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Abstract. We prove the existence of the total length process for the genealogical tree of a population model with random size
given by quadratic stationary continuous-state branching processes. We also give, for the one-dimensional marginal, its Laplace
transform as well as the fluctuation of the corresponding convergence. This result is to be compared with the one obtained by
Pfaffelhuber and Wakolbinger for a constant size population associated to the Kingman coalescent. We also give a time reversal
property of the number of ancestors process at all times, and a description of the so-called lineage tree in this model.

Résumé. Nous démonstrons l’existence du processus de longueur totale renormalisée pour l’arbre généalogique dans un modèle
de population dont la taille évolue suivant un processus de branchement continu quadratique (diffusion de Feller). Nous donnons
également la loi unidimensionnelle de la longueur totale de l’arbre généalogique ainsi que les fluctuations associées à la renor-
malisation. Ce résultat est à rapprocher de ceux obtenus par Pfaffelhuber et Wakolbinger dans le cadre d’une population de taille
constante associée au processus de coalescence de Kingman. Nous établissons également une propriété d’invariance par retourne-
ment du temps pour le processus du nombre des ancêtres qui permet d’obtenir en particulier une description du processus ancestral
dans ce modèle.
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1. Introduction

1.1. The model

Stochastic models for the evolution of a stationary population goes back to the Wright–Fisher model, which is for
a finite fixed size population in discrete generations. Fleming–Viot processes extend those models to the infinite
size population (with infinitesimal individuals) in continuous time, see Donnelly and Kurtz [7]. On the other hand,
Galton–Watson processes model the evolution of a discrete random-size population in discrete generations based on
the branching property: descendants of two individuals in the same generation behaves independently. Continuous
state branching (CB) processes extend those models to the infinite size population (with infinitesimal individuals) in
continuous time. The description of the genealogy of the CB processes is done using historical Dawson–Watanabe pro-
cesses, see Donnelly and Kurtz [8], or Lévy trees, see Duquesne and Le Gall [9]. In order to consider Galton–Watson
processes or CB processes in stationary regime, one has to condition them on non-explosion and non-extinction. Then
one gets the Galton–Watson processes or CB processes with an immortal individual, see Delmas and Hénard [6] in
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this direction for non-homogeneous models and the references therein. These can also be seen as Galton–Watson
processes or CB processes with immigration if one removes the immortal individual. We shall consider one of the
simplest models considered in Chen and Delmas [4] of the CB processes with an immortal individual which corre-
sponds to a quadratic sub-critical branching mechanism, in this direction Evans [11] first developed this model in the
case of superprocesses. The results we present concern the neutral population.

1.2. The genealogy

Describing the genealogy of a large population is a key issue in population genetics. A well-established model in this
direction is the Kingman coalescent which describes the genealogy of a Fleming–Viot process. Intuitively we may
think of the Kingman coalescent at some fixed time s as a random tree with infinitely many leaves (corresponding to
the individuals alive at time s), when backwards in time any two lineages coalesce independently at rate 1. See Pitman
[22] and Sagitov [24] for a general description of the coalescent processes.

The study of the evolution in t of the genealogical tree of the population at time t , or of some of its functionals has
recently attracted some interest in mathematical population genetics. In this direction for the quadratic Fleming–Viot
process (associated to the Kingman coalescent), see Greven, Pfaffelhuber and Winter [14]. The functionals of the
genealogical tree of interest are:

• The time to the most recent common ancestor (TMRCA) at time t is the distance between any leaf (which are all
living individuals at time t ) of the genealogical tree and its root. Pfaffelhuber and Wakolbinger [20] studied the
evolving Kingman coalescent case and Evans and Ralph [12] the large branching population case.

• The number of mutations observed in a population in a neutral model is distributed as a Poisson random variable
with mean the rate of mutation times the total tree length of the genealogical tree (other similar quantities of interest
are the number of mutations which appear only once; this is distributed as a Poisson random variable with mean the
rate of mutation times the total length of the external branches of the genealogical tree). This motivated the study
of the rescaled total length of the coalescent trees which converges in distribution to the Gumbel distribution at a
given fixed time for the Kingman coalescent (see Janson and Kersting [15] for the external length asymptotics). The
corresponding limit process has been studied in Pfaffelhuber, Wakolbinger and Weisshaupt [21] as well as Dahmer,
Knobloch and Wakolbinger [5] where it is proved that the limit process is not a semi-martingale.

An extension has been provided for other Λ-coalescents, see Kersting, Schweinsberg and Wakolbinger [16] for
Beta-coalescents and Schweinsberg [25] for the Bolthausen–Sznitman coalescent.

Our main objective is to study the limit process of the renormalized total length of the genealogical tree in a
population with random size given by a quadratic stationary CB process.

1.3. Main results

We model the random size of the population at time t by Zt with (Zt , t ∈ R) a stationary CB (or CB process with
immigration) process with sub-critical quadratic branching mechanism. This model, see [4] or Section 2.3 for a precise
definition, is characterized by two positive parameters θ and β , which describe the mean size of the population and a
time scale:

• The random size of the population, Zt , is distributed as the sum of two independent exponential random variables
with mean 1/(2θ).

• The TMRCA of the population living at time t , At , is distributed as the maximum of two independent exponential
random variables with mean 1/(2βθ).

In particular, we have:

E[Zt ] = 1

θ
and E[At ] = 3

4β
E[Zt ].

For s < t let Mt
s be the number of ancestors at time s of the population living at time t , the immortal individual

being excluded, see (17) for a precise definition. The following time reversal property for the number of ancestors
process (Ms+r

s , s ∈ R, r > 0), see Theorem 4.3, is similar to the time reversal property of the look-down process in



Total length of the genealogical tree for quadratic CB 1323

Fig. 1. We represent the genealogical tree of the population living at time 0 and s (s > 0) with x axis as the line of the immortal individual. At
t > 0 units of time before present, the number of ancestors is M0−t = 8 for the population living at time 0 and Ms

s−t = 4 for the population living
at time s. The TMRCA of the population living at time 0 is A.

the Kingman case, see also Lemma 8 from Aldous and Popovic [2] in a critical branching process setting at a fixed
time. The proof of the next theorem does not rely on discrete approximation as in [2].

Theorem 1 (Time reversal property). The process (Ms
s−r , s ∈R, r > 0) is distributed as (Ms+r

s , s ∈R, r > 0).

We define for r > 0 the “probability” of an infinitesimal individual to have descendants r units of time forward,
see definition (5), as:

c(r) := 2θ

e2βθr − 1
.

The point process of lineage tree As of the population at time s is defined by Popovic [23] (see also [2]) in a critical
branching setting (see also the references in Remark 4.2), and it corresponds in our setting to the jumping times of the
process (Ms

s−r , r > 0):

�(As) := {
r > 0;Ms

s−r − Ms
(s−r)− = 1

}
.

The lineage tree of Zs at some current time s is depicted in Figure 1. Using the time reversal property, we deduce in
Remark 4.2 the following corollary.

Corollary 2. The point process �(As) has the same distribution as the set {ζj ;xj < Zs} where
∑

j∈J δxj ,ζj
(dx, dz)

is a Poisson point measure on (0,+∞)2 with intensity dx|c′(z)|dz and independent of Zs .

The process (Ms
s−r , r > 0) is a (forward) death process and a (backward) birth process whose intensities are given

in Propositions 3.2 and 3.3. We also give in Proposition 3.4 a reconstruction result of the process (Zs−t , t > 0) from
the process (Ms

s−r , r > 0) by grafting CB processes, and we then deduce a formula on the weighted integral of
the ancestor process, see Corollary 3.5. For the reconstruction of the CB processes from backbones instead of the
genealogical tree see also Duquesne and Winkel [10].

The total length of the genealogical tree for the population living at time s, up to time s − ε (with ε > 0) is given
by:

Ls
ε =

∫ ∞

ε

Ms
s−r dr,

and we consider the normalized total length up to time s − ε defined by:

Ls
ε = Ls

ε − Zs

∫ ∞

ε

c(r) dr.
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We have the following result, see Theorems 5.2 and 5.8 as well as Lemma 5.4.

Theorem 3. There exists a càdlàg stationary process (Ws, s ∈R), such that for all s ∈ R, the compensated tree length
(Ls

ε, ε > 0) converges a.s. and in L2 to Ws .
Furthermore we have for λ > 0:

E

[
e−2βθλW0

∣∣∣Z0 = z

2θ

]
= e−zϕ(λ) and E

[
e−2λβθW0

] = (
1 + ϕ(λ)

)−2

with

ϕ(λ) = −λ

∫ 1

0
dv

1 − vλ

1 − v
.

Proposition 5.5 gives the fluctuation:
√

β(Lε − W0)/
√

ε converges in distribution as ε goes down to 0 towards√
2Z0G1, with G1 ∼N (0,1) a standard Gaussian random variable independent of Z0.
Notice the process (Ls

ε, s ∈ R) is not continuous, and this implies that W is not continuous. We also provide the
covariance of W , see Proposition 5.6, and get, see Remark 5.7, that there exists some finite positive constant C such
that:

E
[
(Ws − W0)

2] ∼0+ Cs
[
log(s)

]2
, (1)

i.e. lims→0+ E[(Ws − W0)
2]/(s[log(s)]2) = C.

Remark 4. We present here some open problems:

I. In the context of Fleming–Viot processes the tightness of the approximating total length process has been shown
in [21] and the convergence on the path space is derived. However we only have convergence at a fixed time s for
Ls

ε in Theorem 3. The convergence on the path space is still open.
II. Following [21], it is proved in [5] that the tree length process has infinite quadratic variation. The fact that W has

infinite quadratic variation, which is suggested by (1), is still open.
III. Proposition 5.5 identifies the Gaussian fluctuation limit of Lε at a fixed time. An interesting problem is the co-

variance structure of this process for different times. The result will be presented in forthcoming paper.

2. Population model

Let β > 0 and θ > 0 be fixed scale parameters.

