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Abstract
We give asymptotics for the cumulative distribution function

(CDF) for degrees of large dense random graphs sampled from

a graphon. The proof is based on precise asymptotics for bino-

mial random variables. This result is a first step for giving

a nonparametric test for identifying the degree function of a

large random graph. Replacing the indicator function in the

empirical CDF by a smoother function, we get general asymp-

totic results for functionals of homomorphism densities for

partially labeled graphs. This general setting allows to recover

recent results on asymptotics for homomorphism densities of

sampled graphon.
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1 INTRODUCTION

The Internet, social networks, or biological networks can be represented by large random graphs.

Understanding their structure is an important issue in Mathematics. The degree sequence is one of

the key objects used to get information about graphs. Degree sequences of real world networks have

attracted a lot of attention during the last years because their distributions are significantly different

from the degree distributions studied in the classical models of random graphs such as the Erdös-Rényi

model where the degree distribution is approximately Poisson when the number of nodes is large. They

followed a power-law distribution, see for instance, Newmann [30], Chung et al. [11], Diaconis and
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Blitzstein [6], and Newman, Barabasi, and Watts [29]. See also Molloy and Reed [26,27] and Newman,

Strogatz, and Watts [31] in the framework of sparse graphs.

In this paper, we shall consider the cumulative distribution function (CDF) of degrees of large dense

random graphs sampled from a graphon. Using precise approximations of the binomial distribution,

we extend the results from Bickel, Chen, and Levina [5] on the convergence of the CDF, to get the

corresponding fluctuations under regularity conditions on the underlying graphon (in particular we

assume the graphon is smooth and has an increasing degree function). The limiting process of the

fluctuations is a Gaussian process, and we provide a representation of the Gaussian process as Wiener

integrals. The proof relies on very precise and technical estimates for binomial distributions. The theory

of graphon or limits of sequence of dense graphs was developed by Lovász and Szegedy [24] and Borg,

Chayes, Lovász, Sós, and Vesztergombi [8]. The asymptotics on the empirical CDF of degrees, see the

theorem in Section 1.1, could be used to test if a large dense graph is sampled from a given graphon.

This result is a first step for giving a nonparametric test for identifying the degree function of a large

random graph in the spirit of the Kolmogorov-Smirnov test for the equality of probability distribution

from a sample of independent identically distributed random variables.

If we replace the indicator function in the empirical CDF by a smoother function, we get general

results on the convergence and the fluctuations for functionals of homomorphism densities for partially

labeled graphs. As an application, when considering homomorphism densities for sampled graphon,

we recover results from Féray, Méliot, and Nikeghbali [16] and extend it to induced homomorphism

densities. The asymptotics and the fluctuations of smooth functions of homomorphism densities are

proved using moment bounds. See Remark 1.1 to get an intuition on how to derive the fluctuations of

the CDF of degrees from those results. The proofs are more classic, but the random measure approach

seems to be the right framework to consider other cumulative distributions. We believe using this

approach with partially labeled graphs will allow to build more powerful tests than tests based only on

homomorphism densities.

1.1 Convergence of CDF of empirical degrees for large random graphs

We consider simple finite graphs, that is graphs without self-loops and multiple edges between any

pair of vertices. We denote by  the set of all simple finite graphs.

There exists several equivalent notions of convergence for sequences of finite dense graphs (i.e.,

graphs where the number of edges is close to the maximal number of edges), for instance in terms of

metric convergence (with the cut distance) or in terms of the convergence of subgraph densities, see

[8] or Lovász [23].

When it exists, the limit of a sequence of dense graphs can be represented by a graphon that is a

symmetric, measurable function W ∶ [0, 1]2 → [0, 1], up to a measure preserving bijection. A graphon

W may be thought of as the weight matrix of an infinite graph whose set of vertices is the continuous

unit interval, so that W(x, y) represents the weight of the edge between vertices x and y.

Moreover, it is possible to sample simple graphs, with a given number of vertices, from a graphon

W (called W-random graphs). Let X = (Xi ∶ i ∈ N∗) be a sequence of independent random variables

uniformly distributed on the interval [0, 1]. To construct the W-random graph with vertices [n] ∶=
{1,… , n}, denoted by Gn, for each pair of distinct vertices i ≠ j, elements of [n], connect i and j with

probability W(Xi,Xj), independently of all other edges (see also Section 2.4). If needed, we shall stress

the dependence on W and write Gn(W) for Gn. By this construction, we get a sequence of random graphs

(Gn ∶ n ∈ N∗) which converges almost surely towards the graphon W, see for instance Proposition

11.32 in [23].
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We define the degree function D = (D(x) ∶ x ∈ [0, 1]) of the graphon W by:

D(x) = ∫
1

0

W(x, y)dy.

And we consider the empirical CDF Πn = (Πn(y) ∶ y ∈ [0, 1]) of the normalized degrees of the graph

Gn defined by

Πn(y) =
1

n

n∑
i=1

1{
D(n)

i ≤D(y)
},

where (n − 1)D(n)
i is the degree of the vertex i in Gn.

Theorem 5 (with m = 1) in [5] gives the convergence in distribution and the convergence of the

second moments of Πn(y) towards y when D is increasing. We improve this results: we prove the

almost sure convergence of Πn(y) towards ∫ 1

0
1{D(x)≤D(y)} dx at y such that {x ∈ [0, 1], D(x) = D(y)}

has zero Lebesgue measure, and the a.s. uniform convergence of Πn towards Id, the identity map on

[0, 1], when D is increasing,1 see Remark 3.3(i). This is a consequence of the more general result given

by Theorem 3.2 (see Section 1.2 and Remark 3.3 for more details). In a different direction, Chatterjee

and Diaconis [9] considered the convergence of uniformly chosen random graphs with a given CDF

of degrees towards an exponential graphon with given degree function.

Our approach allows us to get the fluctuations associated to the almost sure convergence of Πn. If

W satisfies some regularity conditions given by (65), which in particular imply that D is of class 1 and

increasing, then we have the following result on the convergence in distribution of finite-dimensional

marginals for Πn.

Theorem A (Theorem 8.1). Assume that W satisfies condition (65). Then we have the following
convergence of finite-dimensional distributions:(√

n (Πn(y) − y) ∶ y ∈ (0, 1)
) (f𝑑𝑑)

−−−−→
n→+∞

𝜒,

where (𝜒y ∶ y ∈ (0, 1)) is a centered Gaussian process defined, for all y ∈ (0, 1) by:

𝜒y = ∫
1

0

(𝜌(y, u) − �̄�(y))𝑑Bu,

with B = (Bu, u ≥ 0) a standard Brownian motion, and (𝜌(y, u) ∶ u ∈ [0, 1]) and �̄�(y) defined for
y ∈ (0, 1) by:

𝜌(y, u) = 1[0,y](u) −
W(y, u)
D′(y)

and �̄�(y) = ∫
1

0

𝜌(y, u)du.

The covariance kernel Σ = Σ1 +Σ2 +Σ3 of the Gaussian process 𝜒 is explicitly given by Equations

(67), (68), and (69) which define respectively Σ1, Σ2, and Σ3. In particular, we deduce that the variance

1Janson [20] provided a graphon such that none of its equivalent version (by a measure preserving bijection) has a nondecreasing

degree function. However, if there exists an equivalent version of a graphon, for which the degree function is increasing, then

this equivalent version is unique. This equivalent version was considered in [5] and will be considered here also.
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of 𝜒(y), for y ∈ (0, 1) is given by the elementary formula:

Σ(y, y) = y(1 − y) + 1

D′(y)2

(
∫

1

0

W(y, x)2dx − D(y)2
)
+ 2

D′(y)

(
D(y)y − ∫

y

0

W(y, x)dx
)
.

The proof of this result relies on uniform Edgeworth expansions for binomial random variables,

see Bhattacharya and Rao [4], and Stein’s method for binomial random vectors, see Bentkus [2]. The

convergence of the process in the Skorokhod space could presumably be proved using similar but

more involved arguments. More generally, following van der Vaart [37], Chapter 19 on convergence

of empirical CDF of independent identically distributed random variables, it would be natural to study

the uniform convergence of
1

n

∑n
i=1 f (D(n)

i ) when f belongs to a certain class of functions.

The asymptotics on the CDF of empirical degrees appear formally as a limiting case of the asymp-

totics of
1

n

∑n
i=1 f (D(n)

i ) with f smooth. This is developed in Section 1.3. We shall in fact adopt in this

section a more general point of view as we replace the normalized degree sequence by a sequence of

homomorphism densities for partially labeled graphs.

1.2 Convergence of sequence of dense graphs towards graphons

Recall that one of the equivalent notions of convergence of sequences of dense graphs is given by the

convergence of subgraph densities. It is the latter one that will interest us. We first recall the notion of

homomorphism densities. For two simple finite graphs F and G with respectively v(F) and v(G) ver-

tices, let Inj(F,G) denote the set of injective homomorphisms (injective adjacency-preserving maps)

from F to G (see Section 2.2 for a precise definition). We define the injective homomorphism density

from F to G by the following normalized quantity:

tinj(F,G) =
|Inj(F,G)|

Av(F)
v(G)

,

where we have for all n ≥ k ≥ 1, Ak
n = n!∕(n − k)!. In the same way, we can define the density of

induced homomorphisms (which are injective homomorphisms that also preserve nonadjacency), see

(24). Some authors study subgraph counts rather than homomorphism densities, but the two quantities

are related, see Bollobás and Riordan [7], Section 2.1, so that results on homomorphism densities can

be translated into results for subgraph counts.

A sequence of dense simple finite graphs (Hn ∶ n ∈ N∗) is called convergent if the sequence

(tinj(F,Hn) ∶ n ∈ N∗) has a limit for every F ∈  . The limit can be represented by a graphon, say W
and we have that for every F ∈  :

lim
n→∞

tinj(F,Hn) = t(F,W),

where

t(F,W) = ∫[0,1]V(F)

∏
{i,j}∈E(F)

W(xi, xj)
∏

k∈V(F)
dxk.

According to [23], Proposition 11.32, the sequence of W-random graphs (Gn ∶ n ∈ N∗) converges a.s.

towards W, that is for all F ∈  , a.s.:

lim
n→∞

tinj(F,Gn) = t(F,W). (1)
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In the Erdös-Rényi case, that is when W ≡ 𝔭 is constant, the fluctuations associated to this almost

sure convergence are of order n: for all F ∈  with p vertices and e edges, we have the following

convergence in distribution:

n
(
tinj(F,Gn(𝔭)) − 𝔭e) (𝑑)

−−−→
n→∞

 (
0, 2e2𝔭2e−1(1 − 𝔭)

)
,

where  (m, 𝜎2) denotes a Gaussian random variable with mean m and variance 𝜎2. There are several

proofs of this central limit theorem. Nowicki [32] and Janson and Nowicki [21] used the theory of

U-statistics to prove the asymptotic normality of subgraph counts and induced subgraph counts. They

also obtained the asymptotic normality of vectors of subgraph counts and induced subgraph counts. In

the particular case of the joint distribution of the count of edges, triangles, and two-stars, Reinert and

Röllin [34], Proposition 2, obtained bounds on the approximation. Using discrete Malliavin calculus,

Krokowski and Thäle [22] generalized the result of [34] (in a different probability metric) and get

the rate of convergence associated to the multivariate central limit theorem given in [21]. See also

Féray, Méliot, and Nikeghbali [15], Section 10, for the mod-Gaussian convergence of homomorphism

densities.

The asymptotics of normalized subgraph counts have also been studied when the parameter 𝔭 of

the Erdös-Rényi graphs depends on n, see for example Ruciński [35], Nowicki and Wierman [33],

Barbour, Karoński, and Ruciński [1], and Gilmer and Kopparty [17].

In the general framework of graphons, the speed of convergence in the invariance principle is of

order
√

n, except for degenerate cases such as the Erdös-Rényi case. This result was given by Féray,

Méliot, and Nikeghbali [16], Theorem 21: for all F ∈  , we have the following convergence in

distribution: √
n
(
tinj(F,Gn) − t(F,W)

) (𝑑)
−−−→
n→∞

 (
0, 𝜎(F)2

)
, (2)

where, with V(F) the set of vertices of F and v(F) its cardinal,

𝜎(F)2 =
∑

q,q′∈V(F)
t
(
(F ⋈ F)(q, q′),W

)
− v(F)2 t(F,W)2

and (F ⋈ F′)(q, q′) is the disjoint union of the two simple finite graphs F and F′ where we identify

the vertices q ∈ F and q′ ∈ F′ (see point (iii) of Remark 7.5, for more details). Notice that in the

Erdös-Rényi case, that is when W is a constant graphon, the asymptotic variance 𝜎(F)2 is equal to 0,

which is consistent with the previous paragraph since the speed is of order n.

Using Stein’s method, Fang and Röllin [14] obtained the rate of convergence for the multivariate

normal approximation of the joint distribution of the normalized edge count and the corrected and

normalized 4-cycle count. As a consequence, they get a confidence interval to test if a given graph

G comes from an Erdős-Rényi random graph model or a nonconstant graphon-random graph model.

Maugis, Priebe, Olhede, and Wolfe [25] gave a central limit theorem for subgraph counts observed in

a network sample of W-random graphs drawn from the same graphon W when the number of observa-

tions in the sample increases but the number of vertices in each graph observation remains finite. They

also get a central limit theorem in the case where all the graph observations may be generated from

different graphons. This allows to test if the graph observations come from a specified model. When

considering sequences of graphons which tend to 0, then there is a Poisson approximation of subgraph

counts. In this direction, Coulson, Gaunt, and Reinert [12], Corollary 4.1, used the Stein method to



6 DELMAS ET AL.

establish an effective Poisson approximation for the distribution of the number of subgraphs in the

graphon model which are isomorphic to some fixed strictly balanced graph.

Motivated by those results, we present in the next section an invariance principle for the distribution

of homomorphism densities of partially labeled graphs for W-random graphs which can be seen as a

generalization of (2).

1.3 Asymptotics for homomorphism densities of partially labeled graphs for large random
graphs

Let n ∈ N∗ and k ∈ [n]. We define the set n,k of all [n]-words of length k such that all characters are

distinct, see (7). Notice that ||n,k|| = Ak
n = n!∕(n − k)!.

We generalize homomorphism densities for partially labeled graphs. Let F,G ∈  be two simple

graphs with V(F) = [p] and V(G) = [n]. Assume n ≥ p > k ≥ 1. Let 𝓁 ∈ p,k and 𝛼 ∈ n,k. We define

Inj(F𝓁 ,G𝛼) the set of injective homomorphisms f from F into G such that f(𝓁i) = 𝛼i for all i ∈ [k],
and its density:

tinj(F𝓁 ,G𝛼) =
|Inj(F𝓁 ,G𝛼)|

Ap−k
n−k

.

We define the random probability measure ΓF,𝓁
n on ([0, 1],([0, 1])), with ([0, 1]) the Borel

𝜎-field on [0, 1], by:

ΓF,𝓁
n = 1|n,k| ∑

𝛼∈n,k

𝛿tinj(F𝓁 ,G𝛼
n ).

In other words, for all measurable nonnegative function g defined on [0, 1],

ΓF,𝓁
n (g) = 1|n,k| ∑

𝛼∈n,k

g
(
tinj(F𝓁 ,G𝛼

n)
)
. (3)

We prove, see Theorem 3.2, the almost sure convergence for the weak topology of the sequence(
ΓF,𝓁

n (dx) ∶ n ∈ N∗
)

of random probability measure on [0, 1] towards a deterministic probability

measure ΓF,𝓁(dx), see definition (42).

– If we take g = Id in (3), we recover the almost sure convergence given in (1) as according to (21):

tinj(F,Gn) =
1|n,k| ∑

𝛼∈n,k

tinj(F𝓁 ,G𝛼
n).

– If we take g = 1[0,D(y)] with y ∈ (0, 1) and F = K2 (where K2 denotes the complete graph with

two vertices) in (3) and using the expression of ΓF,𝓁 given in Remark 3.1, (ii), we have, with • any

vertex of K2, that:

ΓK2,•
n (g) = Πn(y) and ΓK2,•(g) = ∫

1

0

1{D(x)≤D(y)} dx.

Then, by Theorem 3.2, under the condition that D is increasing on (0, 1), we have the almost sure

convergence of Πn(y) towards y, see Remark 3.3(i).
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We also have the fluctuations associated to this almost sure convergence, see Theorem 7.4 for a

multidimensional version.

Theorem B. Let W ∈  be a graphon. Let F ∈  be a simple finite graph with V(F) = [p],
𝓁 ∈ p, with k = |𝓁|. Then, for all g ∈ 2([0, 1]), we have the following convergence in distribution:√

n
(
ΓF,𝓁

n (g) − ΓF,𝓁(g)
) (𝑑)

−−−→
n→∞

 (
0, 𝜎F,𝓁(g)2

)
,

with 𝜎F,𝓁(g)2 = Var( F,𝓁
g ) and  F,𝓁

g is defined in (43).

Notice 𝜎F,𝓁(g)2 is an integral involving g and g′. The asymptotic results are still true when we

consider a family of 𝑑 ≥ 1 simple graphs F = (Fm ∶ 1 ≤ m ≤ 𝑑) ∈ 𝑑 and we define ΓF,𝓁
n on

[0, 1]𝑑 , see Theorem 7.4 for the multidimensional case. The case g = Id appears already in [16], see

Corollary 7.6 for the graphs indexed version. We have the following convergence of finite-dimensional

distributions (or equivalently of the process since  is countable).

Corollary C (Corollary 7.6). We have the following convergence of finite-dimensional distributions:(√
n
(
tinj(F,Gn) − t(F,W)

)
∶ F ∈ ) (f𝑑𝑑)

−−−→
n→∞

Θinj,

where Θinj = (Θinj(F) ∶ F ∈  ) is a centered Gaussian process with covariance function Kinj given,
for F,F′ ∈  , by:

Kinj(F,F′) =
∑

q∈V(F)

∑
q′∈V(F′)

t
(
(F ⋈ F′)(q, q′),W

)
− v(F)v(F′) t(F,W)t(F′,W).

As a consequence, we get the central limit theorem for homomorphism densities from quan-

tum graphs, see (62) and for induced homomorphism densities tind(F, ⋅), see Corollary 7.9. In the

Erdös-Rényi case, the one-dimensional limit distribution of induced homomorphism densities is not

necessarily normal: its behavior depends on the number of edges, two-stars, and triangles in the graph

F, see [21, 32] .

Remark 1.1. Notice that because g = 1[0,D(y)] is not of class 2([0, 1]), we cannot apply Theorem B (or

Theorem 3.4) (with F = K2 and k = 1) directly to get the convergence in distribution of
√

n(Πn(y)−y)
towards𝜒(y) given in Theorem 8.1, where in particular D is assumed to be increasing. Nevertheless, the

asymptotic variance can be formally obtained by computing 𝜎K2,•(g)2 given in Theorem B (or Theorem

3.4, see (43)) with g = 1[0,D(y)] and g′(D(z))dz which is formally replaced by −(D′(y))−1𝛿y(dz), with 𝛿a
the Dirac mass at a ∈ R.

To be more precise, using Remark 3.5, (iii),(a), we have

Var(𝜒y) = Var(ΓK2,•(g)) = 𝜎K2,•(g)2 = Var( K2,•
g ),

with

 K2,•
g = g(D(U)) + ∫

1

0

W(x,U)g′(D(x))dx = 1[0,D(y)](D(U)) − W(y,U)(D′(y))−1

and where U is a uniform random variable on [0, 1]. By easy computations, we have that

E

[ K2,•
g

]
= y −

D(y)
D′(y)
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and

E

[( K2,•
g

)2
]
= y − 2

D′(y) ∫
y

0

W(y, x)dx + 1

(D′(y))2 ∫
1

0

W2(y, x)dx.

Finally, we get that Var(𝜒y) = Σ(y, y)whereΣ is given in Remark 8.2. However, the proofs of Theorems

A and 8.1 require different approaches.

Similarly to Theorem 8.1 and in the spirit of Theorem 3.4, it could be interesting to consider the

convergence of CDF for triangles or more generally for simple finite graphs F, V(F) = [p], and 𝓁 ∈
p,k: (

1|n,k| ∑
𝛼∈n,k

1{tinj(F𝓁 ,G𝛼
n )≤tx(F𝓁 ,W)} ∶ x ∈ (0, 1)k

)
,

where tx(F𝓁 ,W) = E
[
tinj

(
F𝓁 ,G[k]

n
)|| (X1,… ,Xk) = x

]
, see (31) and the second equality in (35).

1.4 Organization of the paper

We recall the definitions of graph homomorphisms, graphons, W-random graphs, and U-statistics in

Section 2. We present our result about the almost sure convergence for the random measure ΓF,𝓁
n asso-

ciated to homomorphism densities of sampling partially labeled graphs from a graphon in Section

3.2, see Theorem 3.2. The proof is given in Section 5 after a preliminary result given in Section 4.

