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Abstract. We consider a Brownian snake (Ws, s ≥ 0) with underlying process a reflected
Brownian motion in a bounded domain D. We construct a continuous additive functional
(Ls, s ≥ 0) of the Brownian snake which counts the time spent by the end points Ŵs of
the Brownian snake paths on ∂D. The random measure Z = ∫

δŴs dLs is supported by ∂D.
Then we represent the solution v of�u = 4u2 inD with weak Neumann boundary condition
ϕ ≥ 0 by using exponential moment of (Z, ϕ) under the excursion measure of the Brownian
snake. We then derive an integral equation for v. For small ϕ it is then possible to describe
negative solution of �u = 4u2 in D with weak Neumann boundary condition ϕ.

In contrast to the exit measure of the Brownian snake out of D, the measure Z is more
regular. In particular we show it is absolutely continuous with respect to the surface measure
on ∂D for dimension 2 and 3.

1. Introduction

The Dirichlet problem associated to the equation �u = 4u2 has led to a consider-
able amount of work by many authors and the Brownian snake introduced by Le
Gall in [13] has proved to be a powerful tool for this study. For example, in [14],
Le Gall prove a representation formula for all nonnegative solutions in dimension
2, using the continuity of the density of the exit measure. The Brownian snake is a
path-valued Markov process which, loosely speaking, represents a cloud of branch-
ing Brownian particles and the exit measure of the Brownian snake is a measure
supported by the particles when they leave D for the first time.

In this paper we give a probabilistic representation formula for the nonnegative
solution of the non linear Neumann problem in a bounded smooth domain D:

�u = 4u2 in D,
∂u

∂n
+ κu = ϕ on ∂D,

(1)
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where κ is a nonnegative continuous function on ∂D, ∂u/∂n(x) is the outward
normal derivative of u at x ∈ ∂D, and ϕ is a nonnegative measurable function
defined on ∂D.

As for the Dirichlet problem associated to �u = 4u2 (see [13]), we will prove
that solutions of (1) can be represented using a random measure, Z, built from
the Brownian snake. However, for the Neumann problem, the underlying motion
will be a reflected Brownian motion in D. We expect the measure Z will play the
same role as the exit measure for the Dirichlet problem and that this probabilistic
representation will lead to new results for the Neumann problem, such as a trace
boundary representation. With this goal in mind, it might be interesting to study the
properties and regularity of Z. We give here some results in this direction (see sec-
tion 8), but many interesting problems (as the regularity of the density in dimension
2 or 3) are still open.

In [1], the author considered for underlying motion of the Brownian snake a
reflected Brownian motion in D killed when it reaches a fixed subset F of ∂D.
Then, using a random measure built from this Brownian snake, the author repre-
sented nonnegative solution of�u = 4u2 with mixed Neumann-Dirichlet boundary
conditions:






∂u

∂n
= f on ∂D\F

u = g on F.

However, for technical reasons, it was not possible to consider the case F = ∅ of
Neumann’s boundary conditions.

Let us now present our results. We consider a Brownian snake (Ws, s ≥ 0)with
underlying process a reflected Brownian motion inD (see [10] for a definition and
properties of the Brownian snake). Let us recall that Ws is a path stopped at its
lifetime ζs , and that for a fixed s, it is distributed according to a reflected Brownian
motion in D. We define in section 3 the following continuous additive functional
(CAF) of the Brownian snake:

Lεs =
∫ s

0

1

ε
1{Ŵu∈Dε} du,

where Ŵs = Ws(ζs) is the end of the pathWs andDε is the ε-neighborhood of ∂D
in D̄. Intuitively, as ε ↓ 0, dLεs converges to, say dLs , the infinitesimal increment
of the local time of the pathWs on ∂D at time ζs . In particular, the CAFL increases
at times s such that Ŵs ∈ ∂D. See lemma 3.1 for the precise statement.

Then we define the random measure Z by the formula

Z(dy) = 1

2

∫ ∞

0
δ
Ŵs
(dy) dLs,

where δa is the Dirac mass at point a. In particular the support ofZ is a subset of ∂D.
Under the excursion measure, Nx , of the Brownian snake started at point x ∈ D̄, Z
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is finite, but its total mass is not integrable under Nx . We prove in proposition 6.3
that the function

v(x) = Nx

[
1 − e−(Z,ϕ)

]
,

where (Z, ϕ) = ∫
ϕ(y) Z(dy) and ϕ ≥ 0, is a nonnegative solution of (1) with

κ = 0.
In section 8, we consider the properties of the measure Z. In particular, we

prove in proposition 8.4 that this measure is absolutely continuous with respect to
the surface measure on ∂D if the dimension of the space is 2 or 3. Let us note that
the measure Z is more regular than the so-called exit measure which is singular for
d ≥ 3 (see [2]).