2.1. Sub-critical quadratic CB process

Consider a sub-critical branching mechanism ψ(λ) = βλ2 + 2βθλ, let Px be the law of a CB process Y = (Yt , t ≥ 0)

started at mass x with branching mechanism ψ . We extend Y on R by setting Yt = 0 for t < 0. Let Ex and N be
respectively the corresponding expectation and canonical measure (excursion measure) associated to Y . Recall that Y

is Markovian under Px and N. We have for every t > 0:

Ex

[
e−λYt

] = e−xu(λ,t) for λ > − 2θ

1 − e−2βθt

with

u(λ, t) =N
[
1 − e−λYt

] = 2θλ

(2θ + λ)e2βθt − λ
(2)

satisfying the backward and forward equations:

∂tu(λ, t) = −ψ
(
u(λ, t)

)
and ∂tu(λ, t) = −ψ(λ)∂λu(λ, t). (3)
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Then it is easy to derive that for t > 0:

β

∫ t

0
u(λ, r) dr = log

(
1 + λ

1 − e−2βθt

2θ

)
and β

∫ ∞

0
u(λ, t) dt = log

(
1 + λ

2θ

)
. (4)

Let c(t) = limλ→∞ u(λ, t) and denote by ζ = inf{t > 0;Yt = 0} the lifetime of Y under N. Then we have for t > 0:

c(t) =N[ζ > t] = 2θ

e2βθt − 1
. (5)

From the Markov property of Y , we deduce that for s > 0 and t, λ ≥ 0:

u
(
u(λ, s), t

) = u(λ, t + s) and u
(
c(s), t

) = c(t + s). (6)

We deduce from (4) that for s > t > 0:

β

∫ +∞

s

c(r) dr = β

∫ +∞

0
u
(
c(s), r

)
dr = log

(
1 + c(s)

2θ

)
= − log

(
1 − e−2βθs

)
(7)

as well as

β

∫ s

t

c(r) dr = log

(
1 − e−2βθs

1 − e−2βθt

)
. (8)

We easily get the following results for t > 0:

N[Yt ] = e−2βθt (9)

as well as

N
[
e−λYt 1{ζ>t}

] = c(t) − u(λ, t), (10)

and, thanks to the Markov property of Y and (3) for s > 0, t > 0:

N[Ys1{Ys+t=0}] =N
[
Yse−c(t)Ys

] = ψ(c(s + t))

ψ(c(t))
= e2βθs

(
c(s + t)

c(t)

)2

. (11)

2.2. Genealogy of the CB process Y

We will recall the genealogical tree for the CB process which is studied in Le Gall [19] or Duquesne and Le Gall [9].
Since the branching mechanism is quadratic, the corresponding Lévy process is just the Brownian motion with drift.
Let B = (Bt , t ∈ R+) be a standard Brownian motion. We consider the Brownian motion Bθ = (Bθ

t , t ∈ R+) with
negative drift and the corresponding reflected process above its minimum H = (H(t), t ∈R+):

Bθ
t =

√
2

β
Bt − 2θt and H(t) = Bθ

t − inf
s∈[0,t]B

θ
s .

We deduce from equation (1.7) in [9] that H is the height process associated to the branching mechanism ψ . For a
function h defined on R+, we set:

max(h) = max
(
h(t), t ∈ R+

)
.

Let N[dH ] be the excursion measure of H above 0 normalized such that N[max(H) ≥ r] = c(r). Let (x
t (H),

t ∈ R+, x ∈ R+) be the local time of H at time t and level x. Let ζ = inf{t > 0;H(t) = 0} be the duration of the
excursion H under N[dH ]. We recall that (r

ζ (H), r ∈ R+) under N is distributed as Y under N, see Theorem 1.4.1
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in [9] for details. From now on we shall identify Y with (r
ζ (H), r ∈ R+) and write N for N. We now recall the

construction of the genealogical tree of the CB process Y from H .
Let f be a continuous non-negative function defined on [0,+∞), such that f (0) = 0, with compact support. We

set ζ f = sup{t;f (t) > 0}, with the convention that sup∅= 0. Let df be the non-negative function defined by:

df (s, t) = f (s) + f (t) − 2 inf
u∈[s∧t,s∨t]f (u).

It can be easily checked that df is a semi-metric on [0, ζ f ]. One can define the equivalence relation associated to
df by s ∼ t if and only if df (s, t) = 0. Moreover, when we consider the quotient space T f = [0, ζ f ]/∼ and, noting
again df the induced metric on T f and rooting T f at ∅f , the equivalence class of 0, it can be checked that the space
(T f , df ,∅f ) is a compact rooted real tree.

The so-called genealogical tree of the CB process Y is the real tree T = (T H ,dH ,∅H ). In what follows, we shall
mainly present the result using the height process H instead of the genealogical tree T , and say that H codes for the
genealogy of Y .

Let a > 0 and (Hk, k ∈ Ka) be the excursions of H above level a. It is well known that
∑

k∈Ka
δHk

(dH) is under
N and conditionally on (Yr , r ∈ [0, a]), a Poisson point measure with intensity YaN[dH ]. We define the number of
ancestors at time a of the population living at time b as the number of excursions above level a which reach level
b > a by:

Rb
a(H) :=

∑
k∈Ka

1{max(Hk)≥b−a}.

When there is no confusion, we shall write Rb
a for Rb

a(H). Notice that Rb
a is conditionally on Ya a Poisson random

variable with mean c(b − a)Ya .
We compute functionals of R in Section A.1.

2.3. The population model

We model the population using a stationary CB process. Let D be the space of càdlàg paths having 0 as a trap. Consider
under P a Poisson point measure

N (dt, dY ) =
∑
i∈I

δ(ti ,Y
i )(dt, dY ) (12)

on R×D with intensity 2β dtN[dY ]. We shall consider the process Z = (Zt , t ∈ R) defined by

Zt :=
∑
ti≤t

Y i
t−ti

. (13)

Let E be the expectation with respect to P. According to [4], Z is a CB process with branching mechanism ψ ,
conditionally on non-extinction. Notice the process Z is a.s. finite, a.s. positive and stationary. We shall model a
population with random size by the process Z. The process Z can be seen as a CB process with immigration or a
population with an infinite lineage (or immortal individual).

Using the property of the Poisson point measure, we have:

E
[
e−λZt

] =
(

1 + λ

2θ

)−2

, (14)

which also gives:

E[Zt ] = 1

θ
and E

[
Z2

t

] = 3

2θ2
. (15)
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Using the branching property of Y , it is easy to get for s ≥ 0:

E[Z0Zs] = 2 + e−2βθs

2θ2
. (16)

3. The number of ancestors process

3.1. Definition

We describe the genealogy of Z using the framework developed in Section 2.2. Let

N ′(dt, dH) =
∑
i∈I

δ(ti ,H
i)(dt, dH)

be a Poisson point measure with intensity 2β dtN(dH). We will write Y i
a for a(H i) for i ∈ I and use (13) for the

definition of Z. Let T i be the genealogical tree associated to Hi . Consider the real line as an infinite spine, and for
all i ∈ I , graft the tree T i at level ti on the infinite spine. This defines a tree which we call the genealogical tree of the
process Z. Thus

∑
i∈I δ(ti ,H

i) allows to code (on an enlarged space) the genealogy of Z defined by (13).
Let r < t . We define the number of ancestors, excluding the immortal individual, at time r of the population living

at time t , Mt
r , by:

Mt
r :=

∑
i∈I

1{ti<r}Rt−ti
r−ti

(
Hi

)
. (17)

We shall identify M−r with M0−r for r > 0, when there is no risk of confusion. The time to the most recent common
ancestor (TMRCA) of the population living at time 0 is defined as inf{r > 0;M−r = 0}. We shall call (Mt

r ,−∞ <

r < t < +∞) the number of ancestors process.

Remark 3.1. Notice the time order on Hi allows to define an order structure on T i , which could then be described as
a planar tree. Then grafting T i at level ti either on the left or on the right of the infinite spine would define a planar
genealogical tree of the process Z. Since this order structure is of no use to the study of the length of the genealogical
tree, we decide to omit it and concentrate on the number of ancestors process instead.

Recall from [4], Section 6, that conditionally on (Z−u,u ≥ r), M−r is a Poisson random variable with intensity
c(r)Z−r . This implies, using (15) and (14) that for t > 0:

E[M−t ] = c(t)

θ
, E

[
M2−t

] = c(t)

θ

(
1 + 3

2

c(t)

θ

)
= 2

e2βθt + 2

(e2βθt − 1)2
, (18)

E
[
e−λM−r

] = E
[
e−(1−e−λ)c(r)Z−r

] =
(

1 + c(r)

2θ

(
1 − e−λ

))−2

, (19)

and moreover by Corollary 6.5 in [4] a.s.

lim
r→0+

M−r

c(r)
= Z0. (20)

3.2. Associated birth and death process

Thanks to the branching property, we get that the process (Mt , t < 0) is a birth process starting from 0 at −∞.
The birth rate is the sum of two terms: the first one is the contribution of the immortal individual and it is equal to
2βc(−t) dt ; the second one is the contribution of the current ancestors and is equal to βc(−t)Mt− dt , see Proposi-
tion A.3. We deduce the following result.
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Proposition 3.2. The process (Mt , t < 0) is a càdlàg birth process starting from 0 at −∞ with rate βc(|t |)(Mt + 2)

at time t < 0. Equivalently, the process (M̃t , t < 0) defined by limt→−∞ M̃t = 0 and

dM̃t = dMt − βc
(|t |)(Mt + 2) dt

is a martingale (with respect to its natural filtration) whose jumps are equal to 1.

Similarly, we can check the following result.

Proposition 3.3. The process (M(−t)− , t > 0) is a càdlàg death process with rate

M−t

∣∣c′(t)
∣∣/c(t) = βM−t

(
2θ + c(t)

)
.

