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KOLMOGOROV’S TEST FOR THE BROWNIAN SNAKE

By Jean-Fran
ois Delmas and Jean-Stéphane Dhersin

ENPC-CERMICS and Université René Descartes

We present a Kolmogorov’s test for the Brownian snake. This result was
conjectured by Le Gall in 1998. It has to be compared with Kolmogorov’s
test for super Brownian motion by Dhersin and Le Gall.

1. Introduction. Super-Brownian motion X = �Xt� t ≥ 0� is a mea-
sure valued process which appears as a limit of branching particles systems
(see [2]). Dhersin and Le Gall [4] studied the growth of the radius ρX

t of the
support of Xt� ρX

t = inf�R > 0� suppXt ⊂ B�0�R�	, where B�0�R� is the
ball centered at 0 with radius R. In particular for the super-Brownian motion
started at the Dirac mass at 0 ∈ �d, they consider the exit time TX of the
domain Q = ��t� x�� t > 0� x ∈ �d� �x� < √th�t�	, where h is a nonincreas-
ing measurable function: TX = inf�t > 0� ρX

t >
√
th�t�	. They proved that

TX = 0 a.s. if and only if the integral∫
0+

h�t�d+2

t2
e−h�t�

2/2 dt is divergent.(1)

This result has been extended in [3] for a general domain Q ⊂ �0�+∞� × �d

using a parabolic capacity. Super-Brownian motion is an infinitely divisible
process. A description of the canonical measure �0 was given by Le Gall [13]
using a path valued process called the Brownian snake. Roughly speaking, the
clumps described by Brownian snakes are the contributions of infinitesimal
ancestor particles located at 0. Since super-Brownian motion has countably
many such independent clumps, one can expect a different behavior if one
looks only at one clump. For example, the speed of growth of its radius ρt

should be slower. Indeed we prove that T = inf�t > 0� ρt >
√
th�t�	 is zero

a.e. if and only if the integral∫
0+

h�t�d+2

t
e−h�t�

2/2 dt is divergent.(2)

Notice the power of 1/t is 1 instead of 2 for super-Brownian motion.
Super-Brownian motion and the Brownian snake are used to represent solu-

tions to nonlinear PDE (see [5, 6, 7, 12] and references therein). In particular,
if X is under �t� x a super Brownian motion started at time t at the Dirac mass
at point x ∈ �d, then u�t� x� = − log�t� x�TX = ∞� is the maximal nonnega-
tive solution to ∂tu + ��/2�u = 2u2 in Q. Therefore if h satisfies the integral
test (1) then the function u blows up at �0�0�. We prove here that if h satis-
fies the stronger integral test (2) then a.s.

∫
0+ u�t� γt�dt = +∞, where γ is a
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Brownian motion started at 0 (see Corollary 2). There are other zero–one laws
for finiteness of Brownian integrals: for example, see [14] for

∫
�+ v��γt��dt or

more generally the zero–one law of Engelbert–Schmidt on the finiteness of∫
0+ v�γt�dt. See [8] and in a parabolic setting see the results from Jeulin on

the integrals
∫
�+ v��γt�/

√
t�ϕ�t�dt ([10] or [9], page 44) for a more general

result.

2. Kolmogorov’s test for the Brownian snake. In this section, we
briefly recall the basic facts concerning the Brownian snake and give a rigor-
ous version of our main result.

The Brownian snake is a Markov process with values in the set of stopped
paths. A stopped path is a pair �w� ζ�, where ζ ≥ 0 and w� �+ → �d is a
continuous mapping such that w�t� = w�ζ� for every t ≥ ζ. The real ζ is
called the lifetime of the path. We always abuse notation and simply write w
for �w� ζ�. We also use the notation ŵ = w�ζ� for the tip of the path. We endow
the set � of all stopped paths with the distance

d�w�w′� = sup
t≥0
�w�t� −w′�t�� + �ζ − ζ ′��

We shall write ζw for the lifetime of w. Let x ∈ �d be a fixed point. We denote
by �x the set of all stopped paths with initial point w�0� = x.

