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Abstract. We consider the simple epidemiological SIS model for a general heterogeneous
population introduced by Lajmanovich and Yorke (1976) in finite dimension, and its infi-
nite dimensional generalization we introduced in previous works. In this model the basic
reproducing number R0 is given by the spectral radius of an integral operator. If R0 > 1,
then there exists a maximal endemic equilibrium. In this very general heterogeneous SIS
model, we prove that vaccinating according to the profile of this maximal endemic equilibrium
ensures herd immunity. Moreover, this vaccination strategy is critical: the resulting effective
reproduction number is exactly equal to one. As an application, we estimate that if R0 = 2
in an age-structured community with mixing rates fitted to social activity, applying this
strategy would require approximately 29% less vaccine doses than the strategy which consists
in vaccinating uniformly a proportion 1− 1/R0 of the population.

From a dynamical systems point of view, we prove that the non-maximality of an equi-
librium g is equivalent to its linear instability in the original dynamics, and to the linear
instability of the disease-free state in the modified dynamics where we vaccinate according
to g.

1. Introduction

Increasing the prevalence of immunity from contagious disease in a population limits the
circulation of the infection among the individuals who lack immunity. This so-called “herd
effect” plays a fundamental role in epidemiology, for example it has had a major impact in
the eradication of smallpox and rinderpest or the near eradication of poliomyelitis [9]. Our
aim is to present a targeted vaccination strategy based on the heterogeneity of the infection
spreading in the population which allows to eradicate the epidemic. We consider for simplicity
the deterministic infinite-dimensional SIS model (with S=Susceptible and I=Infectious) and
the effect of a perfect vaccine. However, we take into account a very general model for
the heterogeneous population based on the infinite-dimensional model introduced in [2], that
encompasses the meta-population SIS models developed by Lajmanovich and Yorke in their
pioneer paper [11] or SIS model on graphs. More precisely, the probability ut(x) of an individual
of type x ∈ Ω to be infected at time t is the solution of the (infinite dimensional) ordinary
differential equation:

(1) ∂tut(x) = (1− ut(x))

∫
Ω
k(x, y)ut(y)µ(dy)− γ(x)ut(x) for t ≥ 0 and x ∈ Ω,

where k is the transmission rate kernel of the disease, γ is the recovery rate function and µ(dy)
is the probability for an individual taken at random to be of type y ∈ Ω; see Equation (11).

In an homogeneous population, the basic reproduction number of an infection, denoted by R0,
is defined as the number of secondary cases one individual generates on average over the course
of its infectious period, in an otherwise uninfected (susceptible) population. Intuitively, the
disease should die out if R0 < 1 and invade the population if R0 > 1. For the heterogenous
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generalization of many classical models in epidemiology (including the heterogeneous SIS
model), it is still possible to define a meaningful basic reproduction number R0, as the number
of secondary cases generated by a typical infectious individual when all other individuals are
uninfected and the threshold phenomenon occurs [7]. In the setting of [2], the reproduction
number R0 then corresponds to the spectral radius of the next-generation operator defined as
the integral operator associated to the kernel k(x, y)/γ(y).

After a vaccination campaign, let the vaccination strategy η denote the (non necessarily
homogeneous) proportion of the non-vaccinated population, and let the effective reproduction
number Re(η) denote the corresponding reproduction number of the non-vaccinated population.
Following [2, Section 5.3.], the effective reproduction number Re(η) is given by the spectral
radius of the effective next-generation operator defined as the integral operator associated to
the kernel k(x, y)η(y)/γ(y), where η(y) is the proportion of individuals of type y which are not
vaccinated.

The vaccination strategy η is called critical if Re(η) = 1. Assuming R0 > 1, suppose now
that only a proportion ηuni of the population can catch the disease, the rest being perfectly
immunized. An infected individual will now only generate ηuniR0 new cases, since a propor-
tion 1− ηuni of previously successful infections will be prevented. Therefore, the new effective
reproduction number is equal to Re(ηuni) = ηuniR0. This fact led to the recognition by Smith
in 1970 [13] and Dietz in 1975 [8] of a simple threshold theorem: the incidence of an infection
declines if the proportion of non-immune individuals is reduced below ηuni

crit = 1/R0. This effect
is called herd immunity, and the corresponding proportion 1− ηuni

crit of people that have to be
vaccinated is called the herd immunity threshold [14, 15].