The associated fluctuations are stated in Theorem 3.4 and proved in Section 6. The multidimensional

version of Theorems 3.2 and 3.4, see Theorem 7.4, is given in Section 7 with Corollary 7.9 on the

density of induced homomorphisms. Section 8 is devoted to the asymptotics for the empirical CDF of

degrees Πn, see Theorem 8.1 for the fluctuations corresponding to the almost sure convergence. The

proof of Theorem 8.1 is given in Section 8 and relies on Lemmas 8.4 and 8.5 . After some ancillary

results given in Section 9, we prove Lemma 8.4 in Section 10 and Lemma 8.5 in Section 11. We add

an index of notation at the end of the paper for the reader’s convenience. We postpone to the appen-

dices some technical results on precise uniform asymptotics for the CDF of binomial distributions, see

Appendix A, and a proof of Proposition 9.3 on approximation for the CDF of multivariate binomial

distributions, see Appendix B.

2 DEFINITIONS

2.1 First notations

We denote by |B| the cardinal of the set B. For n ∈ N
∗, we set [n] = {1,… , n}. Let  be a nonempty

set of characters, called the alphabet. A sequence 𝛽 = 𝛽1 … 𝛽k, with 𝛽i ∈  for all 1 ≤ i ≤ k, is called

a -word (or string) of length |𝛽| = k ∈ N∗. The word 𝛽 is also identified with the vector (𝛽1,… , 𝛽k),
and for q ∈ , we write q ∈ 𝛽 if q belongs to {𝛽1,… , 𝛽k}. The concatenation of two -words 𝛼 and

𝛽 is denoted by 𝛼 𝛽.

We now define several other operations on words. Let 𝛽 be a -word of length p ∈ N
∗ and k ∈ [p].

For 𝛼 a [p]-word of length k, we consider the -word 𝛽𝛼 , defined by

𝛽𝛼 = 𝛽𝛼1
… 𝛽𝛼k . (4)
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The word 𝛽[k] = 𝛽1 … 𝛽k corresponds to the first k terms of 𝛽, where by convention, [k] denotes the

N∗-word 1… k. We define, for i, j ∈ [p], the transposition word 𝜏ij(𝛽) of 𝛽, obtained by exchanging

the place of the ith character with the jth character in the word 𝛽: for u ∈ [p],

𝜏ij(𝛽)u =
⎧⎪⎨⎪⎩
𝛽u if u ∉ {i, j},
𝛽i if u = j,
𝛽j if u = i.

(5)

Finally, for q ∈  and i ∈ [p], we define the new -word Ri(𝛽, q), derived from 𝛽 by substituting its

ith character with q: for u ∈ [p],

Ri(𝛽, q)u =

{
𝛽u if u ≠ i,
q if u = i.

(6)

Let n ∈ N∗ and p ∈ [n]. We define the set n,p of all [n]-words of length p such that all characters

are distinct:

n,p =
{
𝛽 = 𝛽1 … 𝛽p ∶ 𝛽i ∈ [n] for all i ∈ [p] and 𝛽1,… , 𝛽p are all distinct

}
. (7)

Notice that ||n,p|| = Ap
n = n!∕(n − p)!, and that n,1 = [n]. Moreover, for n ∈ N∗, n,n is simply the

set of all permutations of [n] which will be also denoted by n. With these notations, for n ∈ N∗, we

define the set n of all [n]-words with all characters distinct:

n =
⋃

p∈[n]
n,p. (8)

Let n ≥ p ≥ k ≥ 1 and 𝓁 ∈ p,k. For 𝛼 ∈ n,k, we define the set 𝓁,𝛼
n,p of all [n]-words of length p such

that all characters are distinct and for all i ∈ [k], the 𝓁ith character is equal to 𝛼i:

𝓁,𝛼
n,p =

{
𝛽 ∈ n,p ∶ 𝛽𝓁 = 𝛼

}
. (9)

We have |𝓁,𝛼
n,p | = Ap−k

n−k. As Ap
n = Ak

nAp−k
n−k, that is |n,p| = |n,k| |𝛼,𝓁

n,p | for any 𝛼 ∈ n,k, we get that for

all real-valued functions f defined on n,k:

1|n,p| ∑
𝛽∈n,p

f (𝛽𝓁) =
1|n,k| ∑

𝛼∈n,k

f (𝛼). (10)

Let 𝑑 ∈ N
∗. For x, y ∈ R

𝑑 , we denote by ⟨x, y⟩ the usual scalar product on R
𝑑 and |x| = √⟨x, x⟩

the Euclidean norm in R
𝑑 .

We use the convention
∏

∅ = 1.

2.2 Graph homomorphisms

A simple finite graph G is an ordered pair (V(G),E(G)) of a set V(G) of v(G) vertices, and a subset

E(G) of the collection of
(v(G)

2

)
unordered pairs of vertices. We usually shall identify V(G) with [v(G)].
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The elements of E(G) are called edges and we denote by e(G) = |E(G)| the number of edges in the

graph G. Recall a graph G is simple when it has no self-loops, and no multiple edges between any pair

of vertices. Let  be the set of all simple finite graphs.

Let F,G ∈  be two simple finite graphs and set p = v(F) and n = v(G). A homomorphism f from

F to G is an adjacency-preserving map from V(F) = [p] to V(G) = [n] that is, a map from V(F) to V(G)
such that if {i, j} ∈ E(F) then {f(i), f(j)} ∈ E(G). Let Hom(F,G) denote the set of homomorphisms

from F to G. The homomorphism density from F to G is the normalized quantity:

t(F,G) = |Hom(F,G)|
np . (11)

It is the probability that a uniform random map from V(F) to V(G) is a homomorphism. We have

a similar definition when f is restricted to being injective. Let Inj(F,G) denote the set of injective

homomorphisms of F into G and define its density as:

tinj(F,G) =
|Inj(F,G)|

Ap
n

. (12)

For 𝛽 ∈ n,p, we set, with V(F) = [p] and V(G) = [n]:

Y𝛽(F,G) =
∏

{i,j}∈E(F)
1{{𝛽i,𝛽j}∈E(G)}. (13)

When there is no risk of confusion, we shall write Y𝛽 for Y𝛽(F,G), and thus we have:

tinj(F,G) = 1|n,p| ∑
𝛽∈n,p

Y𝛽 . (14)

We recall from Lovász [23], Section 5.2.3, that:

||tinj(F,G) − t(F,G)|| ≤ 1

n

(
p
2

)
. (15)

In the same way, we can define homomorphism densities from partially labeled graphs. See

Figure 1 for an injective homomorphism of partially labeled graphs. Assume p > k ≥ 1. Let 𝓁 ∈ p,k
and 𝛼 ∈ n,k. We define Inj(F𝓁 ,G𝛼) the set of injective homomorphisms f from F into G such that

f(𝓁i) = 𝛼i for all i ∈ [k], and its density:

tinj(F𝓁 ,G𝛼) =
|Inj(F𝓁 ,G𝛼)|

Ap−k
n−k

= 1|𝓁,𝛼
n,p | ∑

𝛽∈𝓁,𝛼
n,p

Y𝛽 . (16)

Denote F[𝓁] the labeled subgraph of F with vertices {𝓁1,… ,𝓁k} and edges:

E(F[𝓁]) = {{i, j} ∈ E(F) ∶ i, j ∈ 𝓁}. (17)

In what follows, the notation .̂ (such as Ŷ𝛼 , t̂x, or t̂) is used for quantities that concern the labeled

part of the graphs or graphons and the notation .̃ (such as Ỹ𝛽 , t̃inj, Z̃, or t̃x) is used for quantities that

concern the unlabeled part of the graphs or graphons.
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FIGURE 1 Example of an injective homomorphism from partially labeled graphs [Colour figure can be viewed at

wileyonlinelibrary.com]

For 𝛼 ∈ n,k, we set:

Ŷ𝛼(F𝓁 ,G𝛼) = Y𝛼(F[𝓁],G) =
∏

{i,j}∈E(F[𝓁])
1{{𝛼i,𝛼j}∈E(G)}, (18)

For 𝛽 ∈ 𝛼,𝓁
n,p , we set Y𝛽(F𝓁 ,G𝛼) = Ŷ𝛼(F𝓁 ,G𝛼) Ỹ𝛽(F𝓁 ,G𝛼) with:

Ỹ𝛽(F𝓁 ,G𝛼) =
∏

{i,j}∈E(F)∖E(F[𝓁])
1{{𝛽i,𝛽j}∈E(G)}. (19)

Notice that Y𝛽(F𝓁 ,G𝛼) is equal to Y𝛽 defined in (13) for 𝛽 ∈ 𝓁,𝛼
n,p . When there is no risk of confusion,

we shall write Ŷ𝛼, Ỹ𝛽 and Y𝛽 for Ŷ𝛼(F𝓁 ,G𝛼), Ỹ𝛽(F𝓁 ,G𝛼) and Y𝛽(F𝓁 ,G𝛼). Remark that Ŷ𝛼 is either 0 or

1. By construction, we have:

tinj(F𝓁 ,G𝛼) = Ŷ𝛼 t̃inj(F𝓁 ,G𝛼) with t̃inj(F𝓁 ,G𝛼) = 1|𝓁,𝛼
n,p | ∑

𝛽∈𝓁,𝛼
n,p

Ỹ𝛽 . (20)

Summing (16) over 𝛼 ∈ n,k, we get using (10) and (12) that:

1|n,k| ∑
𝛼∈n,k

tinj(F𝓁 ,G𝛼) = tinj(F,G). (21)

We can generalize this formula as follows. Let n ≥ p > k > k′ ≥ 1, 𝓁 ∈ p,k, 𝛾 ∈ k,k′ , and 𝛼′ ∈ n,k′ .

We easily get:

1|𝛾,𝛼′

n,k | ∑
𝛼∈𝛾,𝛼′

n,k

tinj(F𝓁 ,G𝛼) = tinj(F𝓁𝛾 ,G𝛼′ ). (22)

Remark 2.1. Let K2 (resp. K•
2
) denote the complete graph with two vertices (resp. one of them being

labeled). Let G ∈  with n vertices. We define the degree sequence (Di(G) ∶ i ∈ [n]) of the graph G
by, for i ∈ [n]:

Di(G) = tinj

(
K•

2
,Gi) = 1

n − 1

∑
j∈[n]∖{i}

1{{i,j}∈E(G)}. (23)

http://wileyonlinelibrary.com
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F G

FIGURE 2 An example of an injective homomorphism but not an induced homomorphism [Colour figure can be viewed at

wileyonlinelibrary.com]

Remark 2.2. Let F ∈  be a simple finite graph with V(F) = [p]. Let 𝓁 ∈ p,k for some k ∈ [p].
Assume F0 is obtained from F by adding p′ isolated vertices numbered from p + 1 to p + p′. Assume

n ≥ p + p′ and let 𝛼 ∈ n,k. Then, it is elementary to check that:

tinj(F𝓁
0
,G𝛼) = tinj(F𝓁 ,G𝛼).

In conclusion adding isolated nonlabeled vertices does not change the homomorphism densities.

Finally, we recall an induced homomorphism from F to G is an injective homomorphism which

preserves nonadjacency, that is: an injective maps f from V(F) to V(G) is an induced homomorphism

if {i, j} ∈ E(F) if and only if {f(i), f(j)} ∈ E(G). See Figure 2 for an injective homomorphism which is

not an induced homomorphism. Let Ind(F,G) denote the set of induced homomorphisms; we denote

its density by:

tind(F,G) = |Ind(F,G)|
Ap

n
. (24)

We recall results from [23], see Section 5.2.3., which gives relations between injective and induced

homomorphism densities.

Proposition 2.3. For F,G ∈  , two simple finite graphs, we have:

tinj(F,G) =
∑
F′≥F

tind(F′,G) and tind(F,G) =
∑
F′≥F

(−1)e(F′)−e(F)tinj(F′,G), (25)

where F′ ≥ F means that V(F) = V(F′) and E(F) ⊂ E(F′), that is F′ ranges over all simple graphs
obtained from F by adding edges.

2.3 Graphons

A graphon is a symmetric, measurable function W ∶ [0, 1]2 → [0, 1]. Denote the space of all graphons

by  . Homomorphism densities from graphs can be extended to graphons. For every simple finite

graph F and every graphon W ∈  , we define

t(F,W) = tinj(F,W) = ∫[0,1]V(F)

∏
{i,j}∈E(F)

W(xi, xj)
∏

k∈V(F)
dxk (26)

http://wileyonlinelibrary.com


DELMAS ET AL. 13

and

tind(F,W) = ∫[0,1]V(F)

∏
{i,j}∈E(F)

W(xi, xj)
∏

{i,j}∉E(F)
(1 − W(xi, xj))

∏
k∈V(F)

dxk. (27)

A sequence of simple finite graphs (Hn ∶ n ∈ N∗) is called convergent if the sequence (t(F,Hn) ∶
n ∈ N∗) has a limit for every simple finite graph F. Lovász and Szegedy [24] proved that the limit of a

convergent sequence of graphs can be represented as a graphon, up to a measure preserving bijection.

In particular, a sequence of graphs (Gn ∶ n ∈ N∗) is said to converge to a graphon W if for every

simple finite graph F, we have

lim
n→∞

t(F,Hn) = t(F,W).

As an extension, we can define homomorphism densities from a k-labeled simple finite graph F to

a graphon W which are defined by not integrating the variables corresponding to labeled vertices. Let

F ∈  be a simple finite graph, set p = v(F) and identify V(F) with [p]. Let p ≥ k ≥ 1 and 𝓁 ∈ n,k.

Recall E(F[𝓁]) defined in (17). We set for y = (y1,… , yp) ∈ [0, 1]p:

Z̃(y) =
∏

{i,j}∈E(F)∖E(F[𝓁])
W(yi, yj) (28)

and for x = (x1,… , xk) ∈ [0, 1]k we consider the average of Z̃(y) over y restricted to y𝓁 = x:

t̃x(F𝓁 ,W) = ∫[0,1]p
Z̃(y)

∏
m∈[p]⧵𝓁

dym
∏

m′∈[k]
𝛿xm′ (dy𝓁m′ ), (29)

as well as the analogue of Ŷ𝛼 for the graphon:

t̂x(F𝓁 ,W) =
∏

{𝓁i,𝓁j}∈E(F[𝓁])
W(xi, xj) and t̂(F𝓁 ,W) = ∫[0,1]k

t̂x(F𝓁 ,W) dx = t(F[𝓁],W). (30)

Similarly to (20), we set for 𝓁 ∈ n,k and x ∈ [0, 1]k:

tx(F𝓁 ,W) = t̂x(F𝓁 ,W) t̃x(F𝓁 ,W). (31)

Let 𝛽 and 𝛽′ be [k]-words such that 𝛽𝛽′ ∈ k, with k′ = |𝛽′| and 1 ≤ k′ < k. We easily get:

∫[0,1]k′
tx(F𝓁 ,W) dx𝛽′ = tx𝛽 (F

𝓁𝛽 ,W). (32)

The result also holds for k′ = k with the convention tx𝛽 (F
𝓁𝛽 ,W) = t(F,W) when 𝛽 = ∅.

Remark 2.4. The Erdös-Rényi case corresponds to W ≡ 𝔭 with 0 < 𝔭 < 1, and in this case we have

t(F,W) = tx(F𝓁 ,W) = 𝔭e(F) for all x ∈ [0, 1]k.

Remark 2.5. The normalized degree function D of the graphon W is defined by, for all x ∈ [0, 1]:

D(x) = ∫
1

0

W(x, y)dy. (33)

We have for W ∈  and x ∈ [0, 1]:

tx(K•
2
,W) = ∫

1

0

W(x, y)dy = D(x) and t(K2,W) = ∫
1

0

D(x)dx.
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2.4 W-random graphs

To complete the identification of graphons as the limit object of convergent sequences, it has been

proved by Lovász and Szegedy [24] that we can always find a sequence of graphs, given by a sampling

method, whose limit is a given graphon function.

Let W ∈  . We can generate a W-random graph Gn with vertex set [n] from the given graphon

W, by first taking an independent sequence X = (Xi ∶ i ∈ N∗) with uniform distribution on [0, 1],
and then, given this sequence, letting {i, j} with i, j ∈ [n] be an edge in Gn with probability W(Xi,Xj).
When we need to stress the dependence on W, we shall write Gn(W) for Gn. For a given sequence X,

this is done independently for all pairs (i, j) ∈ [n]2 with i < j.
The random graphs Gn(W) thus generalize the Erdös-Rényi random graphs Gn(𝔭) obtained by

taking W ≡ 𝔭 with 0 < 𝔭 < 1 constant. (We recall that the Erdös-Rényi random graph Gn(𝔭) is a

random graph defined on the finite set [n] of vertices whose edges occur independently with the same

probability 𝔭, 0 < 𝔭 < 1.) Moreover, (Gn ∶ n ∈ N∗) converges a.s. towards the graphon W, see for

instance [23], Proposition 11.32.

We provide elementary computations which motivate the introduction in the previous section of

t̂x(F𝓁 ,W) and t̃x(F𝓁 ,W). Recall that X𝛾 = (X𝛾1
,… ,X𝛾r ) with 𝛾 a N

∗-word of length |𝛾| = r. Let

n ≥ p ≥ 1 and F ∈  with V(F) = [p] and 𝓁 ∈ p,k. We set for x = (x1,… , xp) ∈ [0, 1]p:

Z(x) =
∏

{i,j}∈E(F)
W(xi, xj).

Let 𝛼 ∈ p,k and 𝛽 ∈ 𝓁,𝛼
n,p . By construction, we have:

Z(X𝛽) = E
[
Y𝛽(F,Gn) | X

]
= E

[
Y𝛽(F𝓁 ,G𝛼

n) | X
]
.

Lemma 2.6. Let W ∈  be a graphon, F ∈  be a simple finite graph, v(F) = p ≥ k ≥ 1, n ≥ k,
𝓁 ∈ n,k, and 𝛼 ∈ p,k. We have:

t̂X𝛼
(F𝓁 ,W) = E

[
Ŷ𝛼(F𝓁 ,G𝛼

n) | X
]
= E

[
Y𝛼(F[𝓁],G𝛼

n) | X
]

(34)

t̃X𝛼
(F𝓁 ,W) = E

[̃
tinj(F𝓁 ,G𝛼

n) | X𝛼

]
and tX𝛼

(F𝓁 ,W) = E
[
tinj(F𝓁 ,G𝛼

n) | X𝛼

]
. (35)

Proof. By definition of t̂x(F𝓁 ,W) in (30) and t̃x(F𝓁 ,W) in (29), using (13), (16), (18), and (20), we

get (34) and

t̃X𝛼
(F𝓁 ,W) = E

[
Z̃(X𝛽) | X𝛼

]
= E

[
Ỹ𝛽(F𝓁 ,G𝛼

n) | X𝛼

]
, (36)

tX𝛼
(F𝓁 ,W) = E

[
Z(X𝛽) | X𝛼

]
= E

[
Y𝛽(F𝓁 ,G𝛼

n) | X𝛼

]
. (37)

By summing (36) and (37) over 𝛽 ∈ 𝓁,𝛼
n,p and using (20) and (17), we get (35). ▪

Remark 2.7. Taking the expectation in the second equality of (35), we deduce that:

t(F,W) = ∫[0,1]k
tx(F𝓁 ,W) dx = E

[
tX𝛼

(F𝓁 ,W)
]
= E

[
tinj(F𝓁 ,G𝛼

n)
]
.

Thanks to (21), we recover that

t(F,W) = E
[
tinj(F,Gn)

]
,
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see also [23], Proposition 11.32 or [25], Proposition A.1. We also have:

t(F,W) = E
[
Z(X𝛽)

]
= E

[
Y𝛽(F,W)

]
.

By definition of t̂(F𝓁 ,W), we get:

t̂(F𝓁 ,W) = E
[̂
tX𝛼

(F𝓁 ,W)
]
= E

[
Ŷ𝛼(F𝓁 ,G𝛼

n)
]
= E

[
Y𝛼(F[𝓁],Gn)

]
= t(F[𝓁],W).

Since Ŷ𝛼(F𝓁 ,G𝛼
n) and Ỹ𝛽(F𝓁 ,G𝛼

n) are, conditionally on X or X𝛽 or X𝛼 , independent, we deduce that:

tX𝛼
(F𝓁 ,W) = E

[
Ŷ𝛼(F𝓁 ,G𝛼

n)Ỹ𝛽(F𝓁 ,G𝛼
n) | X𝛼

]
= E

[
Ŷ𝛼(F𝓁 ,G𝛼

n) | X𝛼

]
E

[
Ỹ𝛽(F𝓁 ,G𝛼

n) | X𝛼

]
= t̂X𝛼

(F𝓁 ,W) t̃X𝛼
(F𝓁 ,W).

This latter equality gives another interpretation of (31).

2.5 Some classical results on U-statistics

Let k ≥ 1 and (X1,… ,Xk) be a sequence of independent and identically distributed random variables

with values in a measurable space (S,). Given a kernel 𝜙, that is, a function 𝜙 from Sk into R,

symmetric in its arguments, the U-statistics with kernel 𝜙 is defined by

Un(𝜙) =
1|n,k| ∑

𝛼∈n,k

𝜙(X𝛼1
,… ,X𝛼k ).

Assuming that E [|𝜙(X1,… ,Xk)|] < +∞, Hoeffding [19] or Berk [3] proved the law of large

numbers for U-statistics with 𝜃 = E [𝜙(X1,… ,Xk)]:

Un(𝜙)
a.s.