The Brownian snake with initial point x is the continuous strong Markov
process W = �Ws� s ≥ 0� in �x whose law is characterized as follows:

1. If ζs denotes the lifetime of Ws, the process �ζs� s ≥ 0� is a reflecting
Brownian motion in �+.

2. Conditionally on �ζs� s ≥ 0�, the process W is a time-inhomogeneous
Markov process whose transition kernels are characterized by the following
properties: if 0 ≤ s < s′,
(a) Ws′ �t� =Ws�t� for every t ≤m�s� s′� �= inf �s� s′ � ζr;
(b) �Ws′ �m�s� s′� + t� −Ws′ �m�s� s′��� 0 ≤ t ≤ ζs′ −m�s� s′�� is a Brownian

motion in �d, independent of Ws.

Heuristically, we can see Ws as a Brownian path in �d whose random
lifetime ζs evolves like reflecting Brownian motion. Furthermore, when ζs
decreases, the path Ws is “erased”; when ζs increases, the path Ws is extended
by “adding” independent pieces of d-dimensional Brownian motion at its tip.

From now on we shall consider the canonical realization of the process W
defined on the space C��+��x� of all continuous functions from �+ into �x.
The law of W started at w ∈ �x is denoted by �w. We shall write � ∗w for the
law of the process W killed when its lifetime reaches zero. The distribution
of W under � ∗w can be characterized as above, except that in 1 the lifetime
process is distributed as a linear Brownian motion killed at its first hitting
time of �0	. The state space for �W�� ∗w� is the space � ∗

x = �x ∪ ∂, where ∂ is
a cemetery point.

The trivial path x such that ζx = 0�x�0� = x is clearly a regular point for
the process �W��w�. Following [1], Chapter 3, we can consider the excursion
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measure, �x, outside �x	, normalized by

�x

[
sup
s≥0

ζs > 1
]
= 1

2 �

The distribution of W under �x can be characterized as above, except that
in 1 the lifetime process ζ is distributed according to Itô measure of positive
excursions of linear Brownian motion. Using this remark, it is easy to see that
�x satisfies the following useful scaling property: if λ > 0, we define W

�λ�
s ∈ �x

by

ζ
�λ�
s = λ−2ζλ4s� W

�λ�
s �t� − x = λ−1�Wλ4s�λ2t� − x�� s ≥ 0� t ≥ 0�

then the law under �x of the process W�λ� is λ−2�x.
Let σ = inf�s > 0� ζs = 0	 denote the length of the excursion for the lifetime

process under �x.
Let h be a measurable nonincreasing nonnegative function defined on

�0�∞�. Let Q = ��t� x�� �x <
√
th�t�	 be a domain of �+ × �d. We define T

as the lowest level at which the Brownian snake hit Qc:

T = inf�t > 0� ρt >
√
th�t�	�

where ρt = sup��Ŵs�� ζs = t	 is the radius of the smallest ball centered at the
origin that contains the snake at level t. We use the convention inf � = +∞
and sup� = 0.

Theorem 1. We have the following 0–1 law type for the Brownian snake
started at 0 ∈ �d:

(i) �0�T = 0� = 0 if there exists r > 0, s.t.
∫ r

0 �h�t�d+2/t�e−h�t�2/2 dt < +∞.
(ii) �0�T > 0� = 0 if for all r > 0�

∫ r
0 �h�t�d+2/t�e−h�t�2/2 dt = +∞.

As a direct consequence of Section 4 we can deduce the following corollary.
Let u be the maximal solution to ∂tu+��/2�u = 2u2 in Q. Let γ be a Brownian
motion in �d started at 0 under �.

Corollary 2. We have a 0–1 law for the finiteness of
∫

0+ u�t� γt�dt:
�-a.s. there exists r > 0 s.t.

∫ r
0 u�t� γt�dt is finite if and only if the integral∫ s

0 �h�t�d+2/t�e−h�t�2/2 dt is finite for some s > 0.

