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Abstract. Consider the catalytic super-Brownian motion X¢ (reactant) inR?, d < 3, which
branching rates vary randomly in time and space and in fact are given by an ordinary su-
per-Brownian motion ¢ (catalyst). Our main object of study isthe collision local time L =
Lio.xe1(d(s, x)) of catalyst and reactant. It determines the covariance measure in the mar-
tingale problem for X¢ and reflects the occurrence of “hot spots’ of reactant which can be
seen in simulations of X2. In dimension 2, the collision local time is absolutely continuous
intime, L(d(s,x)) = ds K,(dx). At fixed time s, the collision measures K, (dx) of g,
and X¢ have carrying Hausdorff dimension 2. Spatial marginal densities of L exist, and,
via self-similarity, enter in the long-term random ergodic limit of L (diffusiveness of the 2-
dimensional model). We also compare some of our results with the case of super-Brownian
motions with deterministic time-independent catalysts.

1. Introduction

The ordinary super-Brownian motion ¢ = (g; , ¢ > 0) in Euclidean space R? can
be obtained as a limit of branching particles systems. In such branching particles
system, the particles evolve according to independent Brownian motionsin R¢, and
additionally, with constant rate y > 0, each particle splitsindependently into 2 or
0 particles with equal probability (thisisa critical binary branching mechanism).
We now interpret o as a catalyst process. o, (dx) is the amount of catalytic
“particles” at timet in the volume element dx of R?. We then let asuper-Brownian
motion X¢ = (X?, + > 0) evolve in this catalytic random medium o. Intuitive-
ly X¢ describes reactant “particles’ which are evolving according to indepen-
dent Brownian motions and which are performing critical binary branching, but at
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random time-space varying rates given by o, (dx). In fact, the rate of branching of
an intrinsic reactant particle with Brownian path W is controlled by the collision
local time L, w) of o and W, defined as the measure

Lo, wi(ds) = LIIB\ ds /Qs(dy)p(& y = W),
where p isthe standard heat kernel
plt,x) = [2m]*"/2exp[—|x|2/2r], (t,x) € (0,00) x R (1)

According to [EP94], this collision local time L, w) makes sense non-trivially in
dimensionsd < 3, and vanishesfor d > 4. In other words, for d > 4, the Brownian
reactant particle does not hit the catalyst ¢ and X¢ degenerates to the heat flow.
Thus we restrict our attentiontod < 3.

Catalytic superprocesses had been studied in various settings, see, for instance,
[F1e90], or, for arecent survey, [DFOQ]. The catalytic super-Brownian motion X¢
was constructed in [DF97a]. For simplicity, we let ¢ and X¢ start at time O with
L ebesgue measures ¢ and ¢, respectively. In[FK99] it was shown that in dimen-
sionsd = 2, 3, given the catalyst g, the reactant X¢ has ailmost surely a density
field &9 :

X2 (dx) = £°(x)dx, t>0.

Moreover, off the closed time-space support of the catalyst o (whichisal ebesgue
zero set), £¢ can be chosen as a C*°-function that solves the heat equation. This
wasintuitively expected from the resultson catal ytic super-Brownian motion with a
point catalyst [FL95] and with higher-dimensional deterministic time-independent
catalysts [Del96].

Simulations of (g, X9) indimension d = 2 (see the figure in [FK99]) confirm
the heurigtic picture one has. Namely, at latetimes T,

— thereactant X é} is rather uniform outside of the catalyst o7,

— it is absent inside of the clumps of o7 (since a huge rate of branching causes
mainly killing),

— but occasionally also some hot spots of the reactant occur in the interface of o7
and X ? , that isin the boundary region of the catalytic clumps.

But so far the investigations on the catalytic super-Brownian motion X¢ do not
reflect anything on the hot spots seen in the pictures. Our approach to gain some
information about them is to study the collision local time L := L, xej of ¢ and
X¢ defined as the limit of

Lf(d(s, x)) := ds os(dx) [ XS (dy) p(e, x — y), @)
ase | 0.

Actually thereisafurther motivation to study thiscollisionlocal time L, xej. It
occursindeed in the description of the martingale problem for the process X© (see
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Corollary 4 below). For martingal e problems of catalytic super-Brownian motions,
see also [DF94, Del96, Led97]. Moreover, the study of collision local timesis a
rapidly developing area (see, e.g., [EP99]).

Let us briefly present the results. We prove that in all dimensions of non-trivial
existence of X¢ the collision local time L = L, xe of catalyst ¢ and reactant X
makes non-trivially sense (see Theorem 3 below). This non-trivial existence of L
reflects the high fluctuations of X¢ in the interface of catalyst and reactant, seen
as hot spots in simulations. Of course, in dimension one, L(d(s, x)) simplifies to
ds 6,(x) Xy (dx) where {6,(x) : s > 0, x € R} isthe jointly continuous density
field of o (cf. [KS88]).

Our main result however isthat for d =2 and for fixed times s > 0, the collision
measures

Ky (dx) := lim }‘/ L(d(s,x))
[(s—&)4 5]

el0 &

of o, and X¢ exist and have carrying Hausdorff dimension 2. Note that with the
approximation of L by L? from (2), K,(dx) isalso theformal limit of the approx-
imated collision measures g, (dx) fX?(dy) p(e,x —y) ase | 0. Moreover, there
isameasurable version of thefamily {K; : s > 0} of these collision measures such
that the representation Li, xej(d(s, x)) = ds K,(dx) holds (Theorem 8). Note
that thisisin contrast, for instance, to the (one-dimensional) single-point catalytic
model of [DF94], say X%, wherethe collision local time Ly, xo0(d(s, x)) hasthe
form @ (ds) §o(dx) with ¢ asingular measure on R with full carrying Hausdorff
dimension ([DFLM95, FL95]).

Again in dimension 2, the marginal measures L, xe] ([0, T] x (~)) are abso-
lutely continuous. Viaself-similarity of L, xej, which follows from the self-simi-
larity of (o, X©), thisimpliesthat 7=1L([0, T] x (-)) has arandom ergodic limit
asT 1 oo (Theorem5). Thisreflectsthe diffusivefeaturesin thelong-term behavior
ind = 2 (for the long-term limit of X%, see [FK99]).

It remains open whether aso in dimension 3 collision measures exist or some
absolute continuity results hold, since our L2—approach fails in this case (see, for
instance, Remark 6 below).

We will compare our results on the absolute continuity of the spatial marginal
measures Lo, xe1 ([0, T] x (-)) also with the case of a catalytic super-Brownian
motion X? in R? where the catalyst o is a deterministic time-independent mea-
sure. Clearly, if o issingular (aswe mentioned already thecaseo = §pind = 1),
the spatial marginals of L = L[4, x-] are almost surely singular, too. But if o is
absolutely continuous, then the spatial marginals of Lis, xo ([O, T] x (-)) are ab-
solutely continuous if and only if d < 3 (Theorem 9). Thisisin contrast to our
aforementioned result (d = 2) where the random catalyst ¢ is singular, but the
spatial marginals L, xe] ([O, T] x (-)) are absol utely continuous.

Concerning the collision local time L[,,,] between asuper-Brownian motion o
and ameasure o, or the collision local time L, . between ¢ an independent copy
o’ of o, werefer to the discussion in Remarks 12 and 13 below, respectively.
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The outline of the paper is asfollows. In Section 2 we introduce formal defini-
tions of the processes ¢ and X ¢ and state the results on existence and properties of
the collision local time between p and X¢. Subsection 2.6 contains adigression to
related models. The following four sections are then devoted to the proofs of our
four theorems. In an appendix we collect some results on ordinary and catalytic
super-Brownian motions used in the proofs.

2. Statement of results
2.1. Notation

The lower index + on a set will always refer to the collection of al its nonnega-
tive members. Similarly, f isthe nonnegative part of f. The supremum normis
denoted by || - || . L€t ¢ always refer to a (finite) constant which value may vary
from place to place. ¢ with an index instead denotes a specific constant.

We denote by B(E) the space of al real Borel measurable functions defined on
aPolish space E. But we also denote by B(E) the Borel o—field of E.

For afixed constant ¢ > d, introduce the reference function ¢, € B, RY) :

Pg(x) = [1+ lez]_q/z, x e R4,

Set B¢ = {f € BRY);
in B(RY).

If v is a Radon measure on R¢, we write (v, f) for [v(dx) f(x) (if the inte-
gral makes sense). Let M, denote the set of all Radon measures v on R¥ such
that (v, ¢,) < oo. This space of tempered measures is endowed with the coarsest
topology such that the maps v — (v, f) are continuous for al continuous f in
bB with compact support and for f = ¢, , getting a Polish space. Since g > d,
L ebesgue measure belongsto M, .

We consider the Polish space C := C(R4., M) of @l continuous paths from
R, to M, equipped with the topology of uniform convergence on compacta.

Let (P,, t > 0) denote the semigroup of standard heat flow on R [recall (1)]:

| /94| o, < oo} and write b5 for the set of bounded f

PUAW = [dy plex=fo) 120 feBL®.
2.2. Catalyst and reactant process

We start by introducing the catalyst process.