We can also recover the process (Zt , t < 0) from (Mt , t < 0) by grafting CB processes on the number of ancestors
process. Notice there is a contribution from the immortal individual with rate 2βN[dY ; ζ < |t |]dt (as we do not
take into account the contributions which reach the current time 0) and from the genealogical tree, according to
Proposition A.3, we have the contributions of Y (g),i and we only keep the contributions of Y (d),i which do not reach
the current time 0; this gives a contribution with rate 2βMtN[dY ; ζ < |t |]dt . Therefore, we have the following result.

Proposition 3.4. Let
∑

i∈I δ
ti ,Ỹi

(dt, dỸ ) be, conditionally on (Mt , t < 0), a Poisson point measure on (−∞,0) ×D

with intensity

2β(Mt + 1)N
[
dY ; ζ < |t |]dt.

Then, conditionally on (Mt , t < 0), the process (Z̃t , t < 0) is distributed as (Zt , t < 0) where for all t < 0:

Z̃t =
∑
ti≤t

Ỹ i
t−ti

.

Moments for the process (Mt , t < 0) are given in Section A.2.
We deduce from Proposition 3.4, the following remarkable formula on the weighted integral of the number of

ancestors process.

Corollary 3.5. Let t > 0. We have:

E
[
e−2β

∫ +∞
t dr(c(r−t)−c(r))M−r

] =
(

2θ

2θ + c(t)

)2

= E
[
e−c(t)Z0

]
.

Proof. According to Proposition 3.4 and Lemma 3.1 in [4], we have:

E
[
e−λZt

] = E

[
exp

(
−2β

∫ +∞

t

dr(M−r + 1)N
[(

1 − e−λYr−t
)
1{ζ<r}

])]
.

Notice that

N
[(

1 − e−λYr−t
)
1{ζ<r}

] = u
(
λ + c(t), r − t

) − u
(
c(t), r − t

) = u
(
λ + c(t), r − t

) − c(r).

Thanks to (4) and (7), we get:

2β

∫ +∞

t

dr
(
u
(
λ + c(t), r − t

) − c(r)
) = 2 log

(
1 + λ + c(t)

2θ

)
− 2 log

(
1 + c(t)

2θ

)
.

Then use (14) to get:

E

[
exp

(
−2β

∫ +∞

t

dr
(
u
(
λ + c(t), r − t

) − c(r)
)
M−r

)]
=

(
2θ

2θ + λ

)2(2θ + λ + c(t)

2θ + c(t)

)2

.

Letting λ goes to infinity and (14) give the result. �
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4. Time reversal of the number of ancestors process

The next result is in a sense a consequence of the time reversibility of the process Y with respect to its lifetime ζ .

Lemma 4.1. The random variable (Z0, (M−t , t > 0)) and (Z0, (M
t
0, t > 0)) have the same distribution.

This result will be generalized in Theorem 4.3.

Remark 4.2. Up to a random labeling of the individuals, see Remark 3.1 in our setting, the point process � of the lin-
eage tree A defined in [2] or [23] of the population living at time 0 is given by the coalescent times of the genealogical
tree or equivalently by the jumping times of the process (Mt , t < 0):

�(A) = {|t |; t < 0 s.t. Mt − Mt− = 1
}
.

Let
∑

j∈J δ
xj ,Ŷ j be a Poisson point measure on (0,+∞) ×D with intensity dxN[dY ] and independent of Z0. Let

ζ̂j denote the lifetime of Ŷ j . By considering the genealogies and using the branching property, we get:

(
Mt

0, t > 0
) (d)=

( ∑
xj <Z0

1{ζ̂j ≥t}, t > 0

)
. (21)

Then, thanks to Lemma 4.1, we deduce that the coalescent times �(A) are distributed as the family of lifetimes:

�(A)
(d)= {ζ̂j ; j ∈ J s.t. xj < Z0}.

Notice that by construction,
∑

j∈J δ
xj ,ζ̂j

is a Poisson point measure on (0,+∞)2 with intensity dx|c′(t)|dt and is
independent of Z0.

This result is similar to the one in [2] or [23] for a critical CB process (corresponding to θ = 0 in our framework)
born in the past according to the Lebesgue measure on (−∞,0), with the intensity of the corresponding Poisson point
measure on (0,1) × (0,+∞) given by dxt−2 dt ; see also [13] for extensions concerning the model developed in [23].
(Notice the two intensities are similar near 0 as |c′(t)| ∼0+ 1/(βt2).) Similar results are given for other models, see
[18] for non-quadratic CB processes, and [17] for Crump–Mode–Jagers processes.

Proof of Lemma 4.1. By (20), a.s. Z0 = limt→0+ M−t /c(t). Since c(t) = N[ζ ≥ t], we can deduce from (21), using
standard results on Poisson point measures, that a.s. Z0 = limt→0+ Mt

0/c(t). This and the fact that (M−t , t > 0) and
(Mt

0, t > 0) are Markov processes, imply that it is enough to check that (M−t ,M−r ) and (Mt
0,M

r
0) have the same

distribution for r > t > 0 to prove the lemma.
Let r > t > 0. On one hand, notice that each of the Mt

0 ancestors at time 0 of the population living at time t generate
independently a population (at time 0) distributed according to N[dY |ζ > t]. This implies that

Mr
0

(d)=
Mt

0∑
i=1

1{ζ̃i>r}, (22)

where (Ỹ i , i ∈ N
∗) are independent, independent of Mt

0 and distributed according to N[dY |ζ > t]. This readily im-

plies that Mr
0 is, conditionally on Mt

0, binomial with parameter (Mt
0,

c(r)
c(t)

). (This could have been deduced from
Corollary A.2.) Thus using (19), we have for λ > 0 and μ > 0:

E
[
e−λMr

0−μMt
0
] = E

[(
e−μ

(
1 − c(r)

c(t)

(
1 − e−λ

)))Mt
0
]

=
(

1 + c(t)

2θ

(
1 − e−μ

(
1 − c(r)

c(t)
+ c(r)

c(t)
e−λ

)))−2

=
(

1 + c(t)

2θ

(
1 − e−μ

) + c(r)

2θ

(
1 − e−λ

)
e−μ

)−2

. (23)
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On the other hand, given M−r , M−t can be decomposed into two parts:

M−t = MI [−r,−t] +
M−r∑
j=1

M̃
r,j
r−t , (24)

where

(i) MI [−r,−t] is the number of ancestors at time −t of the population living at time 0 corresponding to a population
Y i (see definition (12)) immigrating at time ti belonging to (−r,−t) and MI [−r,−t] is independent of M−r .

(ii) (M̃
r,j
r−t , j ∈ N

∗) are independent, independent of M−r and each one represents the number of ancestors at time

−t generated by one of the ancestors at time −r . By construction, (M̃
r,j
r−t , j ∈ N

∗) are distributed as Rr
r−t under

N[dY |ζ > r].
We get for λ > 0 and μ > 0:

E
[
e−λM−r−μM−t

] = E
[
e−λM−r E

[
e−μM−t |M−r

]]
= E

[
e−λM−rN

[
e−μRr

r−t |ζ > r
]M−r

]
E

[
e−μMI [−r,−t]]

. (25)

Using (47), we obtain:

N
[
e−μRr

r−t |ζ > r
] = N[ζ > r] −N[1 − e−μRr

r−t ]
N[ζ > r] = c(r) − u((1 − e−μ)c(t), r − t)

c(r)
.

By the exponential formula for Poisson point measures and (4), we have:

E
[
e−μMI [−r,−t]] = e−2β

∫ r−t
0 dsN[1−e−μR

t+s
s ] =

(
1 + (

1 − e−μ
)(

1 − e−2βθ(r−t)
)c(t)

2θ

)−2

.

Plugging the above computations in (25), and using (19), we get:

E
[
e−λM−r−μM−t

] =
[

1 + c(t)

2θ

(
1 − e−μ

) + c(r)

2θ

(
1 − e−λ

)
e−μ

]−2

.

This and (23) imply that (M−t ,M−r ) and (Mt
0,M

r
0) have the same distribution. �

We now give the main theorem of this section on the time reversal of the number of ancestors process.

Theorem 4.3. The process (Ms
s−r , s ∈R, r > 0) is distributed as (Ms+r

s , s ∈ R, r > 0).

Remark 4.4. Using stationarity, we deduce that the truncated total length process of the genealogical tree, see (35):(
Ls

ε =
∫ ∞

ε

Ms
s−r dr, s ∈R, ε > 0

)

is distributed as the (backward) truncated total lifetime process of the population(∫ ∞

ε

M−s+r−s dr, s ∈R, ε > 0

)
,

which in a sense is illustrated in Figure 2.
In particular, we deduce from Remark 4.2 the following distribution equality:

(
L0

ε, ε > 0
) (d)=

( ∑
xj <Z0

(ζj − ε)+, ε > 0

)
, (26)
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Fig. 2. At a fixed time −s, three families are present, they will all die out at time −s + t . M−s+u−s equals the number of bold lines present at any
time −s + u. Then the total lifetime of the population at −s is to add the length of the bold parts together.

where x+ = max(x,0) and
∑

j∈J δxj ,ζj
is a Poisson point measure on (0,+∞)2 with intensity dx|c′(t)|dt indepen-

dent of Z0.

Before giving the proof of Theorem 4.3 which is postponed at the end of this section, we first give a preliminary
lemma.

We define the forward process for the individuals living at time s (which relies on their life-time) M(f)
s =

(Mr+s
s , r > 0) and the backward process for the ancestors of the population living at time s, M(b)

s = (Ms
s−r , r > 0).

Lemma 4.5. We have for t > r > 0, s ≥ 0, λ > 0 and μ > 0:

E
[
e−λM−s−s−r−μM−s−s−t

∣∣M(b)
0

] =Kλ,μ

(
M(b)

0

)
, (27)

E
[
e−λMs+r

s −μMs+t
s

∣∣M(f)
0

] =Kλ,μ

(
M(f)

0

)
, (28)

with Kλ,μ some measurable deterministic function depending on λ and μ.

