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Abstract. Consider the catalytic super-Brownian motionX� (reactant) in R
d , d ≤ 3,which

branching rates vary randomly in time and space and in fact are given by an ordinary su-
per-Brownian motion � (catalyst). Our main object of study is the collision local time L =
L[�,X� ]

(
d(s, x)

)
of catalyst and reactant. It determines the covariance measure in the mar-

tingale problem for X� and reflects the occurrence of “hot spots” of reactant which can be
seen in simulations of X�. In dimension 2, the collision local time is absolutely continuous
in time, L

(
d(s, x)

) = ds Ks(dx). At fixed time s, the collision measures Ks(dx) of �s
and X�

s have carrying Hausdorff dimension 2. Spatial marginal densities of L exist, and,
via self-similarity, enter in the long-term random ergodic limit of L (diffusiveness of the 2-
dimensional model). We also compare some of our results with the case of super-Brownian
motions with deterministic time-independent catalysts.

1. Introduction

The ordinary super-Brownian motion � = (�t , t ≥ 0) in Euclidean space R
d can

be obtained as a limit of branching particles systems. In such branching particles
system, the particles evolve according to independent Brownian motions in R

d , and
additionally, with constant rate γ > 0, each particle splits independently into 2 or
0 particles with equal probability (this is a critical binary branching mechanism).

We now interpret � as a catalyst process: �t (dx) is the amount of catalytic
“particles” at time t in the volume element dx of R

d . We then let a super-Brownian
motion X� = (X

�
t , t ≥ 0) evolve in this catalytic random medium �. Intuitive-

ly X� describes reactant “particles” which are evolving according to indepen-
dent Brownian motions and which are performing critical binary branching, but at
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random time-space varying rates given by �t (dx). In fact, the rate of branching of
an intrinsic reactant particle with Brownian path W is controlled by the collision
local time L[�,W ] of � and W, defined as the measure

L[�,W ](ds) := lim
ε↓0

ds
∫
�s(dy) p(ε, y −Ws),

where p is the standard heat kernel

p(t, x) := [2πt]−d/2 exp
[
−|x|2/2t

]
, (t, x) ∈ (0,∞)× R

d . (1)

According to [EP94], this collision local time L[�,W ] makes sense non-trivially in
dimensions d ≤ 3, and vanishes for d ≥ 4. In other words, for d ≥ 4, the Brownian
reactant particle does not hit the catalyst � and X� degenerates to the heat flow.
Thus we restrict our attention to d ≤ 3.

Catalytic superprocesses had been studied in various settings, see, for instance,
[Fle90], or, for a recent survey, [DF00]. The catalytic super-Brownian motion X�

was constructed in [DF97a]. For simplicity, we let � and X� start at time 0 with
Lebesgue measures �c and �r , respectively. In [FK99] it was shown that in dimen-
sions d = 2, 3, given the catalyst �, the reactant X� has almost surely a density
field ξ� :

X
�
t (dx) = ξ

�
t (x) dx, t > 0.

Moreover, off the closed time-space support of the catalyst � (which is a Lebesgue
zero set), ξ� can be chosen as a C∞-function that solves the heat equation. This
was intuitively expected from the results on catalytic super-Brownian motion with a
point catalyst [FL95] and with higher-dimensional deterministic time-independent
catalysts [Del96].

Simulations of (�,X�) in dimension d = 2 (see the figure in [FK99]) confirm
the heuristic picture one has. Namely, at late times T ,

– the reactant X�T is rather uniform outside of the catalyst �T ,
– it is absent inside of the clumps of �T (since a huge rate of branching causes

mainly killing),
– but occasionally also some hot spots of the reactant occur in the interface of �T

and X�T , that is in the boundary region of the catalytic clumps.

But so far the investigations on the catalytic super-Brownian motionX� do not
reflect anything on the hot spots seen in the pictures. Our approach to gain some
information about them is to study the collision local time L := L[�,X�] of � and
X� defined as the limit of

Lε
(
d(s, x)

)
:= ds �s(dx)

∫
X
�
s (dy) p(ε, x − y), (2)

as ε ↓ 0.
Actually there is a further motivation to study this collision local timeL[�,X�]. It

occurs indeed in the description of the martingale problem for the process X� (see
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Corollary 4 below). For martingale problems of catalytic super-Brownian motions,
see also [DF94, Del96, Led97]. Moreover, the study of collision local times is a
rapidly developing area (see, e.g., [EP98]).

Let us briefly present the results. We prove that in all dimensions of non-trivial
existence of X� the collision local time L = L[�,X�] of catalyst � and reactant X�

makes non-trivially sense (see Theorem 3 below). This non-trivial existence of L
reflects the high fluctuations of X� in the interface of catalyst and reactant, seen
as hot spots in simulations. Of course, in dimension one, L

(
d(s, x)

)
simplifies to

ds θs(x)X
�
s (dx) where

{
θs(x) : s > 0, x ∈ R

}
is the jointly continuous density

field of � (cf. [KS88]).
Our main result however is that for d=2 and for fixed times s>0, the collision

measures

Ks(dx) := lim
ε↓0

1

ε

∫
[
(s−ε)+ ,s

] L(
d(s, x)

)

of �s and X�s exist and have carrying Hausdorff dimension 2. Note that with the
approximation of L by Lε from (2), Ks(dx) is also the formal limit of the approx-
imated collision measures �s(dx)

∫
X
�
s (dy) p(ε, x − y) as ε ↓ 0. Moreover, there

is a measurable version of the family {Ks : s > 0} of these collision measures such
that the representation L[�,X�]

(
d(s, x)

) = ds Ks(dx) holds (Theorem 8). Note
that this is in contrast, for instance, to the (one-dimensional) single-point catalytic
model of [DF94], sayXδ0 ,where the collision local time L[δ0,X

δ0 ]

(
d(s, x)

)
has the

form ϑ(ds) δ0(dx) with ϑ a singular measure on R+ with full carrying Hausdorff
dimension ([DFLM95, FL95]).

Again in dimension 2, the marginal measures L[�,X�]
(
[0, T ] × (·)) are abso-

lutely continuous. Via self-similarity of L[�,X�], which follows from the self-simi-
larity of (�,X�), this implies that T −1L

(
[0, T ] × (·)) has a random ergodic limit

as T ↑ ∞ (Theorem 5). This reflects the diffusive features in the long-term behavior
in d = 2 (for the long-term limit of X�T , see [FK99]).

It remains open whether also in dimension 3 collision measures exist or some
absolute continuity results hold, since our L2–approach fails in this case (see, for
instance, Remark 6 below).

We will compare our results on the absolute continuity of the spatial marginal
measures L[�,X�]

(
[0, T ] × (·)) also with the case of a catalytic super-Brownian

motion Xσ in R
d where the catalyst σ is a deterministic time-independent mea-

sure. Clearly, if σ is singular (as we mentioned already the case σ = δ0 in d = 1),
the spatial marginals of L = L[σ,Xσ ] are almost surely singular, too. But if σ is
absolutely continuous, then the spatial marginals of L[σ,Xσ ]

(
[0, T ] × (·)) are ab-

solutely continuous if and only if d ≤ 3 (Theorem 9). This is in contrast to our
aforementioned result (d = 2) where the random catalyst � is singular, but the
spatial marginals L[�,X�]

(
[0, T ] × (·)) are absolutely continuous.

Concerning the collision local time L[�,σ ] between a super-Brownian motion �
and a measure σ, or the collision local time L[�,�′] between � an independent copy
�′ of �, we refer to the discussion in Remarks 12 and 13 below, respectively.
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The outline of the paper is as follows. In Section 2 we introduce formal defini-
tions of the processes � and X� and state the results on existence and properties of
the collision local time between ρ and X�. Subsection 2.6 contains a digression to
related models. The following four sections are then devoted to the proofs of our
four theorems. In an appendix we collect some results on ordinary and catalytic
super-Brownian motions used in the proofs.

2. Statement of results

2.1. Notation

The lower index + on a set will always refer to the collection of all its nonnega-
tive members. Similarly, f+ is the nonnegative part of f. The supremum norm is
denoted by ‖ · ‖∞ . Let c always refer to a (finite) constant which value may vary
from place to place. c with an index instead denotes a specific constant.

We denote by B(E) the space of all real Borel measurable functions defined on
a Polish space E. But we also denote by B(E) the Borel σ–field of E.

For a fixed constant q > d, introduce the reference function φq ∈ B+(Rd) :

φq(x) :=
[
1 + |x|2

]−q/2
, x ∈ R

d .

Set Bq := {
f ∈ B(Rd); ∥∥f/φq∥∥∞ <∞}

and write bB for the set of bounded f
in B(Rd).

If ν is a Radon measure on R
d , we write (ν, f ) for

∫
ν(dx) f (x) (if the inte-

gral makes sense). Let Mq denote the set of all Radon measures ν on R
d such

that (ν, φq) < ∞. This space of tempered measures is endowed with the coarsest
topology such that the maps ν �→ (ν, f ) are continuous for all continuous f in
bB with compact support and for f = φq , getting a Polish space. Since q > d,
Lebesgue measure belongs to Mq .

We consider the Polish space C := C(R+ ,Mq) of all continuous paths from
R+ to Mq equipped with the topology of uniform convergence on compacta.

Let (Pt , t ≥ 0) denote the semigroup of standard heat flow on R
d [recall (1)]:

Pt [f ](x) :=
∫

dy p(t, x − y)f (y), t > 0, f ∈ B+(Rd).

2.2. Catalyst and reactant process

We start by introducing the catalyst process.

Definition 1 (Catalyst process). Let γ > 0 and ν ∈ Mq . There exists a unique
probability measure Pν on

(C,B(C)), such that the coordinate process� = (�t , t ≥
0) on C is a super-Brownian motion with constant branching rate γ and starting
measure ν. That is, � is a continuous time-homogeneous strong Markov process
with the following properties:

– Pν-almost surely, �0 = ν,
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– for every f ∈ Bq+ , t ≥ r ≥ 0, we have

E ν

[
e−(�t ,f )

∣∣∣ σ (
�s , s ∈ [0, r]

)] = e−
(
�r , w(t−r)

)
,

where w is the unique nonnegative solution on R+ × R
d of the log-Laplace

equation

w(t, x)+ γ
∫ t

0
ds Ps[w

2(t − s)](x) = Pt [f ] (x).