3. More details on the snake. We introduce the law of the process W
started from a Brownian path with lifetime ζ0 = δ > 0 and killed when its
lifetime reaches zero,

� ∗�δ��dW� =
∫
�δ

x�dγ�� ∗γ �dW��

where �δ
x�dγ� is the law of Brownian motion started at x ∈ �d and stopped

at time δ, considered as a probability measure on � ∗
x .
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We also recall a particular case of the strong Markov property for the snake
under �x (this can be deduced from [13]). Let τ be a stopping time of the
natural filtration generated by the lifetime process. Assume τ > 0 �x-a.e.,
and let H be a nonnegative measurable functional on C��+�� ∗

x �. Then if θ
denotes the usual shift operator, we have

�x

[
τ <∞�H ◦ θτ

] = �x

[
τ <∞�� ∗�ζτ��H�

]
�(3)

Eventually we recall the Poissonian decomposition of the process W under
� ∗w (see [13]). Let �ζ̄s = infu∈�0� s� ζu� s ≥ 0� be the infimum process associated
to the lifetime process. Let ��αi� βi�� i ∈ � � be the excursion intervals of the
process �ζs− ζ̄s� s ≥ 0� above zero. For s ∈ �αi� βi�, the paths Ws coincide up to
time ζi = ζαi

= ζβi
. Let Wi denote the corresponding excursion of the snake:

for s ≥ 0,

ζi
s = ζ�αi+s�∧βi

and Wi
s�t� =W�αi+s�∧βi

�t�� t ∈ �ζi� ζ�αi+s�∧βi
��

For �r� x� ∈ �× �d, let �r� x denote the law of the process �W′
s� s ≥ 0� defined

by W′
s�u� =Ws�u − r�� u ≥ r under �x. Under �r� x, the lifetime process is a

Brownian excursion above level r. Then we have the following decomposition
of the Brownian snake.

The random measure
∑

i∈� δζi�Wi is under � ∗w a Poisson point measure with
intensity

2× 1�0� ζw��t�dt�t�w�t��dW��

From the definition of � ∗�δ�, we see that for any η ≥ δ, the law of ��ζi�Wi��
i ∈ � such that ζi ≤ δ� under � ∗�η� is the law of ��ζi�Wi�� i ∈ � � under � ∗�δ�.

4. Preliminaries estimates. We fix the starting point of the snake at
x = 0.

We will prove in this section that either �0�T = 0� = 0 or �0�T > 0� = 0.
Let δ > 0 and τδ = inf�s > 0� ζs = δ	, with the convention inf � = +∞.

The time τδ is a stopping time with respect to the filtration generated by the
lifetime process of the snake. Let I be a Borel subset of �0�∞�. Thanks to (3),
we have

�0

[
τδ <∞� sup

t∈I

ρt√
th�t� > 1

]
≥ �0

[
τδ <∞� ∃ s ∈ �τδ� σ� s.t. ζs ∈ I and �Ŵs� >

√
ζsh�ζs�

]
= �0

[
τδ <∞�� ∗�δ�

[
sup
t∈I

ρt√
th�t� > 1

]]
= 1

2δ
� ∗�δ�

[
sup
t∈I

ρt√
th�t� > 1

]
�
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The time-reversal invariance property of the Itô measure and the character-
ization of the excursion measure �x readily imply that the latter itself enjoys
the same invariance property. Let Lδ = sup�s > 0� ζs = δ	. Thus we have

�0

[
τδ <∞� sup

t∈I

ρt√
th�t� > 1

]
≤ �0

[
τδ <∞� ∃ s ∈ �τδ� σ� s.t. ζs ∈ I and �Ŵs� >

√
ζsh�ζs�

]
+�0

[
τδ <∞� ∃ s ∈ �0�Lδ� s.t. ζs ∈ I and �Ŵs� >

√
ζsh�ζs�

]
= 2�0

[
τδ <∞� ∃ s ∈ �τδ� σ� s.t. ζs ∈ I and �Ŵs� >

√
ζsh�ζs�

]
= 1

δ
� ∗�δ�

[
sup
t∈I

ρt√
th�t� > 1

]
�

So, we get for any Borel set I ⊂ �0�∞�,
1
2δ

� ∗�δ�

[
sup
t∈I

ρt√
th�t� > 1

]
≤ �0

[
τδ <∞� sup

t∈I

ρt√
th�t� > 1

]
≤ 1

δ
� ∗�δ�

[
sup
t∈I

ρt√
th�t� > 1

]
�

(4)