−−−−→
n→+∞

𝜃. (38)

Hoeffing (1948), see Theorem 7.1 in [18], also proved that if Var
(
𝜙(X1,… ,Xk)2

)
< +∞ then, with

𝜎2 = Var (E [𝜙(X1,… ,Xk)| X1]):

√
n(Un(𝜙) − 𝜃)

(𝑑)
−−−→
n→∞

 (0, k2𝜎2). (39)

2.6 Notations

Let 𝑑 ≥ 1 and I = [0, 1]𝑑 . We denote by (I) (resp. +(I)) the set of all real-valued (resp. nonnega-

tive) measurable functions defined on I. We denote by (I) (resp. b(I)) the set of real-valued (resp.

bounded) continuous functions defined on I. For f ∈ (I) we denote by ‖f‖∞ the supremum norm

of f on I. We denote by k(I) the set of real-valued functions f defined on I with continuous k-th

derivative. For f ∈ 1(I), its derivative is denoted by 𝛻f = (𝛻1f ,… , 𝛻𝑑 f ) and we set ∥𝛻f ∥∞ =∑𝑑
i=1 ∥𝛻if ∥∞.
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3 ASYMPTOTICS FOR HOMOMORPHISM DENSITIES OF SAMPLING
PARTIALLY LABELED GRAPHS FROM A GRAPHON

3.1 Random measures associated to a graphon

Let Gn = Gn(W) be the associated W-random graphs with n vertices constructed from W and the

sequence X = (Xi ∶ i ∈ N∗) of independent uniform random variables on [0, 1]. Let F ∈  be a

simple finite graph. We shall write p = v(F). Let 𝓁 ∈ p (where p is the set of all [p]-words with

all characters distinct, given by (8)) and set k = |𝓁|.
We define the random probability measure ΓF,𝓁

n on ([0, 1],([0, 1])) by, for g ∈ +([0, 1]):

ΓF,𝓁
n (g) = 1|n,k| ∑

𝛼∈n,k

g
(
tinj(F𝓁 ,G𝛼

n)
)

(40)

= 1|n,k| ∑
𝛼∈n,k

Ŷ𝛼g
(̃
tinj(F𝓁 ,G𝛼

n)
)
+ (1 − Ŷ𝛼)g(0),

where we used that Ŷ𝛼 takes values in {0, 1} for the second equality. For k ∈ N∗ and 𝛼 an N∗-word of

length k, we recall the notation X𝛼 =
(
X𝛼1

,… ,X𝛼k

)
and X[k] = (X1,… ,Xk). Recall (29) and (30). We

define the auxiliary random probability measure Γ̂F,𝓁
n on [0, 1] by, for g ∈ +([0, 1]):

Γ̂F,𝓁
n (g) = 1|n,k| ∑

𝛼∈n,k

t̂X𝛼
(F𝓁 ,W) g

(̃
tX𝛼

(F𝓁 ,W)
)
+

(
1 − t̂X𝛼

(F𝓁 ,W)
)

g(0). (41)

and the deterministic probability measure ΓF,𝓁 , by, for all g ∈ +([0, 1]):

ΓF,𝓁(g) = E

[
Γ̂F,𝓁

n (g)
]

(42)

= ∫[0,1]k
t̂x(F𝓁 ,W) g

(̃
tx(F𝓁 ,W)

)
dx +

(
1 − t̂(F𝓁 ,W)

)
g(0).

Remark 3.1. If g = Id, then we have thanks to (21) that:

ΓF,𝓁
n (Id) = 1|n,k| ∑

𝛼∈n,k

tinj(F𝓁 ,G𝛼
n) = tinj(F,Gn)

and, thanks to (31) and (32):

ΓF,𝓁(Id) = ∫[0,1]k
tx(F𝓁 ,W)dx = t(F,W).

Notice that ΓF,𝓁
n (Id) and ΓF,𝓁(Id) do not depend on 𝓁.

3.2 Invariance principle and its fluctuations

We first state the invariance principle for the random probability measure ΓF,𝓁
n . The proof of the next

theorem is given in Section 5.

Theorem 3.2. Let W ∈  be a graphon. Let F ∈  be a simple finite graph with V(F) = [p],
𝓁 ∈ p. Then, the sequence of random probability measures on [0, 1],

(
ΓF,𝓁

n ∶ n ∈ N∗
)

converges
a.s. for the weak topology towards ΓF,𝓁 .
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The convergence of
(
ΓF,𝓁

n (Id) ∶ n ∈ N∗
)

can also be found in [23], see Proposition 11.32.

Remark 3.3. By Portmanteau Theorem, we have that a.s. for all bounded measurable function g on

[0, 1] such that ΓF,𝓁(g) = 0 whereg is the set of discontinuity points of g, limn→∞ ΓF,𝓁
n (g) = ΓF,𝓁(g).

(i) For F = K2 and |𝓁| = 1, we get ΓK2,•(g) = ∫ 1

0
g(D(x)) dx, that is ΓK2,•(dz) = ∫ 1

0
𝛿D(x)(dz) dx.

Recall that Πn(y) = ΓF,𝓁
n (1[0,D(y)]). For y ∈ [0, 1], such that {x ∈ [0, 1], D(x) = D(y)} has zero

Lebesgue measure, we deduce that a.s. limn→∞ Πn(y) = ∫ 1

0
1{D(x)≤D(y)} dx. Notice this results

holds even if D has no monotone regularity, which is a generalization of Theorem 5 in [5]. If

furthermore D is nondecreasing then we get ∫ 1

0
1{D(x)≤D(y)} dx = D(y).

If D is increasing, then the measure ΓK2,•, which is the distribution of D(U), with U uniform

on [0, 1], has no atoms and thus a.s. limn→∞ Πn(y) = y for all y ∈ [0, 1]. Using Dini’s theorem,

we get that if D is increasing on [0, 1], then the function Πn converges a.s. towards Id, the identity

map on [0, 1], with respect to the uniform norm.

(ii) Consider the case W ≡ 𝔭 with 0 < 𝔭 < 1. Let ê(F) denote the cardinal of E(F[𝓁]). Because

ΓF,𝓁 = 𝔭ê(F)𝛿𝔭e(F)−ê(F) + (1 − 𝔭ê(F))𝛿0, with k = |𝓁|, then if g is continuous at 𝔭e(F)−ê(F) and at 0, we

get that a.s. limn→∞ ΓF,𝓁
n (g) = ΓF,𝓁(g).

The next theorem, whose proof is given in Section 6, gives the fluctuations corresponding to the

invariance principle of Theorem 3.2. Notice the speed of convergence in the invariance principle is of

order
√

n. See Theorem 7.4 for the multidimensional version of Theorems 3.2 and 3.4.

For 𝜇 ∈ R and 𝜎 ≥ 0, we denote by  (𝜇, 𝜎2) the Gaussian distribution with mean 𝜇 and variance

𝜎2.

Theorem 3.4. Let W ∈  be a graphon. Let F ∈  be a simple finite graph with V(F) = [p],
𝓁 ∈ p, with k = |𝓁|. Then, for all g ∈ 2([0, 1]), we have the following convergence in distribution:√

n
(
ΓF,𝓁

n (g) − ΓF,𝓁(g)
) (𝑑)

−−−→
n→∞

 (
0, 𝜎F,𝓁(g)2

)
,

with 𝜎F,𝓁(g)2 = Var( F,𝓁
g ) and

 F,𝓁
g =

k∑
i=1

∫[0,1]k
t̂Ri(x,U)(F𝓁 ,W)

(
g
(̃
tRi(x,U)(F𝓁 ,W)

)
− g(0)

)
dx

+
∑

q∈[p]∖𝓁
∫[0,1]k

txU(F𝓁q,W) g′ (̃tx(F𝓁 ,W)
)

dx, (43)

where U is a uniform random variable on [0, 1], and [p]∖𝓁 = {1,… , p}∖{𝓁1,… ,𝓁k}.

Remark 3.5. Let U be a uniform random variable on [0, 1] and F ∈  .

(i) In the case g = Id, the central limit theorem appears already in [16]. In this case, we have

ΓF,𝓁
n (Id) = tinj(F,Gn), ΓF,𝓁(Id) = t(F,W) and, thanks to (59) (with 𝑑 = 1 and a = 1):

𝜎F,𝓁(Id)2 = Var

( p∑
q=1

tU (Fq,W)

)
. (44)

Let F,F′ ∈  be two simple finite graphs, let i ∈ V(F) and i′ ∈ V(F′). We define a new

graph (F ⋈ F′)(i, i′) = (F ⊔ F′)∕{i ∼ i′} which is the disjoint union of F and F′ followed by a

quotient where we identify the vertex i in V(F) with the vertex i′ in V(F′), see Figure 3.
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FIGURE 3 Example of two graphs connected by two vertices [Colour figure can be viewed at wileyonlinelibrary.com]

With this notation, we have:

𝜎F,𝓁(Id)2 = E

⎡⎢⎢⎣
( p∑

q=1

tU(Fq,W)

)2⎤⎥⎥⎦ − E

[ p∑
q=1

tU(Fq,W)

]2

=
p∑

q,q′=1
∫

1

0

tx(Fq,W)tx(Fq′ ,W)dx −

( p∑
q=1

∫
1

0

tx(Fq,W)dx

)2

=
p∑

q,q′=1

t
(
(F ⋈ F)(q, q′),W

)
− p2 t(F,W)2. (45)

Thus, we recover the limiting variance given in [16].

(ii) We consider the two degenerate cases where no vertex is labeled (k = 0) or all vertices are

labeled (k = p):

(a) for k = 0, we apply the 𝛿-method to (44), to get that

√
n
[
g(tinj(F,Gn)) − g(t(F,W))

] (𝑑)
−−−→
n→∞

 (
0, 𝜎F(g)2

)
,

where

𝜎F(g)2 = g′(t(F,W))2𝜎F,𝓁(Id)2. (46)

(b) for k = p, we haveΓF,𝓁
n (g) = (g(1)−g(0))tinj(F,Gn)+g(0),ΓF,𝓁(g) = (g(1)−g(0))t(F𝓁,W)dx+

g(0) and

𝜎F,𝓁(g)2 = (g(1) − g(0))2𝜎F,𝓁(Id)2. (47)

(iii) Let F = K2. We have ΓK2,𝓁
n (Id) = t(K2,Gn) and we thus deduce from (44) that 𝜎K2,𝓁(Id)2 =

4Var (D(U)).

(a) If k = 1, then we have ΓK•
2
,𝓁

n (g) = 1

n

∑n
i=1 g(D(n)

i ) with D(n)
i = Di(Gn) the normalized degree

of i in Gn, see (23). We deduce from (58) that:

𝜎K•
2
,𝓁(g)2 = Var

(
g(D(U)) + ∫

1

0

W(x,U)g′(D(x)) dx
)
.

http://wileyonlinelibrary.com
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(b) If k = 2, using (ii)-(b), we get from (47) that:

𝜎K••
2
,𝓁(g)2 = 4(g(1) − g(0))2Var (D(U)) ,

where K••
2

denotes the complete graph K2 with two labeled vertices.

(c) Finally, if k = 0, using (ii)-(a), we get from (46) that

𝜎K2(g)2 = 4 g′
(
∫

1

0

D(x)dx
)2

Var (D(U)) .

(iv) It is left to reader to check that Theorem 3.4 is degenerate, that is 𝜎F,𝓁(g) = 0, in the

Erdös-Rényi case, that is W ≡ 𝔭 for some 0 ≤ 𝔭 ≤ 1 (in this case  F,𝓁
g is constant),

or when ∫[0,1]k t̂x(F,W) dx = 0 and in particular when t(F,W) = 0. (This also holds in the

multidimensional setting of Section 7.)

(v) Thanks to (15), we get that Theorems 3.2 and 3.4 also hold with tinj replaced by t. (This also

holds in the multidimensional setting of Section 7.)

4 A PRELIMINARY RESULT

Let F ∈  be a simple finite graph with p = v(F), 𝓁 ∈ p with |𝓁| = k. Let W ∈  be a graphon

and X = (Xi ∶ i ∈ N∗) be a sequence of independent uniform random variables on [0, 1]. Let n ∈ N∗

such that n > p. Let Gn = Gn(W) be the associated W-random graphs with vertices [n], see Section

2.4. Recall the definitions (13) of Y𝛽(F,G), (18) of Ŷ𝛼(F𝓁 ,G𝛼), and (19) of Ỹ𝛽(F𝓁 ,G𝛼) for a simple

finite graph F. Notice that for 𝛼 ∈ p,k and 𝛽 ∈ 𝓁,𝛼
n,p , we have that, conditionally on X, Ŷ𝛼 , and Ỹ𝛽 are

independent, Ŷ𝛼 is a Bernoulli random variable and:

Y𝛽 = Ŷ𝛼 Ỹ𝛽 .

Recall Equation (20) that is for 𝓁 ∈ p with |𝓁| = k and 𝛼 ∈ n,k:

tinj

(
F𝓁 ,G𝛼

n
)
= 1|𝓁,𝛼

n,p | ∑
𝛽∈𝓁,𝛼

n,p

Y𝛽 = Ŷ𝛼 t̃inj

(
F𝓁 ,G𝛼

n
)
, (48)

with

t̃inj

(
F𝓁 ,G𝛼

n
)
= 1|𝓁,𝛼

n,p | ∑
𝛽∈𝓁,𝛼

n,p

Ỹ𝛽 . (49)

We also set Z𝛽 = E[Y𝛽|X] and Z̃𝛽 = E[Ỹ𝛽|X]. Recall (28). We have:

Z𝛽 =
∏

{i,j}∈E(F)
W(X𝛽i ,X𝛽j ) and Z̃𝛽 =

∏
{i,j}∈Ẽ(F𝓁 )

W(X𝛽i ,X𝛽j ) = Z̃(X𝛽).

We recall that t̂X𝛼
(F𝓁 ,W) = E

[
Ŷ𝛼| X

]
= E

[
Ŷ𝛼| X𝛼

]
, see (34), to deduce that:

Z𝛽 = t̂X𝛼
(F𝓁 ,W) Z̃𝛽 . (50)
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Lemma 4.1. Let F ∈  be a simple finite graph with p = v(F), 𝓁 ∈ p and W ∈  be a graphon.
Let (M𝛽 ∶ 𝛽 ∈ n,p) be a sequence of 𝜎 (X)-measurable R-valued random variables and n > p. Assume
that there exists a finite constant K such that for all 𝛽 ∈ n,p, we have E

[|M𝛽|2
] ≤ K. Then we have:

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝ 1|n,p| ∑

𝛽∈n,p

(Y𝛽 − Z𝛽)M𝛽

⎞⎟⎟⎠
2⎤⎥⎥⎥⎦ ≤ K

p2(p − 1)2

8n(n − 1)
.

Proof. We denote by Cov( .| X) the conditional covariance given X. We have:

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝ 1|n,p| ∑

𝛽∈n,p

(
Y𝛽 − Z𝛽

)
M𝛽

⎞⎟⎟⎠
2⎤⎥⎥⎥⎦

= 1|n,p|2

∑
𝛽∈n,p

∑
𝛾∈n,p

E

[
E

[(
Y𝛽 − E[Y𝛽|X])(Y𝛾 − E[Y𝛾 |X])M𝛽M𝛾

||| X
]]

= 1|n,p|2

∑
𝛽∈n,p

∑
𝛾∈n,p

E
[
M𝛽M𝛾Cov(Y𝛽 ,Y𝛾 | X)

]
≤ 1|n,p|2

∑
𝛽∈n,p

∑
𝛾∈n,p

E
[|M𝛽M𝛾 | |Cov(Y𝛽 ,Y𝛾 | X)|] .

If the [n]-words 𝛽 and 𝛾 have at most one character in common, that is |𝛽 ⋂
𝛾| ≤ 1, then, by

construction, Y𝛽 and Y𝛾 are conditionally independent given X. This implies then that Cov(Y𝛽 ,Y𝛾 | X) =
0. If |𝛽 ⋂

𝛾| > 1, then as Y𝛽 and Y𝛾 are Bernoulli random variables and we have the upper bound|Cov(Y𝛽 ,Y𝛾 | X)| ≤ 1∕4. The number of possible choices for 𝛽, 𝛾 ∈ n,p such that |𝛽 ⋂
𝛾| > 1 is

bounded from above by 2Ap
n
(p

2

)2Ap−2

n−2
. We deduce that:

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝ 1|n,p| ∑

𝛽∈n,p

(
Y𝛽 − Z𝛽

)
M𝛽

⎞⎟⎟⎠
2⎤⎥⎥⎥⎦ ≤ 1

4(Ap
n)2

2Ap
n

(
p
2

)2

Ap−2

n−2
E

[|M𝛽M𝛾 |]
≤ K

p2(p − 1)2

8n(n − 1)
,

where we used the Cauchy-Schwarz inequality for the last inequality to get E
[|M𝛽M𝛾 |] ≤ K. ▪

The proof of the next lemma is similar and left to the reader. We recall that t̂X𝛼
(F𝓁 ,W) =

E

[
Ŷ𝛼| X

]
= E

[
Ŷ𝛼| X𝛼

]
, see (34).

Lemma 4.2. Let F ∈  be a simple finite graph with p = v(F) and W ∈  be a graphon. Let
k ∈ [p] and (M𝛼 ∶ 𝛼 ∈ n,k) be a sequence of 𝜎 (X)-measurable R-valued random variables and
n > p. Assume that there exists a finite constant K such that for all 𝛼 ∈ n,k, we have E

[|M𝛼|2
] ≤ K.

Then we have:

E

⎡⎢⎢⎣
(

1|n,k| ∑
𝛼∈n,k

(Ŷ𝛼 − t̂X𝛼
(F𝓁 ,W))M𝛼

)2⎤⎥⎥⎦ ≤ K k2(k − 1)2

8n(n − 1)
.
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We also state a variant of Lemma 4.1, when working conditionally on X𝛼 for some 𝛼 ∈ n,k.

The next result is a key ingredient in the proof of Theorems 3.2 and 3.4. Recall t̃x defined in (29).

We recall, see (35), that for all 𝛽 ∈ 𝓁,𝛼
n,p :

t̃X𝛼

(
F𝓁 ,W

)
= E

[
Z̃𝛽|X𝛼

]
= E

[̃
tinj(F𝓁 ,Gn)|X𝛼

]
.

Lemma 4.3. Let F ∈  be a simple finite graph with p = v(F), 𝓁 ∈ p with k = |𝓁|, 𝛼 ∈ n,k, and
W ∈  be a graphon. Then, we have:

E

[||| t̃inj

(
F𝓁 ,G𝛼

n
)
− t̃X𝛼

(
F𝓁 ,W

) |||2 ||| X𝛼, Ŷ𝛼

]
≤ (p − k)2

4(n − k)
.

Proof. Recall the definition of t̃inj

(
F𝓁 ,G𝛼

n
)

given in (49). Set:

 = E

⎡⎢⎢⎣ 1|𝓁,𝛼
n,p |2

( ∑
𝛽∈𝓁,𝛼

n,p

(
Ỹ𝛽 − t̃X𝛼

(
F𝓁 ,W

)))2 ||| X𝛼, Ŷ𝛼
⎤⎥⎥⎦ .

Following the proof of Lemma 4.1 with M𝛽 = 1, and using also that E

[
Ỹ𝛽 || X𝛼, Ŷ𝛼

]
= t̃X𝛼

(
F𝓁 ,W

)
,

and that Ỹ𝛽 and Ỹ𝛾 are conditionally on X𝛼 independent of Ŷ𝛼 for 𝛽, 𝛾 ∈ 𝓁,𝛼
n,p , we get:

 ≤ 1|𝓁,𝛼
n,p |2

∑
𝛽∈𝓁,𝛼

n,p

∑
𝛾∈𝓁,𝛼

n,p

|Cov(Ỹ𝛽 , Ỹ𝛾 | X𝛼)|.
If 𝛽 and 𝛾 have no more than 𝛼 in common, that is 𝛽

⋂
𝛾 = 𝛼, then Ỹ𝛽 and Ỹ𝛾 are conditionally

independent given X𝛼 and thus Cov(Ỹ𝛽 , Ỹ𝛾 | X) = 0.

If |𝛽 ⋂
𝛾| > |𝛼|, then as Ỹ𝛽 and Ỹ𝛾 are Bernoulli random variables, we have the upper bound|Cov(Ỹ𝛽 , Ỹ𝛾 | X)| ≤ 1∕4. The number of possible choices for 𝛽, 𝛾 ∈ 𝓁,𝛼

n,p such that |𝛽 ⋂
𝛾| > |𝛼| is

bounded from above by Ap−k
n−k(p − k)2Ap−k−1

n−k−1
. We deduce that:

 ≤ 1

4(Ap−k
n−k)2

Ap−k
n−k(p − k)2Ap−k−1

n−k−1
≤ (p − k)2

4(n − k)
.

▪

5 PROOF OF THEOREM 3.2

We first state a preliminary lemma.

Lemma 5.1. Let F ∈  be a simple finite graph with p = v(F), 𝓁 ∈ p with k = |𝓁|, and W ∈ 
be a graphon. Then, for all n > k and g ∈ 1([0, 1]), we have:

E

[|||ΓF,𝓁
n (g) − Γ̂F,𝓁

n (g)|||] ≤ ∥g∥∞
k(k − 1)√
2n(n − 1)

+ 1

2
∥g′ ∥∞

p − k√
n − k

.
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Proof. Let g ∈ 1([0, 1]). We first assume that g(0) = 0. Then, we deduce from the definition (40)

of ΓF,𝓁
n and from (48) and (49), as Ŷ𝛼 ∈ {0, 1}, that:

ΓF,𝓁
n (g) = 1|n,k| ∑

𝛼∈n,k

Ŷ𝛼 g
(̃
tinj

(
F𝓁 ,G𝛼

n
))

.