2. Critical vaccination given by the endemic equilibrium

However, herd immunity can also be achieved using a non-uniform vaccination strategy
when the population is heterogeneous. For example, the discussion of vaccination control of
gonorrhea in [10, Section 4.5] suggests that it may be better to prioritize the vaccination of
people that have already caught the disease: this leads us to consider a vaccination strategy
guided by the equilibrium state. For the SIS model in heterogeneous population with R0 > 1,
there exists a maximal endemic equilibrium, say g, where g(x) represents the fraction of infected
people in the group with feature x. In other words, the function g is the maximal [0, 1]-valued
solution g of:

(2) (1− g(x))

∫
Ω
k(x, y) g(y)µ(dy) = γ(x)g(x) for x ∈ Ω.

Let us mention that if there exist isolated subpopulations, it is possible to have other endemic
equilibria, i.e., solutions to Equation (2) that are not equal to 0 for all x. Irreducibility
conditions on the kernel k ensure however the uniqueness of the endemic equilibrium [2, 11].
Consider the vaccination strategy, denoted by ηequi, corresponding to vaccinating a fraction
g(x) of people in the group with feature x, for all groups. In our mathematical framework, this
amounts to setting:

(3) ηequi(x) = 1− g(x) for x ∈ Ω.

The following result ensures that this strategy reaches herd immunity; see Theorem 4.1 in
Section 4 for a precise mathematical statement.

Theorem. In the heterogeneous SIS model with non-zero maximal endemic equilibrium, the
vaccination strategy ηequi is critical:

(4) Re(η
equi) = 1.
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Let us stress that implementing the critical vaccination strategy ηequi can be achieved without
estimating the transmission rate kernel and the recovery rate.

The proof of the theorem relies on the study of the spectral bound of the linearized operator
associated to equation (1) near an equilibrium. When R0 > 1, this spectral bound is non-
positive at the maximal equilibrium and positive at all other equilibria; see Proposition 4.4 (ii).
Thus, the non-maximality of an equilibrium is equivalent to its linear instability in the original
dynamics. We also prove the linear instability of the disease-free state in the modified dynamics
where we vaccinate according to a non maximal equilibrium; see Proposition 4.4 (iv).

3. Discussion

We expect the results obtained here for the SIS model to be generic, in the sense that similar
behaviours should also be observed in more realistic and complex models in epidemiology for
non-homogeneous populations: when an endemic equilibrium exists, vaccinating the population
according to the maximal endemic profile should protect the population from the disease.

We refer to [6] for a general framework for cost comparison of vaccination strategies and the
notions of “best” and “worst” vaccination strategies; see also [3, 4, 5] for further comments and
various examples of optimal vaccinations.

Consider a general cost function C which measures the cost for the society of a vaccination
strategy (production and diffusion). A simple and natural choice is the uniform cost given by
the overall proportion of vaccinated individuals:

(5) C(η) =

∫
Ω

(1− η) dµ = 1−
∫

Ω
η dµ.

We have that C(ηuni
crit) is equal to the herd immunity threshold 1− 1/R0 while C(ηequi) is equal

to the proportion of people in the endemic state in an SIS infection
∫

Ω g dµ. It is not possible
to determine which strategy is cheaper in general. However, in the following examples, we
are able to compare their costs for mixing structures that are redundant in the epidemiologic
litterature.

Example 3.1 (Homogeneous mixing). If the population is homogeneous (which corresponds
to the one-dimensional SIS model where Ω is a singleton), then the maximal equilibrium is
constant equal to 1− 1/R0. It follows that C(ηuni

crit) = C(ηequi).

