� x−w�s��
p�t� x� P0�dw���s

�

We consider the energy of µ with respect to the process �Ws� (see [11] for a
precise description and definition). Thanks to [11], Proposition 1.1, we have

� �µ� = 2
∫ ∞

0
ds P0

[(∫ ∫
E
ν�dt�dx�p�t− s� x−w�s��/p�t� x�

)2]
= 2I�ν��

Now, using [5], Proposition 5, we know there exists an additive functional A
of the Brownian snake killed when its lifetime reaches 0 such that:
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1. For every Borel function F ≥ 0 on � ∗
0�0,

N0�0

[∫ ∞
0

F�Ws�dAs

]
=

∫
µ�dw�F�w��

2. N0�0�A2
∞ = 2� �µ�.

We deduce from (1) that the additive functional increases only when Ŵs ∈
supp ν ⊂K. Therefore, using the Cauchy–Schwarz inequality, we get

N0�0�� ∗ ∩K �= � ≥ N0�0�A∞ > 0 ≥ N0�A∞2/N0�A2
∞�

We get N0�0�� ∗ ∩K �= � ≥ �4I�ν�−1. Since the above inequality is true for
any probability ν on K, we get that

N0�0
[
� ∗ ∩K �= �

] ≥ 4−1 Cap�K� = 4−1 cap�K��

Proof of Theorem 1. Notice the application defined on ��E� by T�A� =
N0�0�� ∗ ∩A �= � for A ∈ ��E� is a Choquet capacity (see [4], Théorème 1).
Since the capacity cap is an inner capacity (see [13], Theorem 12), it is enough
to prove the theorem for compact subsets of E. The result is then given by the
previous section (with C0 = c2

3γC) and the above result. ✷

5. Brownian range and support of X1. In this section, we first give an
estimate for the hitting probabilities of the support of X1. Then we prove that
the range of Brownian motion and the support of super-Brownian motion at
fixed time are intersection-equivalent.

Let us fix d ≥ 2. We denote by capd−2 the usual Newtonian (logarithmic if
d = 2) capacity in R

d,

capd−2�A� =
[
inf

∫ ∫
R
d×R

d
ρ�dx�ρ�dy�hd−2�

∣∣x− y
∣∣�]−1

�

with hγ�r� = r−γ if γ > 0 and h0�r� = log+�1/r�. The infimum is taken over
all probability measures ρ on R

d such that ρ�A� = 1. Let B�0� h� be the open
ball of R

d centered at 0 with radius h.

Proposition 9. Let M > 0. There exist two positive constants a and b such
that for any Borel set A ⊂ B�0�1�, for any finite measure µ on B�0�1�, with
�µ�1� ≤M, we have

a�µ�1� capd−2�A� ≤ P0� µ
[
suppX1 ∩A �= �

] ≤ b�µ�1� capd−2�A��

Proof. Let A ⊂ B�0�2� be a Borel set. Let ν be a probability measure on
E such that ν��1�×A� = 1. Then we have ν = δ�1�×ρ, where ρ is a probability
measure on R

d such that ρ�A� = 1. We get

I�ν� =
∫ ∫

�0�1�×R
d
dsdyp�s� y�

×
∫ ∫

A×A
ρ�dx�ρ�dx′�p�1− s� x− y�p�1− s� x′ − y�p�1� x�−1p�1� x′�−1

�
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Since x� x′ are in B�0�2� and since s ∈ �0�1�, it is easy to see there exist two
positive constants a1 and b1 (independent of A and ρ) such that

a1I�ν� ≤
∫ ∫

A×A
ρ�dx�ρ�dx′�hd−2�

∣∣x− x′
∣∣� ≤ b1I�ν��

This implies that for any Borel set A ⊂ B�0�2�,
a1 capd−2�A� ≤ cap��1� ×A� ≤ b1 capd−2�A��

Since the capacity capd−2 is invariant by translation, we get that for any Borel
set A ⊂ B�0�1�, for any x ∈ B�0�1�,

a1 capd−2�A� ≤ cap��1� ×Ax� ≤ b1 capd−2�A��
where Ax = �y�y− x ∈ A�. We deduce from Theorem 1 that