Proof. We first prove (27). Using Proposition 3.4, the quantity (M−s−s−r ,M
−s−s−t ), conditionally on M(b)

0 , consists of
three parts:

(i) The ancestors at time −s − t of the current population at 0, that is M−s−t .
(ii) The ancestors coming from the immortal individual (or from the immigration) over v ∈ (−∞,−s − t), whose

intensity is 2β dv(Mv + 1)N[dY ; ζ < −v].
(iii) The ancestors coming from the immortal individual (or from the immigration) over v ∈ (−s − t,−s − r), whose

intensity is 2βdu(Mv + 1)N[dY ; ζ < −v]. Notice that in this case, we have M−s−s−t = 0.

This implies:

E
[
e−λM−s−s−r−μM−s−s−t

∣∣M(b)
0

]
= e−(μ+λ)M−s−t exp

(
−2β

∫ s+t

s+r

dv(M−v + 1)N
[(

1 − e−λRv−s
v−s−r

)
1{ζ<v}

])

× exp

(
−2β

∫ ∞

s+t

dv(M−v + 1)N
[(

1 − e−λRv−s
v−s−r−μRv−s

v−s−t
)
1{ζ<v}

])
.

Lemma A.5 implies

N
[(

1 − e−λRv−s
v−s−r

)
1{ζ<v}

] = u(δ1, v − s − r) − c(v), (29)

N
[(

1 − e−λRv−s
v−s−r−μRv−s

v−s−t
)
1{ζ<v}

] = u(δ3, v − s − t) − c(v), (30)

with

δ1 = (
1 − e−λ

)
c(r) + e−λc(r + s) and δ3 = (

1 − e−μ
)
c(t) + e−μu(δ1, t − r). (31)
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Thus, we deduce (27) with:

Kλ,μ

(
M(b)

0

) = e−(λ+μ)M−s−t−2β
∫ +∞
s+r g(v)(M−v+1) dv, (32)

with g defined by:

g(v) = 1(s+r,s+t)(v)u(δ1, v − s − r) + 1(s+t,+∞)(v)u(δ3, v − s − t) − c(v). (33)

On the other hand, using the Williams’ decomposition given in Abraham and Delmas [1], the quantity (Ms+r
s ,

Ms+t
s ), conditionally on M(f)

0 , consists of three parts:

(i) The individuals of the current populations which have descendants at time s + t , that is, Ms+t
0 .

(ii) The part coming from the immigration over the time interval [0, s] which arrives with rate 2β dvN[dY ].
(iii) The individuals i ∈ I , for some index set I , living at time 0 with lifetime ζi > s + r generate individuals, with

intensity 2β dvN[dY ; ζ < ζi − v], over the time interval [0, s] and some of them are still alive at time s + r and
s + t .

Notice the set {ζi, i ∈ I } = {t;Mt
0 = Mt−

0 +1} is measurable with respect to the σ -field generated by M(f)
0 . Therefore,

we have:

E
[
e−λMs+r

s −μMs+t
s

∣∣M(f)
0

]
= e−(μ+λ)Ms+t

0 exp

(
−2β

∫ s

0
dvN

[(
1 − e−λRs+r−v

s−v −μRs+t−v
s−v

)])

× exp

(
−2β

∑
ζi>s+r

∫ s

0
dvN

[(
1 − e−λRs+r−v

s−v −μRs+t−v
s−v

)
1{ζ<ζi−v}

])
.

We set for q ≥ s + r :

G(q) =
∫ s

0
dvN

[(
1 − e−λRs+r−v

s−v −μRs+t−v
s−v

)
1{ζ<q−v}

]
.

Notice that G(s + r) = 0. With this notation we can write

E
[
e−λMs+r

s −μMs+t
s

∣∣M(f)
0

] = e−(μ+λ)Ms+t
0 −2βG(+∞)−2β

∑
ζi>s+r G(ζi ). (34)

First, we compute the derivative of G on (s+r, s+ t). Thanks to Lemma A.5, see (49), we have for q ∈ [s+r, s+ t]:

G(q) =
∫ s

0
dvN

[(
1 − e−λRs+r−v

s−v
)
1{ζ<q−v}

] =
∫ s

0
dv

(
u
(
γ1(q), s − v

) − c(q − v)
)

with

γ1(q) = (
1 − e−λ

)
c(r) + e−λc(q − s).

Notice that for q ∈ (s + r, s + t),

∂q

∫ s

0
dvu

(
γ1(q), s − v

) = ∂qγ1(q)

∫ s

0
dv∂λu

(
γ1(q), s − v

)

= −∂qγ1(q)

∫ s

0
dv

∂tu(γ1(q), s − v)

ψ(γ1(q))

= ∂qγ1(q)
γ1(q) − u(γ1(q), s)

ψ(γ1(q))
,
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where we used (3) for the second equality. We also have:

−∂q

∫ s

0
dvc(q − v) = c(q − s) − c(q).

Recall δ1 defined in (31). Elementary computations yield for q ∈ (s + r, s + t):

c(q) + ∂qG(q) = ∂qγ1(q)
γ1(q) − u(γ1(q), s)

ψ(γ1(q))
+ c(q − s)

= 2θ
(e2βθ(r+s) − 1) − e−λe2βθr (e2βθs − 1)

(e2βθ(r+s) − 1)(e2βθ(q−s) − 1) − e−λ(e2βθs − 1)(e2βθ(q−s) − e2βθr )

= u(δ1, q − s − r).

Thanks to (33), we deduce that for q ∈ (s + r, s + t), ∂qG(q) = g(q).
Second, we compute the derivative of G on (s + t,+∞). Thanks to Lemma A.5, see (50), we have for q > s + t :

G(q) =
∫ s

0
dv

(
u
(
γ2(q), s − v

) − c(q − v)
)
,

with

γ2(q) = (
1 − e−λ

)
c(r) + e−λ

(
1 − e−μ

)
c(t) + e−(λ+μ)c(q − s).

Similar arguments as in the first part give for q > s + t :

c(q) + ∂qG(q) = ∂qγ2(q)
γ2(q) − u(γ2(q), s)

ψ(γ2(q))
+ c(q − s).

Recall δ3 defined in (31). Elementary (but tedious) computations yield for q > s + t :

c(q) + ∂qG(q) = u(δ3, q − s − t),

so that for q > s + t , ∂qG(q) = g(q).
For all 0 < v < s, 0 < r < t , we have N-a.e. limq↓s+t R

s+t−v
s−v 1{ζ<q−v} = 0. This implies that G is continuous at

s + t . Since G(s + r) = 0, we deduce that for all q ≥ s + r ,

G(q) =
∫ q

s+r

g(v) dv.

In particular, we get G(+∞) = ∫ +∞
s+r

g(v) dv as well as:

∑
i;ζi>s+r

G(ζi) =
∫ +∞

s+r

dvg(v)
∑

i;ζi>s+r

1{v≤ζi } =
∫ +∞

s+r

dvg(v)Mv
0 .

This, (34) and (32) imply:

E
[
e−λMs+r

s −μMs+t
s

∣∣M(f)
0

] = e−(μ+λ)Ms+t
0 −2β

∫ +∞
s+r dvg(v)(Mv

0 +1) =Kλ,μ

(
M(f)

0

)
.

This ends the proof of the lemma. �

Proof of Theorem 4.3. Notice the (stationary) processes M(b) = (M(b)
s , s ∈ R) and M(f) = (M(f)

s , s ∈ R) are
Markovian. Since the process M−s−s−• (resp. Ms+•

s ) conditionally on M(b)
0 (resp. M(f)

0 ) is Markovian, we deduce
from Lemma 4.5 that the transition kernels of M(b) and M(f) are equal. Then use Lemma 4.1 to conclude. �



1334 H. Bi and J.-F. Delmas

5. The total length process

5.1. Total length process

We define the total length of the genealogical tree for the population living at time s, up to time s − ε (with ε > 0) by:

Ls
ε :=

∫ ∞

ε

Ms
s−r dr. (35)

In order to study the asymptotic of Ls
ε as ε goes to 0, we consider the normalized total length

Ls
ε := Ls

ε − Zs

∫ ∞

ε

c(r) dr = Ls
ε + Zs

β
log

(
1 − e−2βθε

)
, (36)

where we used (7) for the last equality. When s = 0, we write Lε (resp. Lε) for Ls
ε (resp. Ls

ε). By stationarity, the
distributions of (Ls

ε, ε > 0) and (Ls
ε, ε > 0) do not depend on s. We have:

E[Lε] = 1

θ

∫ ∞

ε

c(r) dr = − 1

βθ
log

(
1 − e−2βθε

)
and E[Lε] = 0. (37)

In order to study the convergence of Lε , we first give an elementary lemma. Recall the dilogarithm function defined
for 0 ≤ t ≤ 1 by:

Li2(t) = −
∫ t

0

log(1 − x)

x
dx

and Li2(0) = 0, Li2(1) = π2/6.

Lemma 5.1. For η > ε > 0, we have:

E
[
(Lη −Lε)

2] = 1

β2θ2

[
Li2

(
1 − e−2βθη

) − Li2
(
1 − e−2βθε

)] + 2ε

βθ
log

(
1 − e−2βθε

1 − e−2βθη

)
. (38)

In particular, we have limε→0 E[(Lε)
2] = 1

β2θ2
π2

6 .

Notice that the last term in the right-hand side of (38) is negative.

Proof of Lemma 5.1. Notice that

E
[
(Lη −Lε)

2] = E

[(∫ η

ε

(
M−r − c(r)Z0

)
dr

)2]
.

We have:

E

[(∫ η

ε

(
M−r − c(r)Z0

)
dr

)2]
= 2

∫
[ε,η]2

dt dr1{t<r}E
[(

M−r − c(r)Z0
)(

M−t − c(t)Z0
)]

.