And thus, using definition (41) of Γ̂F,𝓁
n , we get ||ΓF,𝓁

n (g) − Γ̂F,𝓁
n (g)|| ≤ B1 + B2 with

B1 = 1|n,k| ||| ∑
𝛼∈n,k

(
Ŷ𝛼 − t̂X𝛼

(F𝓁 ,W)
)

g
(̃
tX𝛼

(F𝓁 ,W)
) |||

and

B2 = 1|n,k| ∑
𝛼∈n,k

Ŷ𝛼|||g (̃
tinj(F𝓁 ,G𝛼

n)
)
− g

(̃
tX𝛼

(F𝓁 ,W)
) |||.

Thanks to Lemma 4.2, we get E[B2
1
] ≤ ∥g∥2

∞ k2(k − 1)2∕8n(n − 1). Thanks to Lemma 4.3, we get

using Jensen’s inequality that E[B2
2
] ≤ ∥g′ ∥2

∞(p − k)2∕4(n − k). This gives the result when g(0) = 0,

except there is a 1∕2 in front of ∥g∥∞ in the upper bound of the Lemma. In general, use that ΓF,𝓁
n and

Γ̂F,𝓁
n are probability measures, so that

(
ΓF,𝓁

n − Γ̂F,𝓁
n

)
(g) =

(
ΓF,𝓁

n − Γ̂F,𝓁
n

)
(ḡ), with ḡ = g− g(0). Then

use that and ∥ ḡ∥∞ ≤ 2 ∥g∥∞ to conclude. ▪

We can now prove Theorem 3.2.

Proof of Theorem 3.2. Let g ∈ 1([0, 1]). Using Lemma 5.1 and the first Borel-Cantelli lemma, we

get that a.s. limn→∞

(
ΓF,𝓁
𝜙(n)(g) − Γ̂F,𝓁

𝜙(n)(g)
)
= 0, with 𝜙(n) = n4. We notice that Γ̂F,𝓁

n (g) is a U-statistic

with kernel Φ1(X[k]) where for x ∈ [0, 1]k:

Φ1(x) = t̂x g
(̃
tx
)
+

(
1 − t̂x

)
g(0),

with tx = tx(F𝓁 ,W) and the obvious variants for t̃x and t̂x.

Moreover, because g is uniformly bounded on [0, 1], we get that Var
(
Φ1(X[k])

)
< +∞ and we

can apply the law of large numbers for U-statistics, see (38), to obtain that a.s. limn→∞ Γ̂F,𝓁
n (g) =

E[Φ(X[k])] = ΓF,𝓁(g). We deduce that a.s. limn→∞ ΓF,𝓁
𝜙(n)(g) = ΓF,𝓁(g).

Let n′ ≥ n > k. We have n,k ⊂ n′,k and 𝓁,𝛼
n,p ⊂ 𝓁,𝛼

n′,p for 𝛼 ∈ n,k. Recall |𝓁,𝛼
n,k | = Ap−k

n−k. We

deduce that for 𝛼 ∈ n,k:

|||tinj(F𝓁 ,G𝛼
n) − tinj(F𝓁 ,G𝛼

n′ )
||| ≤ 1

Ap−k
n′−k

||Ap−k
n′−k − Ap−k

n−k
|| + ||| 1

Ap−k
n′−k

− 1

Ap−k
n−k

||| Ap−k
n−k

= 2

(
1 −

Ap−k
n−k

Ap−k
n′−k

)

≤ 2

(
1 −

(
n − p
n′ − p

)p−k
)
.
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We deduce that:

||ΓF,𝓁
n (g) − ΓF,𝓁

n′ (g)|| ≤ 1

Ak
n′

||Ak
n′ − Ak

n|| ∥g∥∞ +||| 1

Ak
n′
− 1

Ak
n

||| Ak
n ∥g∥∞

+ 1|n,k| ∑
𝛼∈n,k

|||g (
tinj(F𝓁 ,G𝛼

n)
)
− g

(
tinj(F𝓁 ,G𝛼

n′ )
) |||

≤ 2 ∥g∥∞
(

1 −
( n − k

n′ − k

)k)
+ 2 ∥g′ ∥∞

(
1 −

(
n − p
n′ − p

)p−k
)
.

This implies that a.s. limn→∞ supn′∈{𝜙(n),…,𝜙(n+1)}
||ΓF,𝓁

𝜙(n)(g) − ΓF,𝓁
n′ (g)|| = 0.

With the first part of the proof, we deduce that for all g ∈ 1([0, 1]), a.s. limn→∞ ΓF,𝓁
n (g) =

ΓF,𝓁(g). Since there exists a convergence determining countable subset of 1([0, 1]), we get that a.s.

limn→∞ ΓF,𝓁
n = ΓF,𝓁 for the weak convergence of the measures on [0, 1]. ▪

6 PROOF OF THEOREM 3.4

Let 𝓁 ∈ p with k = |𝓁|. Recall the random probability measures ΓF,𝓁
n , Γ̂F,𝓁

n , and ΓF,𝓁 are defined in

(40), (41), and (42). Let g ∈ 2([0, 1]). We define the U-statistic

Un(g) =
1|n,p| ∑

𝛽∈n,p

Φ2(X𝛽), (51)

with kernel Φ2(X[p]) given by, for x ∈ [0, 1]p:

Φ2(x) = t̂x𝓁 g
(̃
tx𝓁

)
+

(
1 − t̂x𝓁

)
g(0) + t̂x𝓁 g′(̃tx𝓁

)
(Z̃(x) − t̃x𝓁 ), (52)

with t̂y = t̂y(F𝓁 ,W), t̃y = t̃y(F𝓁 ,W) for y ∈ [0, 1]k and Z̃(x) defined in (28). Notice that:

E[Un(g)] = ΓF,𝓁(g). (53)

We define the random signed measure ΛF,𝓁
n =

√
n
[
ΓF,𝓁

n − ΓF,𝓁
]
.

Lemma 6.1. Let W ∈  be a graphon. Let F ∈  be a simple finite graph with p = v(F), 𝓁 ∈ p,
with k = |𝓁|. Let g ∈ 2([0, 1]). Then, we have that limn→∞ ΛF,𝓁

n (g) −
√

n (Un(g) − E[Un(g)]) = 0 in
L1(P).

Proof. Recall (49). We write:

ΛF,𝓁
n (g) −

√
n (Un(g) − E[Un(g)]) = R1(n) + R2(n) + R3(n) (54)

with

R1(n) =
√

n|n,k| ∑
𝛼∈n,k

Ŷ𝛼 H1(𝛼),

R2(n) =
√

n|n,k| ∑
𝛼∈n,k

(
Ŷ𝛼 − t̂X𝛼

)
H2(𝛼),
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R3(n) =
√

n|n,p| ∑
𝛽∈n,p

(Y𝛽 − Z𝛽) g′(̃tX𝛽𝓁
)

=
√

n|n,k| ∑
𝛼∈n,k

Ŷ𝛼 t̃inj(F𝓁 ,G𝛼
n) g′(̃tX𝛽𝓁

) −
√

n|n,p| ∑
𝛽∈n,p

t̂X𝛽𝓁
Z̃(X𝛽) g′(̃tX𝛽𝓁

),

(where we used (48) and (50) for the last equality) and

H1(𝛼) = g
(̃
tinj(F𝓁 ,G𝛼

n)
)
− g

(̃
tX𝛼

)
− (̃tinj(F𝓁 ,G𝛼

n) − t̃X𝛼
) g′(̃tX𝛼

)⟩,
H2(𝛼) = g

(̃
tX𝛼

)
− g(0) − t̃X𝛼

g′(̃tX𝛼

)
.

According to Lemma 4.1, we get that limn→∞ R3(n) = 0 in L2(P). According to Lemma 4.2, and

since |H2(𝛼)| ≤ 2 ∥g∥∞ +∥g′ ∥∞, we get that limn→∞ R2(n) = 0 in L2(P). Since g ∈ 2([0, 1]), by

Taylor-Lagrange inequality, we have that for all x, y ∈ R,

|g(x) − g(y) − (x − y) g′(x)⟩| ≤ 1

2
∥g′′ ∥∞ |x − y|2.

This gives |H1(𝛼)| ≤ 1

2
∥g′′ ∥∞ |̃tinj(F𝓁 ,G𝛼

n) − t̃X𝛼
|2. According to Lemma 4.3, we get that

limn→∞ R1(n) = 0 in L1(P). This ends the proof. ▪

We give a central limit theorem for the U-statistic Un defined in (51).

Lemma 6.2. Under the same hypothesis as in Lemma 6.1, we have the following convergence in
distribution: √

n
(
Un(g) − ΓF,𝓁(g)

) (𝑑)
−−−→
n→∞

 (
0, 𝜎F,𝓁(g)2

)
,

with 𝜎F,𝓁(g)2 = Var( ) and, U being a uniform random variable on [0, 1]:

 =
k∑

i=1
∫[0,1]k

t̂Ri(x,U)(F𝓁 ,W)
(

g
(̃
tRi(x,U)(F𝓁 ,W)

)
− g(0)

)
dx

+
∑

q∈[p]∖𝓁
∫[0,1]k

txU(F𝓁q,W) g′(̃tx(F𝓁 ,W)
)
dx.

Proof. Recall the definition of 𝜏ij(𝛽) given in (5). The random variable Un(g) is a U-statistic with

bounded kernel. Since E[Un(g)] = ΓF,𝓁(g), we deduce from the central limit theorem for U-statistics,

see (39), that
√

n
(
Un(g) − ΓF,𝓁(g)

)
converges in distribution towards a centered Gaussian random

variable with variance Var( ′) and  ′ =
∑p

q=1
E

[
Φ2(𝜏1q(X))| X1

]
, and Φ2 given by (52). We first

compute E
[
Φ2(𝜏1q(X))| X1

]
for q ∈ [p]. We distinguish the cases q ∉ 𝓁 and q ∈ 𝓁.

The case q ∉ {𝓁1,… ,𝓁k}

Noticing that 𝜏1q(X)𝓁 does not depend on X1, we deduce that:

E
[
Φ2(𝜏1q(X))| X1

]
= E

[̂
t𝜏1q(X)𝓁 g

(̃
t𝜏1q(X)𝓁

)
+

(
1 − t̂𝜏1q(X)𝓁

)
g(0)| X1

]
+ E

[̂
t𝜏1q(X)𝓁 g′(̃t𝜏1q(X)𝓁

)
(Z̃(𝜏1q(X)[p]) − t̃𝜏1q(X)𝓁 )| X1

]
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= C + ∫[0,1]k
t̂x g′(̃tx

)
t̃xX1

(F𝓁q,W) dx

= C + ∫[0,1]k
g′(̃tx

)
txX1

(F𝓁q,W)dx,

where C is a constant not depending on X1 (which therefore will disappear when computing the

variance of  ′).

The case q ∈ {𝓁1,… ,𝓁k}

Let q = 𝓁i for some i ∈ [k]. Since E

[
Z̃(𝜏1q(X)[p])| 𝜏1q(X)𝓁

]
= t̃𝜏1q(X)𝓁 , we deduce that:

E
[
Φ2(𝜏1q(X))| X1

]
= E

[̂
t𝜏1q(X)𝓁 g

(̃
t𝜏1q(X)𝓁

)
+

(
1 − t̂𝜏1q(X)𝓁

)
g(0)| X1

]
= g(0) + ∫[0,1]k

t̂Ri(x,X1)

(
g
(̃
tRi(x,X1)

)
− g(0)

)
dx.

Thus, we obtain that  ′ =  + C′ for some constant C′ and:

 =
k∑

i=1
∫[0,1]k

t̂Ri(x,X1)

(
g
(̃
tRi(x,X1)

)
− g(0)

)
dx +

∑
q∉𝓁

∫[0,1]k
txX1

(F𝓁q,W) g′(̃tx
)

dx.

This gives the result. ▪

Theorem 3.4 is then a direct consequence of Lemmas 6.1 and 6.2 and (53).

7 MULTIDIMENSIONAL SETTING FOR ASYMPTOTICS OF
HOMOMORPHISM DENSITIES

In this section, we explain how the results of Theorems 3.2 and 3.4 are extended in a multidimensional

setting. We keep notations from Section 3.

Let F = (Fm ∶ 1 ≤ m ≤ 𝑑) ∈ 𝑑 be a finite sequence of simple finite graphs with the same

number of vertices p. We shall write p = v(F). Let 𝓁 ∈ p (where p is the set of all [p]-words with

all characters distinct, given by (8)) and set k = |𝓁|. We denote:

tinj(F𝓁 ,G𝛼
n) =

(
tinj(F𝓁

m,G𝛼
n) ∶ m ∈ [𝑑]

)
∈ [0, 1]𝑑,

and similarly for t̃inj(F𝓁 ,G𝛼
n). Let W be a graphon and x ∈ [0, 1]k. Similarly, we define tx(F𝓁 ,W), and

t̃x(F𝓁 ,W), so for example:

tx(F𝓁 ,W) =
(
tx(F𝓁

m,W) ∶ m ∈ [𝑑]
)
∈ [0, 1]𝑑.

Notice that relabeling Fm if necessary, we get all the possible combinations of density of labeled

injective homomorphism of Fm into G for all m ∈ [𝑑] (we could even take 𝓁 = [k]).

Remark 7.1. We can also consider a finite sequence of simple finite graphs F = (Fm ∶ 1 ≤ m ≤ 𝑑) ∈
𝑑 having different number of vertices. We take 𝓁 ∈ p with p = min(v(Fm) ∶ 1 ≤ m ≤ 𝑑). This
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case can be handled in the framework of sequence of simple finite graphs with the same number of

vertices p′ = max(v(Fm) ∶ 1 ≤ m ≤ 𝑑).
Recall F[𝓁]

m is the labeled subgraph of Fm with vertices {𝓁1,… ,𝓁k} and set of edges E(F[𝓁]
m ) =

{{i, j} ∈ E(Fm) ∶ i, j ∈ 𝓁} see (17). For simplicity, we shall assume the following condition which

states that F[𝓁]
m does not depend on m:

For m,m′ ∈ [𝑑], i, i′ ∈ 𝓁, we have: {i, i′} ∈ E(Fm) ⇐⇒ {i, i′} ∈ E(Fm′ ). (55)

Under condition (55), for 𝛼 ∈ n,k and x ∈ [0, 1]k, we have that Ŷ𝛼(F𝓁
m,G𝛼

n) and t̂x(F𝓁
m,W) do

not depend on m ∈ [𝑑]. We set Ŷ𝛼(F𝓁 ,G𝛼
n) and t̂x(F𝓁 ,W) for the common values. When there is no

confusion, we write Ŷ𝛼 for Ŷ𝛼(F𝓁 ,G𝛼
n). In particular, we deduce from (20) that:

tinj(F𝓁 ,G𝛼
n) = Ŷ𝛼 t̃inj(F𝓁 ,G𝛼

n) with t̃inj(F𝓁 ,G𝛼
n) =

(̃
tinj(F𝓁

m,G𝛼
n) ∶ m ∈ [𝑑]

)
. (56)

Remark 7.2. If |𝓁| = k = 1, then Condition (55) is automatically satisfied and we have by convention

that Ŷ𝛼 = t̂x(F𝓁 ,W) = 1 for 𝛼 ∈ n,k and x ∈ [0, 1]k. If 𝑑 = 1, then, Condition (55) is also automatically

satisfied.

We define the random probability measure, still denoted by ΓF,𝓁
n , on ([0, 1]𝑑,([0, 1]𝑑)) by, for

g ∈ +([0, 1]𝑑):

ΓF,𝓁
n (g) = 1|n,k| ∑

𝛼∈n,k

g
(
tinj(F𝓁 ,G𝛼

n)
)
= 1|n,k| ∑

𝛼∈n,k

Ŷ𝛼g
(̃
tinj(F𝓁 ,G𝛼

n)
)
+ (1 − Ŷ𝛼)g(0),

where we used (56) and the fact that Ŷ𝛼 takes values in {0, 1} for the second equality. Similarly to (42),

we define the deterministic probability measure, still denoted by ΓF,𝓁 , on ([0, 1]𝑑,([0, 1]𝑑)) by, for

g ∈ +([0, 1]𝑑):

ΓF,𝓁(g) = ∫[0,1]k
t̂x(F𝓁 ,W) g

(̃
tx(F𝓁 ,W)

)
dx +

(
1 − t̂(F𝓁 ,W)

)
g(0).

Remark 7.3. If |𝓁| = 1, then according to Remark 7.2, we get:

ΓF,𝓁(g) = ∫[0,1]
g
(
tx(F𝓁 ,W)

)
dx.

We state the invariance principle and the corresponding fluctuations for the random probability

measure ΓF,𝓁
n , see Theorems 3.2 and 3.4 for 𝑑 = 1. Taking into account (55), the proof is an easy

adaptation of the unidimensional case, see [13] for a detailed proof.

Theorem 7.4. Let W ∈  be a graphon. Let F ∈ 𝑑 be a sequence of 𝑑 ≥ 1 simple finite graphs
with V(F) = [p],𝓁 ∈ p. Assume that Condition (55) holds. Then, the sequence of random probability
measures on [0, 1]𝑑 ,

(
ΓF,𝓁

n ∶ n ∈ N∗
)

converges a.s. for the weak topology towards ΓF,𝓁 . And for all
g ∈ 2([0, 1]𝑑), we have the following convergence in distribution:

√
n
(
ΓF,𝓁

n (g) − ΓF,𝓁(g)
) (𝑑)

−−−→
n→∞

 (
0, 𝜎F,𝓁(g)2

)
,
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with 𝜎F,𝓁(g)2 = Var( F,𝓁
g ) and

 F,𝓁
g =

k∑
i=1

∫[0,1]k
t̂Ri(x,U)(F𝓁 ,W)

(
g
(̃
tRi(x,U)(F𝓁 ,W)

)
− g(0)

)
dx

+
∑

q∈[p]∖𝓁
∫[0,1]k

dx ⟨txU(F𝓁q,W), 𝛻g
(̃
tx(F𝓁 ,W)

)⟩, (57)

where U is a uniform random variable on [0, 1], and [p]∖𝓁 = {1,… , p}∖{𝓁1,… ,𝓁k}.

Remark 7.5. Let U be a uniform random variable on [0, 1]. Assume that |𝓁| = k = 1.

(i) Using Remark 7.2, we get for 𝓁 ∈ [p]:

𝜎F,𝓁(g)2 = Var

(
g
(
tU(F𝓁 ,W)

)
+

∑
q∈[p]∖𝓁

∫[0,1]
⟨txU(F𝓁q,W), 𝛻g

(
tx(F𝓁 ,W)

)⟩ dx

)
. (58)

(ii) Let F ∈ 𝑑 with p = v(F). Let a ∈ R
𝑑 and consider g(x) = ⟨a, x⟩ for x ∈ R

𝑑 . We deduce from (58)

and (32) that:

𝜎F,𝓁(g)2 = Var

(⟨a, p∑
q=1

tU (Fq,W)⟩) . (59)

The next corollary gives the limiting Gaussian process for the fluctuations of (tinj(F,Gn) ∶ F ∈  ).

Corollary 7.6. We have the following convergence of finite-dimensional distributions:(√
n
(
tinj(F,Gn) − t(F,W)

)
∶ F ∈ ) (f𝑑𝑑)

−−−−→
n→+∞

Θinj,

where Θinj = (Θinj(F) ∶ F ∈  ) is a centered Gaussian process with covariance function Kinj given,
for F,F′ ∈  , with V(F) = [p] and V(F′) = [p′], by:

Kinj(F,F′) = Cov

( p∑
q=1

tU(Fq,W),
p′∑

q=1

tU
(
F′q,W

))
(60)

=
p∑

q=1

p′∑
q′=1

t
(
(F ⋈ F′)(q, q′),W

)
− pp′ t(F,W)t(F′,W). (61)

Proof. We deduce from (59) and standard results on Gaussian vectors, the convergence, for the

finite-dimensional distributions towards the Gaussian process with covariance function given by (60).

Formula (61) can be derived similarly to (45). ▪

Remark 7.7. Notice that Kinj(F,F) ≤ v(F)2 ∥W ∥2v(F)−1
∞ . We deduce that, in probability,

limv(F)→∞ Θinj(F) = 0 if ∥W ∥∞ < 1.

Remark 7.8. In particular, Corollary 7.6 proves a central limit theorem for quantum graphs (see Lovász

[23], Section 6.1). A simple quantum graph is defined as a formal linear combination of a finite number
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of simple finite graphs with real coefficients. This definition makes it possible to study linear combi-

nation of homomorphism densities. For F = (Fm ∶ m ∈ [𝑑]) ∈ 𝑑 and a = (am ∶ m ∈ [𝑑]) ∈ R
𝑑 ,

we define the homomorphism density of 𝔉 =
∑𝑑

m=1 amFm for a graph G and a graphon W ∈  as

tinj(𝔉,G) = ⟨a, tinj(F,G)⟩ and t(𝔉,W) = ⟨a, t(F,W)⟩. We deduce from Corollary 7.6 the following

convergence in distribution:

√
n
(
tinj(𝔉,Gn) − t(𝔉,W)

) (𝑑)
−−−→
n→∞

 (
0, 𝜎(𝔉)2

)
, (62)

where 𝜎(𝔉)2 is given by (59) or equivalently 𝜎(𝔉)2 =
∑

m,m′∈[𝑑] amam′ Kinj(Fm,Fm′ ).
We also have the limiting Gaussian process for the fluctuations of (tind(F,Gn) ∶ F ∈  ).