Example 3.2 (Proportionate mixing structure with two subpopulations). The proportionate
mixing is a classical mixing structure introduced by [12] and used in many different epidemio-
logical models. It assumes that the number of adequate contacts between two subpopulations
is proportional to the relative activity levels of the two subpopulations. Thus individuals in
more active subpopulations will have more adequate contacts. Let us consider the simple case
where there are only two subpopulations. Then the contact matrix is given by:

K =

(
a2 ab
ab b2

)
where a and b are positive constants that correspond to the activity levels of the first and
second subpopulations respectively. Denote by µ1 and µ2 their respective relative size, suppose
that the recovery rate γ is equal to 1 for both subpopulations, and assume without loss of
generality that a ≥ b. In this case, we get that:

R0 = a2µ1 + b2µ2, Re(η) = a2η1µ1 + b2η2µ2 and C(η) = 1− (η1µ1 + η2µ2)
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for the vaccination strategy η = (η1, η2). If R0 > 1, then the (unique) non-zero equilibrium
satisfies:

(1− gi)

2∑
j=1

Ki,j gj µj = gi for i = 1, 2,

and the corresponding vaccination strategy ηequi = 1− g is given by:

ηequi =

(
1

1 + ac
,

1

1 + bc

)
,

where c ∈ [(1−R0)/a, (1−R0)/b] is the unique positive solution of the second-order equation
Re(η

equi) = 1. It is elementary to check that in this case C(ηequi) < C(ηuni), with an equality
if and only if a = b. However, the critical vaccination strategy with minimal cost, say ηopt,
corresponds to vaccinating in priority the population with the highest activity rate, that is, if
a > b:

ηopt =

(
1−min(1, b2µ2)

a2µ1
,

1

max(1, b2µ2)

)
.

Example 3.3 (Age and activity structure). In [1], Britton, Ball and Trapman study an SEIR
model, where immunity can be obtained through infection. Using parameters derived from
real-world data, these authors noticed that the disease-induced herd immunity level can, for
some models, be substantially lower than the classical herd immunity threshold 1− 1/R0. This
can be reformulated in term of targeted vaccination strategies: prioritizing the individuals that
are more likely to get infected in a SEIR epidemic may be more efficient than distributing
uniformly the vaccine in the population.

We use the same age and activity structures to determine which strategy between ηequi and
ηuni

crit is less costly. More precisely, the community is categorized into six age groups and contact
rates between them are derived from an empirical study of social contacts [16]. For the activity
structure, individuals are categorized into three different activity levels, which are arbitrary
and chosen for illustration purposes: 50% of each age cohort have normal activity, 25% have
low activity corresponding to half as many contacts compared with normal activity, and 25%
have high activity corresponding to twice as many contacts as normal activity. Note that when
the population is only structured by activity, the mixing is proportionate. Assuming that
the recovery rate is constant equal to 1, we solved numerically Equation (2) and computed
in Table 1 the cost of the uniform and the equilibrium strategies for different values of R0

and different population structures. In Table 2, the fractions of vaccinated individuals in
the different age activity groups when following the strategy ηequi. This is done by assuming
R0 = 2. Note than in this case, only three subpopulations need to be vaccinated at a level
higher than 1− 1/R0.
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Table 1. Cost of the equilibrium vaccination compared to the herd immunity
level for different population structures. Numbers correspond to percentage.

R0 = 2 R0 = 2.5 R0 = 3

C(ηequi) C(ηuni) C(ηequi) C(ηuni) C(ηequi) C(ηuni)

Homogeneous 50 50 60 60 66.7 66.7

Age structure 46.6 50 56.7 60 63.9 66.7

Activity structure 40.1 50 50 60 57 66.7

Age and activity structure 35.7 50 45.2 60 52.2 66.7

Table 2. Fraction of vaccinated individuals in different groups for the strat-
egy ηequi. The population structure includes both age and activity. Numbers
correspond to percentage. These values assume that R0 = 2, so that the uni-
form critical vaccination consists in vaccinating 50% of the population: only
three groups require more vaccine in the targeted strategy than in the uniform
strategy.