Definition 1 (Catalyst process). Let y > Oand v € M, . There exists a unique
probability measure, on (C, B(C)), suchthat thecoordinateprocesso = (o;, 1 >
0) on C is a super-Brownian motion with constant branching rate y and starting
measure v. That is, ¢ is a continuous time-homogeneous strong Markov process
with the following properties:

— P,-almost surely, oo = v,
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— forevery f € BY, t > r > 0, wehave
Ev[e_(g”f) ‘ o(0s. s €10, r])] = g (er wt-n)

where w is the unique nonnegative solution on R, x R? of the log-Laplace
equation

t
w(t,x) +y fo ds P[w’(t — 1) = P Lf] ().

We write P for P, inthe case v = ic¢, whereic > 0 and ¢ is the (normalized)
Lebesgue measure on RY. O

From now onweassumethat d < 3, andthat ¢ isdistributed accordingto P (see
[FK99] for amore general class of starting measuresfor the catalyst process). Next
we recall the definition of the catalytic super-Brownian motion X¢ in the random
medium o (see [DF974] for details).

Definition 2 (Catalytic super-Brownian motion). Fix (r, u) € Ry x M, and
a constant k > 0. For convenience, set C' := C([r, o0), M,). There exists a
(measurable) probability kernel ¢ — P7,, from (C, B(C)) to (C’, B(C")) such that
the coordinate process X¢ = (X7, t > r) onC’ is, under P ,, a super-Brownian
motion in the catalytic medium o. That is, P-a.s. under P?,,, the process X¢ is
conti nuous time-inhomogeneous Markov with the following properties:

- PP -almost surely, X7 = p,

— forevery f € BY ,t > s > r, we have

E2, [e—<xf’,f>

o(X§, uelrn s])] — (¥ u0),

where v; is the unique nonnegative solution on [r, co) x R¢ of the catalytic
log-Laplace equation

v(s,x)+xfoodu/ Ay) Pl —5.x — V2 y) = T, 3

with J(s) := Ly=s) Pi—s[f].
Often, we also pass from the quenched distributions P? . to the annealed laws
E[Pru]. o
2.3. Existence of callision local time of catalyst and reactant

For our constant ¢ > d, we introduce the function space H? :=  J;-q Hj. , where
Hi = g € BR: x RY); g(t,) =01 = T, llg/dylow < o0},

with g/Pqllcc = SUP(s, x)eR ;. x R4 1g (s, X)| /g (x).

Recall the approximated collision local time L¢ of ¢ and X¢ introduced in
(2). We are now ready to state our first result: the existence of the collision lo-
cal time L = Ly xej Of 0 and X in dimension d < 3. Recall that d < 3 and
(r,n) e Ry x M,
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Theorem 3 (Collision local time). There exists a random variable denoted by
L = Li, xe defined on (C x C’, B(C x C")), taking values in the set of Radon
measures on [r, co) x R with the following properties:

(a) (Tempered measure) For every T > r, we have E[P7 (L, 1[, 71 ¢,)] < oo.
(b) (Existence via conver gence) For every ¢ € H%,

lim (L%, ¢) = (L,p), E[P?,]-as

(©) (Regularity) For every ¢ € H%, and E [P}, ]-a.s, the process ((L, 1,.1¢),
¢t > r iscontinuous and adapted to the filtration

(.7-", =o(@) Vo (Xg, s € [r, t]), t > r).

(d) (Moments) For every m > 1,9 € H%, P-as,

Er . |:|:f L(d(s, x)) (p(s,x)] i|
[r,00) x R4

m k
_m Zlk_l, S TT ). @
k= 1

et 21 =1
nq+-+np=m

where the functions x,,, n > 1, belong to H¢ and are recursively defined by
o0
Xn(s,Xx) = K/ du/ w(dy) pu —s,x —y)

n—1
[in(u,y) xni(u,y)}, n>2, (5)

i=1

with initial condition
o0
xa(s, x) = / duf W(dy) pu —s,x — ) p(u,y), (s,x) € Ry x RY.
N

The proof of this theorem is postponed to Section 3.

As an application, we can now describe the covariance measure of the mar-
tingale measure associated with X¢. Let C;,z denote the set of bounded functions

¢ € B(R4 x RY) such that the partial derivatives %¢ and 851,28“;/, exist, are continu-
ous and bounded. It is easy to check that under E [P7 , ] the process (Mg, , t > r)
defined by

! 0 1
Moy, = (X7, 0®) — (X7, 0(r) — / ds (Xf, a—f(s)+§A¢(s)>,
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isan (F;, t > r)-martingale [note that 7, = o () V o (X,)]. Thanks to the Mar-

kov property of X¢ (given g), and the moment formula (A.5) for X¢ stated in the

appendix, we get that for ¢, ¥ in CI}’Z, P-as. forals >randr > r,

SAL
Eg,u [Mﬁor,sM‘/fr,t] = 2 /ﬂ(dx)/ du/ u(dy)
x pu—r,x —y)ou,y)¥u,y). (6)

The functional M : ¢ +— M defined on C,}’z can be extended to an orthogonal
martingale measureon HY. Let (M) denoteits covariance measure. Now we show
how (M) can be expressed in terms of the collision local time L = L[, xe] . Recall
that d < 3andthat (r, u) € Ry x M.

Corollary 4 (Covariance measure). For every ¢ € HY, E[P?,]-as. for every
t > r, we have

(Mg),, = ZKf L(d(s, ) ¢%(s, ). (M

[r.t]xRd

Proof. Using the Markov property of X¢ (given ¢) and an obvious extension of
the second moment formula (6), we obtain for ¢ € H?, P—as.fordlt > s > r,

t
B [0.0? | 7] = Mg 4 26 [x0@0 [
N

X /Qu(dy) plu—s,x —y) 9>, y).

Notice that

( f L(d(s, ) 92(s, y), 1 > r)
[r,z]de

isin¢ non-decreasing and continuous, isadaptedto (F; , ¢ > r) , andzerofors = r.
Then we deduce from the moment formula (4) withm = 1, that

<<M(p)r,l - ZK/ L(d(s, y)) %5, y), t = r)
[rf] xR

is a continuous martingale under E [P?,, ] with bounded variation starting at time
t = r from 0. This martingale is then constant and, in fact, equal to 0, giving the
claim (7). ]

2.4. Collision local timein dimension two

We now state results for the collision local time L = L, xej in the “critical” di-
mension d = 2. For simplicity, we focus on the situation » = 0 and i = iy where
iy > 0. For convenience, we introduce the following abbreviation for the annealed
law:

P:=E [PO,irZ] = Eir [PQ,',[] (where ic, iy > 0).
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Theorem 5 (Two-dimensional collision local time). Let d = 2.

(a) (Spatial L2—marginal densities) For every t > s > 0and z € R?,

(f L(d(r, y)) ple,z—y), € > 0)
[s,/] xR

convergesin L2(P) as ¢ | 0 to arandom variable denoted by Ms,1(2). It has
expectation

E[Ms1@)] = icir (t —9),

and itsfinite variance is non-zero provided that s < ¢.
(b) (Spatial absolute continuity) For r > s > 0, we have the representation

L([s,t] X dx) = A5, q(x) dx, P-as,

where we take a measurable version, with respect to the o—field B(R?) x F;,
of the family {A(5.(2) : z € R?} definedin (a).
(c) (Self-similarity) Under P, the laws of the scaled collision local times

k2L (k() x kY2())

are independent of the scaling factor k > 0.
(d) (Random ergodic limit) The following convergencein M, holdsin law with
respectto P :

lim T7L([0, T] x ()) = Apo,13(0) €

(with ¢ the Lebesgue measure and 0 < Var[A[0,1(0)] < 00).

Consequently, in dimension 2, the spatial marginal measures L ([s, ] x (-)) of
the collision local time L[, xe) of catalyst and reactant have non-degenerated ran-
dom densities A[,,7 (z) at each fixed site z (provided that s < ). Moreover, A[o 11 (0)
enters asrandom factor of Lebesgue measurein the long-term ergodic limit. Recall
that this reflects diffusive features of the hot spots.

Remark 6 (Dimension three). The L2(P)—convergence in part (a) does not hold
for d = 3. Infact, in the three-dimensional case an infinite term would be involved
in our calculations, seethe remark following (19) in the proof of Lemma 15 below.
Recall ontheother handthatindimensionone, L, xej(d(s, x)) = ds 6, (x)X%(dx),
where (s, x) — 6;(x) isthejointly continuous density field of o (see [DFR91] for
the absol ute continuity of the measures X? for fixed s > 0).

Remark 7 (Regularity). It isan open problem whether the spatial collision density
functions z — A[,,/(z) have some regularities properties in the space variable z.
Note also that the exceptional set in the P—a.s. statement in (b) depends on [s, £].
One would aso like to know whether this situation can be improved.