Corollary 7.9. We have the following convergence of finite-dimensional distributions:

(√
n (tind(F,Gn) − tind(F,W)) ∶ F ∈ ) (f𝑑𝑑)

−−−−→
n→+∞

Θind,

where Θind = (Θind(F) ∶ F ∈  ) is a centered Gaussian process with covariance function Kind given,
for F1,F2 ∈  , with V(F1) = [p1] and V(F2) = [p2], by:

Kind(F1,F2) = Cov
⎛⎜⎜⎝
∑

F′
1
≥F1

(−1)e(F′
1
)

p1∑
q=1

tU
(
(F′

1
)q,W

)
,

∑
F′

2
≥F2

(−1)e(F′
2
)

p2∑
q=1

tU
(
(F′

2
)q,W

)⎞⎟⎟⎠
=

∑
F′

1
≥F1,F′

2
≥F2

(−1)e(F′
1
)+e(F′

2
)

( p1∑
q=1

p2∑
q′=1

t
(
(F′

1
⋈ F′

2
)(q, q′),W

)
− p1p2 t(F′

1
,W)t(F′

2
,W)

)
,

(63)

where F′ ≥ F means that V(F) = V(F′) and E(F) ⊂ E(F′), that is F′ ranges over all simple graphs
obtained from F by adding edges.

Proof. Notice that tind(F,Gn) is a linear combination of subgraph counts by Proposition 2.3. We

deduce from (59) and standard results on Gaussian vectors, the convergence, for the finite-dimensional

distributions towards the Gaussian process with covariance function given by the first equality in (63)

which is derived from the second formula of (25) and (59). The second equality of (63) can be derived

similarly to (61). ▪

8 ASYMPTOTICS FOR THE EMPIRICAL CDF OF THE DEGREES

Let W be a graphon on [0, 1] and n ∈ N∗. Recall the definition of the normalized degree function

D of the graphon W given in (33), D(x) = ∫[0,1] W(x, y)dy = tx(K•
2
,W). From Section 2.4, recall that

Gn = Gn(W) is the associated W-random graph with n vertices constructed from W and the sequence

X = (Xi ∶ i ∈ N∗) of independent uniform random variables on [0, 1]. Recall the (normalized) degree

sequence of a graph defined in (23), and set

D(n)
i = Di(Gn) = tinj(K•

2
,Gi

n)
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the normalized degree of the vertex i ∈ [n] in Gn. By construction of Gn, we get that conditionally on

Xi , (n − 1)D(n)
i is for n ≥ i a binomial random variable with parameters (n − 1,D(Xi)). We define the

empirical CDF Πn = (Πn(y) ∶ y ∈ [0, 1]) of the degrees of the graph Gn by, for y ∈ [0, 1]:

Πn(y) =
1

n

n∑
i=1

1{
D(n)

i ≤D(y)
}. (64)

According to Remark 3.3(i), for y ∈ [0, 1], such that {x ∈ [0, 1], D(x) = D(y)} has zero Lebesgue

measure, we have that a.s. limn→∞ Πn(y) = ∫ 1

0
1{D(x)≤D(y)} dx. If D is increasing, then the function Πn

converges almost surely towards Id, the identity map on [0, 1], with respect to the uniform norm.

To get the corresponding fluctuations, we shall consider the following conditions:

W ∈ 3([0, 1]2), D′ > 0, W ≤ 1 − 𝜀0 and D ≥ 𝜀0 for some 𝜀0 ∈ (0, 1∕2) . (65)

If (65) holds, then we have that D is increasing, D ∈ 1([0, 1]) and D([0, 1]) ⊂ [𝜀0, 1 − 𝜀0]. Notice

that even if (65) holds, the set {W = 0} might have positive Lebesgue measure; but the regularity

conditions on W rules out bipartite graphons (but not tripartite graphons).

Theorem 8.1. Assume that W satisfies condition (65). Then we have the following convergence of
finite-dimensional distributions:(√

n (Πn(y) − y) ∶ y ∈ (0, 1)
) (f𝑑𝑑)

−−−−→
n→+∞

𝜒,

where 𝜒 = (𝜒y ∶ y ∈ (0, 1)) is a centered Gaussian process defined, for all y ∈ (0, 1) by:

𝜒y = ∫
1

0

(𝜌(y, u) − �̄�(y))𝑑Bu, (66)

with B = (Bu, u ≥ 0) a standard Brownian motion, and (𝜌(y, u) ∶ u ∈ [0, 1]) and �̄�(y) defined for
y ∈ (0, 1) by:

𝜌(y, u) = 1[0,y](u) −
W(y, u)
D′(y)

and �̄�(y) = ∫
1

0

𝜌(y, u)𝑑u.

Remark 8.2. The covariance kernel of the Gaussian process 𝜒 can also be written as Σ = Σ1+Σ2+Σ3,

where for y, z ∈ (0, 1):

Σ1(y, z) = y ∧ z − yz, (67)

Σ2(y, z) =
1

D′(y)D′(z)

(
∫

1

0

W(y, x)W(z, x)dx − D(y)D(z)
)
, (68)

Σ3(y, z) =
1

D′(y)

(
D(y)z − ∫

z

0

W(y, x)dx
)
+ 1

D′(z)

(
D(z)y − ∫

y

0

W(z, x)dx
)
. (69)

Thus, for y ∈ (0, 1) the variance of 𝜒(y) is:

Σ(y, y) = y(1 − y) + 1

D′(y)2

(
∫

1

0

W(y, x)2dx − D(y)2
)
+ 2

D′(y)

(
D(y)y − ∫

y

0

W(y, x)dx
)
.
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Remark 8.3. We conjecture that the convergence of Theorem 8.1 holds for the process in the Skorokhod

space. However, the techniques used to prove this theorem are not strong enough to get such a result.

Proof of Theorem 8.1. Recall X = (Xn ∶ n ∈ N∗) is a sequence of independent random variables

uniformly distributed on [0, 1] used to construct the sequence of W-random graphs (Gn ∶ n ∈ N∗).
Recall Πn(y) is given in (64).

For all y ∈ (0, 1), we set cn(y) = E
[
Πn+1(y)

]
. In Section 9.1, see Proposition 9.1, we prove that for

all y ∈ (0, 1),

cn(y) = y + O(1∕n). (70)

We define the normalized and centered random process Π̂n+1 = (Π̂n+1(y) ∶ y ∈ (0, 1)) by:

Π̂n+1(y) =
√

n + 1
[
Πn+1(y) − cn(y)

]
. (71)

Let Un+1 = (Un+1(y) ∶ y ∈ (0, 1)) be the Hàjek projection of Π̂n+1:

Un+1(y) =
n+1∑
i=1

E

[
Π̂n+1(y)

||| Xi

]
. (72)

The proof of Theorem 8.1 is then a direct consequence of Lemmas 8.4 and 8.5 and (70). ▪

The proofs of the two following lemmas are given in Sections 10 and 11.

Lemma 8.4. We have the following convergence of finite-dimensional distributions:

(Un+1(y) ∶ y ∈ (0, 1))
(f𝑑𝑑)
−−−−→
n→+∞

𝜒,

where 𝜒 = (𝜒(y) ∶ y ∈ (0, 1)) is a centered Gaussian process with covariance function Σ given in
Remark 8.2.

Lemma 8.5. We have the following convergence in L2: for all y ∈ (0, 1),

Π̂n+1(y) − Un+1(y)
L2

−−−−→
n→+∞

0.

9 PRELIMINARY RESULTS FOR THE EMPIRICAL CDF OF THE
DEGREES

9.1 Estimates for the first moment of the empirical CDF

Recall X = (Xn ∶ n ∈ N∗) is a sequence of independent random variables uniformly distributed on

[0, 1] used to construct the sequence of W-random graphs (Gn ∶ n ∈ N∗). Recall Πn(y) is given in

(64). For all y ∈ (0, 1), we set cn(y) = E
[
Πn+1(y)

]
that is

cn(y) = P

(
D(n+1)

1
≤ D(y)

)
, (73)
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where D(n+1)
1

is a binomial random variable with parameter (n,D(X1)). We set:

𝜎2
(x) = x(1 − x) for x ∈ [0, 1], (74)

and with ⌈x⌉ the unique integer such that ⌈x⌉ − 1 < x ≤ ⌈x⌉,

S(x) = ⌈x⌉ − x − 1

2
for x ∈ R. (75)

The next proposition gives precise asymptotics of cn defined in (73).

Proposition 9.1. Assume that W satisfies condition (65). For all y ∈ (0, 1), there exists a constant
C > 0 such that for all n ∈ N∗, we have with 𝑑 = D(y),

n (cn(y) − y) = −
D′′(y)
D′(y)3

𝜎2
(𝑑)

2
+ 1

D′(y)

(
1 − 2𝑑

2
+ S(n𝑑)

)
+ R9.1

n ,

with |||R9.1
n

||| ≤ C n− 1

4 .

In particular, because |S(x)| ≤ 1

2
, for all x ∈ R, we have that for all y ∈ (0, 1):

cn(y) − y = O
(
n−1

)
. (76)

Proof. Let n ∈ N∗, 𝑑 ∈ [0, 1], 𝛿 ∈ R, and 𝔭 ∈ (0, 1). We consider the CDF:

n,𝑑,𝛿(𝔭) = P (X ≤ n𝑑 + 𝛿) , (77)

where X a binomial random variable with parameters (n, 𝔭). Let y ∈ (0, 1). We have:

cn(y) − y = ∫
1

0

(n,𝑑,0(D(x)) − 1{x≤y}
)

dx.

By Proposition A7 applied with G(x) = 1 and 𝛿 = 0, we obtain that:

n∫
1

0

(n,𝑑,0 (D(x)) − 1{x≤y}
)

dx = −
D′′(y)
D′(y)3

𝜎2
(𝑑)

2
+ 1

D′(y)

(
1 − 2𝑑

2
+ S(n𝑑)

)
+ R9.1

n ,

with R9.1
n = RA7

n (1) and ||R9.1
n || ≤ Cn− 1

4 . ▪

For y ∈ (0, 1) and u ∈ [0, 1], we set, with 𝑑 = D(y),

Hn(y, u) = n
(

E

[
1{

D(n+1)
1

≤𝑑}|||| X2 = u
]
− cn(y)

)
(78)

and

H⋆
n (y, u) = E

[
1{

D(n+1)
1

≤𝑑}|||| X1 = u
]
− cn(y). (79)
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Proposition 9.2. Assume that W satisfies condition (65). For all y ∈ (0, 1), there exists a positive
constant C such that for all n ≥ 2 and u ∈ [0, 1], we have with 𝑑 = D(y):

Hn(y, u) =
1

D′(y)
(𝑑 − W(y, u)) + R9.2

n (u),

with |||R9.2
n (u)||| ≤ C n− 1

4 . (80)

For all y ∈ (0, 1) and u ∈ [0, 1] such that u ≠ y, we have

||H⋆
n (y, u)|| ≤ 1 for all n ≥ 2, and lim

n→∞
H⋆

n (y, u) = 1{u≤y} − y. (81)

Proof. In what follows, C denotes a positive constant which depends on 𝜀0, W, and y ∈ (0, 1), and

it may vary from line to line. Recall that X[2] = (X1,X2). We define the function 𝜑n by:

𝜑n(x, u) = P

(
D(n+1)

1
≤ 𝑑 || X[2] = (x, u)

)
− 1{x≤y} for x, u ∈ [0, 1]. (82)

Then we have for u ∈ [0, 1]:

Hn(y, u) = nE [𝜑n(X1, u)] − n(cn(y) − y). (83)

Conditionally on {X[2] = (x, u)}, D(n+1)
1

is distributed as Y12+B̃(n), where Y12 and B̃ are independent,

Y12 is Bernoulli W(x, u) and B̃ is binomial with parameter (n − 1,D(x)). Thus, we have:

𝜑n(x, u) = P
(
Y12 + B̃ ≤ n𝑑

)
− 1{x≤y}

= W(x, u)
[
P
(
B̃ ≤ n𝑑 − 1

)
− 1{x≤y}

]
+ (1 − W(x, u))

[
P
(
B̃ ≤ n𝑑

)
− 1{x≤y}

]
= W(x, u)

[n−1,𝑑,𝑑−1(D(x)) − 1{x≤y}
]
+ (1 − W(x, u))

[n−1,𝑑,𝑑(D(x)) − 1{x≤y}
]
. (84)

Let W1(x, u) denote 𝜕W(x, u)∕𝜕x. We apply Proposition A7 with G(x) = W(x, u), 𝛿 = 𝑑 − 1 and n
replaced by n − 1 to get that:

(n − 1)E
[
W(X1, u)

[n−1,𝑑,𝑑−1(D(X1)) − 1{X1≤y}
]]

=
𝜎2
(𝑑)

2D′(y)2

[
W1(y, u) −

W(y, u)D′′(y)
D′(y)

]
+

W(y, u)
D′(y)

(
−1

2
+ S(n𝑑 − 1)

)
+ RA7

n−1
(W(., u)), (85)

and with G(x) = 1 − W(x, u), 𝛿 = 𝑑 and n replaced by n − 1, to get that:

(n − 1)E
[
(1 − W(X1, u))

[n−1,𝑑,𝑑(D(X1)) − 1{X1≤y}
]]

=
𝜎2
(𝑑)

2D′(y)2

[
−W1(y, u) −

(1 − W(y, u))D′′(y)
D′(y)

]
+

1 − W(y, u)
D′(y)

(
1

2
+ S(n𝑑)

)
+ RA7

n−1
(1 − W(., u)). (86)
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By Equations (84), (85), and (86) and since S(n𝑑 − 1) = S(n𝑑), we get that:

(n − 1)E [𝜑n(X1, u)] = −
𝜎2
(𝑑)

2

D′′(y)
D′(y)3

+ 1

D′(y)

(
1

2
−W(y, u) + S(n𝑑)

)
+ R(1)

n (u),

where R(1)
n (u) = RA7

n−1
(W(., u))+RA7

n−1
(1−W(., u)). Because W satisfies condition (65), we deduce from

(A28) that
|||R(1)

n (u)||| ≤ Cn−1∕4 for some finite constant C which does not depend on n and u ∈ [0, 1].
Using Proposition 9.1, we get that

(n − 1)E [𝜑n(X1, u)] − (n − 1)(cn(y) − y) =
𝑑 − W(y, u)

D′(y)
+ R(2)

n (u), (87)

where R(2)
n (u) = R(1)

n (u) + R9.1
n + (cn(y) − y) and

|||R(2)
n (u)||| ≤ Cn−1∕4 because of (76). By Equations (83)

and (87), we deduce that:

Hn(y, u) =
n

n − 1

𝑑 − W(y, u)
D′(y)

+ n
n − 1

R(2)
n (u) =

𝑑 − W(y, u)
D′(y)

+ R9.2
n (u),

with ||R9.2
n (y, u)|| ≤ Cn− 1

4 . This gives (80).

For the second assertion (81), we notice that

H⋆
n (y, u) = n,𝑑,0(D(u)) − cn(y),

with n,𝑑,0(D(u)) ∈ [0, 1] and cn(y) ∈ [0, 1]. By the strong law of large numbers, we have for u ≠ y:

lim
n→∞

n,𝑑,0(D(u)) = 1{u≤y}.

Using (76), we get the expected result. ▪

9.2 Estimates for the second moment of the empirical cdf

For y = (y1, y2) ∈ [0, 1]2, let M(y) be the covariance matrix of a couple (Y1,Y2) of Bernoulli random

variables such that P(Yi = 1) = D(yi) for i ∈ {1, 2} and P(Y1 = Y2 = 1) = ∫[0,1] W(y1, z)W(y2, z) dz.

Let  be the set of all convex sets in R
2. For K ∈ , we define its sum with a vector x in R

2 as

K + x = {k + x ∶ k ∈ K}

and its product with a real matrix A of size 2 × 2 as

AK = {Ak ∶ k ∈ K}.

Recall that for x ∈ R
2, |x| is the Euclidian norm of x in R

2. Recall X[2] = (X1,X2). We define

D̂(n+1) = (D̂(n+1)
1

, D̂(n+1)
2

), where for i ∈ {1, 2}, D̂(n+1)
i is the number of edges from the vertex i to the

vertices {k, 3 ≤ k ≤ n + 1} of Gn+1; it is equal to nD(n+1)
i if the edge {1, 2} does not belong to Gn+1

and to nD(n+1)
i − 1 otherwise. The proof of the next proposition is postponed to Appendix B.
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Proposition 9.3. Assume that W satisfies condition (65). There exists a finite constant C0 such that
for all x = (x1, x2) ∈ [0, 1]2 with x1 ≠ x2, we get for all n ≥ 2:

sup
K∈

||||||P
(

D̂n+1 ∈ K| X[2] = x
)
− P

(
Z ∈ M(x)−

1

2√
n − 1

(K − 𝜇(x))

)|||||| ≤
C0√

n
,

where 𝜇(x) = (n − 1)(D(x1),D(x2)) and Z is a standard 2-dimensional Gaussian vector.

For y1, y2 ∈ (0, 1), with 𝑑1 = D(y1) and 𝑑2 = D(y2), we set with 𝛿 ∈ R and x = (x1, x2) ∈ [0, 1]2
such that x1 ≠ x2:

Ψn,𝛿 (x) = E

[ ∏
i∈{1,2}

(
1{D̂(n+1)

i ≤n𝑑i+𝛿}
− 1{Xi≤yi}

) ||| X[2] = x

]
.

Recall Σ2 defined in (68) and that X[2] = (X1,X2).

Lemma 9.4. Assume that W satisfies condition (65). For all y = (y1, y2) ∈ (0, 1)2, 𝛿 ∈ [−1, 0] and
G ∈ 1([0, 1]2), we have:

lim
n→∞

nE
[
G

(
X[2]

)
Ψn,𝛿

(
X[2]

)]
= G(y)Σ2(y).

Proof. Let A = 4
√

log(n − 1). For n ≥ 2 and 𝛿 ∈ [−1, 0], we set:

Ψ(1)
n,𝛿(x) = Ψn,𝛿(x)

2∏
i=1

1{
√

n−1|D(xi)−𝑑i|≤A} and Ψ(2)
n,𝛿(x) = Ψn,𝛿(x) − Ψ(1)

n,𝛿(x).

Then we have

E
[
G

(
X[2]

)
Ψn,𝛿

(
X[2]

)]
=

∑
i∈{1,2}

E

[
G

(
X[2]

)
Ψ(i)

n,𝛿

(
X[2]

)]
. (88)

Study of E

[
G

(
X[2]

)
Ψ(2)

n,𝛿

(
X[2]

)]
Recall that for i ∈ {1, 2}, conditionally on Xi = xi, D̂(n+1)

i is distributed as a Bernoulli random variable

with parameter (n − 1, 𝑑i). We get that:

|||Ψ(2)
n,𝛿(x)

||| ≤ 2
∑

i∈{1,2}
E

[|||1{D̂(n+1)
i ≤n𝑑i+𝛿}

− 1{Xi≤yi}
||| 1{√n−1 |D(xi)−𝑑i|≥A}

||| X[2] = x
]

= 2
∑

i∈{1,2}

||n−1,𝑑i,𝛿+𝑑i(xi) − 1{xi≤yi}
|| 1{

√
n−1 |D(xi)−𝑑i|≥A}.

By Lemma A6 (with n replaced by n − 1), we deduce that:

lim
n→∞

nE

[
G

(
X[2]

)
Ψ(2)

n,𝛿

(
X[2]

)]
= 0. (89)
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Study of E

[
G

(
X[2]

)
Ψ(1)

n,𝛿

(
X[2]

)]
This part is more delicate. For 𝔷 = (z1, z2) ∈ [0, 1]2, set H(𝔷) = G(𝔷)

D′(z1)D′(z2)
and 𝔱n(𝔷) = (tn(z1), tn(z2)):

tn(zi) = D−1

(
𝑑i +

zi√
n − 1

)
for i ∈ {1, 2}.

Using the change of variable zi =
√

n − 1(D(xi) − 𝑑i) for i ∈ {1, 2} with x = (x1, x2), we get:

(n − 1)E
[
G

(
X[2]

)
Ψ(1)

n,𝛿

(
X[2]

)]
= (n − 1)∫[0,1]2

G(x)Ψn,𝛿(x)
∏

i∈{1,2}
1{

√
n−1|D(xi)−𝑑i|≤A}dx

= ∫[−A,A]2
H (𝔱n(𝔷)) Ψn,𝛿 (𝔱n(𝔷)) d𝔷. (90)

Notice that:

Ψn,𝛿 (𝔱n(𝔷)) = E

[ ∏
i∈{1,2}

(
1{D̂(n+1)

i ≤n𝑑i+𝛿}
− 1{zi≤0}

) ||| X[2] = 𝔱n(𝔷)

]
.