Age group Low activity Average activity High activity

0–5 years 12.0 21.4 35.3

6–12 years 18.5 31.2 47.5

13–19 years 22.9 37.3 54.3

20–39 years 29.1 45.1 62.1

40–59 years 20.9 34.6 51.4

≥ 60 years 12.4 22.1 36.2
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4. Proof

The differential equations governing the epidemic dynamics in meta-population SIS models
were developed in paper [11] in finite dimension and generalized in [2].

4.1. The heterogeneous SIS model. Let (Ω,F , µ) be a probability space, where x ∈ Ω
represents a feature and the probability measure µ(dx) represents the fraction of the population
with feature x. The parameters of the SIS model are given by a recovery rate function γ, which
is a positive bounded measurable function defined on Ω, and a transmission rate kernel k,
which is a non-negative measurable function defined on Ω2.

In accordance with [2], we consider for a kernel k on Ω and q ∈ (1,+∞) its norm:

‖ k ‖∞,q = sup
x∈Ω

(∫
Ω

k(x, y)q µ(dy)

)1/q

.

For a kernel k on Ω such that ‖ k ‖∞,q is finite for some q ∈ (1,+∞), we define the integral
operator Tk on the set L∞ of bounded measurable real-valued function on Ω by:

(6) Tk(g)(x) =

∫
Ω

k(x, y)g(y)µ(dy) for g ∈ L∞ and x ∈ Ω.

By convention, for f, g two non-negative measurable functions defined on Ω and k a kernel
on Ω, we denote by fkg the kernel on Ω defined by:

(7) fkg : (x, y) 7→ f(x) k(x, y)g(y).

We shall consider the kernel k = k/γ (corresponding to kγ−1, which differs in general
from γ−1k), which is thus defined by:

(8) k(x, y) = k(x, y) γ(y)−1.

We shall assume that:

(9) ‖k ‖∞,q <∞ for some q ∈ (1,+∞).

The integral operator Tk is the so called next-generation operator.

Let ∆ = {f ∈ L∞ : 0 ≤ f ≤ 1} be the subset of non-negative functions bounded by 1, and
let 1 ∈ ∆ be the constant function equal to 1. The SIS dynamics considered in [2] follows the
vector field F defined on ∆ by:

(10) F (g) = (1− g)Tk(g)− γg.

More precisely, we consider u = (ut, t ∈ R), where ut ∈ ∆ for all t ∈ R+ such that:

(11) ∂tut = F (ut) for t ∈ R+,

with initial condition u0 ∈ ∆. The value ut(x) models the probability that an individual of
feature x is infected at time t; it is proved in [2] that such a solution u exists and is unique.

An equilibrium of (11) is a function g ∈ ∆ such that F (g) = 0. According to [2], there
exists a maximal equilibrium g, i.e., an equilibrium such that all other equilibria h ∈ ∆ are
dominated by g: h ≤ g. It is to this maximal equilibrium that the process stabilizes when
started from a situation where all the population is infected, that is, if u0 = 1, then we have:

lim
t→∞

ut = g.
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For T a bounded operator on L∞ endowed with its usual supremum norm, we define
by ‖T ‖L ∞ its operator norm and its spectral radius is given by:

ρ(T ) = lim
n→∞

‖Tn ‖1/nL ∞ .

The reproduction number R0 associated to the SIS model given by (11) is the spectral radius
of the next-generation operator:

(12) R0 = ρ(Tk),

If R0 ≤ 1 (sub-critical and critical case), then ut converges pointwise to 0 when t → ∞. In
particular, the maximal equilibrium g is equal to 0 everywhere. If R0 > 1 (super-critical case),
then 0 is still an equilibrium but different from the maximal equilibrium g, as

∫
Ω gdµ > 0.

4.2. Vaccination strategies. A vaccination strategy η of a vaccine with perfect efficiency is
an element of ∆, where η(x) represents the proportion of non-vaccinated individuals with
feature x. Notice that η dµ corresponds in a sense to the effective population. In particular,
the “strategy” that consists in vaccinating no one (resp. everybody) corresponds to η = 1, the
constant function equal to 1, (resp. η = 0, the constant function equal to 0).