The statement (c) follows from the self-similarity of (o, X?) by standard argu-
ments (compare with [DF97b, Subsections 4.1 and 4.2]). Otherwise the proof of
Theorem 5 will be provided in Section 4.
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2.5. Existence of collision measures in dimension two

Theassumptionsimposed in the beginning of Subsection 2.4 arestill inforce. Using
an L2—approach, we prove the existence of collision measuresin dimensiond = 2.
For this purpose, fix a function f € Li(R) such that f = 0 outside a compact
subset of R and [du f(u) = 1.Forz, e > 0, set

1
fer(s) = —f(s_l(s —t)), seR. ®)
&

Note that the finite measures 1g, f:(s)ds on R converge weakly to the Dirac
measure at ¢ as ¢ decreases to 0. We aso define measures K} in M, by

(K. g) = f L(dGs. 1)) 9O for(s). e BL. 9
R, xRR?2

Theorem 8 (Two-dimensional collision measures). Let d = 2.

(a) (Existence of collision measures): For eacht > 0thereisarandommeasure
K;in M, suchthat for any ¢ € Bi , the following L?(P)—convergence holds:

K¢, — (K, ).
( w)gw(ch)

(b) (Carrying Hausdor ff dimension): For each + > O fixed, K; has carrying
Hausdor ff dimension two, P—a.s.

(c) (Representation of collision local time): To the family K = {K, : ¢t > 0} of
random measures of (a), thereisan (F;,t > 0)—adapted version denoted by
the same symbol K, such that

L(d(s,y)) = ds K;(dy), P-as.

Note that the closed support of o, is a supporting set of K. Therefore K is
supported by a Lebesgue null set, although its carrying Hausdorff dimensioniis 2.

The proof of Theorem 8 is given in Section 5 below. As in Remark 6, the
L?(P)—approach to prove part (a) failsfor d = 3 (see Remark 21).

2.6. Digression

So far we restricted our attention to the model of a super-Brownian reactant X?
with a super-Brownian catalyst 0. What about collision local time questions for
related catalytic models?

At the first place we think of a catalyst described by a time-independent de-
terministic measure o (dx) on R. Intuitively, the corresponding catalytic SBM
X% =(X7,t>0)in R? describes acloud of particleswhich are evolving accord-
ing to independent Brownian motions and which are performing a critical binary
branching whose rate is o (dx) at site x. We refer to [Del96] for the construction
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and properties of such process, and keep the same framework. In particular, we
assumethereexistsa g € (0, 1), such that

Sjp Ldy)<oo’

—242
reRd JB(.D) |x — y|dT2tE

where B(x, 1) denotestheball in[R? centered at x, with radius 1. Thiscondition on
o israther genera. Inparticular if d = 1, al finitemeasures o satisfy thiscondition
(with 8 = 1/2 for example), as well as some locally infinite measures o (dx) as
|x|7%dx, with0 < @ < 2. Furthermore in al dimensions the L ebesgue measure
satisfies this condition with 8 € (0, 1).

Let M denote the space of finite Radon measures on R? endowed with the
topology of weak convergence. We write P for the law of the catalytic super-
Brownian motion X started from X§ = n € M;s . Recall that X7 isacontinuous
Mi—valued process. Aswe stick to the presentation of [Del96], we will keep the
Mi—version of X instead of working with an M ,—version. The existence of col-
lisonlocal time L = L[4, xo] Of the catalyst o and the reactant X° was proved in
the sense of an L“-imit (u > 0), as ¢ decreasesto 0, of

L(d(r,y)) = dro(dy) [ X7 (dx) p(e, x — ).

Recall that the collision local time also describes the covariance measure of the
martingale measure associated to X° (see Section 9 in [Del96]).

The moment formula for L can be deduced from the moment formula for L¢
(see Lemma 5.2 and equation (32) in [Del96], with ¢ = o and V,(¢) = L?) as¢
decreasesto 0. In particular, for ¢ € b5 we have

E7[(L. plie)] = E;;[ [rtts.nx 0 ¢(y>]

t
= /n(dX)/ dr /a(dy)p(r,x - »e(y).

If L([s, t] x dy) isas. absolutely continuous, then the latter first moment formula
impliesthat o (dy) [n(dx) f; dr p(r, x —y) isalso absolutely continuous. Thereis
no choice but to consider diffuse catalystso . Thisdiffersfrom the previous section
where the random and time-dependent catalyst ¢ is singular for d = 2, neverthe-
less the spatia absolute continuity property holds for the collision local time. If
o(dy) = g(y) dy, itiseasy to check that the collision local timeisin fact

L(d(r, y)) = dr g(y) X7 (dy). (10)

Therefore the absolute continuity of the spatial marginal measures is directly
implied by the absolute continuity of the weighted occupation time measures
f!dr X2. The main result of this subsection is:

Theorem 9 (Weighted occupation time measures). Assume d < 3 and that the
catalyst o is absolutely continuous. Let ¢ > s > Oand n € Mjs.
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(a) (L?—occupation densities): For almost all z € R?, as ¢ decreasesto 0,

t
</ dr/ J(dy) p(e.z —y), 8>0)

convergesin L2(P‘,7) to a random variable A ; (z) with expectation

t
E) AMsi1(2) = /n(dX)/ dr p(r, x —2),

and non-zero finite variance provided that n = 0 and o # 0.
(b) (Absolute continuity): There exists a measurable version of z — A[,/(2)
such that Py —a.s. we have

t
f dr X7 (dz) = Ags.(2) dz.

The proof of thistheorem isgivenin Section 6. Asadirect conseguence of (10)
and this theorem, we have

Corollary 10 (Spatial marginals of the collision local time). Suppose d < 3
and that ¢ is absolutely continuous. Let + > s > 0and n € M;. The random
measure L ([s, ] x (-)) on R is absolutely continuous P7—a.s.

Remark 11 (Singularity of spatial marginalsin high dimensions). Note that if
o = y£ withtheconstant y > 0 and ¢ the Lebesgue measure on R?, then X7 is
the super-Brownian motion ¢ of Definition 1, and by (10) we have L(d(r, y)) =
y dr o, (dy). It iswell-known that the weighted occupation time measures f; dr o,
are singular if d > 4. This suggests that for d > 4 and genera catayst o, the
measures Li,, x-]([s, t] x (-)) on R? are singular, too.

We end our discussion by some remarks related to non-catalytic models. ¢

Remark 12 (Callision local time between ¢ and a measure u). The absolute con-
tinuity of the spatial marginal measures of the collision local time L, ) of a
super-Brownian motion ¢ in R? and adeterministic measure . on R? (which does
not act as a catalyst) holdsif and only if 4 < 3. Infact, L, ,) isthe measure I";,
in [Del96, Section 5] in the case of the catalytic measure ¢. Then computing the
first moment of L, .1 ([s, t] x (-)), one checks as in the proof of Theorem 9 that
the spatial absolute continuity of L[, . holds as. if and only if w is absolutely
continuous. If 1(dy) = A (y) dy, then we have Ly, ;1 (d(r, y)) = dr o, (dy) h(y)
as. Therefore the spatial absolute continuity property istrue for L, , if it holds
for /! dr o, thatisifd < 3. 3

Remark 13 (Collision between independent super-Brownian motions). Thecol-
lis-ion local time L[, ./ between two independent super-Brownian motions o and
o' inR? exists for d < 5 (see [BEP91]). The classical L2—method can be used to
prove that these collision local times enjoy the spatial absolute continuity property
if d <2, butitfalsford > 3. Werefer to [Myt98] for existence of collision mea-
sures between independent super-Brownian motions and more general independent
SUpErprocesses. o



400 J.-F. Delmas, K. Fleischmann

3. Existence of coallision local time [proof of Theorem 3]

Recall that d < 3. First of all we state the following lemma.

Lemma 14 (Approximated moment increments). For every m > 1, r > 0,
nweM,,T=>0¢ e (0,1/4), P-as. thereexistsafinite constant M,, (depending
on o) such that for every ¢ € Hﬁq, '>1r>0,1>¢ >¢>0,

€2 [0 0107 ] = M /92|22 [l = (1 t0g. (11— )]
(11)

’ 2m
ES,IL[[(LS,@—(LK@] ] < M [o/¢2g]2 [l —'ff

(1+ log, (1/le — e/|))]2m CP)

Based onthislemma, the proofsof Theorem 3 (b) and (c) are similar to the proof
of Proposition 5.1 based on Lemma 5.2 in [Del96] with the obvious changes and
areleft tothereader. Claim (d) isnot stated in Proposition 5.1, but it isaby-product
of itsproof [takethelimitin (32) there]. Eventually, part (@) of Theorem 3isproved
by using the monotone convergence theorem with the moment formulas (4) and
(A.2) (in the appendix) with m = 1 and the inequality (A.1).

Proof of Lemma 14. Fix u € My, & € (0,1/4), and T > r > 0O (otherwise the
moments disappear). We will verify (11); the proof of (12) issimilar and isleft to
the reader.