4−1a1 capd−2�A� ≤ N0� x
[
� ∗ ∩ ��1� ×A� �= �

] ≤ C0b1 capd−2�A��
Since X1 =

∑
i∈I Y1�Wi�, where

∑
i∈I δWi is a Poisson measure on C�R+��0�

with intensity
∫
µ�dx�N0� x�·, we have

P0�µ
[
suppX1 ∩A �= �

] = 1− exp
(
−
∫
µ�dx�N0� x

[
suppY1 ∩A �= �

])
�

Notice that N0� x-a.e., �1�× �suppY1 ∩A� = � ∗ ∩ ��1�×A�. Since �µ�1� < M,
we then easily get the result. ✷

Intersection-equivalence between random sets has been defined by Peres
[15]. Two random Borel sets F1 and F2 in R

d are intersection-equivalent in
an open set U, if there exist positive constants a and b such that, for any Borel
set A ⊂ U,

aP�A ∩F1 ≤ P�A ∩F2 ≤ b P�A ∩F1�
If π is a probability measure on B�0�1�, then we denote by Pπ the law of a
d-dimensional Brownian motion �Bt� t ≥ 0� started with the law π. For d ≥ 3
the range of Brownian motion is defined by �B = �Bt� t ≥ 0� in R

d. For d = 2,
we also denote by �B the set �B = �Bt� t ∈ �0� ξ�, where ξ is an exponential
random variable of parameter 1 independent of �Bt� t ≥ 0�.

Corollary 10. Let M > 0. There exist two positive constants a and b such
that for any Borel set A ⊂ B�0�1�, for any absolutely continuous probability
measure π on B�0�1� with density bounded by M, for any finite measure µ on
B�0�1�, with �µ�1� ≤M, we have

a�µ�1�Pπ��B ∩A �= � ≤ P0�µ
[
suppX1 ∩A �= �

] ≤ b�µ�1�Pπ��B ∩A �= ��

Proof. This is a consequence of Proposition 9 and the fact that there
exist two positive constants a2 and b2 such that for any Borel set A ⊂ B�0�1�,
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for any absolutely continuous probability measure π on B�0�1� with density
bounded by M,

a2 capd−2�A� ≤ Pπ

[
�B ∩A �= �

] ≤ b2 capd−2�A�
(see, e.g., [15], Proposition 3.2, for d ≥ 3 and [14] for d = 2). ✷

APPENDIX

In this section, we give the proof of Lemma 6, which relies on the properties
of the Hermite polynomials. We first recall the definition and some properties
of those polynomials.

A.1. Hermite polynomials. For n = �n1� � � � � nd� ∈ N
d, we set

∣∣n∣∣ =∑d
i=1 ni, n! = ∏d

i=1 ni! and
∑

n≥0 =
∑d

i=1
∑∞

ni=0. For j ∈ �1� � � � � d�, let δ�j� be
the element of N

d such that δ�j�i = δi� j, the standard Kronecker symbol. If
z = �z1� � � � � zd� is an element of R

d, then we set zn = ∏d
i=1 z

ni

i . Let �·� ·� be the
Euclidean product on R

d.
The function ϕ�z� = exp�−�∣∣z∣∣2 − 2�z� x�/2� is an entire function defined

on R
d. We have

exp
(
−�∣∣z∣∣2 − 2�x� z�/2

)
= ∑

n≥0

1
n!
znHen�x��(10)

where the nth term Hen�x� is a polynomial of �x1� � � � � xd� of degree
∣∣n∣∣ called

the nth Hermite polynomial. Those polynomials can easily be expressed with
the usual one-dimensional Hermite polynomials �He

�1�
k � k ∈ N�: Hen�x� =∏d

i=1 He
�1�
ni
�xi�, where x = �x1� � � � � xd�.