Recall the definition of the kernel fkg from (7). For η ∈ ∆, the kernel kη = kη/γ has
finite norm ‖ · ‖∞,q, so we can consider the bounded positive operators Tkη and Tkη on L∞.
According to [2, Section 5.3.], the SIS equation with vaccination strategy η is given by (11),
where F is replaced by Fη defined by:

(13) Fη(g) = (1− g)Tkη(g)− γg.

We denote by uη = (uηt , t ≥ 0) the corresponding solution with initial condition uη0 ∈ ∆. We
recall that uηt (x) represents the probability for an non-vaccinated individual of feature x to
be infected at time t. We define the effective reproduction number Re(η) associated to the
vaccination strategy η as the spectral radius of the effective next-generation operator Tkη:

(14) Re(η) = ρ(Tkη).

For example, for the trivial vaccination strategies we get Re(1) = R0 and Re(0) = 0.
We denote by gη the corresponding maximal equilibrium. In particular, we have:

(15) Fη(gη) = 0.

In particular, we have:
Re(1) = R0 and g = g1.

4.3. Critical vaccination strategies. If R0 ≥ 1, then a vaccination strategy η is called
critical if it achieves precisely herd immunity, that is Re(η) = 1.

As the spectral radius is positively homogeneous (that is, ρ(λt) = λρ(T ) for λ ≥ 0), we also
get, when R0 ≥ 1, that the uniform strategy that corresponds to the constant function:

ηuni
crit =

1

R0
1

is critical, as Re(ηuni
crit) = 1. This is consistent with results obtained in the homogeneous model.

As hinted in [10, Section 4.5] for vaccination control of gonorrhea, it is interesting to consider
vaccinating people with feature x with probability g(x). This corresponds to the strategy based
on the maximal equilibrium:

ηequi = 1− g.
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The following result entails that this strategy is critical and thus achieves herd immunity.
Recall that in the (infinite dimensional) SIS model (10) on the probability space (Ω,F , µ) the
recovery rate function γ is positive and bounded, the transmission rate k is non-negative and
the norm ‖k ‖∞,q of the kernel k = k/γ is finite for some q ∈ (1,+∞).

Theorem 4.1 (The maximal equilibrium yields a critical vaccination). Consider the SIS
model (10) under the boundedness assumption (9). If R0 ≥ 1, then the vaccination strategy
ηequi is critical, that is, Re(ηequi) = 1.

This result will be proved below as a part of Proposition 4.4.

4.4. Proof of Theorem 4.1. For an operator A, we denote by A> its adjoint. We first give
a preliminary lemma. For the convenience of the reader, we only use references to the results
recalled in [2] for positive operators on Banach spaces. In particular, we shall use that if k and
k′ are two (non-negative) kernels on Ω with finite norms ‖ · ‖∞,q for some q ∈ (1,+∞), then
we have that:

(16) k ≥ k′ =⇒ ρ(Tk) ≥ ρ(Tk′),

see for example [2, Theorem 3.5(i)] as the operator Tk−Tk′ is positive. We shall also used that
for two bounded operators T and S on L∞:

(17) ρ(TS) = ρ(ST ).

We first state two technical lemmas.

Lemma 4.2. Let k be a non-negative kernel on Ω such that ‖ k ‖∞,q is finite for some q ∈
(1,+∞) and and consider the positive bounded linear integral operator Tk on L∞. If there
exists g ∈ L∞

+ , with
∫

Ω g dµ > 0 and λ > 0 satisfying:

Tk(g)(x) > λg(x), for all x such that g(x) > 0,

then we have ρ(Tk) > λ.