Note first that for fixed ¢ > 0,

up &g (y) ple, x —y)
xeR4, yeRd ¢q (x)

Letgp e szf’. Since o isP—as. acontinuous M, ,—valued path, it is then clear that
the functions (s, x) > [o,(dy) p(e, x — y) ¢(s, y) belong to H? . Thanks to the
remarks at the beginning of Subsection A.1 (in the appendix), we seethat, for fixed
t,t', g, thefunction

(s,x) — Jo(s, x) :=/ du/dzp(u—s,x—z)

/Qu(dy) pe,z—y) o, y) 1y w)

is well-defined and belongs to H7 .
We will now provethat P—a.s. there exists afinite constant ¢ such that for every

gpeH?q,t’ZIZO,128>O,

o, 0] = e 201() 640 [0/ | | = '[F (24 Tog, (1710 = 11)) |-
(13)
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Clearly |J.(s. x)| / |@/$24 |, isbounded from above by

T
K = 11070 / du / W(dy) plu — s + . x — ) b2y (9) L 0).

We assumethat T > ¢ (otherwise K1 = 0). Introduce the quantity
TAY
K2 = l[o,m/](s)/ du/ w@dy) p(u —s Vi, x —y)dy(y).
sVt

Thanksto (A.4), we have Ky < 1j0,71(s) c2 |1 — t/|S ¢y (x). Now

T At
K1 —Kz| < 1[O,T/\t’](5)/ du/ u(dy)
sVt
lpu—s+ex—y) —pu—sVvit,x—y)| 0.

Using the inequality

V;

2
|p(v1,2) — p(v2, 2)| SC/ dv v p(2v, 2),

v1
where the constant ¢ is independent of z € R? and v, > v1 > 0, we get that
TAt u—s+e 1
Ks ~ Kal <o) [ du feu@npz, ) [ dvotp2ox -y
sVt

u—svt

TN —ste 1 T A A(v+sViE) )
=cl[o,mq(S)/O dvv™ / du /Qu(dy)cbq(y)p(Zv,x—y).
S

ViV (v+s—e)

Inview of (A.3) and (A.1), we may continue with

TAt —s+e 1
= Cllo,TAz'](S)tbq(x)/O dv v~

|T/\t/A(v+svt)—s\/tv(v—i—s—s)5,

where ¢ isindependent of ¢/, 7, ¢, x. It iseasy to check that
TAt —s+e
/ dvv_1|T/\t//\(v+th)—s\/t\/(v+s—£)|§
0

<gqcl|t —t|S (1+Iog+ (a1 —t|)),

where c isindependent of ¢/, r and . As a conclusion we obtain (13).

Using the estimate (A.4), a straight forward induction shows that all the func-
tions x,, , n > 1, of therecurrencerelation (5) withinitial condition 1 = J. belong
to H and satisfy
n

lxn (s, X)| < c1po.77(s) g () |9/ db2q | [\t — (1+ log, (1/17 —t’l))]
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(Note that ¢ isindependent of ¢, ¢, ¢’ and ¢.) Then the claim (11) is a consequence
of (A.5) with f =0and

g(s,2) == /Qs(dy)p(e, 2= y) (s, y) 11,0 (s),
finishing the proof of the lemma. ]

4. Two-dimensional collision local time [proof of Theorem 5]

We now assumethat d = 2.

4.1. Spatial marginal densities [ proof of Theorem 5 (a)]

For the claimed L2—convergence, it is enough to check that, for fixed s, 7, z,

L(d¢,y") p(e’,z — y/)]
(14)

Jee E[/ L(d(r, y)) ple,z— y)
[s,]xR2 [s,]xR2

convergesin R, ase and ¢’ decrease to 0.
For f e LY (R?) with fdx f(x) =1, ande > 0, z € R?, we set

feal) = et (6720 = ).

Notethat f: ,(x) dx convergesweakly to$,(dx), the Dirac massat z, ase decreases
to 0. We will prove the following stronger resuilt.

Lemma 15 (Convergence of J&¢'). For fixed r > s > 0, and z,z' € R2, and
£, f/in LYL.(R?) suchthat [dx f(x) = 1= [dx f'(x), thefinite quantities

F D) = E[ / LA ) foz () / L{d¢, ) fg’/,z/(y/)] ,
[5,1] xR2 [s,1] xR2

e, e >0,
converge to a finite limit independent of f, f’, ase and ¢’ decreaseto 0.

Note that we need the convergence for z = 7’ to prove (14) and then (8). Note
also that although f and f’ arenotin B4 apriori, we show that the J &€ arefinite.

Proof of Lemma 15. By a standard monotone class argument, we deduce from the
guenched moment formula (4) for the collision local time with m = 2, that for
g € Bi((R4)? x (R?)?),
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EM L(dcr, y>)/ L(d(,)) g7, , y)]

[er;c /dx/ dSl'/.Qsl(d)’l)P(Sl, 1—x)/ ds2

/ 0s5,(dy2) p(s2 — 51, y2 — ¥1)

o0
f ds3 / 053(dy3) p(s3 — 51, y3 — y1) g(52, 53, ¥2, ¥3)
51 N
+ if /dnfo dsy /Qsl(dyl)p(h, y1—x1)

o0
/dX2/O ds /Qsz(dm)P(Sz, y2 — x2) g(s1, 52, ¥1, yz):|~

Thus we can write
JeE = erlc]“ +121”, (15)

where

, t t t
J(z, ) = /O ds1 IE[ / ds2 / ds3 / 0s:(dy1) [os,(dy2) [os;(dy3)
S1Vs S1Vs

p(s2 =51, y2 = y1) p(s3 — 51, y3 — y1) fec(y2) fL (ys)]
and
, t t
1) = E[ / ds f ds, / 00 (@) 00 (dya) o) £ (yz)]

are respectively third and second moment expressions of the catalyst process ¢
only. We easily compute J,“ thanks to the moment formula (A.2) for ordinary
super-Brownian motion (with f = 0 and g properly chosen):

, ' t t
J;’S (z,7) = 2yic /dx/ dsg/ dSlf dso /dyl /dyg /dyg
0 s3Vs s3Vs

P(s3, y3 — X)p(s1— 53, y1 — ¥3)p (52 — 53, Y2 — ¥a)fe.: (VDf 1 (¥2)

t t
+ ig/dxlfdxz/ dS]_/ dsz/dylfdyz

p(s1, y1 — x1) p(s2, y2 — x2) fe.e (V1) f1 (y2)
= 2yic / dy1 fe.:(y1) / dyz fir . (v2)

t t t
/ dSs/ ds1 dso p(s1+s2 — 253, y1 — y2) + ig (t — s)2
s3Vs s3Vs

IA

t t t
2y ic/ dsg/ dSl/ ds2 p(s1+ s2 — 2s3,0) + ig (t —s)?
0 s3Vs s3Vs

=: Ko < o0.
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As(s, &) | 0, the quantity Jé”, (z,Z/) convergesto

t

t t
By = 2y ic/ dSs/ ds1 dsz p(s1+s2 — 253,z —2)
0 s3Vs s3Vs
+i2(t —5)? < Ka. (16)

We can also compute Jf “ Usi ng the Markov property of ¢ at times; and twice
the moment formula (A.2):

, t t t t
Iz ) =2y / ds1 E[ / dsa / ds> / ds3 / 0s5,(dy1) [ 05, (dys)
0 s1 s4Vs s4Vs

/dy4 /dyz /dy3P(S4 — 51, Y4 — ¥5) p(s2 — 54, Y2 — y4)

p(s3— 54, y3 — ya)p(s2 — 51, y2 — ¥1) p(s3 — 51, y3 — ¥1) fe,2(¥2)

fo (ys)}

t t t
+ / ds1 E[ / ds / ds3 f 05 (dy1) [os,(dys) [os,(dys)
0 s1Vs s1Vs

/dyz /dySP(SZ — 51, Y2 — y4) p(s3 — 51, y3 — ¥5)
p(s2 =51, y2 — y1)p(s3 — 51, y3 — ¥1) fe,z(y2) f;/,z/(ys)}
With obvious notation we write
I = 2yt e (17)
Using again the moment formula, we get
I = 2pic et i IET, (18)

where

, t 51 ' t '
JSS’S (z,7) = / dS1/ dS5/ dS4/ dsz/ ds3 /dyl fdyz /dyg /dy4
0 0 s1 sS4V s4Vs

/dY5 /dyep(u — 55, y1 — Y6) p(s1 — 55, Y5 — Y6)

p(s4 — 51, y4 — y5) p(52 — 54, y2 — Ya) p(53 — S4, Y3 — Y4)
p(s2 — 51, y2 — y1) p(s3 — 51, ¥3 — ¥1) fo.:(32) fer.z2 (33)

and

, t t t t
Iz, 2) = /odSl/ dm/v dsz/v d53/dy1 /dyZ/dysfdy4fdy5
51 S4Vs s4Vs

Dp(s4 — 51, y4 — y5) p(s2 — S4, Y2 — Y4) p(53 — 4, Y3 — Ya)
p(s2 — 51, y2 — y1) p(s3 — 51, ¥3 — ¥1) fe.z (32) fer.z2 (¥3).