It is easy to derive that for r > t > 0:

E
[
c(r)c(t)Z2

0

] = 3

2

c(r)c(t)

θ2
,

E[M−rM−t ] = c(r)

θ

(
1 + 3

2

c(t)

θ

)
,
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E
[
M−rc(t)Z0

] = E
[
Mr

0c(t)Z0
] = c(r)c(t)E

[
Z2

0

] = 3

2

c(r)c(t)

θ2
,

E
[
M−t c(r)Z0

] = 3

2

c(r)c(t)

θ2
,

where we used (15) for the first equality, (54) for the second, Lemma 4.1 for the third, and the fact that conditionally
on Z0, Mr

0 is Poisson with parameter c(t)Z0 for the fourth. We deduce that for r > t > 0:

E
[(

M−r − c(r)Z0
)(

M−t − c(t)Z0
)] = c(r)

θ
,

and thus:

E

[(∫ η

ε

(
M−r − c(r)Z0

)
dr

)2]

= 2

θ

∫ η

ε

(r − ε)c(r) dr

= − 1

β2θ2

∫ e−2βθε

e−2βθη

log(y)

1 − y
dy + 2ε

βθ

∫ e−2βθε

e−2βθη

1

y − 1
dy

= 1

β2θ2

[
Li2

(
1 − e−2βθη

) − Li2
(
1 − e−2βθε

)] + 2ε

βθ
log

(
1 − e−2βθε

1 − e−2βθη

)
.

The second assertion is immediate. �

We have the a.s. and L2 convergence of (Ls
ε, ε > 0) as ε goes down to 0.

Theorem 5.2. Let s ∈ R. The compensated tree length (Ls
ε, ε > 0) converges a.s. and in L2: there exists a random

variable Ws ∈ L2 such that

Ls
ε

L2 and a.s.−−−−−→
[ε→0]

Ws.

We have:

E[Ws] = 0 and E
[
W 2

s

] = 1

β2θ2

π2

6
.

By stationarity, we deduce that the distribution of Ws does not depend on s. Furthermore, we have the convergence
a.s. and in L2 of the finite dimensional marginals of the process (Ls

ε, s ∈ R) towards those of the process W = (Ws, s ∈
R) as ε goes down to 0.

Proof of Theorem 5.2. By stationarity, we only need to consider the case s = 0. We deduce from Lemma 5.1 the L2

convergence of (Lε, ε > 0) as ε goes down to 0 towards a limit W0 as well as the first and second moment of W0.
We now prove the a.s. convergence. We deduce from Lemma 5.1 that for η > 0 small enough:

E
[
(Lη − W0)

2] = 1

β2θ2
Li2

(
1 − e−2βθη

) ≤ 4η

βθ
.

Set an = 1/n2 for n ∈N
∗. We deduce that (Lan, n ∈N

∗) converges a.s. to W0. For ε ∈ [an+1, an], we have:

Lan − Z0

∫ an

an+1

c(r) dr ≤ Lε ≤ Lan+1 + Z0

∫ an

an+1

c(r) dr.
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Since for n large enough:∫ an

an+1

c(r) dr ≤ c(an+1)(an − an+1) ≤ 5

βn
,

we deduce that (Lε, ε > 0) converges a.s. to W0 as ε goes down to 0. �

Remark 5.3. We deduce from Lemma 5.1 and (15) that:

E
[
(Lε)

2] = E
[
(Lε)

2] + 2

β
log

(
1 − e−2βθε

)
E[Z0Lε] − 3

2β2θ2
log

(
1 − e−2βθε

)2
.

Arguing as the proof of Lemma 5.1 we get:

E[Z0Lε] =
∫ ∞

ε

c(r) drE
[
Z2

0

] = 3

2βθ2
log

(
1 − e−2βθε

)
.

This gives:

E
[
(Lε)

2] = E
[
(Lε)

2] + 3

2β2θ2
log

(
1 − e−2βθε

)2
.

We get the following equivalence for the expectation and variance of Lε as ε goes down to 0:

E[Lε] ∼0+
1

βθ
log(1/ε) and Var(Lε) ∼0+

1

2β2θ2
log(1/ε)2.

5.2. Distribution and fluctuation for the 1-dimensional marginal

We provide the distribution of W0 via its Laplace transform.

Lemma 5.4. For λ > 0 and z > 0, we have:

E

[
e−2βθλW0

∣∣∣Z0 = z

2θ

]
= e−zϕ(λ) and E

[
e−2λβθW0

] = (
1 + ϕ(λ)

)−2
,

with

ϕ(λ) = −λ

∫ 1

0
dv

1 − vλ

1 − v
.

From the proof below, we get that the distribution of W0 is infinitely divisible (conditionally on Z0 or not). Notice
that for λ = n, we get ϕ(n) = −nHn, where Hn is the harmonic number.

Proof of Lemma 5.4. We use the notations from Remark 4.4. According to Remark 4.4, see also (26), and since
c(t) =N[ζ > t], we get that (Z0, (Lε, ε > 0)) is distributed as (Z0, (L̃ε, ε > 0)), with

L̃ε =
∑

xj <Z0

(ζj − ε)+ − Z0N
[
(ζ − ε)+

]
.

In particular W0 is distributed as W̃0 = limε↓0 L̃ε .
The exponential formula for Poisson point measures gives for any λ > 0:

E

[
e−λL̃ε

∣∣∣Z0 = z

2θ

]
= exp

(
− z

2θ
N

[
1 − e−λ(ζ−ε)+] + λz

2θ
N

[
(ζ − ε)+

]) = exp
(−zKε(λ)

)
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with

Kε(λ) = 1

2θ
N

[
1 − e−λ(ζ−ε)+ − λ(ζ − ε)+

]

= 2βθ

∫ ∞

ε

dt
e2βθt

(e2βθt − 1)2

(
1 − e−λ(t−ε) − λ(t − ε)

)

= 2βθe2βθε

∫ ∞

0
dt

e2βθt

(e2βθ(t+ε) − 1)2

(
1 − e−λt − λt

)
,

where we used that N[dζ ]|ζ=t = −c′(t) dt = 4βθ2 e2βθt

(e2βθt−1)2 dt for the second equality. Notice that by dominated
convergence:

lim
ε↓0

Kε(λ) = ϑ(λ)

with

ϑ(u) = 2βθ

∫ ∞

0
dt

e2βθt

(e2βθt − 1)2

(
1 − e−λt − λt

)
.

Letting ε goes down to 0, we deduce the Laplace transform of W0, for λ > 0:

E

[
e−2βθλW0

∣∣∣Z0 = z

2θ

]
= e−zϕ(λ)

with

ϕ(λ) = ϑ(2βθλ) =
∫ ∞

0
dt

et

(et − 1)2

(
1 − e−λt − λt

)

= −2λ

∫ ∞

0
dt

1 − e−λt

et − 1

= −λ

∫ 1

0
dv

1 − vλ

1 − v
,

where we used integration by parts in the third equality. Notice that, conditionally on Z0, W0 is infinitely divisible
with Lévy measure |c′(t)|dt .

We also have:

E
[
e−2βθλW0−μZ0

] = E
[
e−μZ0−2θϕ(λ)Z0

]
=

(
1 + ϕ(λ) + μ

2θ

)−2

.

The second result of the lemma follows by taking μ = 0. �

We also give the following result on the fluctuation of Lε .

Proposition 5.5. We have the following convergence in distribution:

(
Z0,

√
β/ε(Lε − W0)

) (d)−−→
[ε→0]

(Z0,
√

2Z0G1),

with G1 ∼ N (0,1) a standard Gaussian random variable independent of Z0.
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Proof. We keep the notations from the proof of Lemma 5.4. Mimicking the proof of Lemma 5.4, we get for λ ∈ R,
ε > η > 0:

E
[
eiλ(Lε−Lη)|Z0

] = e−Z0fε,η(λ),

with

fε,η(λ) =N
[
1 − eiλ((ζ−ε)+−(ζ−η)+) + iλ

(
(ζ − ε)+ − (ζ − η)+

)]
.

Notice that 0 ≤ (x−η)+−(x−ε)+ ≤ x∧ε for x > 0. Since N[(ζ ∧ε)2] is finite, we deduce by dominated convergence
that limη→0 fε,η(λ) = fε(λ), with

fε(λ) = N
[
1 − e−iλ(ζ∧ε) − iλ(ζ ∧ ε)

]
= 4βθ2

∫ ε

0
dt

e2βθt

(e2βθt − 1)2

(
1 − iλt − e−iλt

) + 2θ

e2βθε − 1

(
1 − iλε − e−iλε

)
.

We deduce that:

E
[
eiλ(Lε−W0)|Z0

] = e−Z0fε(λ)

and thus for μ ∈R:

E

[
exp

(
iλ

Lε − W0√
ε

+ iμZ0

)]
= E

[
exp

(
Z0

(
iμ − fε(λ/

√
ε)

))]
.

Dominated convergence yields:

lim
ε→0

fε(λ/
√

ε) = λ2

β
.

We deduce that:

lim
ε→0

E

[
exp

(
iλ

Lε − W0√
ε

+ iμZ0

)]
= E

[
eZ0(iμ−λ2/β)

] = E

[
exp

(
iλ

√
2Z0

β
G1 + iμZ0

)]
.

This gives the result. �

5.3. Path properties of the process W

We first give the covariance of the process W , whose proof is given in Section 5.4.

Proposition 5.6. Let s ∈ R∗. We have:

E[W0Ws] = 1

2β2θ2

[
π2

6
e−2βθs + e2βθs Li2

(
e−2βθs

)]

− 2
(
e2βθs − e−2βθs

)∫ ∞

0

dr

e2βθr − 1

∫ s+r

s

dq

e2βθq − 1
.

Remark 5.7. From this a short calculus calculation shows that there is a constant C such that:

E
[
(Ws − W0)

2] ∼0+ Cs
[
log(s)

]2
.