We write P for Pν in the case ν = ic�, where ic > 0 and � is the (normalized)
Lebesgue measure on R

d . ��
From now on we assume that d ≤ 3, and that � is distributed according to P (see

[FK99] for a more general class of starting measures for the catalyst process). Next
we recall the definition of the catalytic super-Brownian motion X� in the random
medium � (see [DF97a] for details).

Definition 2 (Catalytic super-Brownian motion). Fix (r, µ) ∈ R+ × Mq and
a constant κ > 0. For convenience, set C′ := C

(
[r,∞),Mq

)
. There exists a

(measurable) probability kernel � �→ P�r,µ from
(C,B(C)) to

(C′,B(C′)
)

such that
the coordinate process X� = (X

�
t , t ≥ r) on C′ is, under P�r,µ, a super-Brownian

motion in the catalytic medium �. That is, P–a.s. under P�r,µ , the process X� is
continuous time-inhomogeneous Markov with the following properties:

– P�r,µ-almost surely, X�r = µ,
– for every f ∈ Bq+ , t ≥ s ≥ r, we have

E�r,µ
[
e−(X

�
t ,f )

∣∣∣ σ (
X
�
u , u ∈ [r, s]

)] = e−
(
X
�
s , vt (s)

)
,

where vt is the unique nonnegative solution on [r,∞) × R
d of the catalytic

log-Laplace equation

v(s, x)+ κ
∫ ∞

s

du
∫
�u(dy) p(u− s, x − y) v2(u, y) = J (s, x), (3)

with J (s) := 1{t≥s} Pt−s[f ].

Often, we also pass from the quenched distributions P�r,µ to the annealed laws
E

[
P�r,µ

]
. ��

2.3. Existence of collision local time of catalyst and reactant

For our constant q > d, we introduce the function spaceHq := ⋃
T≥0H

q
T , where

H
q
T :=

{
g ∈ B(R+ × R

d); g(t, ·) = 0 ∀t > T , ‖g/φq‖∞ <∞
}
,

with ‖g/φq‖∞ = sup(s,x)∈R+×Rd |g(s, x)|/φq(x).
Recall the approximated collision local time Lε of � and X� introduced in

(2). We are now ready to state our first result: the existence of the collision lo-
cal time L = L[�,X�] of � and X� in dimension d ≤ 3. Recall that d ≤ 3 and
(r, µ) ∈ R+ × Mq .
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Theorem 3 (Collision local time). There exists a random variable denoted by
L = L[�,X�] defined on

(C × C′,B(C × C′)
)
, taking values in the set of Radon

measures on [r,∞)× R
d with the following properties:

(a) (Tempered measure) For every T ≥ r , we have E
[
P�r,µ(L,1[r,T ] φq)

]
<∞.

(b) (Existence via convergence) For every ϕ ∈ H 2q ,

lim
ε↓0

(Lε, ϕ) = (L, ϕ), E[P�r,µ]–a.s.

(c) (Regularity) For every ϕ ∈ H 2q , and E
[
P�r,µ

]
–a.s., the process ((L,1[r,t]ϕ),

t ≥ r is continuous and adapted to the filtration(
Ft := σ(�) ∨ σ (

X
�
s , s ∈ [r, t]

)
, t ≥ r

)
.

(d) (Moments) For every m ≥ 1, ϕ ∈ H 2q , P–a.s.,

E�r,µ

[[ ∫
[r,∞)×Rd

L
(
d(s, x)

)
ϕ(s, x)

]m]

= m!
m∑
k=1

1

k!

∑
n1,... ,nk ≥ 1,
n1+···+nk =m

k∏
i=1

(
µ, χni (r)

)
, (4)

where the functions χn , n ≥ 1, belong to Hq and are recursively defined by

χn(s, x) := κ

∫ ∞

s

du
∫
�u(dy) p(u− s, x − y)[

n−1∑
i=1

χi(u, y) χn−i (u, y)

]
, n ≥ 2, (5)

with initial condition

χ1(s, x) :=
∫ ∞

s

du
∫
�u(dy) p(u− s, x − y) ϕ(u, y), (s, x) ∈ R+ × R

d .

The proof of this theorem is postponed to Section 3.

As an application, we can now describe the covariance measure of the mar-
tingale measure associated with X�. Let C1,2

b denote the set of bounded functions

ϕ ∈ B(R+ ×R
d) such that the partial derivatives ∂ϕ

∂s
and ∂2ϕ

∂xi∂xj
exist, are continu-

ous and bounded. It is easy to check that under E
[
P�r,µ

]
the process (Mϕr,t , t ≥ r)

defined by

Mϕr,t := (
X
�
t , ϕ(t)

) − (
X
�
r , ϕ(r)

) − ∫ t

r

ds

(
X
�
s ,

∂ϕ

∂s
(s)+ 1

2
9ϕ(s)

)
,
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is an (Ft , t ≥ r)-martingale [note that Fr = σ(�) ∨ σ(Xr)]. Thanks to the Mar-
kov property of X� (given �), and the moment formula (A.5) for X� stated in the
appendix, we get that for ϕ,ψ in C1,2

b , P–a.s. for all s ≥ r and t ≥ r ,

E�r,µ
[
Mϕr,sMψr,t

] = 2κ
∫
µ(dx)

∫ s∧t

r

du
∫
�u(dy)

× p(u− r, x − y) ϕ(u, y)ψ(u, y). (6)

The functional M : ϕ �→ Mϕ defined on C1,2
b can be extended to an orthogonal

martingale measure onHq . Let 〈M〉 denote its covariance measure. Now we show
how 〈M〉 can be expressed in terms of the collision local time L = L[�,X�] . Recall
that d ≤ 3 and that (r, µ) ∈ R+ × Mq .

Corollary 4 (Covariance measure). For every ϕ ∈ Hq , E
[
P�r,µ

]
–a.s. for every

t ≥ r , we have

〈Mϕ〉r,t = 2κ
∫

[r,t]×Rd
L

(
d(s, y)

)
ϕ2(s, y). (7)

Proof. Using the Markov property of X� (given �) and an obvious extension of
the second moment formula (6), we obtain for ϕ ∈ Hq , P–a.s. for all t ≥ s ≥ r ,

EE�r,µ
[
(Mϕr,t )

2
∣∣ Fs

]
= (Mϕr,s)

2 + 2κ
∫
X
�
s (dx)

∫ t

s

du

×
∫
�u(dy) p(u− s, x − y) ϕ2(u, y).

Notice that (∫
[r,t]×Rd

L
(
d(s, y)

)
ϕ2(s, y), t ≥ r

)

is in t non-decreasing and continuous, is adapted to (Ft , t ≥ r) , and zero for t = r .
Then we deduce from the moment formula (4) with m = 1, that(

〈Mϕ〉r,t − 2κ
∫

[r,t]×Rd
L

(
d(s, y)

)
ϕ2(s, y), t ≥ r

)

is a continuous martingale under E
[
P�r,µ

]
with bounded variation starting at time

t = r from 0. This martingale is then constant and, in fact, equal to 0, giving the
claim (7). ��

2.4. Collision local time in dimension two

We now state results for the collision local time L = L[�,X�] in the “critical” di-
mension d = 2. For simplicity, we focus on the situation r = 0 and µ = ir� where
ir > 0. For convenience, we introduce the following abbreviation for the annealed
law:

P := E
[
P0,ir�

] = E ic�

[
P0,ir�

]
(where ic , ir > 0).
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Theorem 5 (Two-dimensional collision local time). Let d = 2.

(a) (Spatial L2–marginal densities) For every t ≥ s ≥ 0 and z ∈ R
2,( ∫

[s,t]×Rd
L

(
d(r, y)

)
p(ε, z− y), ε > 0

)

converges in L2(P) as ε ↓ 0 to a random variable denoted by λ[s,t](z). It has
expectation

E
[
λ[s,t](z)

] = icir (t − s),
and its finite variance is non-zero provided that s < t.

(b) (Spatial absolute continuity) For t ≥ s ≥ 0, we have the representation

L
(
[s, t] × dx

) = λ[s,t](x) dx, P–a.s.,

where we take a measurable version, with respect to the σ–field B(R2)× Ft ,
of the family

{
λ[s,t](z) : z ∈ R

2
}

defined in (a).
(c) (Self-similarity) Under P, the laws of the scaled collision local times

k−2L
(
k(·)× k1/2(·))

are independent of the scaling factor k > 0.
(d) (Random ergodic limit) The following convergence in Mq holds in law with

respect to P :

lim
T ↑∞

T −1L
(
[0, T ] × (·)) = λ[0,1](0) �

(with � the Lebesgue measure and 0 < Var
[
λ[0,1](0)

]
<∞ ).

Consequently, in dimension 2, the spatial marginal measures L
(
[s, t] × (·)) of

the collision local time L[�,X�] of catalyst and reactant have non-degenerated ran-
dom densities λ[s,t](z) at each fixed site z (provided that s < t). Moreover, λ[0,1](0)
enters as random factor of Lebesgue measure in the long-term ergodic limit. Recall
that this reflects diffusive features of the hot spots.

Remark 6 (Dimension three). The L2(P)–convergence in part (a) does not hold
for d = 3. In fact, in the three-dimensional case an infinite term would be involved
in our calculations, see the remark following (19) in the proof of Lemma 15 below.
Recall on the other hand that in dimension one,L[�,X�](d(s, x)) = ds θs(x)X

�
s (dx),

where (s, x) �→ θs(x) is the jointly continuous density field of � (see [DFR91] for
the absolute continuity of the measures X�s for fixed s > 0).

Remark 7 (Regularity). It is an open problem whether the spatial collision density
functions z �→ λ[s,t](z) have some regularities properties in the space variable z.
Note also that the exceptional set in the P–a.s. statement in (b) depends on [s, t].
One would also like to know whether this situation can be improved.

The statement (c) follows from the self-similarity of (�,X�) by standard argu-
ments (compare with [DF97b, Subsections 4.1 and 4.2]). Otherwise the proof of
Theorem 5 will be provided in Section 4.
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2.5. Existence of collision measures in dimension two

The assumptions imposed in the beginning of Subsection 2.4 are still in force. Using
anL2–approach, we prove the existence of collision measures in dimension d = 2.
For this purpose, fix a function f ∈ L1+(R) such that f = 0 outside a compact
subset of R and

∫
du f (u) = 1. For t, ε > 0, set

fε,t (s) := 1

ε
f

(
ε−1(s − t)

)
, s ∈ R. (8)

Note that the finite measures 1R+fε,t (s)ds on R converge weakly to the Dirac
measure at t as ε decreases to 0. We also define measures Kε

t in Mq by

(Kε
t , ϕ) :=

∫
R+×R2

L
(
d(s, y)

)
ϕ(y)fε,t (s), ϕ ∈ Bq+ . (9)

Theorem 8 (Two-dimensional collision measures). Let d = 2.