On the hot spots of a catalytic super-Brownian motion 405

We now compute Jg"s'. Integrating with dy1, dys, and dy4 gives

, t t t t
Jet (z,2) =f ds1/ dS4/ dsz/ ds3 /dyz /dygp(S2+S3—2S4, y2—y3)
0 s1 s4Vs s4Vs

p(s2 + 53 — 251, y2 — ¥3) fs,z(yZ) fs’,z’ (y3).
The function

t t t t
Hg(y2, y3) := fodn /dS4/ dsp | ds3 p(s2 + 53 — 254, y2 — ¥3)
s1 S.

4Vs s4Vs

p(s2+ 53 — 251, y2 — ¥3)

is continuous in (y2, y3) and bounded from above by Hg(y, y) =: Kg which is
finite since d = 2. Thus Jg’f (z,7)) is uniformly bounded by Kg. Using that
fe.z(¥2) fer 2 (y3) dy2dys converges weakly to §;(dy2)d. (dys), we deduce that

Jé’g convergesto
J(z,7) i= He(z,7) < Ke. (19

Note that He(z, z) = oo if d = 3, which impliesthat J¢'(z, z) doesn’t converge
for d = 3, however it iswell-defined at least for f(x) = f/(x) = p(1, x).

Similar arguments show that JSS““?/ (z,Z') isuniformly bounded in e, ¢’ € (0, 1]
andz, 7/ € RY. Ase and ¢’ decreaseto 0, it converges to

t 51 t t t
ISz 2) = / dSl/ dS5/ dS4f ds2 ds3 hs(s1, 52, 53, 8, 85, 2, 7),
0 0 s1 s4Vs s4Vs
(20)
where
hs(s1, 52, 53, 54, 55,2, 2') = /dm /dy4 p(s1+54—2s5, y1—ya) p(s2—S4, 2—y4)
p(s3 — 54,7 — ya) p(s2 — 51,2 — y1) p(s3 — 51, 2 — y1).

Finally, we study Jj’g’. Let ¢ € Bi(R?)3) and g(x1, x2,x3) = >,
8 Xz (1), Xz (2), Xz (3)), Where the sum is over &l the permutations = of {1, 2, 3}.
By a standard monotone class argument we deduce from the moment formula
(A.2) for o that

E[ / ov(dy1) / v(dya) f v(dys) g(v1, ya, ys)}
= 2icy2/(; d34/ dssg /dyl /dy4 /dy5 fdye p(v + 55 — 254, y1 — V6)
54

p(v — 55, y4a — yg) p(v — 55, y5 — ¥6) §(¥1, Y4, ¥5)
v
+ iy /0 dsq / dy1 / dys / dys p(2v — 254, y1 — ya) 8(¥1, ¥4, ¥5)

1
+ o3 Jid /dyl /dy4/dy5 81, ya, ys).
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Thisimplies
g,& . 2486 .2 g6 1 .3 se,6
Jy© o= 20y +ifyJg +§lc Jg*, (21

where

, t t t 1 51
J78’8 (z,7) = 2/ dSl/ dSz/ dS3/ dS4/ dss fdyl /dy4 /dy5 /dyz
0 s1Vs s1Vs 0 sS4

/dY3 /dys p(s2 — 51, ¥2 — y4) p(s3 — 51, ¥3 — y5) p(s2 — 51, y2 — y1)
p(s3—s1,y3 = y1) fe.z(v2) fli .1 (¥3)

[p(u + 55 — 254, y1 — Y6) P(s1 — 55, y4 — Y6) P(s1 — 55, Y5 — Ye)

+ p(s1+ 55— 254, ya — ye) p(s1 — s5, y1 — ¥6) p(s1 — 55, Y5 — Y6)

+ p(s1+ 55— 254, y5 — y6) p(s1— 55, ¥1 — y6) p(s1 — 55, Y4 — y6):|

and

, ' 51 ' 1
Jg¢ (z,2) ::2/ds1/ dS4/ dsz/ dsg/dylfdy4/dy5/dy2/dy3
0 0 s1Vs s1Vs

p(s2 — 51, y2 — y4) p(s3 — 51, ¥3 — ¥5) p(s2 — 51, Y2 — ¥1)
p(s3— 51, ¥3 — ¥1) fec(v2) £ 1 (¥3) [p(ZS1 — 254, y1— y4)

+ p(2s1 — 254, y1 — y5) + p(251 — 254, y4 — ys)]
aswell as

, t t t
Jo¥(z.2) = 3 /OdS1/ dS2/ d33/d)’l /dy4 /dys /dyz /dys
NAA) NAZ)

p(s2 — 51, y2 — ya) p(s3 — 51, y3 — ¥5) p(s2 — 51, Y2 — ¥1)
p(s3— 51, y3 — y1) fe.(y2) [ (¥3).

Argumentssimilar tothoseused for the convergence of Jé’el showthat J5 e Jg 2!
and Jge’s/ areuniformly bounded and convergease and ¢’ decreaseto 0, respectively

to
t t t S1 §1
J70(z,z/) :=2/ ds1/ dsz/ dsg/ dS4/ dssg /dyl /dy6 (22
0 s1Vs s1Vs 0 54

[P(Sz — 55,2 — y6) p(s3 — 55,2 — ye) p(s2 — 51,2 — y1)

p(s3—s1,2" — y1) p(s1+ 55 — 254, y1 — Y6)
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+ p(s2+s5— 254,z — ye) p(s3 — 55,2 — ye) p(s2 — 51,2 — ¥1)
p(s3—s1,2" — y1) p(s1 — 55, y1 — Ye)
+ p(s2—s5,2— y6) p(s3+ 55— 254,72 — ye) p(s2 — 51,2 — y1)

p(s3—s1,2 — y1) p(s1— s5, y1 — ye)],

t 51 t t
Jg(z, Z/) = 2/ dS]'/ dS4/ ds» ds3 (23)
0 0 s1Vs s1Vs

[/dyl p(s2 + 51— 254, y1 — 2) p(s2 — 51,2 — y1) p(s3 — 51,2 — y1)
+ /d)’l p(s3+ 51— 254,27 — y1) p(s2 — 51,2 — y1) p(s3 — 51,2 — y1)

+ pls2+s3—251,z2—2) p(so+ 53— 254,72 — z)],

and
t

t t
Jg(z, 7) = 6/ dsl'/ dso ds3 p(sp + 53 — 251,27 — 2). (24)
0 s1Vs s1Vs

Altogether, for eachi € {1,...,9}, the Jf’*’"/ are finite, uniformly bounded, and
haveafinitelimitas (¢, ¢’) | 0. Thus, the J&€ (2, 7/) arefiniteand convergein R,
as¢ and &’ decrease to 0. This finishes the proof of Lemma 15. O

Completion of the proof of Theorem 5 (a). The claimed expectation expression for

As,1](z) easily follows from the moment formula (4) for L inthecasem = 1.
The second moment of A, ,1(z) is given by the limit J 0 independent of z, of

J&%(z, z) fromLemmal5ase | 0. By the formulas (15), (17), (18), and (21),

: : : . : 1.
JO =20k [Zy (2)/ ic Jg +i2 Jg) + {chy2J7O + zczyJé) + 3 i Jg”
+i2J) < o0 (25)
which, inthe case s < 1, isstrictly larger than (E[ Ay, (z)])z, occurring from the
J2°-term [see definition (16)]. This completes the proof of Theorem 5 (). O

Remark 16 (Variance formula). For > s > 0 and z € R¢, from the representa-
tion formula (25) combined with (20), (19), (22), (23), (24), and (16), as well as
the expectation formulain (&), we obtain the following formulafor the variance of
Als,11(2)

t

t t
2icir (iczlc + iry) / ds1/ dso ds3z p(s2 + s3 — 251, 0)
0 s1Vs s1Vs

t t t t
+8i§iryxf dslf dsz/ ds3 dsg p(s3+s4—2s2, 0) p(s3+s4—2s1, 0)
0 s1 soVs s2V§
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t t t t
+8i§iry/</ dslf dS2/ dsg/ ds4 /dyp(sz—l—sg—Zsl, y) p(s3—s2,y)
0 51 s2Vs s2Vs

p(s4—52,)

t t t ' t
+ 16icir)/2K/ dSl/ dsg/ dsg/ dS4/ dss /dyl /dyz
0 S1 52 s3Vs s3Vs

Dp(s2 + 53 — 251, y1 — y2) p(s4 — 52, y1) p(s4 — 53, ¥2)
p(s5 — 52, y1) p(s5 — §3, y2)

t ' t ' t
+ 16iciry2/<f ds1/ ds2/ dsg/ dS4/ dS5fdy1/dy2
0 51 52 s3Vs s3Vs

D(s2 + 54 — 251, y2 — ¥1) p(s4 — 53, y2) p(s3 — 52, Y1)
p(s5 — 52, y2 — y1) p(s5 — 53, y2). o

4.2. Spatial absolute continuity [ proof of Theorem 5 (b)]
Wefirst prove that

x > ¢g(x) L(d(r, y)) p(e.x — y)

[s./]xR

convergesin L1(¢ ® P) as ¢ decreasesto 0, to alimit, say x — ¢q(x)&(x). More-
over, for almost every x, P-as., £(x) = A, (x). Thanks to the statement (&) in
the theorem, it is enough to check that the function

(x.6) > E[ / L(d(r, y)) ple, x — y)},
[s,1] xIR2

is uniformly bounded on R? x (0, 1]. But thisis clear since

E[ / L(d(r y)) ple. x — y)}
[5,1]xR2

t
= E[/ dr ir/dz/ r(dy)p(r,z—y)p(s,x—y)]

= iric (t — S).