This suggests that the process W is not continuous. Indeed, recall definition (12) and notice the process Ls
ε , for fixed ε,

has jumps at least at any time ζi − ti for any i ∈ I such that ζi , the death time of Y i , is larger than ε. The same holds
for W .
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We have the following result on the existence of a càdlàg version of W , whose proof is given in Section 5.5.

Theorem 5.8. There exists a càdlàg R-valued process W ′ = (W ′
s , s ∈ R) having the same finite dimensional

marginals as W .

5.4. Proof of Proposition 5.6

By Theorem 5.2, we have:

E[W0Ws] = lim
ε→0+ E

[
LεLs

ε

]
.

We turn to the calculation of E[LεLs
ε] with ε small enough. We have:

E
[
LεLs

ε

] = E

[(
Lε − Z0

∫ ∞

ε

c(r) dr

)(
Ls

ε − Zs

∫ ∞

ε

c(r) dr

)]
= B1 − B2 − B3 + B4,

with B1 = E[LεL
s
ε],

B2 = E[LεZs]
∫ ∞

ε

c(r) dr, B3 = E
[
Ls

εZ0
] ∫ ∞

ε

c(r) dr, B4 =
(∫ ∞

ε

c(r) dr

)2

E[Z0Zs].

We first compute B4. Using (16) and (7) we get:

B4 = 2 + e−2βθs

2β2θ2

(
log

(
1 − e−2βθε

))2
.

We compute B2. For −r < 0 < s, we have, using Proposition 3.4:

E[M−rZs] = E
[
M−rE

[
Zs |σ(Mu,u ≤ −r)

]]

= E

[
M−r

(
M−r∑
i=1

Ỹ i
s+r +

∑
−r<ti<s

Y i
s−ti

)]

= E
[
M2−r

]
N[Ys+r |ζ > r] + 2βE[M−r ]

∫ s

−r

N[Ys−t ]dt.

Since by (5) and (9),

N[Ys+r |ζ > r] = N[Ys+r1{ζ>r}]
N[ζ > r] = e−2βθ(s+r)

c(r)
,

and by (18) and again (9), we have:

E[M−rZs] = 2 + e−2βθs

θ(e2βθr − 1)
.

Hence, we have by (7):

B2 = E[LεZs]
∫ ∞

ε

c(r) dr = 2 + e−2βθs

2β2θ2

(
log

(
1 − e−2βθε

))2
,

that is, B2 = B4.
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For B3, we first compute E[Z0M
s
s−q ]. By stationary, we have E[Z0M

s
s−q ] = E[Z−sM−q ]. For ε < q < s, using

(16), we get:

E[Z−sM−q ] = c(q)E[Z−qZ−s] = 2 + e2βθ(q−s)

θ(e2βθq − 1)
.

For q > s, a decomposition similar to the one used to compute B2 gives:

E[Z−sM−q ] = e2βθs + 2

θ(e2βθq − 1)
− (e2βθs − 1)2

θ(e2βθq − 1)2
e2βθ(q−s).

Thus we have:

B3 =
∫ ∞

ε

c(r) dr

∫ ∞

ε

dqE
[
Z0M

s
s−q

]

=
∫ ∞

ε

c(r)

θ
dr

[∫ s

ε

dq
e2βθ(q−s) + 2

(e2βθq − 1)
+

∫ ∞

s

dq

[
e2βθs + 2

(e2βθq − 1)
− (e2βθs − 1)2

(e2βθq − 1)2
e2βθ(q−s)

]]
.

For B1, the integrand is computed in Lemma A.7. We have:

B1 = 2
∫ ∞

ε

dr

∫ s+r

ε

dq
e2βθ(q−s) + 2

(e2βθr − 1)(e2βθq − 1)

+ 2
∫ ∞

ε

dr

∫ ∞

s+r

dq

[
e2βθ(r+s) + 2

(e2βθr − 1)(e2βθq − 1)
− e2βθq(1 − e−2βθs)(e2βθ(r+s) − 1)

(e2βθr − 1)(e2βθq − 1)2

]
.

Since B2 = B4, this gives:

E
[
LεLs

ε

] = B1 − B3

= 2e−2βθs

∫ ∞

ε

dr

∫ s+r

s

dq
e2βθq

(e2βθr − 1)(e2βθq − 1)

+ 2e2βθs

∫ ∞

ε

dr

∫ ∞

s+r

dq
e2βθr

(e2βθr − 1)(e2βθq − 1)

− 2e2βθs

∫ ∞

ε

dr

∫ ∞

s

dq
1

(e2βθq − 1)(e2βθr − 1)
.

Basic calculations yield:

E[W0Ws] = 1

2β2θ2

[
π2

6
e−2βθs + e2βθs Li2

(
e−2βθs

)]

− 2
(
e2βθs − e−2βθs

)∫ ∞

0
dr

∫ s+r

s

dq

(e2βθr − 1)(e2βθq − 1)
.

The proof is then complete.

5.5. Proof of Theorem 5.8

According to Billingsley [3], Theorem 3.16, and thanks to the stationary property, it is enough to check the following
two conditions:

(i) Right continuity in probability: for all λ > 0,

lim
h↓0

P
(|Wh − W0| > λ

) = 0. (39)
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(ii) Control of the jumps: there exists γ > 0, δ > 0 such that for some constant C > 0 and all λ > 0, s, t ∈ (0,1/8),

P
(|W−t − W0| ∧ |Ws − W0| ≥ 6λ

) ≤ Cλ−4γ (s + t)1+δ. (40)

Notice that Proposition 5.6 (see also Remark 5.7) implies the L2-continuity of W . This in turn implies (39) and
thus (i) is satisfied.

We shall now focus on (ii) and (40). In this section C denotes any finite positive constants which may vary from
line to line. For notational convenience, we shall write for ε > 0, s ∈ R:∫ ε

0
dr

(
Ms

s−r − c(r)Zs

) = Ws −Ls
ε.

We define for h > |u| > 0:

A1(u,h) = −
∫ ∞

h

(
M−r − Mu−r

)
dr,

A2(u,h) = Z0

∫ ∞

h

c(r) dr − Zu

∫ ∞

h+u

c(r) dr,

A3(u,h) = −
∫ h

0

(
M−r − c(r)Z0

)
dr,

A4(u,h) =
∫ h+u

0

(
Mu

u−r − c(r)Zu

)
dr.

For s > 0, t > 0 and h > s + t , we have:

Ws − W0 =
4∑

i=1

Ai(s, h) and W0 − W−t = −
4∑

i=1

Ai(−t, h). (41)

In a first step we give upper bounds for the probability of Ai to be large in the following lemmas.

Lemma 5.9. There exists a finite constant C1 such that for all s, t ∈ (0,1/8), h > 2(s + t) > 0 and λ > 0, we have:

P
(∣∣A1(s, h)

∣∣ ∧ ∣∣A1(−t, h)
∣∣ > λ

) ≤ C1
(s + t)2

h4
.

Proof. Notice that A1(u,h) �= 0 implies |M−h − Mu
−h| ≥ 1. Therefore, we have:

P
(∣∣A1(s, h)

∣∣ ∧ ∣∣A1(−t, h)
∣∣ > λ

)
≤ P

(
M−h − Ms−h �= 0,M−h − M−t

−h �= 0
)

= 1 − P
(
M−h = Ms−h

) − P
(
M−h = M−t

−h

) + P
(
M−h = Ms−h,M−h = M−t

−h

)
= 1 − P

(
M−h = Ms

−h

) − P
(
M−h = M−t

−h

) + P
(
Ms

−h = M−t
−h

)
, (42)

where we used for the last equality that the sequence (Mu−h,u > −h) is non-increasing.
Let r > t > 0. According to representation (22), we have that Mr

0 is, conditionally on Mt
0, binomial with parameter

(Mt
0,

c(r)
c(t)

). This implies:

P
(
Mr

0 = Mt
0

) = E

[(
c(r)

c(t)

)Mt
0
]

=
(

1 + c(t) − c(r)

2θ

)−2

,
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where we used (19) for the last equality. By stationarity, we deduce from (42) that:

P
(∣∣A1(s, h)

∣∣ ∧ ∣∣A1(−t, h)
∣∣ > λ

) ≤ 1 − 1

(1 + x)2
− 1

(1 + y)2
+ 1

(1 + x + y)2

=
∫ x

0
dv

∫ y

0
dz

6

(1 + v + z)4

≤ 6xy,

with

x = c(h − t) − c(h)

2θ
and y = c(h) − c(h + s)

2θ
.

Notice that:(
1 − e−2βθh

)(
e2βθ(h+s) − 1

) ≥ e2βθh + e−2βθh − 2 ≥ (2βθ)2h2.

Since for s ∈ (0,1/4), we have e2βθs − 1 ≤ Cs, we deduce that y ≤ Cs/h2. Similarly, and using h− t ≥ h/2, we also
get x ≤ Ct/h2. This implies:

P
(∣∣A1(s, h)

∣∣ ∧ ∣∣A1(−t, h)
∣∣ > λ

) ≤ C
st

h4
≤ C

(s + t)2

h4
. �

Lemma 5.10. There exists a finite constant C2 such that for all h > 2|u| > 0, with u ∈ [−1/8,1/8], λ > 0, we have:

P
(∣∣A2(u,h)

∣∣ > λ
) ≤ C2

u2

λ4h4
.

Proof. We write A2(u,h) = A2,1 + A2,2 with

A2,1 = (Z0 − Zu)

∫ +∞

u+h

c(r) dr = Zu − Z0

β
log

(
1 − e−2βθ(h+u)

)
and A2,2 = Z0

∫ h+u

h

c(r) dr.

We have:

P
(∣∣A2(u,h)

∣∣ > λ
) ≤ P

(|A2,1| > λ/2
) + P

(|A2,2| > λ/2
)
. (43)

Tchebychev’s inequality gives:

P
(|A2,1| > λ/2

) ≤ 24

(λβ)4
log

(
1 − e−2βθ(h+u)

)4E
[|Zu − Z0|4

]
.