Set 𝛿 = (𝛿, 𝛿) and D̂(n+1) = (D̂(n+1)
1

, D̂(n+1)
2

). We define the sets for 𝔷 and D̂(n+1):

I(1) = [0,A]2 and C̃(1)
n = 𝛿 + n (−∞, 𝑑1] × (−∞, 𝑑2],

I(2) = [0,A] × [−A, 0) and C̃(2)
n = 𝛿 + n (−∞, 𝑑1] × (𝑑2,+∞),

I(3) = [−A, 0) × [0,A] and C̃(3)
n = 𝛿 + n (𝑑1,+∞) × (−∞, 𝑑2],

I(4) = [−A, 0)2 and C̃(4)
n = 𝛿 + n (𝑑1,+∞) × (𝑑2,+∞).

For 1 ≤ i ≤ 4, we set:

Q(i)
n (𝔷) = P

(
D̂(n+1) ∈ C̃(i)

n ||X[2] = 𝔱n(𝔷)
)

and Δ(i)
n = ∫I(i)

H (𝔱n(𝔷))Q(i)
n (𝔷) d𝔷.

By construction, we have:

(n − 1)E
[
G

(
X[2]

)
Ψ(1)

n,𝛿

(
X[2]

)]
=

4∑
i=1

Δ(i)
n . (91)

We now study Δ(1)
n . By Proposition 9.3, we get that

Δ(1)
n = ∫[0,A]2

H (𝔱n(𝔷)) P

(
Z ∈

M (𝔱n(𝔷))−1∕2√
n − 1

(
C̃(1)

n − 𝜇(𝔱n(𝔷))
))

d𝔷 + R(1)
n ,

where 𝜇(x) = (n − 1)(D(x1),D(x2)) and |R(1)
n | ≤ ∥H ∥∞ 8C0

√
log(n)∕n so that limn→∞ R(1)

n = 0. Set

𝑑 = (𝑑1, 𝑑2). Since 𝔱n(𝔷) converges towards y, we get:

lim
n→∞

H(𝔱n(𝔷)) = H(y) and lim
n→∞

M (𝔱n(𝔷)) = M(y)
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and, with J(𝔷) = (−∞,−z1] × (−∞,−z2],

1√
n − 1

(
C̃(1)

n − 𝜇(𝔱n(𝔷))
)
= (n − 1)−1∕2(𝛿 + 𝑑) + J(𝔷). (92)

Since limn→∞ M (𝔱n(𝔷)) = M(y) and M(y) is positive definite, we deduce that 𝑑x-a.e.:

lim
n→∞

1 M(𝔱n(𝔷))−1∕2√
n−1

(
C̃(1)

n −𝜇(𝔱n(𝔷))
)(x) = 1M(y)−1∕2J(𝔷)(x)

and thus (by dominated convergence):

lim
n→∞

P

(
Z ∈

M (𝔱n(𝔷))−1∕2√
n − 1

(
C̃(1)

n − 𝜇(𝔱n(𝔷))
))

= P
(
M(y)1∕2Z ∈ J(𝔷)

)
.

For 𝔷 ∈ [2,+∞)2 and n ≥ 2, we have:{
Z ∈

M (𝔱n(𝔷))−1∕2√
n − 1

(
C̃(1)

n − 𝜇(𝔱n(𝔷))
)}

⊂
{

2M (𝔱n(𝔷))1∕2 Z ∈ J(𝔷)
}

⊂
{

23∕2|Z| ≥ |𝔷|} ,

where we used (92) and that for all i ∈ {1, 2}, |(n − 1)−1∕2(𝛿 + 𝑑i)| ≤ zi∕2 for the first inclusion and

for the second that |Mx| ≤ √
2 ∥M∥∞ |x|, ∥M1∕2 ∥∞ ≤ √

2 ∥M∥1∕2
∞ , and ∥M (x)∥∞ ≤ 1∕2 for all

x ∈ [0, 1]2 so that |M (𝔱n(𝔷))1∕2 Z| ≤ √
2 |Z|. Since ∫

R
P(23∕2|Z| ≥ |𝔷|) d𝔷 is finite and H is bounded,

we deduce from dominated convergence that:

lim
n→∞∫[0,A]2

H (𝔱n(𝔷)) P

(
Z ∈

M (𝔱n(𝔷))−1∕2√
n − 1

(
C̃(1)

n − 𝜇(𝔱n(𝔷))
))

d𝔷

= H(y)∫[0,+∞)2
P
(
M(y)1∕2Z ∈ J(𝔷)

)
d𝔷.

Recall x+ = max(0, x) and x− = max(0,−x) denote the positive and negative part of x ∈ R. With

Z̃ = M(y)1∕2Z = (Z̃1, Z̃2), we get:

∫[0,+∞)2
P
(
M(y)1∕2Z ∈ J(𝔷)

)
d𝔷 = E

[
Z̃−

1
Z̃−

2

]
and thus

lim
n→∞

Δ(1)
n = H(y)E

[
Z̃−

1
Z̃−

2

]
.

Similarly, we obtain:

lim
n→∞

Δ(2)
n = −H(y)E

[
Z̃−

1
Z̃+

2

]
lim
n→∞

Δ(3)
n = −H(y)E

[
Z̃+

1
Z̃−

2

]
lim
n→∞

Δ(4)
n = H(y)E

[
Z̃+

1
Z̃+

2

]
.
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Using the definition of Σ2(y) and M(y), notice that D′(y1)D′(y2)Σ2(y) is the covariance of Z̃1 and Z̃2.

Thus, we obtain:

lim
n→∞

4∑
i=1

Δ(i)
n = H(y)E

[(
Z̃+

1
− Z̃−

1

)(
Z̃+

2
− Z̃−

2

)]
= H(y)E

[
Z̃1Z̃2

]
= G(y)Σ2(y). (93)

Conclusion

Use (88), (89), (91), and (93) to get the result. ▪

The next proposition, the main result of this section, is a consequence of Lemma 9.4.

Proposition 9.5. Assume that W satisfies condition (65). For all y1, y2 ∈ (0, 1), we have with 𝑑1 =
D(y1) and 𝑑2 = D(y2):

lim
n→∞

n E

[(
1{

D(n+1)
1

≤𝑑1

} − 1{
X1≤y1

})(
1{

D(n+1)
2

≤𝑑2

} − 1{
X2≤y2

})]
= Σ2(y1, y2).

Proof. Using the comment before Proposition 9.3, we get:

E

[ ∏
i∈{1,2}

(
1{D(n+1)

i ≤𝑑i}
− 1{Xi≤yi}

)]
= E

[
W(X[2])Ψn,−1(X[2])

]
+ E

[
(1 − W(X[2]))Ψn,0(X[2])

]
.

We apply Lemma 9.4 twice with G = W and G = 1 − W to get the result. ▪

10 PROOF OF LEMMA 8.4

Recall the definitions of Un+1 and Σ given in (72) and in Remark 8.2.

Lemma 10.1. For all y, z ∈ (0, 1), we have:

lim
n→∞

E
[
Un+1(y)Un+1(z)

]
= Σ(y, z).

Proof. Recall (78) and (79). With 𝑑 = D(y), we notice that for y ∈ (0, 1):

P

(
D(n+1)

i ≤ 𝑑
||| Xj

)
− cn(y) =

{
1

n
Hn(y,Xj) if i ≠ j,

H⋆
n (y,Xj) if i = j.

We have:

Un+1(y) = (n + 1)−
1

2

n+1∑
i=1

n+1∑
j=1

[
P

(
D(n+1)

i ≤ 𝑑
||| Xj

)
− cn(y)

]
= (n + 1)−

1

2

n+1∑
j=1

[
H⋆

n (y,Xj) + Hn(y,Xj)
]
. (94)
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Let y, z ∈ (0, 1). Since Hn and H⋆
n are centered and (Xi ∶ i ∈ N∗) are independent, using (94), we

obtain that:

E
[
Un+1(y)Un+1(z)

]
= E

[
H⋆

n (y,X1)H⋆
n (z,X1)

]
+ E

[
Hn(y,X1)Hn(z,X1)

]
+ E

[
H⋆

n (y,X1)Hn(z,X1)
]
+ E

[
H⋆

n (z,X1)Hn(y,X1)
]
.

Recall Σ = Σ1 + Σ2 + Σ3 defined in Remark 8.2.

Study of E
[
H⋆

n (y,X1)H⋆
n (z,X1)

]
By Proposition 9.2, see (81), and by dominated convergence, we get that:

lim
n→∞

E
[
H⋆

n (y,X1)H⋆
n (z,X1)

]
= E

[(
1{X1≤y} − y

)(
1{X2≤z} − z

)]
= Σ1(y, z). (95)

Study of E
[
Hn(y,X1)Hn(z,X1)

]
By Proposition 9.2, we have:

E
[
Hn(y,X1)Hn(z,X1)

]
= E

[(
D(y) − W(y,X1)

D′(y)
+ R9.2

n (y,X1)
)(

D(z) − W(z,X1)
D′(z)

+ R9.2
n (z,X1)

)]
= 1

D′(y)
1

D′(z)
E

[
(D(y) − W(y,X1))(D(z) − W(z,X1))

]
+ R(1)

n

= Σ2(y1, y2) + R(1)
n

where, because of (80),
|||R(1)

n
||| ≤ Cn− 1

4 for some finite constant C. We obtain that

lim
n→∞

E
[
Hn(y,X1)Hn(z,X1)

]
= Σ2(y, z). (96)

Study of E
[
H⋆

n (y,X1)Hn(z,X1)
]
+ E

[
H⋆

n (z,X1)Hn(y,X1)
]

By Proposition 9.2, we have that:

E
[
H⋆

n (y,X1)Hn(z,X1)
]
= E

[
H⋆

n (y,X1)
1

D′(z)
(D(z) − W(z,X1)) + H⋆

n (y,X1)R9.2
n (z,X1)

]
.

Thanks to (80) and (81), we have ||H⋆
n (y,X1)|| ≤ 1 and E

[||R9.2
n (z,X1)||] = O

(
n−1∕4

)
. We deduce

from Proposition 9.2 and dominated convergence, that:

lim
n→∞

E
[
H⋆

n (y,X1)Hn(z,X1)
]
= E

[(
1{X1≤y} − y

)
1

D′(z)
(D(z) − W(z,X1))

]
= 1

D′(z)

(
yD(z) − ∫

y

0

W(z, x)dx
)
.

By symmetry, we finally obtain that

lim
n→∞

E
[
H⋆

n (y,X1)Hn(z,X1)
]
+ E

[
H⋆

n (z,X1)Hn(y,X1)
]
= Σ3(y, z). (97)
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Conclusion

Combining (95), (96), and (97), we get that

lim
n→∞

E
[
Un+1(y)Un+1(z)

]
= Σ(y, z).

▪

We can now prove Lemma 8.4.

Proof of Lemma 8.4. Let k ∈ N∗ and (y1,… , yk) ∈ (0, 1)k. We define the random vector U(k)
n+1

=
(Un+1(yi) ∶ i ∈ [k]). For all y ∈ (0, 1) and j ∈ [n + 1], we set gn(y,Xj) =

[
H⋆

n (y,Xj) + Hn(y,Xj)
]
.

Using (94), we have:

U(k)
n+1

= (n + 1)−
1

2

n+1∑
j=1

Z(n+1)
j ,

where Z(n+1)
j = (gn(yi,Xj) ∶ i ∈ [k]). Notice (Z(n+1)

j ∶ j ∈ [n + 1]) is a sequence of independent, uni-

formly bounded (see Proposition 9.2) and identically distributed random vectors with mean zero and

common positive-definite covariance matrix Vn+1 = Cov
(

Z(n+1)
1

)
. According to Lemma 10.1, we have

that limn→∞ Vn+1 = Σ(k), with Σ(k) = (Σ(yi, yj) ∶ i, j ∈ [k]). The multidimensional Lindeberg-Feller

condition is trivially satisfied as (Z(n+1)
j ∶ j ∈ [n+ 1]) are bounded (uniformly in n) with the same dis-

tribution. We deduce from the multidimensional central limit theorem for triangular arrays of random

variables, see [4] Corollary 18.2, that (U(k)
n+1

∶ n ≥ 0) converges in distribution towards the Gaussian

random vector with distribution  (0,Σ(k)). This gives the result. ▪

11 PROOF OF LEMMA 8.5

Recall Π̂n(y) defined in (71). Because Π̂n+1 and Un+1 are centered, we deduce from (72) that:

E

[(
Π̂n+1(y) − Un+1(y)

)2
]
= E

[
Π̂n+1(y)2

]
− E

[
Un+1(y)2

]
.

By Lemma 10.1, we have E
[
Un+1(y)2

]
−→
n→∞

Σ(y, y). So we deduce that the proof of Lemma 8.5 is a

complete as soon as the next lemma is proved.

Lemma 11.1. For all y ∈ (0, 1), we have

lim
n→∞

E

[
Π̂n+1(y)2

]
= Σ(y, y).

Proof. Let y ∈ (0, 1) and 𝑑 = D(y). We have

E

[
Π̂n+1(y)2

]
= 1

n + 1

n+1∑
i,j=1

E

[(
1{

D(n+1)
i ≤𝑑} − cn(y)

)(
1{

D(n+1)
j ≤𝑑} − cn(y)

)]
= E

[
1{

D(n+1)
1

≤𝑑}
]
− cn(y)2 + n

{
E

[
1{

D(n+1)
1

≤𝑑}1{
D(n+1)

2
≤𝑑}

]
− cn(y)2

}
= cn(y) − (n + 1)cn(y)2 + n E

[
1{

D(n+1)
1

≤𝑑}1{
D(n+1)

2
≤𝑑}

]
.
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So we get that

E

[
Π̂n+1(y)2

]
= B(1)

n + B(2)
n + B(3)

n + B(4)
n ,

where

B(1)
n = cn(y) − cn(y)2,

B(2)
n = −n(cn(y) − y)2,

B(3)
n = n E

[(
1{

D(n+1)
1

≤𝑑} − 1{X1≤y}

)(
1{

D(n+1)
2

≤𝑑} − 1{X2≤y}

)]
,

B(4)
n = 2n E

[
1{X1≤y}

(
1{

D(n+1)
2

≤𝑑} − cn(y)
)]

.

By Equation (76), we get limn→∞ B(1)
n = Σ1(y, y) and limn→∞ B(2)

n = 0. By Proposition 9.5, we

get limn→∞ B(3)
n = Σ2(y, y). Using (78), we get B(4)

n = 2 E

[
1{X1≤y}Hn(y,X1)

]
. By Proposition 9.2 and

dominated convergence, we get that:

E

[
1{X1≤y}Hn(y,X1)

]
= E

[
1{X1≤y}

(
1

D′(y)
(D(y) − W(y,X1)) + R9.2

n (y,X1)
)]

−−−→
n→∞

1

D′(y)

(
yD(y) − ∫

y

0

W(y, x)dx
)
.

This gives limn→∞ B(4)
n = Σ3(y, y). Then, we get that limn→∞ E

[
Π̂n+1(y)2

]
= Σ(y, y). ▪

Index of notation|A| cardinal of set A
[n] = {1,… , n}|𝛽| length of [n]-word 𝛽

n set of [n]-words with all characters distinct

n,p = {𝛽 ∈ n ∶ |𝛽| = p}|n,p| = Ap
n = n!∕(n − p)!

𝛽𝓁 = 𝛽𝓁1
… 𝛽𝓁k for 𝓁 ∈ p,k and 𝛽 ∈ n,p𝓁,𝛼

n,k =
{
𝛽 ∈ n,p ∶ 𝛽𝓁 = 𝛼

}
for 𝛼 ∈ n,p|𝓁,𝛼

n,k | = Ap−k
n−k = (n − k)!∕(n − p)!

 set of simple finite graphs

F a simple finite graph (and a finite sequence of simple graphs in Sections 3 to 6 satisfying condition

(55))

E(F) set of edges of F
V(F) set of vertices of F
v(F) = |V(F)| number of vertices of F
Gn = Gn(W) W-random graph with n vertices associated to the sequence X = (Xk, k ∈ N

∗) of i.i.d.

uniform random variables on [0, 1]
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t(F,G) density of hom. from F to G
tinj(F,G) density of injective hom.

tind(F,G) density of embeddings

Y𝛽(F,G) =
∏

{i,j}∈E(F) 1{{𝛽i,𝛽j}∈E(G)}
tinj(F,G) = |n,p|−1 ∑

𝛽∈n,p
Y𝛽(F,G)

𝓁 ∈ p and 𝛼 ∈ p,k with k = |𝓁|
tinj(F𝓁 ,G𝛼) density of injective hom. such that the labeled vertices 𝓁 of F, with V(F) = [p], are sent

on the labeled vertices 𝛼 of G, with V(G) = [n]
F[𝓁] subgraph of the labeled vertices 𝓁 of F
Y𝛽(F𝓁 ,G𝛼) = Y𝛽(F,G) for 𝛽 ∈ 𝓁,𝛼

n,p

Ŷ𝛼(F𝓁 ,G𝛼) =
∏

{i,j}∈E(F[𝓁]) 1{{𝛼i,𝛼j}∈E(G)}
Y𝛽(F𝓁 ,G𝛼) = Ŷ𝛼(F𝓁 ,G𝛼) Ỹ𝛽(F𝓁 ,G𝛼) that is:

Y𝛽 = Ŷ𝛼 Ỹ𝛽

t̃inj(F𝓁 ,G𝛼) = |𝓁,𝛼
n,p |−1 ∑

𝛽∈𝓁,𝛼
n,p

Ỹ𝛽

tinj(F𝓁 ,G𝛼) = Ŷ𝛼 t̃inj(F𝓁 ,G𝛼)

t(F,W) hom. densities for graphon W
tind(F,W) density of embeddings

X𝛼 = (X𝛼1
,… ,X𝛼k ) and simil. for X𝛽

Z𝛽 = Z(X𝛽) = E[Y𝛽(F𝓁 ,G𝛼
n)|X]

Z̃𝛽 = E[Ỹ𝛽(F𝓁 ,G𝛼
n)|X]

tx = tx(F𝓁 ,W) = E[Z𝛽|X𝛼 = x] and

tx = E[tinj(F𝓁 ,G𝛼
n)|X𝛼 = x]

t̃x = t̃x(F𝓁 ,W) = E[Z̃𝛽|X𝛼 = x] and

t̃x = E[̃tinj(F𝓁 ,G𝛼
n)|X𝛼 = x]

t̂x = t̂x(F𝓁 ,W) = E[Ŷ𝛼(F𝓁 ,G𝛼
n)|X𝛼 = x]

tx = t̂x t̃x for x ∈ [0, 1]k

t(F𝓁 ,W) = ∫[0,1]k tx dx = E[tinj(F,Gn)]
t̂(F𝓁 ,W) = ∫[0,1]k t̂x dx = E[tinj(F[𝓁],Gn)] and t̂(F𝓁 ,W) = t(F[𝓁],W)

ΓF,𝓁
n random probability measure:

ΓF,𝓁
n (g) = |n,k|−1

∑
𝛼∈n,k

g
(
tinj(F𝓁 ,G𝛼

n)
)

ΓF,𝓁(dx) = E

[
ΓF,𝓁

n (dx)
]

𝜎F,𝓁(g)2 asymptotic variance of √
n
(
ΓF,𝓁

n (g) − ΓF,𝓁(g)
)

nD(n)
i degree of i in Gn

Πn empirical CDF of the degrees of Gn
D(x) = ∫[0,1] W(x, y)dy degree funct. of W

n,𝑑,𝛿(𝔭) = P(X ≤ n𝑑 + 𝛿) for X ∼ (n, 𝔭)
𝜎2
(x) = x(1 − x)
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S(x) = ⌈x⌉ − x − 1

2

Φ the CDF of  (0, 1)
𝜑 probability distribution density of  (01)

𝑑 = D(y)

cn(y) = P(D(n+1)
1

≤ 𝑑)

H⋆
n (y, u) = P(D(n+1)

1
≤ 𝑑 | X1 = u) − cn(y)

Hn(y,u)
n

= P(D(n+1)
1

≤ 𝑑 | X2 = u) − cn(y)
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1. A. D. Barbour, M. Karoński, and A. Ruciński, A central limit theorem for decomposable random variables with

applications to random graphs, J. Combin. Theory Ser. B. 47 (1989), 125–145.

2. V. Bentkus, On the dependence of the Berry-Essèen bound on dimension, J. Statist. Plann. Inference. 113 (2003),

385–402.

3. R. H. Berk, Limiting behavior of posterior distributions when the model is incorrect, Ann. Math. Statist. 37 (1966),

51–58. correction, ibid. 745–746.

4. R. N. Bhattacharya and R. R. Rao, Normal approximation and asymptotic expansions. Classics in Applied

Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Vol. 64, 2010.

5. P. J. Bickel, A. Chen, and E. Levina, The method of moments and degree distributions for network models, Ann.

Statist. 39 (2011), 2280–2301.

6. J. Blitzstein and P. Diaconis, A sequential importance sampling algorithm for generating random graphs with
prescribed degrees, Internet Math. 6 (2010), 489–522.

7. B. Bollobás and O. Riordan, Metrics for sparse graphs. Surveys in Combinatorics 2009, Volume 365 of London

Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 2009, pp. 211–287.

8. C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I.
Subgraph frequencies, metric properties and testing, Adv. Math. 219 (2008), 1801–1851.

9. S. Chatterjee, P. Diaconis, and A. Sly, Random graphs with a given degree sequence, Ann. Appl. Probab. 21 (2011),

1400–1435.

10. L.H. Chen and X. Fang, Multivariate normal approximation by Stein’s method: The concentration inequality
approach, 2015, arXiv preprint arXiv:1111.4073v2.