In particular, taking I = �0� ε� in the above inequality and letting ε ↓ 0, we
deduce from the dominated convergence theorem that

1
2δ

� ∗�δ�
[
T = 0

] ≤ �0
[
τδ <∞�T = 0

] ≤ 1
δ
� ∗�δ�

[
T = 0

]
�(5)

Notice that if t ≥ ε, then �t� x�T < ε� = 0. From the Poissonian representa-
tion of the snake and the definition of � ∗�δ�, we have for ε > 0,

� ∗�δ��T < ε� = Ɛ
[
1− exp

{
− 2

∫ δ∧ε

0
dt�t� γt

�T < ε�
}]

�(6)

where �γt� t > 0� is under � a Brownian motion in �d started at 0.
We recall the function u�t� x� = �t� x�T < ∞� is the maximal nonnegative

solution of ∂tu+��/2�u = 2u2 in ��t� x�� �x� < √th�t�	 (see [7] for the represen-
tation of the maximal solution using super-Brownian motion and [11, 13] for
the Poissonian representation of super-Brownian motion using the Brownian
snake). By the 0–1 law for Brownian motion we deduce that either:

1. �-a.s. for r > 0 small enough,
∫ r

0 u�t� γt�dt < +∞, or
2. �-a.s. for all r > 0,

∫ r
0 u�t� γt�dt = +∞.

Assume we are in case 1. Then from (6), we deduce that

� ∗�δ��T < ε� ≤ Ɛ
[
1− e−2

∫ δ∧ε
0 dt�t� γt

�T<∞�
]
= Ɛ

[
1− e−2

∫ δ∧ε
0 dtu�t�γt�

]
�
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By dominated convergence, we get, by letting ε ↓ 0, that

∀ δ > 0� � ∗�δ��T = 0� = 0�

Assume we are in case 2. Notice that for ε > 0,

�t� γt
�T ≥ ε+ t�T <∞� ≤ �0�τε <∞� = 1

2ε
�

Thus we have ∫ δ∧ε

0
dt�t� γt

�T < ε+ t� ≥
∫ δ∧ε

0
dtu�t� γt� − 1

2 �

If �-a.s. for all r > 0,
∫ r

0 u�t� γt�dt = +∞, then we get that �-a.s.
∫ δ∧ε

0 dt
�t� γt

�T < ε + t� = +∞. This implies in turn that for all ε > 0, δ > 0, we

have
∫ δ∧ε

0 dt�t� γt
�T < 2ε� = +∞ and thanks to (6) (with ε replaced by 2ε),

� ∗�δ��T < 2ε� = 1. By letting ε ↓ 0, we get � ∗�δ��T = 0� = 1.
We then deduce from (5) that

�-a.s. ∃ r > 0 s.t.
∫ r

0
u�t� γt�dt < +∞ ⇔ � ∗�δ��T = 0� = 0 ∀ δ > 0

⇔ ∃ δ > 0 s.t. � ∗�δ��T > 0� > 0

⇔ �0�T = 0� = 0 and

�0�T > 0� = +∞�

�-a.s. for all r > 0�
∫ r

0
u�t� γt�dt = +∞ ⇔ � ∗�δ��T > 0� = 0 ∀ δ > 0

⇔ ∃ δ > 0 s.t. � ∗�δ��T = 0� > 0

⇔ �0�T = 0� = +∞ and

�0�T > 0� = 0�

5. Proof of part (i) of Theorem 1. We assume
∫

0+ �dt/t�h�t�d+2e−h�t�
2/2

is convergent. We will prove that � ∗�δ��T = 0� = 0. Thanks to the previous
section, it will imply part (i) of Theorem 1.

We set In = �2−n�2−n+1� and hn = h�2−n�. We consider the event

An =
{

sup
u∈In

ρu√
u

> hn−1

}
�

By the Poissonian representation of the snake and the definition of � ∗�δ�, we
have

� ∗�δ��An� = Ɛ
[
1− exp

{
− 2

∫ δ

0
dt�t� γt

�An�
}]

�
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Notice that for t > 2−n+1, �t� γt
�An� = 0. Hence for n such that 2−n+1 < δ, we

have

� ∗�δ��An� = Ɛ
[
1− e−2

∫ 2−n+1

0 dt�t� γt
�An�]

= � ∗�2−n+1��An�
≤ 2−n+2�0

[
τ2−n+1 <∞�An

]
≤ 2−n+2�0

[
An

]
= 4�0

[
sup

t∈�1�2�

ρt√
t
> hn−1

]
�

The first inequality is a consequence of (4) with I = In and h = hn−1. The last
equality is a consequence of the scaling property of the Brownian snake.