Since Z is a Feller diffusion, see Section 7.1 in [4], we have E[|Zu − Z0|4] ≤ Cu2. For x > 0, we have 0 ≤ − log(1 −
e−x) ≤ 1/x. Using that h > 2|u|, we get:

P
(|A2,1| > λ/2

) ≤ C
u2

λ4(h + u)4
≤ C

u2

λ4h4
. (44)

Since c is decreasing and h > 2|u|, we have:∫ h+u

h

c(r) dr ≤ |u|c(h − |u|) ≤ C
|u|
h

≤ C

√|u|
h

.

Then, using Tchebychev’s inequality, we get:

P
(|A2,2| > λ/2

) ≤ C
u2

λ4h4
. (45)

Then use (43) with (44) and (45) to conclude. �
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Lemma 5.11. Let p ∈ N
∗. There exists a finite constant C3 such that for all h > 0 and λ > 0, we have:

P
(∣∣A3(u,h)

∣∣ > λ
) ≤ C3

hp

λ2p
.

Proof. Using E[∏2p

k=1 |Xk|] ≤ ∏2p

k=1 E[X2p
k ]1/2p and Fubini’s theorem, we get:

E
[
A3(u,h)2p

] ≤
(∫ h

0
drE

[(
M−r − c(r)Z0

)2p]1/2p
)2p

.

For a Poisson random variable X with mean m, we have:

E
[
(X − m)2p

] ≤ C′(mp + m
)
,

where the constant C′ doesn’t depend on m. Thanks to Lemma 4.1, we have that M−r is, conditionally on Z0, a
Poisson random variable with mean c(r)Z0. This implies that:

E
[(

M−r − c(r)Z0
)2p]1/2p ≤ C

(√
c(r) + c(r)1/2p

)
.

We deduce that:∫ h

0
drE

[(
M−r − c(r)Z0

)2p]1/2p ≤ C(
√

h ∧ 1) ≤ C
√

h.

Therefore, we have E[A3(u,h)2p] ≤ Chp and we conclude using Tchebychev’s inequality. �

Lemma 5.12. Let p ∈ N
∗. There exists a finite constant C4 such that for all h > 2|u| and λ > 0, we have:

P
(∣∣A4(u,h)

∣∣ > λ
) ≤ C4

hp

λ2p
.

Proof. By stationarity, we have that A4(u,h) is distributed as −A3(u,h + u). Then use Lemma 5.11 to conclude. �

We complete the proof of Theorem 5.8 by proving (40). Using{|x + y| ∧ ∣∣x′ + y′∣∣ > 6λ
} ⊂ {|x| ∧ ∣∣x ′∣∣ > 3λ

} ∪ {|y| > 3λ
} ∪ {∣∣y′∣∣ > 3λ

}
,

we get:

P
(|W−t − W0| ∧ |Ws − W0| ≥ 6λ

)
≤ P

(∣∣A1(s, h)
∣∣ ∧ ∣∣A1(−t, h)

∣∣ > 3λ
) +

4∑
i=2

P
(∣∣Ai(s, h)

∣∣ > λ
) +

4∑
i=2

P
(∣∣Ai(−t, h)

∣∣ > λ
)
. (46)

Let δ ∈ (0,1/3), 3(1 + δ)/2 < γ < 2 and p ∈ N
∗ such that 2p/(p + 4) > γ . Notice that (1 + δ)/2γ < 1/3. Set:

x = λ4γ

(s + t)1+δ
and h = (s + t)(1+δ)/2γ x1/4.

If x < 1, then we have that (40) holds trivially with C = 1. So we shall assume that x ≥ 1. For s, t ∈ (0,1/8), we
have:

h ≥ (s + t)(1+δ)/2γ ≥ (s + t)1/3 > 2(s + t).
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So the hypothesis of the previous lemmas are satisfied for s, t ∈ (0,1/8). Using γ − (1 + δ) > 0, Lemma 5.9 implies:

P
(∣∣A1(s, h)

∣∣ ∧ ∣∣A1(−t, h)
∣∣ > 3λ

) ≤ C1
(s + t)2

h4
= C1

(s + t)(2/γ )(γ−(1+δ))

x
≤ C1

x
.

For u ∈ {−t, s}, using 2γ − 3(1 + δ) > 0, Lemma 5.10 implies:

P
(∣∣A2(u,h)

∣∣ > λ
) ≤ C2

u2

λ4h4
≤ C2

(s + t)2

λ4h4
= C2

(s + t)2−3(1+δ)/γ

x1+1/γ
≤ C2

x
.

For u ∈ {−t, s}, using p(2 − γ ) ≥ 8p/(p + 4) > 4γ together with Lemma 5.11 resp. Lemma 5.12, we get:

P
(∣∣A3(u,h)

∣∣ > λ
) ≤ C3

hp

λ2p
= C3

x(p/(4γ ))(2−γ )
≤ C3

x

resp. for u ∈ {−t, s}:

P
(∣∣A4(u,h)

∣∣ > λ
) ≤ C4

hp

λ2p
≤ C4

x
.

We deduce that for s, t ∈ (0,1/8), and x ≥ 1.

P
(|W−t − W0| ∧ |Ws − W0| ≥ 6λ

) ≤ C

x
.

This ends the proof of (40) and thus (ii).

Appendix

A.1. Functionals of the number of ancestors for the process Y

We have the following results.

Lemma A.1. Let λ,v, q ∈ (0,+∞). We have:

N
[
1 − e−λR

v+q
v

] = u
(
c(q)

(
1 − e−λ

)
, v

)
, (47)

N
[
Rv+q

v

] = c(q)e−2βθv and N
[
Rv+q

v |ζ > v + q
] = c(q)

c(v + q)
e−2βθv. (48)

Proof. Since R
v+q
v is, conditionally on Yv , a Poisson random variable with parameter c(q)Yv , we get thanks to (2):

N
[
1 − e−λR

v+q
v

] =N
[
1 − e−c(q)(1−e−λ)Yv

] = u
(
c(q)

(
1 − e−λ

)
, v

)
.

The equalities (48) are a consequence of (9) and (5) and the equality N[Rv+q
v ] =N[Yv]N[ζ ≥ q]. �

We shall need later on other closed formulas for the joint distribution of the number of ancestors at different times.
We first give (in a slightly more general statement) the conditional distribution of R

v+q+s
v knowing R

v+q
v .

Let v, q, s ∈ (0,+∞). Notice that an ancestor at time v of the population at time v + q is also an ancestor of the
population at time v + q + s with probability c(q + s)/c(q) and this happens independently of the other ancestors of
the population at times before v + q . We deduce the following corollary.

Corollary A.2. Let v, q, s ∈ (0,+∞). Conditionally on (Rh
u;u ∈ (0, v], h ∈ (u, v + q]), the random variable R

v+q+s
v

has under N a binomial distribution with parameter (R
v+q
v , c(q + s)/c(q)).
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We recall the decomposition of H before and after Tb = inf{t;H(t) = b} under N in order to give the conditional
distribution of R

v+q
v+r knowing R

v+q
v with r < q .

On {Tb < +∞}, let ((α
(g)

i , β
(g)

i ), i ∈ I (g)) (resp. ((α
(d)
i , β

(d)
i ), i ∈ I (d))) be the excursion intervals of H above its

minimum backward on the left of Tb (resp. forward on the right of Tb). Define H
(g)

i for i ∈ I (g) as follows:

H
(g)

i (t) = H
((

t + α
(g)

i

) ∧ β
(g)

i

) − H
(
α

(g)

i

)
, t ≥ 0,

and H
(d)
i similarly for i ∈ I (d). It is well known, see [9] or [1], that under N[·|Tb < +∞] the measures

∑
i∈I (g)

δ
(H(α

(g)

i ),H
(g)

i )
(dt, dH) and

∑
i∈I (d)

δ
(H(α

(d)
i ),H

(d)
i )

(dt, dH)

are independent Poisson point measures with respective intensity:

1[0,b](t)β dtN
[
dH ;max(H) < b − t

]
and 1[0,b](t)β dtN[dH ].

Let v, q ∈ (0,+∞). By considering the R
v+q
v excursions of H above level v which reach level v + q and the

previous representation for each of those excursions (with b = q), we easily deduce the following result.

Proposition A.3. Let v, q ∈ (0,+∞). Conditionally on (R
v+q
v , Yv), the process (Yt+v, t ∈ [0, q]) is distributed under

N as (Ỹt , t ∈ [0, q]) with:

Ỹt = Y ′
t +

∑
t
(g)

i ≤t

Y
(g),i

t−t
(g)

i

+
∑

t
(d)
i ≤t

Y
(d),i

t−t
(d)
i

,

where Y ′ is distributed according to PYv (·|ζ < q),
∑

i∈I (g) δ
(t

(g)

i ,Y (g),i )
and

∑
i∈I (d) δ

(t
(d)
i ,Y (d),i )

are independent Poisson

point measures independent of Y ′ with respective intensity:

1[0,q](t)βRv+q
v N[dY ; ζ < q − t]dt and 1[0,q](t)βRv+q

v N[dY ]dt.

We deduce the following corollary on the conditional distribution of R
v+q
v+r knowing R

v+q
v .

Corollary A.4. Let λ,v, q, r ∈ (0,+∞) with q > r . We have:

N
[
exp

(−λR
v+q
v+r

)∣∣Rv+q
v

] = h(λ)R
v+q
v ,

with

h(λ) = e−λ

(
1 − u(c(q − r)(1 − e−λ), r)

c(r)

)
.

Proof. We have:

N
[
exp

(−λR
v+q
v+r

)∣∣Rv+q
v

] = exp

(
−λRv+q

v − βRv+q
v

∫ r

0
dsN

[
1 − e−λR

s+q−r
s

])

= exp

(
−λRv+q

v − βRv+q
v

∫ r

0
dsu

(
c(q − r)

(
1 − e−λ

)
, s

))

= e−λR
v+q
v

(
1 + c(q − r)

(
1 − e−λ

)1 − e−2βθr

2θ

)−R
v+q
v

= h(λ)R
v+q
v ,
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where we used Proposition A.3 for the first equality, (47) for the second and (4) for the third and some elementary
computations for the last. �

We give the following elementary results which are used in Section 4.