Statement (b) isthen a straight forward consequence of the following criterion with
v(dy) replaced by L([s, t] x dy) [recall Theorem 3 (d)].

Proposition 17 (Sufficient criterion for absolute continuity). Let v € M, be
a random measure defined on a probability space (2, F, P). We assume that
E[(v, ¢¢)] < oo and that

((x, w) = Pg(x) fv(w, dy) pe,x —y), &> 0)

convergesinL1(¢ ® P)tosomeg, £ ase | 0.ThenP—a.s.,themeasurevisabsolutely
continuous (with respect to Lebesgue measure) and has the density function & :

v(dy) = £(y)dy.
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Proof. Let 8 be any bounded random variable on (2, F, P), and f € B9 be con-
tinuous. Because of the assumed convergencein L1(¢ ® P), we get

Je = /dx f(x)IE[,B /v(dy) ple,x —y)} TS /dx f@E[BEW)].
On the other hand, the function

(. &) /dx f@) ple,x —y)

is bounded by ¢, (y) [thanks to (A.1)], continuous, and convergesto f ase | O.
By dominated convergence, we get that J, convergesto ]Ei[ﬁ W, f )]. Since g8 and
f arearbitrary, the equality

/dx FOE[BE®] = E[B 1. 1]

impliesthat v isP—a.s. absol utely continuouswith respect to the L ebesgue measure,
and that v(dy) = &(y) dy, P—a.s., completing the proof. ]

4.3. Random ergodic limit [ proof of Theorem 5(d)]

Let f € L1 (R?). ThankstoLemma15, weknowthat 7 ~2 Jio.11xr2 L(d(r, y)) f(»)
isfinite and even belongsto L2(P). By self-similarity it has the same law as

Iy = T/ L(d(r, ) f(yVT).
[0,1] x R2

Thanks to Lemma 15 and Theorem 5(a), we see that /7 convergesin L2(P) as
T 1 oo to A[0,11(0) [dx f(x). Thus we deduce that for any f € Li(Rz), the
following convergence in law holds with respect to P :

. 1
lim = f[o,T]XRzL(d(" V) FO) = Aoy ©) fdx £ ).

This ends the proof of (d). O

5. Two-dimensional collision measures [proof of Theorem 8]
5.1. Representation of the collision local time [ proof of Theorem 8 (a) and (¢)]

The proof relies on an L2—approach and on the following lemma which is a time
counterpart of Lemma 15. Recall the approximating collision measures K; intro-
ducedin (9).

Lemma 18 (Convergence of covariances). Let d = 2. For fixed + > 0 and
@, ¢' € BL, the quantity

S [T d)

convergesto afinitelimit, independent of f, ase and ¢’ decreaseto 0. Furthermore
the convergence is uniformin ¢ on any compact subset of (0, +00).
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The proof of this lemma will be postponed to Subsection 5.3. We first prove
Theorem 8(c) and then Theorem 8(a) in Remark 19.

Proof of Theorem 8(c). Let A > a > 0 and set dQ := 1(, 4] dr dP. We deduce
from the uniform convergence in Lemma 18 that for any ¢ € bB.. the maps

</ L(d(s, y)) ¢g (M@ fei(s) : a <t < A)
R, xRR?2

convergein L2(dQ) as & | Otosomelimit A(p) = (A/(p) : a <t < A), say. It
isclear that A is Q—a.e. linear in ¢ and non-negative. In particular, A(1) isfinite
Q—ae

If (¢ ) isanon-decreasing sequence of functionsof b3+ which converge point-
wiseto ¢ € bB,, then the non-decreasing sequence A(g,,) bounded by A (¢)
converges Q-ae. to alimit Z, say. From the L?—convergence, we deduce that

A A
/dzE|At<¢m)—At<¢>| lim/ & E|(KE by (om — )| (26)

a el0
o A
< ”1'8/ dr E (KE, ¢y lom — 9])
o a A ~
:IimiriC/ dt/ du fe,(u) /dy¢q(Y)
el0 a 0
lom(3) — o)

= iric (A —a) | by (om — @) | 11 e

By dominated convergence, we conclude that Z = A(p), Q-a.e. From [Get74,
Proposition4.1], wededucethereexistsakernel A from (Qx[a, Al, F x B([a, A]))
to (R2, B(R?)) such that for al ¢ € bB,, Q-ae. A(p) = A(p). We then define
thekernel (K, t € [a, A]) by K,(¢) = A(p/¢,), for ¢ € B9. By taking f such
that f = 0 on R4, one can choose an F,—adapted version of (K;, 1 € [a, A]).
Since a, A are arbitrary, we can choose an adapted version of (K;, t+ > 0) which
we dtill denote by (K;, t > 0).

Remark 19 (Existence of collision measures). Let s > 0 be fixed. By replacing
dQ := 1y, 41 dr dP by §,(dr) dP, where §, isthe Dirac measure at s, one verifies
the existence of akernel K from (Q, F) to (R?, B(R?)) such that for any ¢ € B,
K?(¢) convergesin L?to K (¢) ase | 0. This proves Theorem 8(a). o

Now we check that L(d(s, y)) = ds K,(dy), P-almost surely. Since L({0} x
R?) = Oas, it isenough to verify that

-

f L(d(s, y)) g(s)p(y) —/ ds g(s) Ks(w)H
R4 xR? 0
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equals O, for every ¢ € B9 and every continuous function g with compact sup-
port in (0, +00). Let C denote a compact subset of (0, +00) containing a small
neighborhood of the support of g. Since g has compact support, we deduce from
the L2—convergence that

I = IimE[
el0

/ L(d(s, y)) g()e(y) —/ dr g(1) Kf(w)H
R, xR2 0

IA

)

g(u) — /0 dr g(t) fe,r(u)

WE[/ L(d(s,y))|¢(y>|‘g<s)—f dt g(t) fe.r ()
€40 R, xIR? 0

IA

E [/CX]RZ L(d(s, ) |¢<y>|} lim sup

Note that for u > 0, the finite measures dr f (1) on R, converge weskly to §, .
Moreover, since g is continuous with compact support in (0, co) and f vanishes
outside a compact set in R, we deduce that the latter limit superior expression dis-
appearsinthelimitase | 0. Hence, I = 0. So we haveL(d(s, y)) = ds K (dy),
P —a.s., finishing the proof of Theorem 8(c). ]

5.2. Carrying Hausdorff dimension two [ proof of Theorem 8 (b)]

In order to provethat at each fixed times > 0 the carrying Hausdorff dimension of
the collision measure K equalstwo, it is enough ([Fal90]) to verify the following
lemma.

Lemma 20 (Sufficient condition). Fixs > 0 and R > 0. The quantity

Is = E |:f Ky (dx)K,(dy) |x — Y|_Bi| @7
{Ix,IyI<R}

isfinitefor all § € (0, 2).

Proof. From Lemma 18 and itsproof in Subsection 5.3 below, from the L2—conver-
genceof K¢ ase decreaseto 0, we can deduce aformulafor E[ (K, ) (K, , ¢)].
By the monotone class theorem, this then implies aformulafor 75 from (27). We
can write thisformulaas

1
Is = 2ik (Zy [ZyicJ5 + iczje] + [21'0;/2]7 +i2yJg + 5 ingD +i2J5,

where the quantities J; are given in the proof of Lemma 18 (in Subsection 5.3 be-
low), but with ¢(y2)¢' (y3) replaced by ¢ (y2, y3) := Lijy,<r. |ysi<r) [y2 — ¥3| ™°.
To derive finite upper bounds for the J; israther tedious, aways the same technics
are used. Therefore, we proceed with Js only.
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From (30), (29), and (5.3) below with ¢ (y2)¢'(y3) replaced by ¢ (y2, y3), we
have

Js = / / ds1ds40ss 10<ss<sq<sq<t} / / / dy1dy2dysdys p(s1+s4—2s5, y1—y4)

p(t —sa, y2 — ya) p(t — sa, y3 — ya) p(t — 51, y2 — y1) p(t — 51, y3 — y1)
Lival <R, Iysl<r) |2 = y3l ™.