(a) (Existence of collision measures): For each t > 0 there is a random measure
Kt in Mq such that for any ϕ ∈ Bq+ , the following L2(P)–convergence holds:

(Kε
t , ϕ) −→

ε↓0
(Kt , ϕ).

(b) (Carrying Hausdorff dimension): For each t > 0 fixed, Kt has carrying
Hausdorff dimension two, P–a.s.

(c) (Representation of collision local time): To the family K = {Kt : t > 0} of
random measures of (a), there is an (Ft , t > 0)–adapted version denoted by
the same symbol K, such that

L
(
d(s, y)

) = ds Ks(dy), P –a.s.

Note that the closed support of �s is a supporting set of Ks . Therefore Ks is
supported by a Lebesgue null set, although its carrying Hausdorff dimension is 2.

The proof of Theorem 8 is given in Section 5 below. As in Remark 6, the
L2(P)–approach to prove part (a) fails for d = 3 (see Remark 21).

2.6. Digression

So far we restricted our attention to the model of a super-Brownian reactant X�

with a super-Brownian catalyst �. What about collision local time questions for
related catalytic models?

At the first place we think of a catalyst described by a time-independent de-
terministic measure σ(dx) on R

d . Intuitively, the corresponding catalytic SBM
Xσ = (Xσt , t ≥ 0) in R

d describes a cloud of particles which are evolving accord-
ing to independent Brownian motions and which are performing a critical binary
branching whose rate is σ(dx) at site x. We refer to [Del96] for the construction
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and properties of such process, and keep the same framework. In particular, we
assume there exists a β ∈ (0, 1), such that

sup
x∈Rd

∫
B(x,1)

σ (dy)

|x − y|d−2+2β
< ∞,

whereB(x, 1) denotes the ball in R
d centered at x, with radius 1. This condition on

σ is rather general. In particular if d = 1, all finite measures σ satisfy this condition
(with β = 1/2 for example), as well as some locally infinite measures σ(dx) as
|x|−α dx, with 0 < α < 2. Furthermore in all dimensions the Lebesgue measure
satisfies this condition with β ∈ (0, 1).

Let Mf denote the space of finite Radon measures on R
d endowed with the

topology of weak convergence. We write Pση for the law of the catalytic super-
Brownian motion Xσ started from Xσ0 = η ∈ Mf . Recall that Xσ is a continuous
Mf –valued process. As we stick to the presentation of [Del96], we will keep the
Mf –version of Xσ instead of working with an Mq–version. The existence of col-
lision local time L = L[σ,Xσ ] of the catalyst σ and the reactant Xσ was proved in
the sense of an Lu–limit (u > 0), as ε decreases to 0, of

Lε
(
d(r, y)

) = dr σ (dy)
∫
Xσr (dx) p(ε, x − y).

Recall that the collision local time also describes the covariance measure of the
martingale measure associated to Xσ (see Section 9 in [Del96]).

The moment formula for L can be deduced from the moment formula for Lε

(see Lemma 5.2 and equation (32) in [Del96], with � = σ and V�(ε) = Lε) as ε
decreases to 0. In particular, for ϕ ∈ bB+ we have

Eση
[
(L, ϕ1[s,t])

] = Eση

[ ∫
L

(
[s, t] × dy

)
ϕ(y)

]

=
∫
η(dx)

∫ t

s

dr
∫
σ(dy) p(r, x − y)ϕ(y).

If L
(
[s, t] × dy

)
is a.s. absolutely continuous, then the latter first moment formula

implies that σ(dy)
∫
η(dx)

∫ t
s

dr p(r, x−y) is also absolutely continuous. There is
no choice but to consider diffuse catalysts σ . This differs from the previous section
where the random and time-dependent catalyst � is singular for d = 2, neverthe-
less the spatial absolute continuity property holds for the collision local time. If
σ(dy) = g(y) dy, it is easy to check that the collision local time is in fact

L
(
d(r, y)

) = dr g(y)Xσr (dy). (10)

Therefore the absolute continuity of the spatial marginal measures is directly
implied by the absolute continuity of the weighted occupation time measures∫ t
s

dr Xσr . The main result of this subsection is:

Theorem 9 (Weighted occupation time measures). Assume d ≤ 3 and that the
catalyst σ is absolutely continuous. Let t > s > 0 and η ∈ Mf .
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(a) (L2–occupation densities): For almost all z ∈ R
d , as ε decreases to 0,(∫ t

s

dr
∫
Xσr (dy) p(ε, z− y), ε > 0

)

converges in L2(Pση ) to a random variable λ[s,t](z) with expectation

Eση λ[s,t](z) =
∫
η(dx)

∫ t

s

dr p(r, x − z),

and non-zero finite variance provided that η �= 0 and σ �= 0.
(b) (Absolute continuity): There exists a measurable version of z �→ λ[s,t](z)

such that Pση –a.s. we have∫ t

s

dr Xσr (dz) = λ[s,t](z) dz.

The proof of this theorem is given in Section 6. As a direct consequence of (10)
and this theorem, we have

Corollary 10 (Spatial marginals of the collision local time). Suppose d ≤ 3
and that σ is absolutely continuous. Let t > s > 0 and η ∈ Mf . The random
measure L

(
[s, t] × (·)) on R

d is absolutely continuous Pση –a.s.

Remark 11 (Singularity of spatial marginals in high dimensions). Note that if
σ = γ � with the constant γ > 0 and � the Lebesgue measure on R

d , then Xσ is
the super-Brownian motion � of Definition 1, and by (10) we have L

(
d(r, y)

) =
γ dr �r(dy). It is well-known that the weighted occupation time measures

∫ t
s

dr �r
are singular if d ≥ 4. This suggests that for d ≥ 4 and general catalyst σ , the
measures L[σ,Xσ ]([s, t] × (·)) on R

d are singular, too.

We end our discussion by some remarks related to non-catalytic models. �
Remark 12 (Collision local time between� and a measure �). The absolute con-
tinuity of the spatial marginal measures of the collision local time L[�,µ] of a
super-Brownian motion � in R

d and a deterministic measureµ on R
d (which does

not act as a catalyst) holds if and only if d ≤ 3. In fact, L[�,µ] is the measure Bµ
in [Del96, Section 5] in the case of the catalytic measure �. Then computing the
first moment of L[�,µ]([s, t] × (·)), one checks as in the proof of Theorem 9 that
the spatial absolute continuity of L[�,µ] holds a.s. if and only if µ is absolutely
continuous. If µ(dy) = h(y) dy, then we have L[�,µ]

(
d(r, y)

) = dr �r(dy) h(y)
a.s. Therefore the spatial absolute continuity property is true for L[�,µ] if it holds
for

∫ t
s

dr �r , that is if d ≤ 3. �
Remark 13 (Collision between independent super-Brownian motions). The col-
lis-ion local time L[�,�′] between two independent super-Brownian motions � and
�′ in R

d exists for d ≤ 5 (see [BEP91]). The classical L2–method can be used to
prove that these collision local times enjoy the spatial absolute continuity property
if d ≤ 2, but it fails for d ≥ 3. We refer to [Myt98] for existence of collision mea-
sures between independent super-Brownian motions and more general independent
superprocesses. �
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3. Existence of collision local time [proof of Theorem 3]

Recall that d ≤ 3. First of all we state the following lemma.

Lemma 14 (Approximated moment increments). For every m ≥ 1, r ≥ 0,
µ ∈ Mq , T ≥ 0, ξ ∈ (0, 1/4), P–a.s. there exists a finite constantMm (depending

on �) such that for every ϕ ∈ H 2q
T , t ′ ≥ t ≥ 0, 1 ≥ ε′ ≥ ε > 0,

E�r,µ
[
(Lε, ϕ 1[t,t ′])

2m
]

≤ Mm

∥∥ϕ/φ2q
∥∥2m
∞

[∣∣t − t ′∣∣ξ (
1 + log+

(
1/|t − t ′|))]2m

,

(11)

E�r,µ

[[
(Lε, ϕ)− (Lε

′
, ϕ)

]2m
]

≤ Mm

∥∥ϕ/φ2q
∥∥2m
∞

[∣∣ε − ε′∣∣ξ
(

1 + log+
(
1/|ε − ε′|))]2m

. (12)

Based on this lemma, the proofs of Theorem 3 (b) and (c) are similar to the proof
of Proposition 5.1 based on Lemma 5.2 in [Del96] with the obvious changes and
are left to the reader. Claim (d) is not stated in Proposition 5.1, but it is a by-product
of its proof [take the limit in (32) there]. Eventually, part (a) of Theorem 3 is proved
by using the monotone convergence theorem with the moment formulas (4) and
(A.2) (in the appendix) with m = 1 and the inequality (A.1).

Proof of Lemma 14. Fix µ ∈ Mq , ξ ∈ (0, 1/4), and T ≥ r ≥ 0 (otherwise the
moments disappear). We will verify (11); the proof of (12) is similar and is left to
the reader.

Note first that for fixed ε > 0,

sup
x∈Rd , y∈Rd

φq(y) p(ε, x − y)
φq(x)

< ∞.

Let ϕ ∈ H 2q
T . Since � is P–a.s. a continuous Mq–valued path, it is then clear that

the functions (s, x) �→ ∫
�s(dy) p(ε, x − y) ϕ(s, y) belong to Hq

T . Thanks to the
remarks at the beginning of Subsection A.1 (in the appendix), we see that, for fixed
t, t ′, ε, the function

(s, x) �→ Jε(s, x) :=
∫ ∞

s

du
∫

dz p(u− s, x − z)∫
�u(dy) p(ε, z− y) ϕ(u, y)1[t,t ′](u)

is well-defined and belongs to Hq
T .

We will now prove that P–a.s. there exists a finite constant c such that for every
ϕ ∈ H 2q

T , t ′ ≥ t ≥ 0, 1 ≥ ε > 0,∣∣Jε(s, x)∣∣ ≤ c 1[0,T ](s) φq(x)
∥∥ϕ/φ2q

∥∥∞ [∣∣t − t ′∣∣ξ (
1 + log+

(
1/|t − t ′|))]

.

(13)
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Clearly
∣∣Jε(s, x)∣∣ / ∥∥ϕ/φ2q

∥∥∞ is bounded from above by

K1 := 1[0,T ](s)

∫ T

s

du
∫
�u(dy) p(u− s + ε, x − y) φ2q(y)1[t,t ′](u).