11. F. Chung, F. R. Chung, F. C. Graham, L. Lu, and K. F. Chung, Complex graphs and networks, Vol. 107, American

Mathematical Soc., 2006.

12. M. Coulson, R. E. Gaunt, and G. Reinert, Poisson approximation of subgraph counts in stochastic block models
and a graphon model, ESAIM Probab. Stat. 20 (2016), 131–142.

13. J.-F. Delmas, J.-S. Dhersin, and M. Sciauveau, Asymptotic for the cumulative distribution function of the degrees
and homomorphism densities for random graphs sampled from a graphon, 2018, arXiv preprint arXiv: 1807.09989.

14. X. Fang and A. Röllin, Rates of convergence for multivariate normal approximation with applications to dense
graphs and doubly indexed permutation statistics, Bernoulli. 21 (2015), 2157–2189.

15. V. Féray, P.-L. Méliot, and A. Nikeghbali, Mod-𝜙 convergence. SpringerBriefs in Probability and Mathematical

Statistics, Springer, 2016.

16. V. Féray, P.-L. Méliot, and A. Nikeghbali, Graphons, permutons and the Thoma simplex: three mod-Gaussian

moduli spaces, 2017, arXiv preprint arXiv:1712.06841.



DELMAS ET AL. 43

17. J. Gilmer and S. Kopparty, A local central limit theorem for triangles in a random graph, Random Struct. Alg. 48
(2016), 732–750.

18. W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist. 19 (1948), 293–325.

19. W. Hoeffding, The strong law of large numbers for u-statistics. Technical report, North Carolina State University,

Dept. of Statistics, 1961.

20. S. Janson, A graphon counter example, 2017, arXiv preprint arXiv:1909.02911.

21. S. Janson and K. Nowicki, The asymptotic distributions of generalized U-statistics with applications to random
graphs, Probab. Theory Related Fields. 90 (1991), 341–375.

22. K. Krokowski and C. Thaele, Multivariate central limit theorems for Rademacher functionals with applications,

2017, arXiv preprint arXiv:1701.07365.

23. L. Lovász, Large networks and graph limits.

24. L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B. 96 (2006), 933–957.

25. P.-A. G. Maugis, C. E. Priebe, S. C. Olhede, and P. J. Wolfe, Statistical inference for network samples using
subgraph counts, 2017, arXiv preprint arXiv:1701.00505.

26. M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, Random Struct. Alg. 6
(1995), 161–180.

27. M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin.

Prob. Comput. 7 (1998), 295–305.

28. S.V. Nagaev, V.I. Chebotarev, and A.Y. Zolotukhin, A non-uniform bound of the remainder term in the central limit
theorem for Bernoulli random variables, J. Math. Sci. (N.Y.). 214 (2016), 83–100.

29. M. Newman, A.-L. Barabasi, and D. J. Watts, The structure and dynamics of networks, Vol. 19, Princeton University

Press, 2011.

30. M. E. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003), 167–256.

31. M. E. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their
applications, Phys. Rev. E. 64 (2001), 026118.

32. K. Nowicki, Asymptotic normality of graph statistics, J. Statist. Plann. Inference. 21 (1989), 209–222.

33. K. Nowicki and J. C. Wierman, Subgraph counts in random graphs using incomplete U-statistics methods. Pro-

ceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), Vol. 72, 1988,

pp. 299–310.

34. G. Reinert and A. Röllin, Random subgraph counts and U-statistics: Multivariate normal approximation via
exchangeable pairs and embedding, J. Appl. Probab. 47 (2010), 378–393.
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APPENDIX A: PRELIMINARY RESULTS FOR THE CDF OF BINOMIAL
DISTRIBUTIONS

In this section, we study uniform asymptotics for the CDF of binomial distributions. We denote byΦ the

CDF of the standard Gaussian distribution and by 𝜑 the probability distribution density of the standard

Gaussian distribution. We recall (74) and (75): 𝜎2
(x) = x(1 − x) for x ∈ [0, 1], and S(x) = ⌈x⌉ − x − 1

2

for x ∈ R.
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We recall a result from [28], see also [36], Chapter VII: for all x ∈ R, for all 𝔭 ∈ (0, 1) and n ∈ N∗

such that n𝜎2
(𝔭) ≥ 25, we have:

P

(
X ≤ n𝔭 +

√
n 𝜎(𝔭)x

)
= Φ(x) + 1√

n
(𝔭, x) + 1√

n 𝜎(𝔭)
S(n𝔭 + x

√
n 𝜎(𝔭))𝜑(x) + Un(𝔭, x), (A1)

where

(𝔭, x) = 2𝔭 − 1

6𝜎(𝔭)
𝜑′′(x) =

2𝔭 − 1

6𝜎(𝔭)
(x2 − 1)𝜑(x),

and

|Un(𝔭, x)| ≤ 0.2 + 0.3 |2𝔭 − 1|
n𝜎2

(𝔭)

+ exp

(
−

3
√

n 𝜎(𝔭)
2

)
. (A2)

We use this result to give an approximation of n,𝑑,𝛿

(
𝑑 + s√

n

)
.

Proposition A1. Let 𝜀0 ∈ (0, 1

2
) and K0 = [𝜀0, 1− 𝜀0]. Let 𝛼 > 0. There exists a positive constant C

such that for all n ≥ 2, s ∈ [−𝛼
√

log(n), 𝛼
√

log(n)], 𝛿 ∈ [−1, 1], and 𝑑 ∈ K0 such that 𝑑 + s√
n
∈ K0,

we have:

n,𝑑,𝛿

(
𝑑 + s√

n

)
= Φ(ys) +

1√
n
𝜑(ys)
𝜎(𝑑)

𝜋(s, n, 𝑑, 𝛿) + RA1(s, n, 𝑑, 𝛿),

where

ys =
−s
𝜎(𝑑)

and 𝜋(s, n, 𝑑, 𝛿) = 1 − 2𝑑

6
(1 + 2y2

s ) + S(n𝑑 + 𝛿) + 𝛿 (A3)

and |||RA1(s, n, 𝑑, 𝛿)||| ≤ C
log(n)2

n
.

Proof. In what follows, C denotes a positive constant which depends on 𝜀0 (but not on n ≥ 2,

s ∈ [−𝛼
√

log(n), 𝛼
√

log(n)], 𝛿 ∈ [−1, 1] and 𝑑 ∈ K0 such that 𝑑 + s√
n
∈ K0) and which may change

from line to line. We will also use, without recalling it, that 𝜎(.) is uniformly bounded away from 0 on

K0.

For all 𝜃 ∈ (0, 1] such that 𝑑 + s𝜃 ∈ (0, 1), we set

xs(𝜃) =
−s + 𝛿𝜃

𝜎(𝑑+s𝜃)
. (A4)

Let 𝔭 = 𝑑 + s√
n

and X be a binomial random variable with parameters (n, 𝔭). Because n𝑑 + 𝛿 =

n𝔭 +
√

n𝜎(𝔭) xs

(
1√
n

)
, we can write

n,𝑑,𝛿

(
𝑑 + s√

n

)
= P

(
X ≤ n𝔭 +

√
n 𝜎(𝔭) xs

(
1√
n

))
. (A5)
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Recall S is defined in (75). Using (A1), we get that:

n,𝑑,𝛿

(
𝑑 + s√

n

)
= Φ

(
xs

(
1√
n

))
+ 1√

n
Q(1)

𝑑,𝛿

(
s, 1√

n

)

+ 1√
n

Q(2)
𝑑,𝛿

(
s, 1√

n

)
+ Un

(
𝑑 + s√

n
, xs

(
1√
n

))
(A6)

where for 𝜃 ∈ (0, 1] such that 𝑑 + s𝜃 ∈ (0, 1),

Q(1)
𝑑,𝛿
(s, 𝜃) = 2(𝑑 + s𝜃) − 1

6𝜎(𝑑+s𝜃)

(
xs(𝜃)2 − 1

)
𝜑(xs(𝜃)),

Q(2)
𝑑,𝛿
(s, 𝜃) = 1

𝜎(𝑑+s𝜃)
S
(
𝑑𝜃−2 + 𝛿

)
𝜑(xs(𝜃)).

Study of the first term on the right-hand side of (A6)

Let 𝜃 ∈ (0, 1∕
√

2], and notice that | log(𝜃)| ≥ log(
√

2) > 0. Recall the definition of xs(𝜃) given by

(A4). By simple computations, we get that for all 0 < 𝜃 ≤ 1∕
√

2, |s| ≤ 𝛼
√

2| log(𝜃)|, |𝛿| ≤ 1, and

𝑑 ∈ K0 such that 𝑑 + s𝜃 ∈ K0,

|xs(𝜃)| ≤ C | log(𝜃)| 1

2 , |x′s(𝜃)| ≤ C | log(𝜃)|, and |x′′s (𝜃)| ≤ C | log(𝜃)| 3

2 . (A7)

We define the function Ψs(𝜃) = Φ(xs(𝜃)). Applying Taylor’s theorem with the Lagrange form of the

remainder for Ψ at 𝜃 = 0, we have:

Ψs(𝜃) = Ψs(0) + 𝜃Ψ′
s(0) + R(1)

s (𝜃),

where R(1)
s (𝜃) = ∫ 𝜃

0
Ψ′′

s (t)(𝜃 − t)dt. Recall the definition of ys = xs(0) given in (A3). Elementary

calculus gives:

Φ (xs(𝜃)) = Φ(xs(0)) + 𝜃 x′s(0)𝜑(xs(0)) + R(1)
s (𝜃)

= Φ (ys) + 𝜃

[
(1 − 2𝑑)

2𝜎(𝑑)
y2

s +
𝛿

𝜎(𝑑)

]
𝜑 (ys) + R(1)

s (𝜃), (A8)

where R(1)
s (𝜃) = ∫ 𝜃

0

(
x′′s (t) − x′s(t)2xs(t)

)
𝜑(xs(t)) (𝜃 − t) dt. Using (A7) and that t𝜑(t) is bounded, we

have: |||R(1)
s (𝜃)||| ≤ C𝜃2(| log(𝜃)| 3

2 + | log(𝜃)|2) ≤ C𝜃2| log(𝜃)|2.

Study of the second term on the right-hand side of (A6)

We have Q(1)
𝑑,𝛿
(s, 𝜃) = Gs(𝜃)H(xs(𝜃)) where

Gs(𝜃) =
2(𝑑 + s𝜃) − 1

6𝜎(𝑑+s𝜃)
and H(x) =

(
x2 − 1

)
𝜑(x).
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For the first term, we have

Gs(𝜃) = Gs(0) + R(2)
s (𝜃) = 2𝑑 − 1

6𝜎(𝑑)
+ R(2)

s (𝜃),

where R(2)
s (𝜃) = ∫ 𝜃

0
G′

s(t)dt. We compute that:

G′
s(t) = s

[
1

3𝜎(𝑑+st)
+ [2(𝑑 + st) − 1]2

12𝜎3
(𝑑+st)

]
.

We obtain that
|||R(2)

s (𝜃)||| ≤ C𝜃|s| ≤ C𝜃| log(𝜃)| 1

2 . For the second term, we have

H(xs(𝜃)) = H(xs(0)) + R(3)
s (𝜃) =

(
y2

s − 1
)
𝜑 (ys) + R(3)

s (𝜃),

where R(3)
s (𝜃) = ∫ 𝜃

0
x′s(t)H′(xs(t))dt = ∫ 𝜃

0
x′s(t)

[
−xs(t)3 + 3xs(t)

]
𝜑(xs(t))dt. Using (A7) and that (|t|3 +

t)𝜑(t) is bounded, we get that
|||R(3)

s (𝜃)||| ≤ C𝜃| log(𝜃)|. Finally, we obtain that

Q(1)
𝑑,𝛿
(s, 𝜃) = 2𝑑 − 1

6𝜎(𝑑)

(
y2

s − 1
)
𝜑 (ys) + R(4)

s (𝜃) (A9)

with
|||R(4)

s (𝜃)||| ≤ C𝜃| log(𝜃)|.
Study of the last term on the right-hand side of (A6)

We have

Q(2)
𝑑,𝛿
(s, 𝜃) = Fs(𝜃)S

(
𝑑

𝜃2
+ 𝛿

)
𝜑(xs(𝜃)) with Fs(𝜃) =

1

𝜎(𝑑+s𝜃)
.

For the first term of the right-hand side, we have

Fs(𝜃) = Fs(0) + R(5)
s (𝜃) = 1

𝜎(𝑑)
+ R(5)

s (𝜃),

where R(5)
s (𝜃) = ∫ 𝜃

0
F′

s(t)dt = ∫ 𝜃

0

s(2(𝑑+st)−1)
2𝜎3

(𝑑+st)
dt. We get that

|||R(5)
s (𝜃)||| ≤ C𝜃|s| ≤ C𝜃| log(𝜃)| 1

2 . For the

last term of the right-hand side, we have:

𝜑(xs(𝜃)) = 𝜑(xs(0)) + R(6)
s (𝜃) = 𝜑 (ys) + R(6)

s (𝜃),

where R(6)
s (𝜃) = ∫ 𝜃

0
x′s(t)𝜑′(xs(t))dt = − ∫ 𝜃

0
xs(t)x′s(t)𝜑(xs(t))dt. So, using (A7) and that t𝜑(t) is

bounded, we get that
|||R(6)

s (𝜃)||| ≤ C𝜃| log(𝜃)|. Finally, we obtain that

Q(2)
𝑑,𝛿
(s, 𝜃) = 1

𝜎(𝑑)
S
(
𝑑

𝜃2
+ 𝛿

)
𝜑 (ys) + R(7)

s (𝜃), (A10)

where
|||R(7)

s (𝜃)||| ≤ C𝜃 |log(𝜃)|, since S is bounded.
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Conclusion

We deduce from (A8), (A9), and (A10) that

Φ (xs(𝜃)) + 𝜃 Q(1)
𝑑,𝛿
(s, 𝜃) + 𝜃 Q(2)

𝑑,𝛿
(s, 𝜃) = Φ(ys) + 𝜃

𝜑(ys)
𝜎(𝑑)

𝜋
(

s, 1

𝜃2
, 𝑑, 𝛿

)
+ R(8)

s (𝜃),

where
|||R(8)

s (𝜃)||| ≤ C𝜃2| log(𝜃)|2. We get the result by taking 𝜃 = 1∕
√

n and using (A6) and the obvious

bound on Un given by (A2) so that |Un| ≤ C∕n. ▪

We state a lemma which will be useful for the proof of Lemma A3.

Lemma A2. Let y ∈ [0, 1] and 𝛼 > 0. For all n ≥ 2, we have with 𝑑 = D(y), A = 𝛼
√

log(n), and
ys = −s∕𝜎(𝑑),

Φ
(
− A
𝜎(𝑑)

)
≤ 1

𝛼 n2𝛼2
, ∫

+∞

A
sΦ (ys) ds ≤ 1

𝛼 n2𝛼2
, and ∫

+∞

A
s2𝜑(ys)ds ≤ 1

𝛼 n𝛼2
.

Proof. For all t ≥ 0, we have

Φ(−t) = ∫
+∞

t
s
𝜑(s)

s
ds ≤ 1

t ∫
+∞

t
s𝜑(s)ds = 1

t
𝜑(t). (A11)

Because 𝜎(𝑑) ≤ 1∕2, we get with t = A
𝜎(𝑑)

the following rough upper bound:

Φ
(
− A
𝜎(𝑑)

)
≤ 𝜎(𝑑)

A
𝜑

(
A
𝜎(𝑑)

)
≤ 1

𝛼 n2𝛼2
. (A12)

Using again (A11) and (A12), we get, for the second inequality that:

∫
+∞

A
sΦ (ys) ds ≤ 𝜎(𝑑) ∫

+∞

A
𝜑(−ys)ds = 𝜎2

(𝑑)Φ
(
− A
𝜎(𝑑)

)
≤ 1

𝛼 n2𝛼2
.

For the last inequality, we have:

∫
+∞

A
s2𝜑(ys)ds =

2𝜎2
(𝑑)√
2𝜋 ∫

+∞

A

s2

2𝜎2
(𝑑)

e
− s2

2𝜎2
(𝑑) ds ≤ 4𝜎2

(𝑑)√
2𝜋 ∫

+∞

A
e
− s2

4𝜎2
(𝑑) ds

= 4
√

2𝜎3
(𝑑)Φ

(
− A√

2𝜎(𝑑)

)
≤ 1

𝛼 n𝛼2
,

where we used xe−x ≤ 2e−
x
2 for the first inequality and an inequality similar to (A12) with 𝜎(𝑑) replaced

by
√

2𝜎(𝑑) for the last one. ▪

For f ∈ 2([0, 1]), we set ‖f‖3,∞ = ‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞.
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Lemma A3. Assume that W satisfies condition (65). Let y ∈ (0, 1) and 𝛼 ≥ 1. There exists a positive
constant C such that for all H ∈ 2([0, 1]), 𝛿 ∈ [−1, 1], and n ≥ 2 such that

[
𝑑 ± A√

n

]
⊂ D

(
(0, 1)

)
,

with 𝑑 = D(y), and A = 𝛼
√

log(n), we have:

√
n∫

A

−A
H

(
D−1

(
𝑑 + s√

n

))(
n,𝑑,𝛿

(
𝑑 + s√

n

)
− 1{s≤0}

)
ds

=
H′(y)
D′(y)

𝜎2
(𝑑)

2
+ H(y)

(
1 − 2𝑑

2
+ 𝛿 + S(n𝑑 + 𝛿)

)
+ RA3

n (H),

where |||RA3
n (H)||| ≤ C ‖H‖3,∞ n−1∕2 log(n)3. (A13)

Because of the assumption
[
𝑑 ± A√

n

]
⊂ D

(
(0, 1)

)
, we need to rule out the cases y ∈ {0, 1}, so that

Lemma A3 holds only for y ∈ (0, 1).

Proof. In what follows, C denotes a positive constant which depends on 𝜀0 and W (but in particular

not on n ≥ 2, s ∈ [−𝛼
√

log(n), 𝛼
√

log(n)], 𝛿 ∈ [−1, 1], and 𝑑 ∈ K0 such that 𝑑+ s√
n
∈ K0) and which

may change from line to line.

Let 𝜃 ∈ (0, 1∕
√

2] (we shall take 𝜃 = 1∕
√

n later on) and assume that |s| ≤ 𝛼
√

2| log(𝜃)| and

𝑑 + s𝜃 ∈ K0. We set Ψ(𝜃) = H
(
D−1(𝑑 + s𝜃)

)
. Notice that Ψ′(𝜃) = s

D′◦D−1(𝑑+s𝜃)
H′(D−1(𝑑 + s𝜃)). By

Taylor’s theorem with the Lagrange form of the remainder we have:

Ψ(𝜃) = Ψ(0) + 𝜃Ψ′(0) + R(1)
s (𝜃) = H(y) + 𝜃

s
D′(y)

H′(y) + R(1)
s (𝜃) (A14)

where R(1)
s (𝜃) = ∫ 𝜃

0
Ψ′′(t)(𝜃 − t)dt. We have

Ψ′′(𝜃) = s2

[
H′′(D−1(𝑑 + s𝜃))
(D′◦D−1(𝑑 + s𝜃))2

− H′(D−1(𝑑 + s𝜃))(D′′◦D−1(𝑑 + s𝜃))
(D′◦D−1(𝑑 + s𝜃))3

]
.

Thus, we get that
|||R(1)

s (𝜃)||| ≤ C
(‖H′‖∞ + ‖H′′‖∞)

s2𝜃2 ≤ C ‖H‖3,∞ 𝜃2| log(𝜃)|. Choosing 𝜃 =
1∕

√
n, we deduce from (A14) that:

H

(
D−1

(
𝑑 + s√

n

))
= H(y) + 1√

n
s

D′(y)
H′(y) + R(1)

s

(
1√
n

)
, (A15)

where
||||R(1)

s

(
1∕

√
n
)|||| ≤ C ‖H‖3,∞ log(n)∕n. Recall the definition of ys and 𝜋(s, n, 𝑑, 𝛿) given by (A3).