Let us now recall the following result due to [4], Lemma 4: there exists a
constant β such that if a ≥ 1,

�0

[
sup

t∈�1�4�

ρt√
t
> a

]
≤ β

4
ad+2e−a

2/2�

Hence we get, if hn−1 ≥ 1,

� ∗�δ��An� ≤ 4�0

[
sup

t∈�1�4�

ρt√
t
> hn−1

]
≤ βhd+2

n−1e
−h2

n−1/2�(7)

Since the integral
∫

0+�dt/t�h�t�d+2e−h�t�
2/2 is convergent, the series∑

n≥1 h
d+2
n e−h

2
n/2 is convergent and limn→∞ hn = +∞. This implies that the

series
∑

n≥1 � ∗�δ��An� is finite. From the Borel–Cantelli lemma, we get that
� ∗�δ��An i.o.� = 0, hence � ∗�δ��T = 0� = 0 since the function h is nonincreasing.

6. Proof ofpart (ii) ofTheorem1. We assume
∫

0+�dt/t�h�t�d+2e−h�t�
2/2=

+∞. This implies the series
∑

n≥1 h
d+2
n e−h

2
n/2 is divergent. We will prove that

� ∗�δ��T = 0� > 0. Thanks to Section 4, this will imply part (ii) of Theorem 1.
By standard arguments we may and will assume that h satisfies: if n ≥ 3,

then

1 ≤
√

log n ≤ h�2−n� ≤ 2
√

log n�(8)

We use the Poissonian representation of the snake. We define the radius at
time t of the excursion Wi: ρi

t = sup
{�Ŵs�� ζs = t� s ∈ �αi� βi�

}
. Notice that

ρi
t = 0 if t < ζi. Of course we have ρi

t ≤ ρt.
We set Jn = �2−n+2�2−n+3�. Let δ > 0 fixed. For n ≥ 6 such that 2−n+1 < δ,

we define under � ∗�δ� the event

An =
{
∃ i ∈ � � ζi ∈ [

2−n−1�2−n+1] and sup
u∈Jn

ρi
u√
u

> hn−3

}
�
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Since � ∗�δ��An i.o.� ≤ � ∗�δ��T = 0�, it is enough to prove that � ∗�δ��An i.o.� > 0.
Thanks to the properties of Poisson point measures, the events An are inde-
pendent under � ∗γ . Unfortunately, they are not independent under � ∗�δ�. But
we will use a refined version of the Borel–Cantelli lemma which one can find
in [15], page 317: If there exists n0 such that

�C1�
∞∑

n=n0

� ∗�δ��An� = ∞�

�C2� lim inf
N→∞

∑
n0≤n�m≤N � ∗�δ��An ∩Am�∑

n0≤n�m≤N � ∗�δ��An�� ∗�δ��Am�
<∞�

then � ∗�δ��An i.o. � > 0.
The proof of part (ii) of Theorem 1 will be complete once (C1) and (C2) are

checked.
First, we check Condition (C1). Let n1 ≥ 6 such that 2−n1+1 < δ. For n ≥ n1,

we have

� ∗�δ��An� = � ∗�δ�

[
∃ i ∈ � � ζi ∈ �0�2−n+1� and sup

u∈Jn

ρi
u√
u

> hn−3

]

− � ∗�δ�

[
∃ i ∈ � � ζi ∈ �0�2−n−1� and sup

u∈Jn

ρi
u√
u

> hn−3

]

= � ∗�2−n+1�

[
sup
u∈Jn

ρu√
u

> hn−3

]
− � ∗�2−n−1�

[
sup
u∈Jn

ρu√
u

> hn−3

]

≥ 2−n+1�0

[
τ2−n+1 <∞� sup

u∈Jn

ρu√
u

> hn−3

]

− 2�2−n−1�0

[
τ2−n−1 <∞� sup

u∈Jn

ρu√
u

> hn−3

]

= 2−n�0

[
sup
u∈Jn

ρu√
u

> hn−3

]
�

We used the remark at the end of Section 3 for the second equality; (4) for
the first inequality; and the fact that τη = +∞ implies ρη = 0 for the third
equality.