We assume that T ≥ t (otherwise K1 = 0). Introduce the quantity

K2 := 1[0,T∧t ′](s)
∫ T∧t ′

s∨t
du

∫
�u(dy) p(u− s ∨ t, x − y) φ2q(y).

Thanks to (A.4), we have K2 ≤ 1[0,T ](s) c2
∣∣t − t ′∣∣ξ φq(x). Now

|K1 − K2| ≤ 1[0,T∧t ′](s)
∫ T∧t ′

s∨t
du

∫
�u(dy)∣∣p(u− s + ε, x − y) − p(u− s ∨ t, x − y)∣∣φ2q(y).

Using the inequality

∣∣p(v1, z)− p(v2, z)
∣∣≤c ∫ v2

v1

dv v−1 p(2v, z),

where the constant c is independent of z ∈ R
d and v2 ≥ v1 > 0, we get that

|K1 − K2|≤c1[0,T∧t ′](s)
∫ T∧t ′

s∨t
du

∫
�u(dy)φ2q(y)

∫ u−s+ε

u−s∨t
dv v−1 p(2v, x − y)

=c1[0,T∧t ′](s)
∫ T∧t ′−s+ε

0
dvv−1

∫ T∧t ′∧(v+s∨t)

s∨t∨(v+s−ε)
du

∫
�u(dy)φ

2
q(y)p(2v, x−y).

In view of (A.3) and (A.1), we may continue with

≤ c 1[0,T∧t ′](s) φq(x)
∫ T∧t ′−s+ε

0
dv v−1

∣∣T ∧ t ′ ∧ (v + s ∨ t) − s ∨ t ∨ (v + s − ε)∣∣ξ ,
where c is independent of t ′, t, ε, x. It is easy to check that∫ T∧t ′−s+ε

0
dv v−1

∣∣T ∧ t ′ ∧ (v + s ∨ t) − s ∨ t ∨ (v + s − ε)∣∣ξ
≤ q c

∣∣t ′ − t∣∣ξ (
1 + log+

(
1/|t ′ − t |)),

where c is independent of t ′, t and ε. As a conclusion we obtain (13).
Using the estimate (A.4), a straight forward induction shows that all the func-

tions χn , n ≥ 1, of the recurrence relation (5) with initial condition χ1 = Jε belong
to Hq

T and satisfy

∣∣χn(s, x)∣∣ ≤ c 1[0,T ](s) φq(x)
∥∥ϕ/φ2q

∥∥n∞ [∣∣t − t ′∣∣ξ (
1 + log+

(
1/|t − t ′|))]n

.
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(Note that c is independent of ϕ, t, t ′ and ε.) Then the claim (11) is a consequence
of (A.5) with f = 0 and

g(s, z) :=
∫
�s(dy) p(ε, z− y) ϕ(s, y)1[t,t ′](s),

finishing the proof of the lemma. ��

4. Two-dimensional collision local time [proof of Theorem 5]

We now assume that d = 2.

4.1. Spatial marginal densities [proof of Theorem 5 (a)]

For the claimed L2–convergence, it is enough to check that, for fixed s, t, z,

J ε,ε
′

:= E
[∫

[s,t]×R2
L

(
d(r, y)

)
p(ε, z− y)

∫
[s,t]×R2

L
(
d(r ′, y′)

)
p(ε′, z− y′)

]
(14)

converges in R+ as ε and ε′ decrease to 0.
For f ∈ L1+(R2) with

∫
dx f (x) = 1, and ε > 0, z ∈ R

2, we set

fε,z(x) := ε−1f
(
ε−1/2(x − z)

)
.

Note that fε,z(x) dx converges weakly to δz(dx), the Dirac mass at z, as ε decreases
to 0. We will prove the following stronger result.

Lemma 15 (Convergence of J ε,ε
′
). For fixed t ≥ s > 0, and z, z′ ∈ R

2, and
f, f ′ in L1+(R2) such that

∫
dx f (x) = 1 = ∫

dx f ′(x), the finite quantities

J ε,ε
′
(z, z′) := E

[∫
[s,t]×R2

L
(
d(r, y)

)
fε,z(y)

∫
[s,t]×R2

L
(
d(r ′, y′)

)
f ′
ε′,z′(y

′)
]
,

ε, ε′ > 0,

converge to a finite limit independent of f, f ′, as ε and ε′ decrease to 0.

Note that we need the convergence for z = z′ to prove (14) and then (a). Note
also that although f and f ′ are not in Bq a priori, we show that the J ε,ε

′
are finite.

Proof of Lemma 15. By a standard monotone class argument, we deduce from the
quenched moment formula (4) for the collision local time with m = 2, that for
g ∈ B+

(
(R+)2 × (R2)2

)
,
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E
[∫

R+×R2
L

(
d(r, y)

) ∫
R+×R2

L
(
d(r ′, y′)

)
g(r, r ′, y, y′)

]

= E

[
2 irκ

∫
dx

∫ ∞

0
ds1

∫
�s1(dy1) p(s1, y1 − x)

∫ ∞

s1

ds2∫
�s2(dy2) p(s2 − s1, y2 − y1)∫ ∞

s1

ds3

∫
�s3(dy3) p(s3 − s1, y3 − y1) g(s2, s3, y2, y3)

+ i2r

∫
dx1

∫ ∞

0
ds1

∫
�s1(dy1) p(s1, y1 − x1)∫

dx2

∫ ∞

0
ds2

∫
�s2(dy2) p(s2, y2 − x2) g(s1, s2, y1, y2)

]
.

Thus we can write

J ε,ε
′ = 2 irκJ

ε,ε′
1 + i2r J ε,ε

′
2 , (15)

where

J
ε,ε′
1 (z, z′) :=

∫ t

0
ds1 E

[ ∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫
�s1(dy1)

∫
�s2(dy2)

∫
�s3(dy3)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) fε,z(y2) f
′
ε′,z′(y3)

]
and

J
ε,ε′
2 (z, z′) := E

[ ∫ t

s

ds1

∫ t

s

ds2

∫
�s1(dy1)

∫
�s2(dy2) fε,z(y1) f

′
ε′,z′(y2)

]
are respectively third and second moment expressions of the catalyst process �
only. We easily compute J ε,ε

′
2 thanks to the moment formula (A.2) for ordinary

super-Brownian motion (with f = 0 and g properly chosen):

J
ε,ε′
2 (z, z′) = 2γ ic

∫
dx

∫ t

0
ds3

∫ t

s3∨s
ds1

∫ t

s3∨s
ds2

∫
dy1

∫
dy2

∫
dy3

p(s3, y3 − x)p(s1 − s3, y1 − y3)p(s2 − s3, y2 − y3)fε,z(y1)f
′
ε′,z′(y2)

+ i2c

∫
dx1

∫
dx2

∫ t

s

ds1

∫ t

s

ds2

∫
dy1

∫
dy2

p(s1, y1 − x1) p(s2, y2 − x2) fε,z(y1) f
′
ε′,z′(y2)

= 2γ ic

∫
dy1 fε,z(y1)

∫
dy2 f

′
ε′,z′(y2)∫ t

0
ds3

∫ t

s3∨s
ds1

∫ t

s3∨s
ds2 p(s1 + s2 − 2s3, y1 − y2)+ i2c (t − s)2

≤ 2γ ic

∫ t

0
ds3

∫ t

s3∨s
ds1

∫ t

s3∨s
ds2 p(s1 + s2 − 2s3, 0)+ i2c (t − s)2

=: K2 <∞.



404 J.-F. Delmas, K. Fleischmann

As (ε, ε′) ↓ 0, the quantity J ε,ε
′

2 (z, z′) converges to

J 0
2 (z, z

′) := 2γ ic

∫ t

0
ds3

∫ t

s3∨s
ds1

∫ t

s3∨s
ds2 p(s1 + s2 − 2s3, z− z′)

+i2c (t − s)2 ≤ K2 . (16)

We can also compute J ε,ε
′

1 using the Markov property of � at time s1 and twice
the moment formula (A.2):

J
ε,ε′
1 (z, z′) = 2γ

∫ t

0
ds1 E

[ ∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3

∫
�s1(dy1)

∫
�s1(dy5)∫

dy4

∫
dy2

∫
dy3p(s4 − s1, y4 − y5) p(s2 − s4, y2 − y4)

p(s3 − s4, y3 − y4)p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) fε,z(y2)

f ′
ε′,z′(y3)

]

+
∫ t

0
ds1 E

[ ∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫
�s1(dy1)

∫
�s1(dy4)

∫
�s1(dy5)∫

dy2

∫
dy3p(s2 − s1, y2 − y4) p(s3 − s1, y3 − y5)

p(s2 − s1, y2 − y1)p(s3 − s1, y3 − y1) fε,z(y2) f
′
ε′,z′(y3)

]
.

With obvious notation we write

J
ε,ε′
1 = 2γ J ε,ε

′
3 + J ε,ε′4 . (17)

Using again the moment formula, we get

J
ε,ε′
3 = 2γ ic J

ε,ε′
5 + i2c J ε,ε

′
6 , (18)

where

J
ε,ε′
5 (z, z′) :=

∫ t

0
ds1

∫ s1

0
ds5

∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3

∫
dy1

∫
dy2

∫
dy3

∫
dy4∫

dy5

∫
dy6p(s1 − s5, y1 − y6) p(s1 − s5, y5 − y6)

p(s4 − s1, y4 − y5) p(s2 − s4, y2 − y4)p(s3 − s4, y3 − y4)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) fε,z(y2) fε′,z′(y3)

and

J
ε,ε′
6 (z, z′) :=

∫ t

0
ds1

∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3

∫
dy1

∫
dy2

∫
dy3

∫
dy4

∫
dy5

p(s4 − s1, y4 − y5) p(s2 − s4, y2 − y4) p(s3 − s4, y3 − y4)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) fε,z(y2) fε′,z′(y3).
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We now compute J ε,ε
′

6 . Integrating with dy1 , dy5 , and dy4 gives

J
ε,ε′
6 (z, z′)=

∫ t

0
ds1

∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3

∫
dy2

∫
dy3p(s2+s3−2s4, y2−y3)

p(s2 + s3 − 2s1, y2 − y3) fε,z(y2) fε′,z′(y3).