To study the function v, it is necessary to introduce a family of measures Zθ
which increases to Z as θ decreases to 0, and which have an integrable total mass
under Nx . The idea is to kill the underlying reflected Brownian motion (Bt , t ≥ 0)
at time τ(θ), where (τ (θ), θ > 0) is a family of random variables increasing to
+∞ as θ decreases to 0. The random variables τ(θ) are independent of B and
exponential with parameter θ . Let R be the right continuous inverse of τ(·). R is
build in such a way that it is a Markov process. Then we may consider the Brownian
snake (Ws, Rs) associated to the spatial motion (B,R). Then we consider formally
the measure

Zθ(dy) = 1

2

∫ ∞

0
δ
Ŵs
(dy)1{θ≤Rs(ζs )} dLs.

The precise definition is given by formula (5). Then it is easier to study the function

vθ (x) = Nx

[
1 − e−(Zθ ,ϕ)

]
,

and deduce the properties of v since vθ increases to v as θ decreases to 0.
In particular, using the special Markov property introduced by Le Gall in [12],

we prove in section 4, proposition 4.1, that v ∈ C2(D) and solves

�v = 4v2 in D.

Section 5 is devoted to the proof of proposition 5.6, which states that vθ is a
weak solution of

�u− 2θu = 4u2 in D,
∂u

∂n
= ϕ on ∂D.

By letting θ decreases to 0, we get in section 6, proposition 6.3, that v is a weak
solution of (1) with κ = 0.

Let l be the local time ofB on ∂D. By considering a reflected Brownian motion

killed when the continuous additive functional
1

2

∫ t

0
κ(Bu) dlu reaches the value

of an independent exponential random variable of parameter 1, instead of the initial
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reflected Brownian motion, the previous results can be extended to the general case
κ continuous and nonnegative.

The next sections deal with the particular case κ = 0. More precisely, we prove
in section 7, lemma 7.4, that a bounded function u is a weak nonnegative solution
of (1) (with κ = 0), if and only if it solves the two integral equations

4
∫

D

u(y)2 dy =
∫

∂D

ϕ(y) σ (dy),

where σ is the surface measure on ∂D, and

u(x)+ 2
∫

D

g(x, y)u(y)2 dy − aD

∫

D

u(y) dy = 1

2

∫

∂D

g(x, y)ϕ(y) σ (dy),

where a−1
D = ∫

D
dy, and g(x, y) is the green function of the reflected Brownian

motion:

g(x, y) =
∫ +∞

0
[pt (x, y)− aD] dt,

with pt (x, y) the density transition kernel of the reflected Brownian motion. Fur-
thermore, there is a unique nonnegative weak solution of (1) (with κ = 0), thanks
to corollary 7.5. Notice however, there might exist other weak solutions to (1), for
example negative solutions as stated in proposition 7.2.2.

Eventually, in section 9 we recall some useful facts on reflected Brownian
motion and on probabilistic representation of linear partial differential equations.
This section also includes the proof of the convergence of the approximating scheme
of the CAF L.

2. Notations

LetD be a bounded domain (connected open subset of R
d ) with C3 boundary. Let

D̄ be the closure of D.
First we consider a reflected Brownian motion B in D̄. For every x0 ∈ D̄, we

denote by Px0 its law when starting at point x0 at time 0. Some facts on this process
are recalled in the appendix.

Let us now construct a process that allow us to stop the paths according to
exponential independent times of parameter θ , which must increase to +∞ as θ
decreases to 0. We first consider a Poisson measure N on R+ × R+ with intensity
dx dt , independent of B. We denote by (xi, ti)i∈I the atoms of this measure and
we set

R(t) = inf{xi; ti ≤ t},
with the usual convention inf ∅ = +∞.

We set R̄+ = [0,+∞) ∪ {+∞}. The path (R(t), t ≥ 0) is a càdlàg decreasing
R̄+-valued process starting from +∞. We have, for every t ≥ 0 and every θ ≥ 0,

P(R(t) > θ) = P(N ([0, θ ] × [0, t]) = 0) = e−θt .
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So, for every t ,R(t) is distributed as an exponential random variable of parameter t .
Notice that τ(θ) = inf{t ≥ 0;R(t) < θ} is distributed as an exponential random
variable with parameter θ . And the family of random variables (τ (θ), θ > 0)
increases as θ decreases to 0.