It is easy to check that Js5 is bounded from above by a constant times

// ds10s40s5 110 gg<s; <sy<r)[51 + 54 — 255] 12 — 52)7%2(1 — 51)7%/?
[2t — 51— S4]_1 < 00.

This gives Js < oo, finishing the proof. ]
5.3. Convergence of covariances [ proof of Lemma 18]

Fixz, ¢, ¢', f asinthelemma Decomposing asin (15) in the proof of Lemma 15
[with the obvious replacements as ¢ (y) f; : (s) instead of 1|,/ f¢,-(y) ], we write

/ / !
J08 = 20 J00 + ik

where
, 00 00 00
JE f dsy [ dsz fos(52) / dss fur.(s3)
0 s1 s1
[ /Qsl(dyl) 0s5,(dy2) [0s,(dy3)

p(s2 — 51, y2 — y1) p(s3 — 51, y3 — y1) <P(y2)(0/(y3)]

andfortr > 0ande > O,
, o0 o0
Jyf = /0 ds1 fer(s1) fo dsz fer.:(s2) [ZVic / dy1 ¢(y1) / dy2 ¢'(y2)
S1AS2
/o ds3 p(s1+s2 — 253, y1 — yz):|
o0 o
+ 2 /0 dst fis(s1) /O ds2 fuas2) [dia g0 [diz ¢/,
Using the same decomposition asin (17), (18) and (21), we have

1 = 2 [oriers it [ty g g2 |
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where we set

, o] o0 S2AS3 S2NS3 S51
Jet 1=/ dso fs,t(SZ)/ ds3 fs’,t(SS)/ dSl/ dS4/ dss
0 0 0 51 0

/ / / dy1dyodysdys p(s1 + s4 — 255, y1 — y4) p(s2 — 54, Y2 — ya)

p(s3 — 54, y3 — ya) p(s2 — 51, y2 — y1) p(s3 — 51, ¥3 — y1) ¢(y2)¢' (y3)

, o0 e¢] S2AS3 S2NS3
Jgt = fo ds2 fe.r(s2) /0 ds3 fer 1 (s3) fo ds1 / dsg / dy2dys
s1

p(s2+ 53— 254, y2 — y3) p(s2 + 53 — 251, y2 — y3) 0 (y2)¢' (¥3),

, o0 o0
J7f = /o dsz fe,z(SZ)/O ds3 fg',z(S3)/f/dS1dS4dS5 L{0<sq<ss<si<sansa)

/ / / f dy1dy2dysdys ¢ (y2)¢'(y3) [P(Sz — 5, y2 — ¥6) p(83 — 55, Y3 — ¥6)

p(s2 — 51, ¥2 — y1) p(s3 — 51, ¥3 — y1) p(s1 + 55 — 254, ¥y1 — Ye)
+ p(s2 + 55 — 254, y2 — ye) p(s3 — §5, ¥3 — ¥6) (52 — 51, Y2 — ¥1)
p(s3 — 51, y3 — y1) p(s1 — 85, y1 — Y6)

+ p(s2 — s5, y2 — y6) p(s3 + 55 — 254, y3 — ¥6) p(52 — 51, Y2 — Y1)

p(s3— 51, y3— y1) p(s1 — 85, y1 — ye)],

and

, 00 00
Jgsyg = 2/0 ds2 fa,t(SZ)A ds3 fa’,t(s3) /fdsld54 1{O<S4<S1<S2/\S3}

/ / dy2dys ¢(y2)¢'(y3) [ / dy1 p(s2 + 51— 254, y1 — y2)
p(s2 — 51, y2 — y1) p(s3 — 51, ¥y3 — Y1)

+ /dylp(sz+S1—ZS4, y1—y3)p(s2—s1, y2—y1) p(s3 — 51, y3 — y1)
+ p(s2+ 53 — 251, y2 — y3) p(s2 + 53 — 254, y2 — ys)}
aswell as
, o0 o0
55 =6 /0 dsy fos(s2) /0 dss fur,(53)

SPAS3
/0 ds1 / dy2dys ¢(y2)¢'(y3) p(s2 + 53 — 251, y2 — ¥3).
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We will only prove the uniform convergence of JSE'S/, since it contains the main
idea needed al so for the proof of convergence of the other five terms.

1° (Convergence of Jg’g/). Since f = 0 outside a compact subset of R, in the

integrand of 15“', the variables s», s3 are bounded from above by a constant, say
M, fore, &’ € (0,1].0On {s5 < s1 < 54 < 52 A 53}, we set

hs(s1, 52, 53, 84, §5) = /// dy1dy2dysdys p(s1+ s4 — 255, y1 — y4)

p(s2 — s4, y2 — y4) (28)
p(s3— s4,y3 — ya) p(s2 — 51, y2 — y1) p(s3 — 51, y3 — y1) ¢ (y2)¢' (y3).

Because || ¢/¢q ||, isfiniteand || ¢, ||, < 1, we get by integrating over y,,

hs(s1, 52, 53, 54, 55) < [ @/Pq |l o // dy1dysdys p(s1+ 54 — 255, y1 — ya)

p(252 — s4 — 51, y1 — y4) p(53 — S4, Y3 — Y4)
p(s3—s1,y3— y1) ¢ (33)].
Since

p(s1+ 54— 255, y1 — ya) p(252 — 54 — 51, y1 — y4)
~1
<c [(s14 54— 255)(252 — 54— s1)] ",

and [dy3 |¢'(y3)| < oo, we have

hs(s1, 52, 53, 54, 55) < ¢ [(s1+ 54 — 258) (252 — 54 — 51) ] .

Hence, for 0 < s, 53 < M,

H(s2,53) = ///d51dS4dS5 L(0<ss<si<sq<sonsa) 15(51, 82, 53, 54, 55)  (29)
is bounded from above by
H(s2,53) = ¢ / / / ds1ds4dss 10<ss<s;<sa<sonsa)
[(s1+ 52 — 258) (252 — sa —sD)] .
Setv; = (s2 As3z) —s; fori € {1, 4, 5} to get
H (s, 53) = // dv1dvadus 10<vy<vy <vs<sonss)
[(2vs — v1 — va)va + v1 + 252 — 2(s2 /\33))]71

-1
< C// dv1dvadus 1(0<uy<vy <vs<spnss)] (205 — v1 — v4) (V4 + v1)] .
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With the change of variables u1 := v4, u2 = vi — v4, u3z = v — vy, it
is easy to check that H (s», s3) is bounded for 0 < s»,s3 < M. It is clear that
(s2, s3) — H(s2, s3) is continuous. By the dominated convergence theorem, we
conclude that

, o o0
Jet = /o ds2 fs,l(SZ)/c; ds3 fer.((s3) H(s2, 53)

converges to

Js = H(t,1) (30)
ase, ¢’ decreaseto 0. The convergence is again uniform on any compact subset of
(0, 00).
Remark 21 (Dimension three). The convergence of Jé’g/ failsfor d = 3 where
H(t,1) = +ooforo(y) = ¢'(y) = 1yyj<r) - °©
2° (Limitsof J5', J&¢, ..., J&*). Findlly, we give the uniform limits J; of J&
foriin{2,6,7,8,9}:

Jo

2t
yic /0 ds / dy1dy2 @(y1)¢' (y2) p(s, y1 — y2)
+ig / dy1 ¢(y1) / dy2 ¢'(y2).
1 2t v
Jo = Z/o dUl/O dv4/ dy2dys p(v1, y2 — y3) p(va, y2 — ¥3) 9 (y2)¢' (¥3),
J7 = f/ d51d54d55 1{O<S4<x5<s1<t} //f dy]_dyzdygdye (p(yz)(p/(yS)

[P(t — 85, Y2 — y6) p(t — s5, ¥y3 — y6) p(t — 51, y2 — y1)

p(t — 51, ¥3 — y1) p(s1+ 55 — 254, y1 — Ye)
+ p(t + 55 — 254, y2 — ye) p(t — 55, y3 — y6) p(t — 51, y2 — ¥1)
p(t —s1,y3— y1) p(s1 — 55, Y1 — Y6)

+ p(t — 55, y2 — y6) p(t + 55 — 254, y3 — ye) p(t — 51, y2 — ¥1)

p(t —s1,y3—y1) p(s1 — 85, y1 — yG)}
Jg =2 f / dv1dvs Lo<v; <vg<t} f / dy2dys @ (y2)¢' (y3)
[/dyl p(2ug — v1, y1 — y2) p(v1, y2 — y1) p(v1, y3 — y1)

+ de1 p(2ua — v1, y1 — ¥3) p(v1, y2 — ¥1) p(v1, y3 — ¥1)

+ p(2u1, y2 — y3) p(2v4, y2 — y3)],
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2t
Jo 1= 3f0 dv ffdyzdys (y2)¢' (y3) p(v, y2 — y3).
This finishes the proof of Lemma 18. |

6. Deterministic time-independent catalyst [proof of Theorem 9]

The proof is similar to the proof of Theorem 5(a) —(b).