The function

H6(y2, y3) :=
∫ t

0
ds1

∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3 p(s2 + s3 − 2s4, y2 − y3)

p(s2 + s3 − 2s1, y2 − y3)

is continuous in (y2, y3) and bounded from above by H6(y, y) =: K6 which is
finite since d = 2. Thus J ε,ε

′
6 (z, z′) is uniformly bounded by K6 . Using that

fε,z(y2) fε′,z′(y3) dy2dy3 converges weakly to δz(dy2)δz′(dy3), we deduce that

J
ε,ε′
6 converges to

J 0
6 (z, z

′) := H6(z, z
′) ≤ K6 . (19)

Note that H6(z, z) = ∞ if d = 3, which implies that J ε,ε
′
(z, z) doesn’t converge

for d = 3, however it is well-defined at least for f (x) = f ′(x) = p(1, x).
Similar arguments show that J ε,ε

′
5 (z, z′) is uniformly bounded in ε, ε′ ∈ (0, 1]

and z, z′ ∈ R
d . As ε and ε′ decrease to 0, it converges to

J 0
5 (z, z

′) :=
∫ t

0
ds1

∫ s1

0
ds5

∫ t

s1

ds4

∫ t

s4∨s
ds2

∫ t

s4∨s
ds3 h5(s1, s2, s3, s4, s5, z, z

′),

(20)

where

h5(s1, s2, s3, s4, s5, z, z
′) :=

∫
dy1

∫
dy4 p(s1+s4−2s5, y1−y4) p(s2−s4, z−y4)

p(s3 − s4, z′ − y4) p(s2 − s1, z− y1) p(s3 − s1, z′ − y1).

Finally, we study J
ε,ε′
4 . Let g ∈ B+

(
(R2)3

)
and g(x1, x2, x3) := ∑

π

g(xπ(1), xπ(2), xπ(3)), where the sum is over all the permutations π of {1, 2, 3}.
By a standard monotone class argument we deduce from the moment formula
(A.2) for � that

E

[∫
�v(dy1)

∫
�v(dy4)

∫
�v(dy5) g(y1, y4, y5)

]

= 2 icγ
2
∫ v

0
ds4

∫ v

s4

ds5

∫
dy1

∫
dy4

∫
dy5

∫
dy6 p(v + s5 − 2s4, y1 − y6)

p(v − s5, y4 − y6) p(v − s5, y5 − y6) g(y1, y4, y5)

+ i2c γ

∫ v

0
ds4

∫
dy1

∫
dy4

∫
dy5 p(2v − 2s4, y1 − y4) g(y1, y4, y5)

+ 1

3!
, i3c

∫
dy1

∫
dy4

∫
dy5 g(y1, y4, y5).
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This implies

J
ε,ε′
4 = 2 icγ

2J
ε,ε′
7 + i2c γ J ε,ε

′
8 + 1

3!
i3c J

ε,ε′
9 , (21)

where

J
ε,ε′
7 (z, z′) := 2

∫ t

0
ds1

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫ s1

0
ds4

∫ s1

s4

ds5

∫
dy1

∫
dy4

∫
dy5

∫
dy2∫

dy3

∫
dy6 p(s2 − s1, y2 − y4) p(s3 − s1, y3 − y5) p(s2 − s1, y2 − y1)

p(s3 − s1, y3 − y1) fε,z(y2) f
′
ε′,z′(y3)[

p(s1 + s5 − 2s4, y1 − y6) p(s1 − s5, y4 − y6) p(s1 − s5, y5 − y6)

+ p(s1 + s5 − 2s4, y4 − y6) p(s1 − s5, y1 − y6) p(s1 − s5, y5 − y6)

+ p(s1 + s5 − 2s4, y5 − y6) p(s1 − s5, y1 − y6) p(s1 − s5, y4 − y6)

]

and

J
ε,ε′
8 (z, z′) :=2

∫ t

0
ds1

∫ s1

0
ds4

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫
dy1

∫
dy4

∫
dy5

∫
dy2

∫
dy3

p(s2 − s1, y2 − y4) p(s3 − s1, y3 − y5) p(s2 − s1, y2 − y1)

p(s3 − s1, y3 − y1) fε,z(y2) f
′
ε′,z′(y3)

[
p(2s1 − 2s4, y1 − y4)

+ p(2s1 − 2s4, y1 − y5)+ p(2s1 − 2s4, y4 − y5)
]

as well as

J
ε,ε′
9 (z, z′) := 3!

∫ t

0
ds1

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫
dy1

∫
dy4

∫
dy5

∫
dy2

∫
dy3

p(s2 − s1, y2 − y4) p(s3 − s1, y3 − y5) p(s2 − s1, y2 − y1)

p(s3 − s1, y3 − y1)fε,z(y2) f
′
ε′,z′(y3).

Arguments similar to those used for the convergence ofJ ε,ε
′

6 show thatJ ε,ε
′

7 , J
ε,ε′
8

and J ε,ε
′

9 are uniformly bounded and converge as ε and ε′ decrease to 0, respectively
to

J 0
7 (z, z

′) :=2
∫ t

0
ds1

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3

∫ s1

0
ds4

∫ s1

s4

ds5

∫
dy1

∫
dy6 (22)[

p(s2 − s5, z− y6) p(s3 − s5, z′ − y6) p(s2 − s1, z− y1)

p(s3 − s1, z′ − y1) p(s1 + s5 − 2s4, y1 − y6)
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+ p(s2 + s5 − 2s4, z− y6) p(s3 − s5, z′ − y6) p(s2 − s1, z− y1)

p(s3 − s1, z′ − y1) p(s1 − s5, y1 − y6)

+ p(s2 − s5, z− y6) p(s3 + s5 − 2s4, z
′ − y6) p(s2 − s1, z− y1)

p(s3 − s1, z′ − y1) p(s1 − s5, y1 − y6)

]
,

J 0
8 (z, z

′) := 2
∫ t

0
ds1

∫ s1

0
ds4

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3 (23)[ ∫

dy1 p(s2 + s1 − 2s4, y1 − z) p(s2 − s1, z− y1) p(s3 − s1, z′ − y1)

+
∫

dy1 p(s3 + s1 − 2s4, z
′ − y1) p(s2 − s1, z− y1) p(s3 − s1, z′ − y1)

+ p(s2 + s3 − 2s1, z− z′) p(s2 + s3 − 2s4, z
′ − z)

]
,

and

J 0
9 (z, z

′) := 6
∫ t

0
ds1

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3 p(s2 + s3 − 2s1, z− z′). (24)

Altogether, for each i ∈ {1, . . . , 9}, the J ε,ε
′

i are finite, uniformly bounded, and

have a finite limit as
(
ε, ε′

) ↓ 0. Thus, the J ε,ε
′
(z, z′) are finite and converge in R+

as ε and ε′ decrease to 0. This finishes the proof of Lemma 15. ��
Completion of the proof of Theorem 5 (a). The claimed expectation expression for
λ[s,t](z) easily follows from the moment formula (4) for L in the case m = 1.

The second moment of λ[s,t](z) is given by the limit J 0, independent of z, of
J ε,ε(z, z) from Lemma 15 as ε ↓ 0. By the formulas (15), (17), (18), and (21),

J 0 = 2 irκ

[
2γ

(
2γ ic J

0
5 + i2c J 0

6

)
+

{
2 icγ

2J 0
7 + i2c γ J 0

8 + 1

3!
i3c J

0
9

}]
+i2r J 0

2 < ∞ (25)

which, in the case s < t, is strictly larger than
(
E[λ[s,t](z)]

)2, occurring from the
J 0

2 -term [see definition (16)]. This completes the proof of Theorem 5 (a). ��
Remark 16 (Variance formula). For t ≥ s ≥ 0 and z ∈ R

d , from the representa-
tion formula (25) combined with (20), (19), (22), (23), (24), and (16), as well as
the expectation formula in (a), we obtain the following formula for the variance of
λ[s,t](z) :

2ic ir
(
i2c κ + irγ

) ∫ t

0
ds1

∫ t

s1∨s
ds2

∫ t

s1∨s
ds3 p(s2 + s3 − 2s1, 0)

+ 8 i2c irγ κ
∫ t

0
ds1

∫ t

s1

ds2

∫ t

s2∨s
ds3

∫ t

s2∨s
ds4 p(s3+s4−2s2, 0) p(s3+s4−2s1, 0)
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+ 8i2c irγ κ
∫ t

0
ds1

∫ t

s1

ds2

∫ t

s2∨s
ds3

∫ t

s2∨s
ds4

∫
dyp(s2+s3−2s1, y) p(s3−s2, y)

p(s4 − s2, y)
+ 16 ic irγ

2 κ

∫ t

0
ds1

∫ t

s1

ds2

∫ t

s2

ds3

∫ t

s3∨s
ds4

∫ t

s3∨s
ds5

∫
dy1

∫
dy2

p(s2 + s3 − 2s1, y1 − y2) p(s4 − s2, y1) p(s4 − s3, y2)
p(s5 − s2, y1) p(s5 − s3, y2)

+ 16 ic irγ
2 κ

∫ t

0
ds1

∫ t

s1

ds2

∫ t

s2

ds3

∫ t

s3∨s
ds4

∫ t

s3∨s
ds5

∫
dy1

∫
dy2

p(s2 + s4 − 2s1, y2 − y1) p(s4 − s3, y2) p(s3 − s2, y1)
p(s5 − s2, y2 − y1) p(s5 − s3, y2). �

4.2. Spatial absolute continuity [proof of Theorem 5 (b)]

We first prove that

x �→ φq(x)

∫
[s,t]×R2

L
(
d(r, y)

)
p(ε, x − y)

converges in L1(�⊗ P) as ε decreases to 0, to a limit, say x �→ φq(x)ξ(x). More-
over, for almost every x, P–a.s., ξ(x) = λ[s,t](x). Thanks to the statement (a) in
the theorem, it is enough to check that the function

(x, ε) �→ E
[ ∫

[s,t]×R2
L

(
d(r, y)

)
p(ε, x − y)

]
,

is uniformly bounded on R
2 × (0, 1]. But this is clear since

E
[ ∫

[s,t]×R2
L

(
d(r, y)

)
p(ε, x − y)

]

= E
[∫ t

s

dr ir

∫
dz

∫
�r(dy) p(r, z− y) p(ε, x − y)

]
= iric (t − s).

Statement (b) is then a straight forward consequence of the following criterion with
ν(dy) replaced by L([s, t] × dy) [recall Theorem 3 (a)].