By Proposition A1 and Equation (A15), we get that:

√
n H

(
D−1

(
𝑑 + s√

n

))(
n,𝑑,𝛿

(
𝑑 + s√

n

)
− 1{s≤0}

)

=
√

n

(
H(y) + 1√

n
s

D′(y)
H′(y)

) ((
Φ(ys) − 1{s≤0}

)
+ 1√

n
𝜑(ys)
𝜎(𝑑)

𝜋(s, n, 𝑑, 𝛿)

)
+ R(0)

n (s)
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=
√

n H(y)Δ(1)(s) +
H′(y)
D′(y)

Δ(2)(s) +
H(y)
𝜎(𝑑)

Δ(3)(s) + R(0)
n (s) + R̂(0)

n (s), (A16)

where

Δ(1)(s) =
(
Φ(ys) − 1{s≤0}

)
, Δ(2)(s) = s

(
Φ(ys) − 1{s≤0}

)
, Δ(3)(s) = 𝜑(ys)𝜋(s, n, 𝑑, 𝛿),

|||R(0)
n (s)||| ≤ √

n‖H‖∞|RA1(s, n, 𝑑, 𝛿)| +√
n|R(1)

s

(
1∕

√
n
) | +√

n|RA1(s, n, 𝑑, 𝛿)R(1)
s

(
1∕

√
n
) |

≤ C ‖H‖3,∞
log(n)2√

n
(A17)

and

|||R̂(0)
n (s)||| = |||||| 1√

n
H′(y)

𝜎(𝑑)D′(y)
s𝜑(ys)𝜋(s, n, 𝑑, 𝛿)

|||||| ≤ C ‖H‖3,∞

√
log(n)√

n
. (A18)

Study of ∫ A
−A Δ

(1)(s)ds

Since Δ(1) is an odd integrable function on R
∗, we get that:

∫
A

−A
Δ(1)(s)ds = 0. (A19)

Study of ∫ A
−A Δ

(2)(s)ds

Because Δ(2) is integrable and ∫
R
Δ(2)(s)ds = 𝜎2

(𝑑)∕2, we get that

∫
A

−A
Δ(2)(s) ds =

𝜎2
(𝑑)

2
+ R(2)

n , with R(2)
n = −2∫

+∞

A
sΦ(ys)ds. (A20)

Using Lemma A2, we get that |R(2)
n | ≤ C n−2𝛼2

. (A21)

Study of ∫ A
−A Δ

(3)(s)ds

We have, using (A3), that:

Δ(3)(s) = 𝜑(ys)
(

1 − 2𝑑

6
(1 + 2y2

s ) + 𝛿 + S(n𝑑 + 𝛿)
)
.

By elementary calculus, we have that:

∫
R

𝜑(ys)ds = ∫
R

y2
s𝜑(ys)ds = 𝜎(𝑑).
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We get that:

∫
A

−A
Δ(3)(s)ds = 𝜎(𝑑)

[
1 − 2𝑑

2
+ 𝛿 + S (n𝑑 + 𝛿)

]
+ R(3)

n , (A22)

where

R(3)
n = −2𝜎(𝑑)

(
1 − 2𝑑

6
+ 𝛿 + S(n𝑑 + 𝛿)

)
Φ

(
− A
𝜎(𝑑)

)
− 2

1 − 2𝑑

3 ∫
+∞

A
y2

s𝜑(ys)ds. (A23)

Using Lemma A2 and since |2𝑑 − 1| ≤ 1, |𝛿| ≤ 1 and S is bounded by 1, we have that:

|R(3)
n | ≤ Cn−𝛼2

. (A24)

Conclusion

Using (A16), (A19), (A20), (A22), we deduce that

√
n∫

A

−A
H

(
D−1

(
𝑑 + s√

n

))(
n,𝑑,𝛿

(
𝑑 + s√

n

)
− 1{s≤0}

)
ds

=
H′(y)
D′(y)

𝜎2
(𝑑)

2
+ H(y)

[
1 − 2𝑑

2
+ 𝛿 + S (n𝑑 + 𝛿)

]
+ RA3

n (H),

where RA3
n (H) = ∫ A

−A(R
(0)
n (s)+R̂(0)

n (s)) ds+(H′(y)∕D′(y))R(2)
n +(H(y)∕𝜎(𝑑))R(3)

n . Using the upper bounds

(A17) and (A18) (to be integrated over [−A,A]), (A21) and (A24) with 𝛼 ≥ 1, we get that |RA3
n (H)| ≤

C ‖H‖3,∞ log(n)3∕
√

n. ▪

We give a direct application of the previous lemma.

Lemma A4. Assume that W satisfies condition (65). Let y ∈ (0, 1) and 𝛼 ≥ 1. There exists a positive
constant C such that for all G ∈ 2([0, 1]), 𝛿 ∈ [−1, 1], n ≥ 2 such that

[
𝑑 ± A√

n

]
⊂ D((0, 1)), with

𝑑 = D(y) and A = 𝛼
√

log(n), we have:

n∫
1

0

G(x)
(n,𝑑,𝛿 (D(x)) − 1{x≤y

)
1{√

n|D(x)−𝑑|≤A
}dx

=
G′(y)D′(y) − G(y)D′′(y)

D′(y)3
𝜎2
(𝑑)

2
+

G(y)
D′(y)

[
1 − 2𝑑

2
+ 𝛿 + S(n𝑑 + 𝛿)

]
+ RA4

n (G),

where |||RA4
n (G)||| ≤ C ‖G‖3,∞ n−1∕2 log(n)3.

Proof. Let G be a function in 2([0, 1]). Define the function H on [0, 1] by H(z) = G(z)
D′(z)

for all

z ∈ [0, 1]. Use the change of variables s =
√

n (D(x) − 𝑑) to get that:

∫
1

0

G(x)
(n,𝑑,𝛿(D(x)) − 1{x≤y}

)
1{√n|D(x)−𝑑|≤A}dx
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= 1√
n ∫

A

−A
H

(
D−1

(
𝑑 + s√

n

))(
n,𝑑,𝛿

(
𝑑 + s√

n

)
− 1{s≤0}

)
ds.

By Lemma A3, we obtain that:

n∫
1

0

G(x)
(n,𝑑,𝛿 (D(x)) − 1{x≤y}

)
1{√

n|D(x)−𝑑|≤A
}dx

=
H′(y)
D′(y)

𝜎2
(𝑑)

2
+ H(y)

[
1 − 2𝑑

2
+ 𝛿 + S(n𝑑 + 𝛿)

]
+ RA3

n (H)

=
G′(y)D′(y) − G(y)D′′(y)

D′(y)3
𝜎2
(𝑑)

2
+

G(y)
D′(y)

[
1 − 2𝑑

2
+ 𝛿 + S(n𝑑 + 𝛿)

]
+ RA3

n (G∕D′).

Set RA4
n (G) = RA3

n
(
G∕D′) and use (A13) to conclude. ▪

Lemma A5. Let y ∈ (0, 1) and 𝛼 > 0. For all u ∈ (0, 1), 𝛿 ∈ [−1, 1] and n ∈ N∗ such that√
n|u − 𝑑| ≥ A with 𝑑 = D(y) and A = 𝛼

√
log(n), we have

||n,𝑑,𝛿(u) − 1{u≤𝑑}|| ≤ n−𝛼+2.

Proof. Let X be a binomial random variable with parameters (n, u). Assume first that u ≥ 𝑑 + A√
n
.

Let 𝜆 ≥ 0. Using Chernov’s inequality, we get:

n,𝑑,𝛿(u) − 1{u≤𝑑} = P (X ≤ n𝑑 + 𝛿) ≤ e𝜆(n𝑑+𝛿) E
[
e−𝜆X] = exp [𝜆(n𝑑 + 𝛿) + nΨ(𝜆)] , (A25)

with Ψ(𝜆) = log(1 + u(e−𝜆 − 1)). By Taylor-Lagrange equality, we have

Ψ(𝜆) = Ψ(0) + 𝜆Ψ′(0) + R(𝜆) = 0 − u𝜆 + R(𝜆), (A26)

where R(𝜆) = ∫ 𝜆

0
(𝜆 − t)Ψ′′(t)dt. Because Ψ′′(t) ≥ 0 and Ψ′′(t) = (1−u)ue−𝜆

(1+u(e−𝜆−1))2 ≤ 1

4
(applying the

following inequality
xy

(x+y)2
≤ 1

4
with x = 1 − u and y = ue−𝜆), we get that |R(𝜆)| ≤ 𝜆2

8
≤ 𝜆2. Finally,

applying (A26) with 𝜆 =
√

log(n)
n

, we get that

nΨ(𝜆) = −u
√

n log(n) + R(2)(n), (A27)

with |R(2)(n)| ≤ log(n). Using (A25) and (A27), we get that

n,𝑑,𝛿(u) − 1{u≤𝑑} ≤ exp

[√
log(n)

n
(n𝑑 + 𝛿) − u

√
n log(n) + R(2)(n)

]
= exp

[√
n log(n)(𝑑 − u) + R(3)(n)

]
,

where |R(3)(n)| ≤ 2 log(n), since |𝛿| ≤ 1. Because 𝑑 − u ≤ −A√
n

with A = 𝛼
√

log(n), we have that

n,𝑑,𝛿(u) − 1{u≤𝑑} ≤ e−𝛼 log(n)+R(3)(n) ≤ e(−𝛼+2) log(n) = n−𝛼+2.
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In the case where u ≤ 𝑑 − A√
n
, we have that

0 ≥ n,𝑑,𝛿(u) − 1{u≤𝑑} = P (X ≤ n𝑑 + 𝛿) − 1

≥ −P (X ≥ n𝑑 + 𝛿)
= −P (n − X ≤ n(1 − 𝑑) − 𝛿) .

Since n−X is a binomial random variable with parameters (n, 1− u), using similar argument as in the

first part of the proof (with u and X replaced by 1 − u and n − X), we get that, for u ≤ 𝑑 − A√
n
:

n,𝑑,𝛿(u) − 1{u≤𝑑} ≥ −n−𝛼+2.

We deduce that ||n,𝑑,𝛿(u) − 1{u≤𝑑}|| ≤ n−𝛼+2. ▪

The following lemma is a direct application of Lemma A5 with u = D(x).

Lemma A6. Assume that W satisfies condition (65). Let y ∈ (0, 1) and 𝛼 ≥ 1. For all G ∈ ([0, 1]),
𝛿 ∈ [−1, 1], and n ∈ N∗, we have with 𝑑 = D(y) and A = 𝛼

√
log(n):

n∫
1

0

G(x) ||n,𝑑,𝛿 (D(x)) − 1{x≤y}|| 1{√n|D(x)−𝑑|≥A}dx = RA6
n (G),

where |||RA6
n (G)||| ≤ ‖G‖∞ n−𝛼+3.

Combining Lemma A4 with Lemma A6 for 𝛼 = 3, we deduce the following proposition.

Proposition A7. Assume that W satisfies condition (65). Let y ∈ (0, 1). There exists a positive
constant C such that for all G ∈ 2([0, 1]), 𝛿 ∈ [−1, 1] and n ∈ N

∗ such that
[
𝑑 ± A√

n

]
⊂ D((0, 1)),

with 𝑑 = D(y) and A = 4
√

log(n), we have:

n∫
1

0

G(x)
(n,𝑑,𝛿 (D(x)) − 1{x≤y}

)
dx

=
G′(y)D′(y) − G(y)D′′(y)

D′(y)3
𝜎2
(𝑑)

2
+

G(y)
D′(y)

[
1 − 2𝑑

2
+ 𝛿 + S(n𝑑 + 𝛿)

]
+ RA7

n (G),

with |||RA7
n (G)||| ≤ C ‖G‖3,∞ n− 1

4 . (A28)

APPENDIX B: PROOF OF PROPOSITION 9.3

We first state a preliminary lemma in Appendix B.1 and then provide the proof of Proposition 9.3 in

Appendix B.2.
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B.1 | A preliminary result

For y = (y1, y2) ∈ [0, 1]2, let M(y) be the covariance matrix of a couple (Y1,Y2) of Bernoulli random

variables such that P(Yi = 1) = D(yi) for i ∈ {1, 2} and P(Y1 = Y2 = 1) = ∫[0,1] W(y1, z)W(y2, z) dz.

Lemma B1. Assume that W satisfies condition (65). There exists 𝜀′ > 0 such that for all y ∈ [0, 1]2,
we have det(M(y)) > 𝜀′.

Proof. Let M2 be the set of matrices of size 2 × 2, and ∥ ⋅∥∞ be the norm on M2 defined in (B5).

We consider the closed set on M2:

 = +
⋃− where ± =

{
r(I2 ±

(
0 1
1 0

)
); r ∈ [0, 1∕4]

}
where I2 ∈ M2 is the identity matrix. Notice  is the set of all covariance matrices of couples of

Bernoulli random variables having determinant equal to 0. Since the determinant is a continuous

real-valued function on M2, to prove Lemma B1, it is enough to prove that for all y = (y, y′) ∈ [0, 1]2
and all M0 ∈  :

∥M(y) − M0 ∥∞ ≥ 𝜀2∕4. (B1)

We set p = D(y), p′ = D(y′) and 𝛼 = ∫[0,1] W(y, z)W(y′, z) dz so that:

M(y) =
(

p(1 − p) 𝛼 − pp′

𝛼 − pp′ p′(1 − p′)

)
.

The proof of (B1) is divided into three cases. Recall that W satisfies condition (65). Without loss

of generality, we can assume that p ≤ p′ and thus:

𝜀 ≤ p ≤ p′ ≤ 1 − 𝜀. (B2)

Since (1−W(y, z))(1−W(y′, z)) is nonnegative, by integrating with respect to z over [0, 1], we get that

𝛼 ≥ p + p′ − 1. Using that W ≤ 1 − 𝜀, we deduce, denoting by x+ = max(x, 0) the positive part of

x ∈ R, that:

(p + p′ − 1)+ ≤ 𝛼 ≤ (1 − 𝜀)p. (B3)

The case M0 ∈ +

Recall that p ≤ p′. If |r − p(1 − p)| ≥ 𝜀2∕4, then, by considering the first term on the diagonal, we

have ∥M(y) − M0 ∥∞ ≥ 𝜀2∕4.

If |r − p(1 − p)| ≤ 𝜀2∕4, then, by considering the off-diagonal term, we have:

∥M(y) − M0 ∥∞ ≥ |𝛼 − pp′ − r|.
For 𝛿′ = r − p(1 − p) ∈ [−𝜀2∕4, 𝜀2∕4], we get, using that 𝛼 ≤ (1 − 𝜀)p and p ≤ p′:

𝛼 − pp′ − r ≤ (1 − 𝜀)p − p2 − p(1 − p) − 𝛿′

≤ −𝜀2 + 𝜀2∕4 = −3𝜀2∕4.

We deduce that (B1) holds if M0 ∈ +.
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The case |1 − p − p′| > 𝜀∕2 and M0 ∈ −

If |r−p(1−p)| ≥ 𝜀2∕4, then, by considering the first term on the diagonal, we have ∥M(y) − M0 ∥∞ ≥
𝜀2∕4.

If |r − p(1 − p)| ≤ 𝜀2∕4, then, by considering the off-diagonal term, we have:

∥M(y) − M0 ∥∞ ≥ |𝛼 − pp′ + r|.
Assume first that 1 − p − p′ > 𝜀∕2. For 𝛿′ = r − p(1 − p) ∈ [−𝜀2∕4, 𝜀2∕4], we get, using 𝛼 ≥ 0, that:

𝛼 − pp′ + r ≥ p(1 − p − p′) + 𝛿′

≥ 𝜀2∕2 − 𝜀2∕4 = 𝜀2∕4.

Assume then that 1 − p − p′ < −𝜀∕2. For 𝛿′ = r − p(1 − p) ∈ [−𝜀2∕4, 𝜀2∕4], we get, using the lower

bound 𝛼 ≥ p + p′ − 1 from (B3), that:

𝛼 − pp′ + r ≥ (1 − p)(p + p′ − 1) + 𝛿′

≥ 𝜀2∕2 − 𝜀2∕4 = 𝜀2∕4.

We get ∥M(y) − M0 ∥∞ ≥ 𝜀2∕4.

We deduce that (B1) holds if |1 − p − p′| > 𝜀∕2 and M0 ∈ −.

The case |1 − p − p′| ≤ 𝜀∕2 and M0 ∈ −

Applying Lemma B2, with f = W(y, ⋅), g = W(y′, ⋅) and 𝛿 = 1 − p − p′, we get that:

𝛼 ≥ (1 − 𝜀)(𝜀 − 𝛿). (B4)

If |r − p(1 − p)| ≥ 𝜀2∕4, then, by considering the first term on the diagonal, we have

∥M(y) − M0 ∥∞ ≥ 𝜀2∕4.

If |r − p(1 − p)| ≤ 𝜀2∕4, then, by considering the off-diagonal term, we have:

∥M(y) − M0 ∥∞ ≥ |𝛼 − pp′ + r|.
For 𝛿′ = r − p(1 − p) ∈ [−𝜀2∕4, 𝜀2∕4], using (B4), we get that:

𝛼 − pp′ + r = 𝛼 − p(1 − p − 𝛿) + p(1 − p) + 𝛿′

≥ (1 − 𝜀)𝜀 − 𝛿(1 − 𝜀 − p) + 𝛿′

≥ (1 − 𝜀)𝜀 − (1 − 2𝜀)𝜀∕2 − 𝜀2∕4 ≥ 𝜀2∕4.

We deduce that (B1) holds if |1 − p − p′| ≤ 𝜀∕2 and M0 ∈ −.

Conclusion

Since (B1) holds when M0 ∈ +, when M0 ∈ − and either |1 − p − p′| > 𝜀∕2 or |1 − p − p′| ≤ 𝜀∕2,

we deduce that (B1) holds under the condition of Lemma B1. ▪
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Lemma B2. Let 𝜀 ∈ (0, 1∕2), 𝛿 ∈ [−𝜀∕2, 𝜀∕2], f , g ∈ ([0, 1]) such that 0 ≤ f , g ≤ 1 − 𝜀, and
∫[0,1](f + g) = 1 − 𝛿. Then we have ∫[0,1] fg ≥ (1 − 𝜀)(𝜀 − 𝛿), and this lower bound is sharp.

Proof. Set f1 = min(f , g) and g1 = max(f , g) so that 0 ≤ f1 ≤ g1 ≤ 1 − 𝜀 and ∫[0,1](f1 + g1) = 1 − 𝛿

and ∫[0,1] f1 g1 = ∫[0,1] fg. Set h = min(f1, (1 − 𝜀 − g1)) as well as f2 = f1 − h and g2 = g1 + h so that

0 ≤ f2 ≤ g2 ≤ 1 − 𝜀, ∫[0,1](f2 + g2) = 1 − 𝛿 and

∫[0,1]
f2 g2 = ∫[0,1]

(f1 − h) (g1 + h) = ∫[0,1]
f1 g1 − ∫[0,1]

(h(g1 − f1) + h2) ≤ ∫[0,1]
f1 g1 = ∫[0,1]

fg.

Since by construction either f2(x) = 0 or g2(x) = 1 − 𝜀, we deduce that:

∫[0,1]
fg ≥ ∫[0,1]

f2 g2 ≥ (1 − 𝜀)∫[0,1]
f2 = (1 − 𝜀)

(
1 − 𝛿 − ∫[0,1]

g2

)
≥ (1 − 𝜀)(𝜀 − 𝛿).

To see this lower bound is sharp, consider g = 1 − 𝜀 and f = 𝜀 − 𝛿. ▪

B.2 | Proof of Proposition 9.3

We set:

Ẑn = (n − 1)−1∕2M(x)−1∕2(D̂(n+1) − 𝜇(x)),

which is, conditionally on {X[2] = x}, distributed as the normalized and centered sum of n − 1 inde-

pendent random variables distributed as Y = (Y1,Y2), with Y1 and Y2 Bernoulli random variables such

that E[Y] = 𝜇(x)∕(n − 1) and Cov(Y ,Y) = M(x).
Using Theorem 3.5 from [10] or Theorem 1.1 from [2], we get that:

sup
K∈

||||P(
Ẑn ∈ K|| X[2] = x

)
− P (Z ∈ K)

|||| ≤ 115
√

2 𝛾,

where

𝛾 = (n − 1)E
[|||(n − 1)−1∕2M(x)−1∕2(Y − E[Y])|||3

]
.

Let ∥ ⋅∥∞ denote the matrix norm on the set M2 of real matrices of dimension 2 × 2 induced by the

maximum vector norm on R
2, which is the maximum absolute row sum:

∥M∥∞ = max
1≤i≤2

2∑
j=1

|M(i, j)|, for all M ∈ M2. (B5)

Recall that ∥ ⋅∥∞ is an induced norm (that is ∥AB∥∞ ≤ ∥A∥∞ ∥B∥∞). For M ∈ M2 and x ∈ R
2, we

have |Mx| ≤ √
2 ∥M∥∞ |x|. If M ∈ M2 is symmetric positive definite (which is only used for the

second inequality and the equality), we get:

∥M∥1∕2
∞ ≤ ∥M1∕2 ∥∞ ≤ √

2 ∥M∥1∕2
∞ and ∥M−1 ∥∞ =

∥M∥∞| det(M)| . (B6)
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We deduce that if M ∈ M2 is symmetric positive definite, then

∥M−1∕2 ∥∞ ≤ √
2| det(M)|−1∕2 ∥M∥1∕2

∞ .

We obtain that for n ≥ 2:

𝛾 ≤ 23(n − 1)−1∕2 ∥M(x)∥3∕2
∞ det(M(x))−3∕2

E
[|Y − E[Y]|3

]
≤ 25∕2n−1∕2 det(M(x))−3∕2

E
[|Y1 − E[Y1]|3 + |Y2 − E[Y2]|3

]
≤ 23∕2n−1∕2 det(M(x))−3∕2,

where we used that ∥M(x)∥∞ ≤ 1∕2 for the second inequality and the convex inequality (x + y)p ≤
2p−1(xp + yp) for the third and that |Yi − E[Yi]| ≤ 1 so that E[|Yi − E[Yi]|3] ≤ Var(Yi) ≤ 1∕4. We

deduce from Lemma B1 that there exists C0 > 0 such that for all x = (x1, x2) ∈ [0, 1]2 with x1 ≠ x2

and all n ≥ 2:

sup
K∈

||||P(
Ẑn ∈ K|| X[2] = x

)
− P (Z ∈ K)

|||| ≤ C0 n−1∕2.

To conclude, replace the convex set K in this formula by the convex set
M(x)−

1
2√

n−1
(K − 𝜇(x)).