Moreover, we have, for every 0 ≤ s < t ,

R(t) = min
{
R(s), inf{xi; s < ti ≤ t}} (d)= R(s) ∧ R̃(t − s), (2)

where R̃ is an independent copy ofR. Consequently,R is an homogeneous Markov
process.

Finally, let τ be an exponential random variable of parameter 1 independent of
B and R. We denote by l the local time of B on ∂D and we set

(κ · l)t =
∫ t

0
κ(Bs)dls .

Then, the process (�t , t ≥ 0) defined by

�t =
(
Bt , R(t), 1{ 1

2 (κ·l)t≤τ }, (κ · l)t
)

is an homogeneous E = R
d × R̄+ × {0, 1} × R+-valued Markov process. Let Px̃0

denote its law, when started at x̃0 ∈ E at time 0.
Let ‖ ‖ be the Euclidean norm on R

d . For every r, r ′ ∈ R̄+ we set

d̄(r, r ′) = ∣
∣arctan r − arctan r ′

∣
∣

with the convention arctan(+∞) = π
2 . We denote by δ(j, j ′) the discrete distance

on {0, 1}. Eventually, for x̃ = (x, r, j, k) and ỹ = (y, r ′, j ′, k′) in E, we set

dE(x̃, ỹ) = ‖x − y‖ + d̄(r, r ′)+ δ(j, j ′)+ |k − k′|.
dE is a distance on E and (E, dE) is a Polish space.

We now describe the Brownian snake with underlying motion� (see [4]). The
spatial motion will correspond to the underlying reflected Brownian motion. The
other three components are only used to kill the reflected paths at nice random
times.

A killed path inE is a càdlàgE-valued function w̃ = (w̃(u), u ∈ [0, ζ ))where
ζ is called the lifetime of w̃. We will denote w̃(u) = (W(u), R(u), J (u),K(u)) for
u ∈ [0, ζ ), and we assume thatW andK are continuous. Let W be the set of killed
paths inE. For x̃0 = (x0, r0, j0, k0) ∈ E, let Wx̃0 be the set of killed paths starting at
point x̃0. For w̃ ∈ Wx̃0 , we set the end point of the path w̃: (Ŵ , R̂, Ĵ , K̂) = w̃(ζ−)
if the limit exists, ∂ otherwise where ∂ is an isolated cemetery point added to E.

For w̃ ∈ W , we define the exit time of an open set O ⊂ R
d by

τO(w̃) = inf{u ≥ 0,W(u) �∈ O},
with the usual convention inf ∅ = +∞. Notice we just consider the spatial motion
W to define the exit time.
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For t ≥ 0 let d̄t (resp. δt ) be the Skorokhod distance on the space D([0, t], R̄+)
(resp. D([0, t], {0, 1})) of R̄+-valued (resp. {0, 1}-valued) càdlàg functions defined
on [0, t]. Then, for w̃ and w̃′ in W , we set

d(w̃, w̃′) = dE(w(0), w
′(0))+ |ζ − ζ ′|

+ sup
0≤t<(ζ∧ζ ′)

(∥
∥W(t)−W ′(t)

∥
∥ + ∣

∣K(t)−K ′(t)
∣
∣
)

+
∫ ζ∧ζ ′

0

(
d̄t (R≤t , R′

≤t ) ∧ 1 + δt (J≤t , J ′
≤t ) ∧ 1

)
dt,

where R≤t (resp. J≤t ) for instance stands for the restriction of R (resp. J ) to [0, t].
It is easy to check that d is a distance on W and that (W, d) is a Polish space. We
agree that very point x̃ ∈ E can be considered as a trivial killed path with lifetime
ζ = 0.

Let
(
W̃s, s ≥ 0

) = (
(Ws, Rs, Js,Ks), s ≥ 0

)
be the canonical process on

C(R+,Wx̃0), the set of continuous functions on [0,+∞) into Wx̃0 . We will denote
by ζs the lifetime of W̃s . For w̃ ∈ Wx̃0 , let P∗

w̃
be the probability on C(R+,Wx̃0)

under which the canonical process is a Brownian snake with underlying Markov
process � starting at w̃ and constant after σ = inf{s ≥ 0; ζs = 0} (see [4] sec-
tion 4.1). We denote by Nx̃0 the excursion measure of the Brownian snake away
from the trivial path x̃0 in Wx̃0 and σ = inf{s > 0; ζs = 0} its duration. Recall
that (Ŵs, R̂s, Ĵs , K̂s) denote the end path of W̃s when it exists and ∂ otherwise.
Eventually, we write Nx0 = N(x0,+∞,1,0) as well as Wx = W(x,+∞,1,0).