Proof. We simply write T for Tk. Let A = { g > 0 } be the support of the function g. Let T ′ be
the bounded operator defined by T ′(f) = 1AT (1Af). Since T ′(g) = 1AT (1Ag) = 1AT (g) >
λg, we deduce from the Collatz-Wielandt formula [2, Proposition 3.6] that ρ(T ′) ≥ λ > 0.
According to [2, Lemma 3.7 (v)], there exists v ∈ Lq+ \{0}, seen as an element of the topological
dual of L∞, a left Perron eigenfunction of T ′, that is such that (T ′)>(v) = ρ(T ′)v. In particular,
we have v = 1A v and thus

∫
A v dµ > 0 and

∫
Ω vg dµ > 0. We obtain:

(ρ(T ′)− λ) 〈v, g〉 = 〈v, T ′(g)− λg〉 > 0.

As T ′ = Tk′ with k′ = 1Ak1A ≤ k, we deduce from (16) that ρ(T ) ≥ ρ(T ′) > λ. �

Lemma 4.3. Consider the SIS model (10) under the boundedness assumption (9). Let η, g ∈ ∆.
If Fη(g) ≥ 0, then we have g ≤ gη.

Proof. Consider the solution ut of the SIS model ∂tut = Fη(ut) with vaccination η and initial
condition u0 = g. According to [2, Proposition 2.10], this solution is non-decreasing since
Fη(g) ≥ 0. According to [2, Proposition 2.13], the pointwise limit of ut is an equilibrium. As
this limit is dominated by the maximal equilibrium gη and since ut is non-decreasing, this
proves that g ≤ gη. �

The next result characterizes the maximal equilibrium g among all equilibria by various
spectral properties; Theorem 4.1 may be viewed as a corollary to this characterization. Recall
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that R0 = Re(1), and that the vector field F is defined by (10). Let DF [h] denote the bounded
linear operator on L∞ of the derivative of the map f 7→ F (f) defined on L∞ at point h:

DF [h](g) = (1− h)Tk(g)− (γ + Tk(h))g for h, g ∈ L∞.

Let s(A) denote the spectral bound of the bounded operator A, see Equation (33) in [2].

Proposition 4.4 (Equivalent conditions for maximality). Consider the SIS model (10) under
the boundedness assumption (9). Let h in ∆ be an equilibrium, that is, F (h) = 0. The following
properties are equivalent:

(i) h = g,
(ii) s(DF [h]) ≤ 0,
(iii) Re((1− h)2) ≤ 1.
(iv) s(DF(1−h)[0]) ≤ 0.
(v) Re(1− h) ≤ 1.

Furthermore, g = 0 if and only if R0 ≤ 1, and if g 6= 0, then it is critical: Re(1− g) = 1.

Remark 4.5 (On stability). From a dynamical systems point of view, this proposition links
together two different stability properties. The (classically equivalent) conditions (ii) and (iii)
state that for the original dynamics given by (11) with vector field F , the equilibrium h is not
linearly unstable. Similarly, conditions (iv) and (v) both state that in the vaccinated dynamics
given by the modified vector field F1−h defined by (13), the disease-free equilibrium 0 is not
linearly unstable.

In particular, in the original dynamics given by (11), equilibria that are not maximal are
necessarily linearly unstable.

Proof. Let h ∈ ∆ be an equilibrium, that is F (h) = 0.

The equivalence between (iv) and (v) is a direct consequence of [2, Proposition 4.2].
Let us show the equivalence between (ii) and (iii). According to the same [2, Proposition 4.2],

s(DF [h]) ≤ 0 if and only if:

ρ (Tk) ≤ 1 with k(x, y) = (1− h(x))
k(x, y)

γ(y) + Tk(h)(y)
·

Since F (h) = 0, we have (1− h)/γ = 1/(γ + Tk(h)). This gives:

(18) k(x, y) = (1− h(x))
k(x, y)(1− h(y))

γ(y)

and thus Tk = M1−h Tk/γM1−h, where Mf is the multiplication operator by f . Recall the
definition (14) of Re. We deduce from (17) that:

(19) ρ (Tk) = ρ
(
Tk/γM(1−h)2

)
= Re((1− h)2).