From Lemma 4 of [4], there exists a constant α such that if a ≥ 1,

4αad+2e−a
2/2 ≤ �0

[
sup

u∈�1�2�

ρu√
u

> a

]
�

Hence, using the scaling property of the snake, hn−3 ≥ 1 and this result, we
get

� ∗�δ��An� ≥ α�hn−3�d+2e−�hn−3�2/2�(9)

Since the series
∑

n≥1 h
d+2
n e−h

2
n/2 is divergent, we have

∑
n≥1 �

∗
�δ��An� = ∞.
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Let us now check Condition (C2). Let n1 ≥ 6 such that 2−n1+1 < δ. For
n ≥ n1, we define under � ∗�δ� the event

Bn =
{∃ t ∈ �0�2−n+1�� �γt� > 8�2−n/2

√
log n

}
�

Let us recall there exists a universal constant β′ independent of n such that

� ∗�δ��Bn� = Ɛ

[
sup

u∈�0�1�
�γu� > 4

√
2
√

log n

]
≤ β′e−�4

√
2
√

log n�2/2 = β′
1
n16

�(10)

Let n ≥m ≥ n1. We give an upper bound for � ∗�δ��An ∩Am�. We have

� ∗�δ��An ∩Am� ≤ � ∗�δ��Bn� + � ∗�δ���An ∩Bc
n� ∩Am��

First notice that (9) and the monotonicity of the function φ�x� = xd+2×
exp�−x2/2� for x large imply

� ∗�δ��An�� ∗�δ��Am� ≥
(
α�hn−3�d+2e−�hn−3�2/2

)(
α�hm−3�d+2e−�hm−3�2/2

)
≥

(
αhd+2

n e−h
2
n/2

)2

≥ α2 �4 log n�d+2

n4
�

where we used the monotonicity of φ and hn ≤ 2
√

log n for the last inequality.
Hence, it follows from (10) that there exists n2 ≥ n1 such that if n ≥m ≥ n2,

� ∗�δ��Bn� ≤ � ∗�δ��An�� ∗�δ��Am��

Let us now give an upper bound for � ∗�δ���An ∩ Bc
n� ∩ Am�. We assume that

n−m ≥ 3, so that 2−n+1 < 2−m−1. We have

� ∗�δ���An ∩Bc
n� ∩Am� =

∫
�δ�dγ�� ∗γ �An ∩Am�1Bc

n

=
∫
�δ�dγ�� ∗γ �An�� ∗γ �Am�1Bc

n

= Ɛδ
[
� ∗γ �An�1Bc

n
Ɛδ�� ∗γ �Am��σ�γs� s ≤ 2−n+1��]�

where we used the independence of An and Am under � ∗γ . Now, notice that
on Bc

n, we have �γ2−n+1 � ≤ 8�2−n/2
√

log n. Hence, on Bc
n, we get by space–time
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translation,

Ɛδ�� ∗γ �Am��σ�γs� s ≤ 2−n+1��

≤ � ∗�δ�

[
∃ i ∈ � � ζi ∈ �2−m−1 − 2−n+1�2−m+1 − 2−n+1�

and sup
u∈�2−m+2−2−n+1�2−m+3−2−n+1�

ρi
u + 8�2−n/2

√
log n√

u+ 2−n+1
> hm−3

]

≤ � ∗�δ�

[
sup

s∈�2−m+1�2−m+3�

ρs + 8�2−n/2
√

log n√
s

> hm−3

]

≤ � ∗�δ�

[
sup

s∈�2−m+1�2−m+3�

ρs√
s
> hm−3 − 8�2�m−1�/22−n/2

√
log n

]
�

Following the proof of [7] we get for n3 ≥ 3 large enough and n−m ≥ n3,

� ∗�δ�

[
sup

s∈�2−m+1�2−m+3�

ρs√
s
> hm−3 − 8�2�m−1�/22−n/2

√
log n

]