Proof of (a). It is enough to check that if o is absolutely continuousand d < 3,
then for amost all z € R¥,

t t
7= [ [o [xz@pez-n [ao ] $<dy’>p<e’,z—y’>]

convergesin R, to anon-zero limit as e and ¢’ decrease to 0.

Remark 22 (Smoothing procedure). One could prove a stronger result similar to
Lemma 15 but only for d < 2(8 + 1). o

It is easy to deduce from Lemma 4.5 in [Del96] that
Ey [ / X7 (dy) pe.z—y) / 2@y)p(e,z - y/)] = 70+ 15 o),
where
Iy = /n(dX) pr+e,x—2) [ndx) p(r' +¢,x" —2),
and
, rar’
L (rr') = fn(dx)/o du /o(dy) plr—u-+ey—2z)
pr'—u+eé,y—2)pu,x—y).

/ l t ’
We will show separately that J* = / dr/ dr’ 1I7°% (r, r') converges, for i €
{1’ 2}. s N

1° (Convergence of Jf’s/). Sincen € My andr Ar' > s > 0, we deduce that
If’g/ (r, ") is bounded on [s, r]2. It also converges pointwise to

L r) = /n(dx) prx —2) /n(dx’) P x —2)

ase and ¢’ decreaseto 0. By dominated convergence, we deducethat Jf -# converges
to Jy = [!dr [ldr’ Iy(r,1') &S, &’ decreaseto 0.
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2° (Convergence of JS’S’).WespIittheintegraI 15’5’ accordingtou < s/2 (integral
15y and u > 5/2 (integral I5°*'). We havefor r, r’ € [s, 1]

, s/2
I;’S (r,r) = /n(dx)/ du fa(dy)
0

plr—u+ey—2ptr' —u+e,y—2pu,x—y).

s/2
This quantity is bounded from above by a constant time / n(dx) / du / o (dy)
0
p(u,x —y) sincer,r’ € [s, t]. Thislast quantity is finite because there exists a
constant ¢ such that for all x € R?, u > 0,

/O(dy) p(u,x — (cf. (2) in [Del98]). (3D

) P ——
(u A1)L-8

Since I:f, e convergesase, ¢’ decrease to 0, we deduce from the dominated conver-
gence theorem that Jgf’g/ = [ldr [dr’ I§’8/ (r, r') convergesto

t t s5/2
_ /dr/ dr//n(dx)/ dufa(dw
s s 0

pr—u,y—2)pr' —u,y—2)pu,x —y).

We write

/ t t ’
= /drf dr’ 1;° (r,r")
‘t ‘t rnar’
= / dr/ dr’ /n(dx)f du /a(dy)
K s s/2

pr—u+ey—pr' —u+e,y—2)pu,x—y)

t—u+e t—u+e’
= f du/ / dv’ /n(dx) o(dy)
s/2 (s—u)y+e (s—u)4+e
P,y —2)p(,y —)pu,x —y)

wherewesetv :=r —u + e andv = r' —u + ¢, and continue the chain of

equations with
t—u+e t—u+e
:/ duf f dv’ h(u, v,v"),
/2 (s—u)y+e (s—u)4+e

with hA(u,v,v) = /n(dx) /a(dy) [27 (v + v')]79/? p(v'/(w+0), y—2z)

p(u, x — y). To prove the convergence of Jj’g/, it is enough to check that the
function 4 isintegrableon A := [s/2, 1] x [0, 2]

Using (31), we get that 2(u, v, v') < ¢ (v + v)) 1P~ 4/2pF~1y/P =1 Thisfunc-
tionisintegrableover A ford < 2(1+8). Thisisawayssdtisfiedifd = 1ord = 2.
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Thisisin fact the reason behind Remark 22. We now check that 4 is integrable if
d = 3fordmost al z € R3. Sinceu € [s/2, 1], we have

1
Hu,v,V) = fdz h(u,v,v) = 200 1 052 /n(dx) o(dy) p(u,x —y)

C
= m/fl(dx) o(dy) p(a,y —x),

where a and ¢ depend only on s, r. Using again (31), we get that H (u, v, v') <
c(v+v")~%2 Hence H isintegrableover A. Thisimpliesthat for amostall z € R?,
h isasointegrable on A. This proves the convergence of Jj’g/ ase, ¢’ decreaseto
0, foramost al z € R?, d < 3. Thelimitis

t t rar’
Ja = / dr/ dr’/n(dx)/ du /a(dy)p(r—u,y—z)
K s s/2

p(r'—u,y —2)pu,x —y).

since /5 = J5¢ 4 5% and Je¢ = g2t 4 15, we deduced that J&¢
converges as ¢, ¢ decrease to 0 for amost all z € R¥. Notice this limit is strictly
bigger that J1 unlessn = 0oro = 0.

Proof of (b). Arguing asinthe proof of Theorem 5 (b), oneseesit isenough to check
that E7 [ ([} dr X7, 9, )| < oo, andthatthefunction (z, &) > E5[ [} dr [ X7 (dy)
p(e, z — y)] isuniformly bounded on R x (0, 1]. We have

Eg[(/’dr Xf,¢q):| < Eg[(/tdr Xf.’,l)]
= /tdr /n(dx) /dy pr,x —y) < oo,

and
! t
E‘n’|:/ drf 7(dy) P(S,Z—y)] = / dr/n(dx)/dy p(r,x —y)ple,z—y)

t
< / dr p(r. 0)(n, 1).

Thislast constant is independent of (z, ¢) € R? x (0, 1]. o
This finishes the proof of Theorem 9 altogether.

A. Appendix: Some basic properties of catalyst and reactant
A.1. Moment formulas for the catalyst

Let d > 1 andfix v e M, . Itiseasy to check that for every T > 0, there exists a
constant ¢ > 0 such that for every x € R? and ¢ € (0, T7],

/dy ple,x —y) Pg(y) < cdy(x). (A1)
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Therefore we get that if g € H;, then the function (r, x) — [ ds Ps_,[g(s)](x)
is well-defined and belongs to H7 . If f € B4, then the function (r, x) — 1j=r
P,_.[ f](x) isalso well-defined and belongs to H,'.

It iswell-known that forevery r > 0, g € H?, f e B4, andm > 1,

00 m k
Eu[[(@taf)+/o ds (050 8) | } ;ki > [0 ),

ny,..ng =1, i=1
ny+-+ng=m

(A2)

where the sequence (x, , n > 1) isdefined by the recurrence formula

n—1
xn(r, x) = J// ds/dy pls—r,x —y) |:ZX1(S ¥) Xn—i (s, )’):|

i=1
(r,x) e Ry x RY, n > 2, withinitial condition
o0
%) = Lyery P f100) + / ds P lg@] (), (nx) e Ry x BY.

Thanks to the remark at the beginning of this subsection, we see that the functions
Xxn,>n > 1, arewell-defined and belong to HY.

A.2. Regularity properties of the catalyst
We now assume that d < 3. Recall that we write P for IP; . It is clear from the
Holder continuity Theorem 3 of [DF97a, p.254] that for every & € (0,1/4), T > 0O,

P—a.s. thereexistsaconstant ¢ := ¢1(7T, ¢, §) suchthat forevery T >t > r > 0,
[ € By RY),

t
[o fe@oor@ < ar-rf [@ro. (A3
We have also (cf. Definition 2b) and Theorem 4 of [DF97a, pp.224 and 259, re-

spectively]) that forevery T > 0,& € (0, 1/4), P—as.thereexistscy := c2(T, 0, &)
suchthat forevery x e R4, T > ¢ > r > 0,

t
[& fe@ps-ri-06@ < ali-rfow. @y

A.3. Moment formulas for the reactant

Recall that d < 3. Using the Markov property of X¢ (given o), it iseasy to get that
P-as foreveryn > 1,1, > --- >t >0,and f,,---, f1€ BL,

Eﬁ“[@(p[_z(xivfi):l] = e—(,u,v(r))’

ti=r
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where v is the unique nonnegative solution of the catalytic log-Laplace equation
@) with J(s) := 3, - P,—s [ fi]. Using the continuity of X, it can be shown that
P—as. for every nonnegative g € HY,

Eﬁu[exp[— f “as (xf,gm)ﬂ _ e lna),

where v isthe unigue nonnegative solution of (3) with J (s) := ]S"O du P,— [g(w)].

We deduce the next result on the moments of the reactant process X¢ from
Theorem 4, Lemma4 and Remark 2 of [DF974a, pp. 259 and 232, respectively]. We
have P-as. foreveryt >0, g € H?, f e B4,andm > 1,

0 m m k
Ef,,{[(xg,fw / ds (X7, ¢s)] }=m! Zk—l, S T ),
r k=1""

ny,eng =21, j=1
nq+-+np=m

(A5)

where (x, , n > 1) isdefined by the recurrence formula (5) with initial condition

x1(s,x) ‘= Lysg P—s[f1(0) +/ du Pu—s[g@)] (x)  (s,x) € Ry x R

Since x1 € HY, inequality (A.4) impliesthat all the functions yx, belong to H9.
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