Lemma A.5. Let λ,μ,v, q, s ∈ (0,+∞). We have with κ1 = (1 − e−λ)c(q) + e−λc(q + s):

N
[(

1 − e−λR
v+q
v

)
1{ζ<v+q+s}

] = u(κ1, v) − c(v + q + s); (49)

for 0 < v′ < q , with κ2 = (1 − e−μ)c(q − v′) + e−μκ1:

N
[(

1 − e−λR
v+q
v −μR

v+q−v′
v

)
1{ζ<v+q+s}

] = u(κ2, v) − c(v + q + s); (50)

for 0 < v′ < v with κ3 = (1 − e−μ)c(q + v′) + e−μu(κ1, v
′):

N
[(

1 − e−λR
v+q
v −μR

v+q

v−v′ )1{ζ<v+q+s}
] = u

(
κ3, v − v′) − c(v + q + s); (51)

and

N
[
Rv+q

v 1{ζ<v+q+s}
] = (

c(q) − c(q + s)
)
e2βθv

(
c(v + q + s)

c(q + s)

)2

. (52)

Proof. We have:

N
[(

1 − e−λR
v+q
v

)
1{ζ<v+q+s}

] = N

[(
1 − e−λR

v+q
v

)(
1 − c(q + s)

c(q)

)R
v+q
v

]

= u

(
c(q)

(
1 − e−λ

(
1 − c(q + s)

c(q)

))
, v

)
− u

(
c(q + s), v

)
,

where we used {ζ < v + q + s} = {Rv+q+s
v = 0} and Corollary A.2 for the first equality and (47) twice for the second.

Then use (6) to get (49).
The proof of (50) relies on the same type of arguments and is left to the reader.
Taking the derivative with respect to λ at λ = 0 in (49) gives (52).
We prove (51). Set e−λ̃ = e−λ(1 − c(q+s)

c(q)
) = 1 − κ1

c(q)
. We have:

N
[(

1 − e−λR
v+q
v −μR

v+q

v−v′ )1{ζ<v+q+s}
] = N

[(
1 − e−λR

v+q
v −μR

v+q

v−v′ )(1 − c(q + s)

c(q)

)R
v+q
v

]

= N
[
1 − e−λ̃R

v+q
v −μR

v+q

v−v′ ] − u
(
c(q + s), v

)
= N

[
1 − (

h1(λ)e−μ
)R

v+q

v−v′ ] − c(v + q + s),

where we used {ζ < v + q + s} = {Rv+q+s
v = 0} and Corollary A.2 for the first equality, (47) for the second, (6) and

Corollary A.4 for the third with

h1(λ) = e−λ̃

(
1 − u(c(q)(1 − e−λ̃), v′)

c(v′)

)
=

(
1 − κ1

c(q)

)(
1 − u(κ1, v

′)
c(v′)

)
.

Then use (47) to get N[1 − (h1(λ)e−μ)
R

v+q

v−v′ ] = u(h2(μ), v − v′) with

h2(μ) = c
(
q + v′)(1 − e−μh1(λ)

)
.
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Taking μ = 0, we get using (47) and (6):

u
(
h2(0), v − v′) = N

[(
1 − e−λR

v+q
v

)
1{ζ<v+q+s}

] + c(v + q + s)

= u(κ1, v)

= u
(
u
(
κ1, v

′), v − v′).
We deduce that h2(0) = u(κ1, v

′) and since

h2(μ) = c
(
q + v′)(1 − e−μ

) + e−μh2(0),

we get (51). �

A.2. Moments of the number of ancestors for the process Z

We easily get the following result using Proposition 3.2.

Corollary A.6. Let r ≥ t > 0. We have:

E[M−t |M−r ] = c(t)

θ

(
1 − e−2βθ(r−t)

) + c(t)

c(r)
e−2βθ(r−t)M−r (53)

and

E[M−tM−r ] = c(r)

θ

(
1 + 3

2

c(t)

θ

)
= 2

e2βθt + 2

(e2βθt − 1)(e2βθr − 1)
. (54)

Proof. Let g(t) = E[M−t |M−r ] and h(t) = E[M−t ] = c(t)/θ . Using Proposition 3.2, we get that for r ≥ t > 0:

g(t) = M−r +
∫ r

t

βc(s)
(
g(s) + 2

)
ds and h(t) = h(r) +

∫ r

t

βc(s)
(
h(s) + 2

)
ds.

This implies that g′(t) − h′(t) = −βc(t)(g(t) − h(t)) and thus:

g(t) − h(t) = (
M−r − E[M−r ]

)
eβ

∫ r
t c(s) ds .

Then use (8) and (18) to get (53).
Taking the expectation in (53) and using the second part of (18), we get:

E[M−tM−r ] = c(t)c(r)

θ2

(
1 − e2βθ(t−r)

) + c(t)c(r)

θ2
e2βθ(t−r)

(
θ

c(r)
+ 3

2

)

= 1

2

c(t)c(r)

θ2

(
e2βθt + 2

)
= c(r)

θ

(
1 + 3

2

c(t)

θ

)
. �

The following lemma generalizes (54), and is used in the proof of Proposition 5.6.

Lemma A.7. Let r > 0, s > 0 and q > 0. For s + r ≥ q , we have:

E
[
M−rM

s
s−q

] = c(r)

θ

c(q)

θ

(
θ

c(q − s)
+ 3

2

)
. (55)
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For q ≥ s + r , we have:

E
[
M−rM

s
s−q

] = c(r)

θ

c(q)

θ

(
θ

c(q − s)

c(q)

c(r + s)
+ 3

2

)
. (56)

Proof. First, we consider the case s + r ≥ q . Given M−r , Ms
s−q can be decomposed in two parts:

Ms
s−q = MI [−r,s−q] +

M−r∑
j=1

M̃
(s+r),j
s+r−q ,

where MI [−r,s−q] is the number of ancestors coming from the immortal individual on the interval (−r, s − q), and
M̃

(s+r),j
s+r−q represents the number of ancestors generated by one of the ancestors at time −r . More precisely, we have

(i) MI [−r,s−q] is the number of ancestors at time s − q of the population living at time s corresponding to all
the populations Y i (see definition (12)) with immigration time ti belonging to (−r, s − q) and MI [−r,s−q] is
independent of M−r .

(ii) (M̃
(s+r),j
s+r−q , j ∈N

∗) are independent, independent of M−r and are distributed as Rs+r
s+r−q under N[dY |ζ > r].

We deduce that:

E
[
Ms

s−q |M−r

] = 2β

∫ s+r−q

0
N

[
R

t+q
t

]
dt + M−rN

[
Rs+r

s+r−q |ζ > r
]
.

Using (48) and (54), elementary computations give:

E
[
M−rM

s
s−q

] = E
[
M−rE

[
Ms

s−q |M−r

]] = 2(e2βθ(q−s) + 2)

(e2βθq − 1)(e2βθr − 1)
.

This gives (55).
Second, we consider the case q ≥ s + r . Given (Ms

 ,Z,  ≤ s − q), the number of ancestors M−r can be decom-
posed in three parts:

M−r = MI [s−q,−r] +
Ms

s−q∑
j=1

M̃
(q−s),j
q−s−r +

∑
i′

R
(q−s),i′
q−s−r

(
Ŷ i′),

where MI [s−q,−r] is the number of ancestor coming from the immigration on the interval (s − q,−r), M̃
(q−s),j
q−s−r

represents the number of ancestors generated by one of the Ms
s−q ancestors at time s − q , and Ŷ i′ is a population

generated from one of the individuals at time s − q (among the population of size Zs−q ) which dies before time s

(that is with lifetime less than q). More precisely, we have

(i) MI [s−q,−r] is the number of ancestors at time −q of the population living at time 0 corresponding to all the pop-
ulations Y i (see definition (12)) with immigration time ti belonging to (s −q,−r) and MI [s−q,−r] is independent
of (Ms

 ,Z,  ≤ s − q).

(ii) (M̃
(q−s),j
q−s−r , j ∈ N

∗) are independent, independent of (Ms
 ,Z,  ≤ s − q) and are distributed as R

q−s
q−s−r under

N[dY |ζ > q].
(iii) Conditionally on (Ms

 ,Z,  ≤ s − q),
∑

i′ δŶ i′ is a Poisson point measure with intensity Zs−qN[dY, ζ < q].
We deduce that:

E
[
M−r |σ

(
Ms

,Z,  ≤ s − q
)] = E

[
MI [s−q,−r]] + Ms

s−qN
[
R

q−s
q−s−r |ζ > q

] + Zs−qN
[
R

q−s
q−s−r1{ζ<q}

]
.

We have:

E
[
MI [s−q,−r]] = 2β

∫ −r

s−q

dvN
[
R−v−r−v

] = c(r)

θ

(
1 − e−2βθ(q−s−r)

)
.
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Using (52), we get:

N
[
R

q−s
q−s−r1{ζ<q}

] = (
c(r) − c(r + s)

) ψ(c(q))

ψ(c(s + r))
,

as well as:

N
[
R

q−s
q−s−r |ζ > q

] = c(q)−1
N

[
R

q−s
q−s−r1{ζ>q}

]
= c(r)

c(q)
e−2βθ(q−s−r) − c(r) − c(r + s)

c(q)

ψ(c(q))

ψ(c(s + r))
.

Then elementary computation yields:

E
[
M−rM

s
s−q

] = E
[
Ms

s−qE
[
M−r |σ

(
Ms

,Z,  ≤ s − q
)]]

= 2(e2βθ(r+s) + 2)

(e2βθr − 1)(e2βθq − 1)
− c(r) − c(r + s)

θ

ψ(c(q))

ψ(c(s + r))
.

Then it is straightforward to get the desired result. �
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