Now let us recall some basic properties of the polynomials Hen. The follow-
ing recurrence formula can be deduced from (10) by differentiating w.r.t. zi:
for all n ∈ N

d such that ni > 0,

Hen�x� = xiHen−δ�i��x� − �ni − 1�Hen−2δ�i��x� ∀x ∈ R
d�(11)

where by convention Hen−kδ�i� = 0 if ni − k < 0. The differential formula can
be deduced from (10) by differentiating w.r.t. xi: for all n ∈ N

d,

∂iHen = niHen−δ�i��(12)

We also recall the upper bound for Hen (see [1], 22.14.17); there exists a uni-
versal constant 1 < c0 < 2 such that∣∣Hen�x�

∣∣ ≤ cd0
√
n! exp

(∣∣x∣∣2/4) for all x ∈ R
d� n ∈ N

d�(13)

Using the definition of the Hermite polynomials, it is also easy to prove that

∫
dxp�t� x�Hen�x/

√
t�Hem�x/

√
t� = n!

d∏
i=1

δni�mi
�(14)
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It is also well known that the Hermite polynomials are a complete orthogonal
system in L2�Rd� exp

(
−∣∣x∣∣2/2) dx�. Finally, standard arguments on Hilbert

spaces show that if f ∈ L2�p� then

f�t� x� = ∑
n≥0

fn�t� x� =
∑
n≥0

Hen�x/
√
t�gn�t��

where gn�t� = �n!�−1
∫
dx p�t� x�Hen�x/

√
t�f�t� x� and gn ∈ L2��0�∞��. Fur-

thermore, we have

∥∥f∥∥2
�p� =

∑
n≥0

n!
∫ ∞

0
dtgn�t�2�(15)

Since C∞
0 ��0�∞�� is dense in L2��0�∞��, it is clear that the set � of functions

f�t� x� = ∑
n≥0 Hen�x/

√
t�gn�t� where gn ∈ C∞

0 ��0�∞�� is nonzero for a finite
number of indices n, is dense in L2�p�.

A.2. Proof of Lemma 6. First step. We prove there exist unique
bounded extensions 1̃1, 1̃2� i and 1̃3� i in L2�p� of the operators 11, 12� i and
13� i defined on � . Then in a second step we check that the extensions 1̃1,
1̃2� i and 1̃3� i and the operators 11, 12� i and 13� i, which are also defined on
C∞

0 �E�, agree on C∞
0 �E�.

First step. Let us compute 1�f� for very particular functions f ∈ � . Let
g ∈ C∞

0 ��0�∞��, α and β be two positive reals such that suppg ∈ �α�β, and
G�t� = ∫ t

0 dsg�s�. For n ∈ N
d, and �t� x� ∈ E, we set

hn�g�t� x� =Hen
(
x/
√
t
)
t−
∣∣n∣∣/2g�t��

Let us prove that

1�hn�g� = hn�G�(16)

For z ∈ R, we introduce the function 	g� z defined on E by

	g� z�t� x� =
∑
n≥0

1
n!
znhn�g�t� x� = g�t� exp

(
−�∣∣z∣∣2 − 2�x� z�/2t

)
�

Then we have

1�	g� z��t� x� =
1

p�t� x�
∫ t

0
ds

∫
dyp�t− s� x− y�p�s� y�	g� z�s� y�

= 1
p�t� x�

∫ t

0
ds

∫
dyp

(
s�t− s�

t
� y− sx

t
− �t− s�z

t

)

× p�t� z− x�g�s�

= exp
(
−�∣∣z∣∣2 − 2�x� z�/2t

) ∫ t

0
dsg�s� = 	G�z�t� x��
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Using (13), the Chapman–Kolmogorov equation, and that suppg ∈ �α�β,
we get

1�∣∣hn�g

∣∣��t� x� ≤ √n!cd0p�t� x�−1
∫ ∫

E
dsdyp�t− s� x− y�p�s� y�

× exp
(∣∣y∣∣2/4s) s−∣∣n∣∣/2∣∣g�s�∣∣

≤
√
n!�
√

2c0�dp�t� x�−1
∫ t

0
dsp�t+ s� x�s−

∣∣n∣∣/2∣∣g�s�∣∣
≤
√
n!�
√

2c0�d exp
(∣∣x∣∣2/4t) ∫ t

0
ds s−

∣∣n∣∣/2∣∣g�s�∣∣
≤
√
n! �

√
2c0�d exp

(∣∣x∣∣2/4t) ∥∥g∥∥∞�β− α�α−
∣∣n∣∣/2�

The radius of the series
∑

ak�k!αk�−1/2 is infinite. Thus for any �t� x� ∈ E the
series

∑�n!�−1zn1�∣∣hn�g

∣∣��t� x� are convergent. Fubini’s theorem implies that

∑
n≥0

1
n!
zn1�hn�g��t� x� = 1

(∑
n≥0

1
n!
znhn�g

)
�t� x� = 	G�z�t� x��

Hence the two series
∑�n!�−1zn1�hn�g��t� x� and

∑�n!�−1znhn�G�t� x� agree.
Since their radius of convergence is positive (in fact infinite), we get that (16)
is true.