Proposition 17 (Sufficient criterion for absolute continuity). Let ν ∈ Mq be
a random measure defined on a probability space (D,F,P). We assume that
E

[
(ν, φq)

]
<∞ and that(

(x, ω) �→ φq(x)

∫
ν(ω, dy) p(ε, x − y), ε > 0

)

convergesinL1(�⊗P) tosomeφq ξ asε ↓ 0.ThenP–a.s., themeasureν isabsolutely
continuous (with respect to Lebesgue measure) and has the density function ξ :

ν(dy) = ξ(y) dy.
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Proof. Let β be any bounded random variable on (D,F,P), and f ∈ Bq be con-
tinuous. Because of the assumed convergence in L1(�⊗ P), we get

Jε :=
∫

dx f (x)E

[
β

∫
ν(dy) p(ε, x − y)

]
−→
ε↓0

∫
dx f (x)E

[
β ξ(x)

]
.

On the other hand, the function

(y, ε) �→
∫

dx f (x) p(ε, x − y)

is bounded by φq(y) [thanks to (A.1)], continuous, and converges to f as ε ↓ 0.
By dominated convergence, we get that Jε converges to E

[
β (ν, f )

]
. Since β and

f are arbitrary, the equality∫
dx f (x)E

[
β ξ(x)

] = E
[
β (ν, f )

]
implies that ν is P–a.s. absolutely continuous with respect to the Lebesgue measure,
and that ν(dy) = ξ(y) dy,P–a.s., completing the proof. ��

4.3. Random ergodic limit [proof of Theorem 5 (d)]

Letf ∈ L1+(R2). Thanks to Lemma 15, we know thatT −1
∫

[0,T ]×R2 L
(
d(r, y)

)
f (y)

is finite and even belongs to L2(P ). By self-similarity it has the same law as

IT := T

∫
[0,1]×R2

L
(
d(r, y)

)
f

(
y
√
T

)
.

Thanks to Lemma 15 and Theorem 5 (a), we see that IT converges in L2(P ) as
T ↑ ∞ to λ[0,1](0)

∫
dx f (x). Thus we deduce that for any f ∈ L1+(R2), the

following convergence in law holds with respect to P :

lim
T ↑∞

1

T

∫
[0,T ]×R2

L
(
d(r, y)

)
f (y) = λ[0,1](0)

∫
dx f (x).

This ends the proof of (d). ��

5. Two-dimensional collision measures [proof of Theorem 8]

5.1. Representation of the collision local time [proof of Theorem 8 (a) and (c)]

The proof relies on an L2–approach and on the following lemma which is a time
counterpart of Lemma 15. Recall the approximating collision measures Kε

t intro-
duced in (9).

Lemma 18 (Convergence of covariances). Let d = 2. For fixed t > 0 and
ϕ, ϕ′ ∈ Bq+ , the quantity

J
ε,ε′
t := E

[
(Kε

t , ϕ)(K
ε′
t , ϕ

′)
]

converges to a finite limit, independent of f , as ε and ε′ decrease to 0. Furthermore
the convergence is uniform in t on any compact subset of (0,+∞).
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The proof of this lemma will be postponed to Subsection 5.3. We first prove
Theorem 8 (c) and then Theorem 8 (a) in Remark 19.

Proof of Theorem 8 (c). Let A > a > 0 and set dQ := 1[a,A] dt dP. We deduce
from the uniform convergence in Lemma 18 that for any ϕ ∈ bB+ the maps( ∫

R+×R2
L

(
d(s, y)

)
φq(y)ϕ(y)fε,t (s) : a ≤ t ≤ A

)

converge in L2(dQ) as ε ↓ 0 to some limit I(ϕ) = (
It(ϕ) : a ≤ t ≤ A

)
, say. It

is clear that I is Q–a.e. linear in ϕ and non-negative. In particular, I(1) is finite
Q–a.e.

If (ϕm) is a non-decreasing sequence of functions of bB+ which converge point-
wise to ϕ ∈ bB+ , then the non-decreasing sequence I(ϕm) bounded by I(ϕ)
converges Q–a.e. to a limit Z, say. From the L2–convergence, we deduce that

∫ A

a

dt E
∣∣It(ϕm)−It(ϕ)∣∣ = lim

ε↓0

∫ A

a

dt E
∣∣(Kε

t , φq (ϕm − ϕ))∣∣ (26)

≤ lim
ε↓0

∫ A

a

dt E
(
Kε
t , φq |ϕm − ϕ|)

= lim
ε↓0

iric

∫ A

a

dt
∫ ∞

0
du fε,t (u)

∫
dy φq(y)

∣∣ϕm(y)− ϕ(y)∣∣
= iric (A− a) ∥∥φq (ϕm − ϕ)∥∥

L1 −→
m↑∞

0.

By dominated convergence, we conclude that Z = I(ϕ),Q–a.e. From [Get74,
Proposition 4.1], we deduce there exists a kernel Ĩ from

(
D×[a,A],F × B([a,A])

)
to

(
R

2,B(R2)
)

such that for all ϕ ∈ bB+ , Q–a.e. I(ϕ) = Ĩ(ϕ). We then define
the kernel

(
Kt , t ∈ [a,A]

)
by Kt(ϕ) = Ĩt (ϕ/φq), for ϕ ∈ Bq . By taking f such

that f = 0 on R+ , one can choose an Ft–adapted version of
(
Kt , t ∈ [a,A]

)
.

Since a,A are arbitrary, we can choose an adapted version of (Kt , t > 0) which
we still denote by (Kt , t > 0).

Remark 19 (Existence of collision measures). Let s > 0 be fixed. By replacing
dQ := 1[a,A] dt dP by δs(dt) dP, where δs is the Dirac measure at s, one verifies
the existence of a kernelKs from (D,F) to

(
R

2,B(R2)
)

such that for any ϕ ∈ Bq ,
Kε
s (ϕ) converges in L2 to Ks(ϕ) as ε ↓ 0. This proves Theorem 8 (a). �

Now we check that L
(
d(s, y)

) = ds Ks(dy), P–almost surely. Since L
({0}×

R
2
) = 0 a.s., it is enough to verify that

I := E
[ ∣∣∣∣

∫
R+×R2

L
(
d(s, y)

)
g(s)ϕ(y)−

∫ ∞

0
ds g(s)Ks(ϕ)

∣∣∣∣
]
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equals 0, for every ϕ ∈ Bq and every continuous function g with compact sup-
port in (0,+∞). Let C denote a compact subset of (0,+∞) containing a small
neighborhood of the support of g. Since g has compact support, we deduce from
the L2–convergence that

I = lim
ε↓0

E
[ ∣∣∣∣

∫
R+×R2

L
(
d(s, y)

)
g(s)ϕ(y)−

∫ ∞

0
dt g(t)Kε

t (ϕ)

∣∣∣∣
]

≤ lim
ε↓0

E
[∫

R+×R2
L

(
d(s, y)

) ∣∣ϕ(y)∣∣ ∣∣∣∣g(s)−
∫ ∞

0
dt g(t)fε,t (s)

∣∣∣∣
]

≤ E
[∫
C×R2

L
(
d(s, y)

) ∣∣ϕ(y)∣∣] lim
ε↓0

sup
u>0

∣∣∣∣g(u)−
∫ ∞

0
dt g(t)fε,t (u)

∣∣∣∣.
Note that for u > 0, the finite measures dt fε,t (u) on R+ converge weakly to δu .
Moreover, since g is continuous with compact support in (0,∞) and f vanishes
outside a compact set in R, we deduce that the latter limit superior expression dis-
appears in the limit as ε ↓ 0. Hence, I = 0. So we have L

(
d(s, y)

) = ds Ks(dy),
P –a.s., finishing the proof of Theorem 8 (c). ��

5.2. Carrying Hausdorff dimension two [proof of Theorem 8 (b)]

In order to prove that at each fixed time s > 0 the carrying Hausdorff dimension of
the collision measure Ks equals two, it is enough ([Fal90]) to verify the following
lemma.

Lemma 20 (Sufficient condition). Fix s > 0 and R > 0. The quantity

Iδ := E
[∫

{|x|,|y|≤R}
Ks(dx)Ks(dy) |x − y|−δ

]
(27)

is finite for all δ ∈ (0, 2).

Proof. From Lemma 18 and its proof in Subsection 5.3 below, from theL2–conver-
gence of Kε

s as ε decrease to 0, we can deduce a formula for E
[
(Ks , ϕ)(Ks , ϕ

′)
]
.

By the monotone class theorem, this then implies a formula for Iδ from (27). We
can write this formula as

Iδ = 2irκ

(
2γ

[
2γ icJ5 + i2c J6

]
+

[
2icγ

2J7 + i2c γ J8 + 1

6
i3cJ9

])
+ i2r J2 ,

where the quantities Ji are given in the proof of Lemma 18 (in Subsection 5.3 be-
low), but with ϕ(y2)ϕ

′(y3) replaced by φ(y2, y3) := 1{|y2|≤R, |y3|≤R} |y2 − y3|−δ .
To derive finite upper bounds for the Ji is rather tedious, always the same technics
are used. Therefore, we proceed with J5 only.
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From (30), (29), and (5.3) below with ϕ(y2)ϕ
′(y3) replaced by φ(y2, y3), we

have

J5 =
∫∫∫

ds1ds4ds5 1{0<s5<s1<s4<t}
∫∫∫∫

dy1dy2dy3dy4 p(s1+s4−2s5, y1−y4)

p(t − s4, y2 − y4) p(t − s4, y3 − y4) p(t − s1, y2 − y1) p(t − s1, y3 − y1)

1{|y2|≤R, |y3|≤R} |y2 − y3|−δ .

It is easy to check that J5 is bounded from above by a constant times∫∫∫
ds1ds4ds5 1{0<s5<s1<s4<t}[s1 + s4 − 2s5]−1(t − s4)−δ/2(t − s1)−δ/2

[2t − s1 − s4]−1 <∞.

This gives J5 <∞, finishing the proof. ��

5.3. Convergence of covariances [proof of Lemma 18]

Fix t, ϕ, ϕ′, f as in the lemma. Decomposing as in (15) in the proof of Lemma 15
[with the obvious replacements as ϕ(y)fε,t (s) instead of 1[s,t]fε,z(y) ], we write

J
ε,ε′
t = 2irκJ

ε,ε′
1 + i2r J ε,ε

′
2 ,

where

J
ε,ε′
1 :=

∫ ∞

0
ds1

∫ ∞

s1

ds2 fε,t (s2)
∫ ∞

s1

ds3 fε′,t (s3)[ ∫
�s1(dy1)

∫
�s2(dy2)

∫
�s3(dy3)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) ϕ(y2)ϕ
′(y3)

]

and for t > 0 and ε > 0,

J
ε,ε′
2 :=

∫ ∞

0
ds1 fε,t (s1)

∫ ∞

0
ds2 fε′,t (s2)

[
2γ ic

∫
dy1 ϕ(y1)

∫
dy2 ϕ

′(y2)∫ s1∧s2

0
ds3 p(s1 + s2 − 2s3, y1 − y2)

]

+ i2c

∫ ∞

0
ds1 fε,t (s1)

∫ ∞

0
ds2 fε,t (s2)

∫
dy1 ϕ(y1)

∫
dy2 ϕ

′(y2).