≤ 4�0

[
sup

t∈�1�4�

ρt√
t
> hm−3 − 8�2�m−1�/22−n/2

√
log n

]

≤ β
(
hm−3 − 4

√
2 2−�n−m�/2

√
log n

)d+2

× exp
(
−
(
hm−3 − 4

√
2 2−�n−m�/2

√
log n

)2
/2

)
≤ β�hm−3�d+2e−�hm−3�2/2 exp

(
4
√

2 2−�n−m�/2
√

log n2
√

log�m− 3�
)

≤ β�hm−3�d+2e−�hm−3�2/2 exp
(
8
√

2 2−�n−m�/2log n
)
�

Hence, we deduce that

� ∗�δ���An∩Bc
n�∩Am�≤� ∗�δ��An�β�hm−3�d+2e−�hm−3�2/2exp�8

√
22−�n−m�/2 logn��

Case 1. n−m ≥ 4 log log n. Then

� ∗�δ���An ∩Bc
n� ∩Am� ≤

β

α
� ∗�δ��An�� ∗�δ��Am�e8

√
22−�n−m�/2 log n

≤ e8
√

2β

α
� ∗�δ��An�� ∗�δ��Am��

Case 2. n3 ≤ n −m ≤ 4 log log n. Then using (8) and the monotonicity of
the function φ�x� = xd+2 exp�−x2/2� for x large we get for m large enough,

φ�hm−3� ≤ φ

(√
log�n− 4 log log n− 3�

)
≤ φ

(√
�log n�/2

)
�
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So we have

� ∗�δ���An ∩Bc
n� ∩Am�

≤ β� ∗�δ��An���log n�/2��d+2�/2 exp�−�log n�/4+ 8
√

2 2−�n−m�/2 log n��
Hence there exists n0 ≥ sup�n2� n3� such that if n0 ≤ n −m ≤ 4 log log n, we
have at least

� ∗�δ���An ∩Bc
n� ∩Am� ≤

1
4 log log n

� ∗�δ��An��

Finally, using the previous results, we get

1
2

∑
n0≤n�m≤N

� ∗�δ��An ∩Am�

≤ ∑
n0≤m≤n≤N

� ∗�δ���An ∩Bc
n� ∩Am� +

∑
n0≤m≤n≤N

� ∗�δ��Bn�

= ∑
n0≤m≤n≤N

n−m≥4 log log n

� ∗�δ���An ∩Bc
n� ∩Am� +

∑
n0≤m≤n≤N

n0≤n−m<4 log log n

� ∗�δ���An ∩Bc
n� ∩Am�

+ ∑
n0≤m≤n≤N
n−m<n0

� ∗�δ���An ∩Bc
n� ∩Am� +

∑
n0≤m≤n≤N

� ∗�δ��Bn�

≤ ∑
n0≤m≤n≤N

n−m≥4 log log n

e8
√

2β

α
� ∗�δ��An�� ∗�δ��Am� +

∑
n0≤m≤n≤N

n0≤n−m<4 log log n

1
4 log log n

� ∗�δ��An�

+ ∑
n0≤m≤n≤N
n−m<n0

� ∗�δ��An� +
∑

n0≤m≤n≤N
� ∗�δ��An�� ∗�δ��Am�

≤ e8
√

2β

α

∑
n0≤m≤n≤N

� ∗�δ��An�� ∗�δ��Am� +
∑

n0≤n≤N
� ∗�δ��An�

+ �n0 − 1� ∑
n0≤n≤N

� ∗�δ��An� +
∑

n0≤m≤n≤N
� ∗�δ��An�� ∗�δ��Am�

≤
(

1+ e8
√

2β

α

)( ∑
n0≤n≤N

� ∗�δ��An�
)2

+ n0
∑

n0≤n≤N
� ∗�δ��An��

This inequality and the divergence of the series
∑

� ∗�δ��An� immediately imply
assumption (2) of the Borel–Cantelli lemma. Hence part (ii) of Theorem 1 is
proved.
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