Let us prove that 12� i has a bounded extension on L2�p�. We deduce from
(12) that

12� i�hn�g��t� x� =
1
2
∂2
i i1�hn�g��t� x�

= 1
2t

ni�ni − 1�Hen−2δ�i��x/
√
t�t−

∣∣n∣∣/2 ∫ t

0
dsg�s��

(17)

Let us introduce f ∈ � , that is, for �t� x� ∈ E, f�t� x� =∑
n≥0 Hen�x/

√
t�gn�t�,

where gn ∈ C∞
0 ��0�∞�� and gn = 0 except for a finite number of terms. By

linearity, we have

12� i�f��t� x� =
∑
n≥0

2−1ni�ni − 1�Hen−2δ�i��x/
√
t�t−1−

∣∣n∣∣/2 ∫ t

0
ds s

∣∣n∣∣/2gn�s��

Thus, using (14), we have∥∥12� i�f�
∥∥2
�p� =

∑
n≥0

�n− 2δ�i��!4−1n2
i �ni − 1�2

×
∫ ∞

0
dt t−2−

∣∣n∣∣[∫ t

0
ds s

∣∣n∣∣/2gn�s�
]2

≤ ∑
n≥0

n!
ni�ni − 1�

4
4

�∣∣n∣∣+ 1�2
∫ ∞

0
dtgn�t�2

≤ ∥∥f∥∥2
�p��
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where we used the Hardy inequality; for k > −1,∫ ∞
0

dt t−2−k
[∫ t

0
sk/2h�s�ds

]2

≤ 4
�k+ 1�2

∫ ∞
0

dth�t�2

for the first inequality and (15) for the second one. This means that 12� i,
defined on � , can be uniquely extended into a bounded operator 1̃2� i from
L2�p� into itself. The above inequality implies � 1̃2� i ��p�≤ 1.

For i ∈ �1� � � � � d�, we set 14� i = 13� i+212� i. Using (12) and (11), we deduce
from (16) that

14� i�hn�g��t� x�
=

[
−�xi/

√
t�∂iHen�x/

√
t� + ni�ni − 1�Hen−2δ�i��x/

√
t�
]

× t−1−
∣∣n∣∣/2 ∫ t

0
dsg�s�

= −niHen�x/
√
t�t−1−

∣∣n∣∣/2 ∫ t

0
dsg�s��

(18)

Arguing as above, we get, for f ∈ � ,

∥∥14� i�f�
∥∥2
�p� =

∑
n≥0

n!n2
i

∫ ∞
0

dt t−2−
∣∣n∣∣[∫ t

0
ds s

∣∣n∣∣/2gn�s�
]2

≤ ∑
n≥0

n!n2
i

4
�∣∣n∣∣+ 1�2

∫ ∞
0

dtgn�t�2

≤ 4
∥∥f∥∥2

�p��

Thus the operators 14� i and 13� i, defined on � , can be uniquely extended in
bounded operators 1̃4� i and 1̃3� i from L2�p� into itself. Furthermore we have
� 1̃4� i ��p�≤ 2 and � 1̃3� i ��p�≤� 1̃4� i ��p� +2 � 1̃2� i ��p�≤ 4.