Using the same decomposition as in (17), (18) and (21), we have

J
ε,ε′
1 = 2γ

[
2γ icJ

ε,ε′
5 + i2c J ε,ε

′
6

]
+

[
2icγ

2J
ε,ε′
7 + i2c γ J ε,ε

′
8 + 1

6
i3cJ

ε,ε′
9

]
,
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where we set

J
ε,ε′
5 :=

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)

∫ s2∧s3

0
ds1

∫ s2∧s3

s1

ds4

∫ s1

0
ds5∫∫∫∫

dy1dy2dy3dy4 p(s1 + s4 − 2s5, y1 − y4) p(s2 − s4, y2 − y4)

p(s3 − s4, y3 − y4) p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) ϕ(y2)ϕ
′(y3)

J
ε,ε′
6 :=

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)

∫ s2∧s3

0
ds1

∫ s2∧s3

s1

ds4

∫∫
dy2dy3

p(s2 + s3 − 2s4, y2 − y3) p(s2 + s3 − 2s1, y2 − y3) ϕ(y2)ϕ
′(y3),

J
ε,ε′
7 :=

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)

∫∫∫
ds1ds4ds5 1{0<s4<s5<s1<s2∧s3}∫∫∫∫

dy1dy2dy3dy6 ϕ(y2)ϕ
′(y3)

[
p(s2 − s5, y2 − y6) p(s3 − s5, y3 − y6)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) p(s1 + s5 − 2s4, y1 − y6)

+ p(s2 + s5 − 2s4, y2 − y6) p(s3 − s5, y3 − y6) p(s2 − s1, y2 − y1)

p(s3 − s1, y3 − y1) p(s1 − s5, y1 − y6)

+ p(s2 − s5, y2 − y6) p(s3 + s5 − 2s4, y3 − y6) p(s2 − s1, y2 − y1)

p(s3 − s1, y3 − y1) p(s1 − s5, y1 − y6)

]
,

and

J
ε,ε′
8 := 2

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)

∫∫
ds1ds4 1{0<s4<s1<s2∧s3}∫∫

dy2dy3 ϕ(y2)ϕ
′(y3)

[ ∫
dy1 p(s2 + s1 − 2s4, y1 − y2)

p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1)

+
∫

dy1p(s2+s1−2s4, y1−y3)p(s2−s1, y2−y1) p(s3 − s1, y3 − y1)

+ p(s2 + s3 − 2s1, y2 − y3) p(s2 + s3 − 2s4, y2 − y3)

]
,

as well as

J
ε,ε′
9 := 6

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)∫ s2∧s3

0
ds1

∫∫
dy2dy3 ϕ(y2)ϕ

′(y3) p(s2 + s3 − 2s1, y2 − y3).
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We will only prove the uniform convergence of J ε,ε
′

5 , since it contains the main
idea needed also for the proof of convergence of the other five terms.

1◦ (Convergence of J ε,ε
′

5 ). Since f = 0 outside a compact subset of R, in the

integrand of J ε,ε
′

5 , the variables s2, s3 are bounded from above by a constant, say
M , for ε, ε′ ∈ (0, 1]. On {s5 < s1 < s4 < s2 ∧ s3}, we set

h5(s1, s2, s3, s4, s5) :=
∫∫∫∫

dy1dy2dy3dy4 p(s1 + s4 − 2s5, y1 − y4)

p(s2 − s4, y2 − y4) (28)

p(s3 − s4, y3 − y4) p(s2 − s1, y2 − y1) p(s3 − s1, y3 − y1) ϕ(y2)ϕ
′(y3).

Because ‖ϕ/φq ‖∞ is finite and ‖φq ‖∞ < 1, we get by integrating over y2 ,

h5(s1, s2, s3, s4, s5) ≤ ‖ϕ/φq ‖∞
∫∫∫

dy1dy3dy4 p(s1 + s4 − 2s5, y1 − y4)

p(2s2 − s4 − s1, y1 − y4) p(s3 − s4, y3 − y4)

p(s3 − s1, y3 − y1)
∣∣ϕ′(y3)

∣∣.
Since

p(s1 + s4 − 2s5, y1 − y4) p(2s2 − s4 − s1, y1 − y4)

≤ c
[
(s1 + s4 − 2s5)(2s2 − s4 − s1)

]−1
,

and
∫

dy3
∣∣ϕ′(y3)

∣∣ <∞, we have

h5(s1, s2, s3, s4, s5) ≤ c
[
(s1 + s4 − 2s5)(2s2 − s4 − s1)

]−1
.

Hence, for 0 < s2, s3 < M ,

H(s2, s3) :=
∫∫∫

ds1ds4ds5 1{0<s5<s1<s4<s2∧s3} h5(s1, s2, s3, s4, s5) (29)

is bounded from above by

H̃ (s2, s3) := c

∫∫∫
ds1ds4ds5 1{0<s5<s1<s4<s2∧s3}[

(s1 + s4 − 2s5)(2s2 − s4 − s1)
]−1

.

Set vi := (s2 ∧ s3)− si for i ∈ {1, 4, 5} to get

H̃ (s2, s3) = c

∫∫∫
dv1dv4dv5 1{0<v4<v1<v5<s2∧s3}[

(2v5 − v1 − v4)
(
v4 + v1 + 2s2 − 2(s2∧s3)

)]−1

≤ c

∫∫∫
dv1dv4dv5 1{0<v4<v1<v5<s2∧s3}

[
(2v5 − v1 − v4)(v4 + v1)

]−1
.
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With the change of variables u1 := v4, u2 := v1 − v4, u3 := v5 − v4, it
is easy to check that H̃ (s2, s3) is bounded for 0 ≤ s2, s3 < M . It is clear that
(s2, s3) �→ H(s2, s3) is continuous. By the dominated convergence theorem, we
conclude that

J
ε,ε′
5 =

∫ ∞

0
ds2 fε,t (s2)

∫ ∞

0
ds3 fε′,t (s3)H(s2, s3)

converges to

J5 := H(t, t) (30)

as ε, ε′ decrease to 0. The convergence is again uniform on any compact subset of
(0,∞).

Remark 21 (Dimension three). The convergence of J ε,ε
′

5 fails for d = 3 where
H(t, t) = +∞ for ϕ(y) = ϕ′(y) = 1{|y|≤R} . �
2◦ (Limits of J ε,ε

′
2 , J

ε,ε′
6 , . . . , J

ε,ε′
9 ). Finally, we give the uniform limits Ji of J ε,ε

′
i

for i in {2, 6, 7, 8, 9} :

J2 := γ ic

∫ 2t

0
ds

∫∫
dy1dy2 ϕ(y1)ϕ

′(y2) p(s, y1 − y2)

+i2c
∫

dy1 ϕ(y1)

∫
dy2 ϕ

′(y2),

J6 := 1

4

∫ 2t

0
dv1

∫ v1

0
dv4

∫∫
dy2dy3 p(v1, y2 − y3) p(v4, y2 − y3) ϕ(y2)ϕ

′(y3),

J7 :=
∫∫∫

ds1ds4ds5 1{0<s4<s5<s1<t}
∫∫∫∫

dy1dy2dy3dy6 ϕ(y2)ϕ
′(y3)[

p(t − s5, y2 − y6) p(t − s5, y3 − y6) p(t − s1, y2 − y1)

p(t − s1, y3 − y1) p(s1 + s5 − 2s4, y1 − y6)

+ p(t + s5 − 2s4, y2 − y6) p(t − s5, y3 − y6) p(t − s1, y2 − y1)

p(t − s1, y3 − y1) p(s1 − s5, y1 − y6)

+ p(t − s5, y2 − y6) p(t + s5 − 2s4, y3 − y6) p(t − s1, y2 − y1)

p(t − s1, y3 − y1) p(s1 − s5, y1 − y6)

]
,

J8 := 2
∫∫

dv1dv4 1{0<v1<v4<t}
∫∫

dy2dy3 ϕ(y2)ϕ
′(y3)[ ∫

dy1 p(2v4 − v1, y1 − y2) p(v1, y2 − y1) p(v1, y3 − y1)

+
∫

dy1 p(2v4 − v1, y1 − y3) p(v1, y2 − y1) p(v1, y3 − y1)

+ p(2v1, y2 − y3) p(2v4, y2 − y3)

]
,
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J9 := 3
∫ 2t

0
dv

∫∫
dy2dy3 ϕ(y2)ϕ

′(y3) p(v, y2 − y3).

This finishes the proof of Lemma 18. ��

6. Deterministic time-independent catalyst [proof of Theorem 9]

The proof is similar to the proof of Theorem 5 (a) – (b).

Proof of (a). It is enough to check that if σ is absolutely continuous and d ≤ 3,
then for almost all z ∈ R

d ,

J ε,ε
′

:= Eση

[∫ t

s

dr
∫
Xσr (dy) p(ε, z− y)

∫ t

s

dr ′
∫
Xσr ′(dy

′) p(ε′, z− y′)
]

converges in R+ to a non-zero limit as ε and ε′ decrease to 0.

Remark 22 (Smoothing procedure). One could prove a stronger result similar to
Lemma 15 but only for d < 2(β + 1). �

It is easy to deduce from Lemma 4.5 in [Del96] that

Eση

[∫
Xσr (dy) p(ε, z− y)

∫
Xσr ′(dy

′)p(ε′, z− y′)
]
= I

ε,ε′
1 (r, r ′)+ I ε,ε′2 (r, r ′),

where

I
ε,ε′
1 (r, r ′) :=

∫
η(dx) p(r + ε, x − z)

∫
η(dx′) p(r ′ + ε′, x′ − z),

and

I
ε,ε′
2 (r, r ′) :=

∫
η(dx)

∫ r∧r ′

0
du

∫
σ(dy) p(r − u+ ε, y − z)

p(r ′ − u+ ε′, y − z)p(u, x − y).