This gives the equivalence between (ii) and (iii).

We prove that (i) implies (v). Suppose that Re(1 − h) > 1. Thanks to (17), we have
ρ(M1−hTk/γ) = ρ(Tk/γM1−h) = Re(1− h) > 1. According to [2, Lemma 3.7 (v)], there exists
v ∈ Lq+ \ {0} a left Perron eigenfunction of T(1−h)k/γ , that is T >(1−h)k/γ(v) = Re(1− h)v. Using
F (h) = 0, and thus (1− h)Tk(h) = γh, for the last equality, we have:

Re(1− h) 〈v, γh〉 = 〈v, (1− h)Tk/γ(γh)〉 = 〈v, γh〉 .
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We get 〈v, γh〉 = 0 and thus 〈v,1A〉 = 0, where A = {h > 0 } denote the support of the
function h. Since T >(1−h)k/γ(v) = Re(1− h)v and setting v′ = (1− h)v (so that v′ = v µ-almost
surely on Ac), we deduce that:

T >k′/γ(v′) = Re(1− h)v′,

where k′ = 1Ac k 1Ac . This implies that ρ(Tk′/γ) ≥ Re(1 − h). Since k′ = (1 − h)k′ and
k − k′ ≥ 0, we get that Tk/γ − Tk′/γ is a positive operator. Using (16) for the inequality as
(1−h)k′/γ ≤ (1−h)k/γ, we deduce that ρ(Tk′/γ) = ρ(M1−hTk′/γ) ≤ ρ(M1−hTk/γ) = Re(1−h).
Thus, the spectral radius of Tk′/γ is equal to Re(1−h). According to [2, Proposition 4.2], since
ρ(Tk′/γ) > 1, there exists w ∈ L∞

+ \ {0} and λ > 0 such that:

Tk′(w)− γw = λw.

This also implies that w = 0 on A = {h > 0 }, that is wh = 0 and thus wTk(h) = 0 as
Tk(h) = γh/(1 − h). Using that F (h) = 0, Tk(w) = Tk′(w) = (γ + λ)w and hTk(w) = 0, we
obtain:

F (h+ w) = w(λ− Tk(w)).

Taking ε > 0 small enough so that εTk(w) ≤ λ/2 and εw ≤ 1, we get h + εw ∈ ∆ and
F (h+ εw) ≥ 0. Then use Lemma 4.3 to deduce that h+ εw ≤ g and thus h 6= g.

To see that (v) implies (iii), notice that (1−h) ≥ (1−h)2, and then use (16) to deduce that
ρ(Tk(1−h)) ≥ ρ(Tk(1−h)2) and thus Re(1− h) ≥ Re((1− h)2).

We prove that (iii) implies (i). Notice that F (g) = 0 and g ∈ ∆ implies that g < 1. Assume
that h 6= g. Notice that γ/(1−h) = γ+Tk(h), so that γ(g−h)/(1−h) ∈ L∞

+ . An elementary
computation, using F (h) = F (g) = 0 and k defined in (18), gives:

Tk

(
γ
g− h
1− h

)
= (1− h)Tk (g− h) = γ

g− h
1− g

=
1− h
1− g

γ
g− h
1− h

·

Since h 6= g and h ≤ g, we deduce that (1−h)/(1−g) ≥ 1, with strict inequality on { g− h > 0 }
which is a set of positive measure. We deduce from Lemma 4.2 (with k replaced by kγ) that
ρ (Tk) > 1. Then use (19) to conclude.

To conclude notice that g = 0⇐⇒ R0 ≤ 1 is a consequence of the equivalence between (i)
and (v) with h = 0 and R0 = Re(1).

Using that F (g) = 0, we get Tk(g) = γg/(1− g). We deduce that Tk(1−g)/γ(Tk(g)) = Tk(g).
If g 6= 0, we get Tk(g) 6= 0 (on a set of positive µ-measure). This implies that Re(1− g) ≥ 1.
Then use (v) to deduce that Re(1− g) = 1 if g 6= 0. �
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