The proof concerning 11 easily follows from the previous results. From (16),
we get

11�hn�g��t� x�

= hn�g�t� x� −
1
2

[∣∣n∣∣Hen�x/
√
t� +

d∑
i=1

xi√
t
∂iHen�x/

√
t�
]
t−1−

∣∣n∣∣/2 ∫ t

0
dsg�s��

Then using (17) and (18), we get

11�hn�g� =
[
I+ 1

2

d∑
i=1

[
14� i + 13� i

]]�hn�g� =
[
I+

d∑
i=1

[
14� i − 12� i

]]�hn�g��

This means that 11 = I+∑d
i=1�14� i−12� i on � . Hence 11 can be uniquely ex-

tended in a bounded operator 1̃1 from L2�p� into itself and 1̃1 = I+∑d
i=1�1̃4� i−

1̃2� i. We deduce that � 1̃1 ��p�≤ 1+ 3d.
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Second step. We first consider the operators 13� i for i ∈ �1� � � � � d�. To check
that 13� i and 1̃3� i agree on C∞

0 �E�, it is enough to check that for ϕ ∈ C∞
0 �E�,

13� i�ϕ��t� x� = 1̃3� i�ϕ��t� x� dtdx-a.e. Let ϕ ∈ C∞
0 �E�. For k ∈ N, we define,

ϕk�t� x� =
∑∣∣n∣∣≤kHen�x/

√
t��n!�−1

∫
R
d
dyp�t� y�Hen�y/

√
t�ϕ�t� y��

The sequence �ϕk� k ≥ 0� converges in L2�p� to ϕ.
If x ∈ R

d, y ∈ R, i ∈ �1� � � � � d�, we denote by z = x̂i
y the element of R

d such
that zi = y and zj = xj for j �= i. Since 13� i�f��t� x� = −t−1xi∂i1�f��t� x� for
f ∈ � ∪C∞

0 �E�, we see that an integration by parts gives∫ xi

0
dy13� i�f��t� x̂i

y� = −t−1xi1�f��t� x� +
∫ xi

0
dy t−11�f��t� x̂i

y��(19)

For short we write Pi�f� for the operator Pi�f��t� x� =
∫ xi

0 dyf�t� x̂i
y�. Let

R > 0 and T > ε > 0 be fixed. Let Q = �ε�T × �−R�Rd. The heat kernel p
is bounded below and above on Q by positive constant, say cQ and CQ. Using
the Cauchy–Schwarz inequality we have

∥∥1QPi�f�
∥∥2
�p� ≤ CQR

2
∫ ∫

Q
dtdxf�t� x�2 ≤ CQc

−1
Q R2

∥∥f∥∥2
�p��

Thus the operator 1QPi is continuous from L2�p� to L2�p�. Thanks to Lemma
5 and the above first step, we get that the sequences �1QPi�10�ϕk��� k ≥ 0�
and �1QPi�13� i�ϕk��� k ≥ 0� converge in L2�p�, respectively, to 1QPi�10�ϕ��
and 1QPi�1̃3� i�ϕ��. Notice also that �1Q1�ϕk�� k ≥ 0� converges in L2�p�
to 1Q1�ϕ�. Thus, there is a sequence �σ�k�� k ≥ 0� of increasing integers,
such that the sequences �1QPi�10�ϕσ�k���� k ≥ 0�, �1QPi�13� i�ϕσ�k���� k ≥
0� and �1�ϕσ�k��� k ≥ 0� converge dtdx-a.e., respectively, to 1QPi�10�ϕ��,
1QPi�1̃3� i�ϕ�� and 1�ϕ�. Now (19) holds for f = ϕσ�k�; this means that for
�t� x� ∈ Q,

Pi

(
13� i�ϕσ�k��

)�t� x� = −t−1xi1�ϕσ�k���t� x� +Pi

(
10�ϕσ�k��

)�t� x��
Taking the limit, we get that dtdx-a.e., in Q,

Pi

(
1̃3� i�ϕ�

)�t� x� = −t−1xi1�ϕ��t� x� +Pi

(
10�ϕ�

)�t� x��
Since R, T�ε are arbitrary, the above equality holds dtdx-a.e. in E. Since (19)
holds also for f = ϕ, we deduce that dtdx-a.e.,∫ xi

0
dy13� i�ϕ��t� x̂i

y� =
∫ xi

0
dy 1̃3� i�ϕ��t� x̂i

y��

Hence we have dtdx-a.e., 13� i�ϕ��t� x� = 1̃3� i�ϕ��t� x�.
The proofs concerning the operators 11 and 12� i, for i ∈ �1� � � � � d�, and

their extensions follow the same ideas. ✷
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