We will show separately that J ε,ε
′

i =
∫ t

s

dr
∫ t

s

dr ′ I ε,ε
′

i (r, r ′) converges, for i ∈
{1, 2}.
1◦ (Convergence of J ε,ε

′
1 ). Since η ∈ Mf and r ∧ r ′ ≥ s > 0, we deduce that

I
ε,ε′
1 (r, r ′) is bounded on [s, t]2. It also converges pointwise to

I1(r, r
′) :=

∫
η(dx) p(r, x − z)

∫
η(dx′) p(r ′, x′ − z)

as ε and ε′ decrease to 0.By dominated convergence, we deduce thatJ ε,ε
′

1 converges
to J1 := ∫ t

s
dr

∫ t
s

dr ′ I1(r, r ′) as ε, ε′ decrease to 0.
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2◦ (Convergence of J ε,ε
′

2 ). We split the integral I ε,ε
′

2 according to u ≤ s/2 (integral

I
ε,ε′
3 ) and u > s/2 (integral I ε,ε

′
4 ). We have for r, r ′ ∈ [s, t]

I
ε,ε′
3 (r, r ′) =

∫
η(dx)

∫ s/2

0
du

∫
σ(dy)

p(r − u+ ε, y − z)p(r ′ − u+ ε′, y − z)p(u, x − y).

This quantity is bounded from above by a constant time
∫
η(dx)

∫ s/2

0
du

∫
σ(dy)

p(u, x − y) since r, r ′ ∈ [s, t]. This last quantity is finite because there exists a
constant c such that for all x ∈ R

d , u > 0,∫
σ(dy) p(u, x − y) ≤ c

(u ∧ 1)1−β
(cf. (2) in [Del96]). (31)

Since I ε,ε
′

3 converges as ε, ε′ decrease to 0, we deduce from the dominated conver-

gence theorem that J ε,ε
′

3 := ∫ t
s

dr
∫ t
s

dr ′ I ε,ε
′

3 (r, r ′) converges to

J3 :=
∫ t

s

dr
∫ t

s

dr ′
∫
η(dx)

∫ s/2

0
du

∫
σ(dy)

p(r − u, y − z)p(r ′ − u, y − z)p(u, x − y).
We write

J
ε,ε′
4 :=

∫ t

s

dr
∫ t

s

dr ′ I ε,ε
′

4 (r, r ′)

=
∫ t

s

dr
∫ t

s

dr ′
∫
η(dx)

∫ r∧r ′

s/2
du

∫
σ(dy)

p(r − u+ ε, y − z)p(r ′ − u+ ε′, y − z)p(u, x − y)

=
∫ t

s/2
du

∫ t−u+ε

(s−u)++ε
dv

∫ t−u+ε′

(s−u)++ε′
dv′

∫
η(dx)

∫
σ(dy)

p(v, y − z)p(v′, y − z)p(u, x − y)
where we set v := r − u + ε and v′ := r ′ − u + ε′, and continue the chain of
equations with

=
∫ t

s/2
du

∫ t−u+ε

(s−u)++ε
dv

∫ t−u+ε′

(s−u)++ε′
dv′ h(u, v, v′),

with h(u, v, v′) :=
∫
η(dx)

∫
σ(dy) [2π(v + v′)]−d/2 p(

vv′/(v + v′), y − z)
p(u, x − y). To prove the convergence of J ε,ε

′
4 , it is enough to check that the

function h is integrable on A := [s/2, t] × [0, 2t]2.
Using (31), we get that h(u, v, v′) ≤ c (v + v′)1−β−d/2vβ−1v′β−1. This func-

tion is integrable overA for d < 2(1+β). This is always satisfied if d = 1 or d = 2.
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This is in fact the reason behind Remark 22. We now check that h is integrable if
d = 3 for almost all z ∈ R

3. Since u ∈ [s/2, t], we have

H(u, v, v′) =
∫

dz h(u, v, v′) = 1

[2π(v + v′)]3/2

∫
η(dx)

∫
σ(dy) p(u, x − y)

≤ c

(v + v′)3/2
∫
η(dx)

∫
σ(dy) p(a, y − x),

where a and c depend only on s, t . Using again (31), we get that H(u, v, v′) ≤
c(v+v′)−3/2. HenceH is integrable overA. This implies that for almost all z ∈ R

3,
h is also integrable on A. This proves the convergence of J ε,ε

′
4 as ε, ε′ decrease to

0, for almost all z ∈ R
d , d ≤ 3. The limit is

J4 :=
∫ t

s

dr
∫ t

s

dr ′
∫
η(dx)

∫ r∧r ′

s/2
du

∫
σ(dy) p(r − u, y − z)

p(r ′ − u, y − z)p(u, x − y).
Since J ε,ε

′
2 = J

ε,ε′
3 + J

ε,ε′
4 and J ε,ε

′ = J
ε,ε′
1 + J

ε,ε′
2 , we deduced that J ε,ε

′

converges as ε, ε′ decrease to 0 for almost all z ∈ R
d . Notice this limit is strictly

bigger that J1 unless η = 0 or σ = 0.

Proof of (b). Arguing as in the proof of Theorem 5 (b), one sees it is enough to check

that Eση
[( ∫ t

s
dr Xσr , φq

)]
<∞, and that the function (z, ε) �→ Eση

[ ∫ t
s

dr
∫
Xσr (dy)

p(ε, z− y)] is uniformly bounded on R
d × (0, 1]. We have

Eση

[( ∫ t

s

dr Xσr , φq
)]

≤ Eση

[( ∫ t

s

dr Xσr , 1
)]

=
∫ t

s

dr
∫
η(dx)

∫
dy p(r, x − y) <∞,

and

Eση

[∫ t

s

dr
∫
Xσr (dy) p(ε, z− y)

]
=

∫ t

s

dr
∫
η(dx)

∫
dy p(r, x − y)p(ε, z− y)

≤
∫ t

s

dr p(r, 0)(η, 1).

This last constant is independent of (z, ε) ∈ R
d × (0, 1]. ��

This finishes the proof of Theorem 9 altogether.

A. Appendix: Some basic properties of catalyst and reactant

A.1. Moment formulas for the catalyst

Let d ≥ 1 and fix ν ∈ Mq . It is easy to check that for every T > 0, there exists a
constant c > 0 such that for every x ∈ R

d and ε ∈ (0, T ],∫
dy p(ε, x − y) φq(y) ≤ c φq(x). (A.1)
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Therefore we get that if g ∈ Hq
T , then the function (r, x) �→ ∫ ∞

r
ds Ps−r [g(s)](x)

is well-defined and belongs to Hq
T . If f ∈ Bq , then the function (r, x) �→ 1{t≥r}

Pt−r [f ](x) is also well-defined and belongs to Hq
t .

It is well-known that for every t ≥ 0, g ∈ Hq , f ∈ Bq , and m ≥ 1,

E ν

[[
(�t , f )+

∫ ∞

0
ds

(
�s , g(s)

) ]m]
= m!

m∑
k=1

1

k!

∑
n1,... ,nk ≥ 1,
n1+···+nk =m

k∏
i=1

(
ν, χni (0)

)
,

(A.2)

where the sequence (χn , n ≥ 1) is defined by the recurrence formula

χn(r, x) := γ

∫ ∞

r

ds
∫

dy p(s − r, x − y)
[
n−1∑
i=1

χi(s, y) χn−i (s, y)

]
,

(r, x) ∈ R+ × R
d , n ≥ 2, with initial condition

χ1(r, x) := 1{t≥r} Pt−r [f ](x)+
∫ ∞

r

ds Ps−r [g(s)](x), (r, x) ∈ R+ × R
d .

Thanks to the remark at the beginning of this subsection, we see that the functions
χn , n ≥ 1, are well-defined and belong to Hq .

A.2. Regularity properties of the catalyst

We now assume that d ≤ 3. Recall that we write P for Pic� . It is clear from the
Hölder continuity Theorem 3 of [DF97a, p.254] that for every ξ ∈ (0, 1/4), T ≥ 0,
P–a.s. there exists a constant c1 := c1(T , �, ξ) such that for every T ≥ t ≥ r ≥ 0,
f ∈ B+(Rd), ∫ t

r

ds
∫
�s(dz) φq(z)f (z) ≤ c1 |t − r|ξ

∫
dz f (z). (A.3)

We have also (cf. Definition 2 b) and Theorem 4 of [DF97a, pp.224 and 259, re-
spectively]) that for every T ≥ 0, ξ ∈ (0, 1/4), P–a.s. there exists c2 := c2(T , �, ξ)

such that for every x ∈ R
d , T ≥ t ≥ r ≥ 0,∫ t

r

ds
∫
�s(dz) p(s − r, x − z) φ2

q(z) ≤ c2 |t − r|ξ φq(x). (A.4)

A.3. Moment formulas for the reactant

Recall that d ≤ 3. Using the Markov property ofX� (given �), it is easy to get that
P–a.s. for every n ≥ 1, tn ≥ · · · ≥ t1 ≥ 0, and fn , · · · , f1 ∈ Bq+ ,

E�r,µ

[
exp

[
−

∑
ti≥r

(X
�
ti
, fi)

]]
= e−

(
µ,v(r)

)
,
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where v is the unique nonnegative solution of the catalytic log-Laplace equation
(3) with J (s) := ∑

ti≥s Pti−s [fi]. Using the continuity ofX�, it can be shown that
P–a.s. for every nonnegative g ∈ Hq ,

E�r,µ

[
exp

[
−

∫ ∞

r

ds
(
X
�
s , g(s)

) ]]
= e−

(
µ,v(r)

)
,

where v is the unique nonnegative solution of (3) with J (s) := ∫ ∞
s

du Pu−s [g(u)].
We deduce the next result on the moments of the reactant process X� from

Theorem 4, Lemma 4 and Remark 2 of [DF97a, pp. 259 and 232, respectively]. We
have P–a.s. for every t ≥ 0, g ∈ Hq , f ∈ Bq , and m ≥ 1,

E�r,µ

[[
(X

�
t , f )+

∫ ∞

r

ds
(
X
�
s , g(s)

)]m]
=m!

m∑
k=1

1

k!

∑
n1,... ,nk ≥ 1,
n1+···+nk =m

k∏
i=1

(
µ, χni (r)

)
,

(A.5)

where (χn , n ≥ 1) is defined by the recurrence formula (5) with initial condition

χ1(s, x) := 1{t≥s} Pt−s[f ](x)+
∫ ∞

s

du Pu−s
[
g(u)

]
(x) (s, x) ∈ R+ × R

d .

Since χ1 ∈ Hq , inequality (A.4) implies that all the functions χn belong to Hq .
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