We recall the formula for the first moment of the Brownian snake ([4]).
Let F be a nonnegative measurable function defined on Wx̃0 . We have

Nx̃0

[∫ σ

0
F(W̃s) ds

]

=
∫ ∞

0
ds Ex̃0 [F(�(s))], (3)

where �(s) is distributed under Px̃0 as � but killed at time s.

3. The additive functional L

Let us consider the continuous additive functional (CAF) of the Brownian snake
defined for α ≥ 0, ε > 0 by: for s ≥ 0,

Lα,εs =
∫ s

0

1

ε
1{Ŵu∈Dε} e−αζu du,

where Dε = {x ∈ D; dist (x, ∂D) < ε}, and dist (x, ∂D) denote the Euclidean
distance from x to the boundary of D.

Intuitively, as ε ↓ 0, 1
ε

1{Ŵu∈Dε}du converge to the infinitesimal increment of

the local time on ∂D ofWu at its lifetime. The term e−αζu , with α > 0, is introduced
in order to get a CAF with finite L2 moments.

The next lemma gives the convergence of the CAFLα,ε. Let x̃0 = (x0, r0, j0, k0)

∈ E such thatx0 ∈ D. Recall that l is the local time of the reflected Brownian motion
B on ∂D.
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Lemma 3.1. There exists a sequence (εk, k ≥ 0) decreasing to 0 such that Nx̃0 -a.e.

for all s ≥ 0, L0,εk
s converge to a limit say Ls as k → ∞. The process (Ls, s ≥ 0)

is a continuous additive functional of the Brownian snake. The Revuz measure
of the continuous additive functional L, µ, defined on Wx̃0 is given by: for any
nonnegative measurable function defined on Wx̃0 ,

(µ, F ) = Ex̃0

[∫ ∞

0
F(�(u)) dlu

]

,

where �(u) = (�(u′), u′ ∈ [0, u)). We also have the formula

Nx̃0

[∫ σ

0
F(W̃u) dLu

]

= (µ, F ). (4)

The proof of this lemma is postponed to the appendix 9.4.

Remark. For α > 0, the continuous additive functional Lαs = ∫ s
0 e−αζu dLu, is

the limit of Lα,εks for all s ≥ 0 Nx̃0 -a.e. (see the proof of the above lemma). Its
Revuz measure defined on Wx̃0 is given by µα(dw̃) = e−αζ µ(dw̃), where ζ is the
lifetime of w̃. Notice that µ is not finite since (µ, 1) = +∞, whereas µα is finite
(thanks to (22), (23) and (25)), and we have

(µα, 1) = Ex0

[∫ ∞

0
e−αu dlu

]

=
∫ ∞

0
e−αu du

∫

∂D

pu(x0, y) σ (dy),

the α-potential of the local time l, with σ(dx) as the surface measure on ∂D. Fol-
lowing the terminology of [11],µα is of finite energy and is the measure associated
to Lα . From (33), by letting ε decreases to 0, we get its energy E(µα):

E(µα) = 1

2
Nx̃0

[
(Lασ )

2
]

= 2Ex0

[∫ ∞

0
dt e−αt uα(Bt )2

]

,

where uα(y) = Ey

[∫ ∞

0
e−αu dlu

]

, for y ∈ D̄, is the α-potential of the local

time l. ��

4. The measures Zκ

It is clear that the measure dL increases only when Ŵu ∈ ∂D. For θ ≥ 0, we define
under Nx̃0 the random measure Zκθ on ∂D. Let ϕ be a measurable non negative
function defined on ∂D. We extend ϕ by setting ϕ(∂) = 0. We set

(Zκθ , ϕ) = 1

2

∫ σ

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}dLu. (5)

Notice that since Ju and Ru are decreasing Nx̃0 -a.e., we have, for θ > 0, Zθ = 0
if x̃0 = (x0, r0, 0, k0) or x̃0 = (x0, 0, j0, k0). Therefore, we will be interested only
in the nontrivial case where x̃0 = (x0, r0, j0, k0) with j0 = 1 and r0 > 0 .
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We shall omit the indices κ (resp. θ ) in Zκθ when κ = 0 (resp. θ = 0). For

example, we writeZ forZ0
0 . Notice that (Zθ , ϕ) can be represented as

1

2

∫ σ

0
ϕ(Ŵu)

1{R̂u≥θ}dLu, since for κ = 0, Nx̃0 -a.e.
∫ σ

0 1{Ĵu=0}dLu = 0. This is clear (recall
x̃0 = (x0, r0, 1, k0), with r0 > 0), since

Nx̃0

[∫ σ

0
1{Ĵu=0}dLu

]

= E(x0,r0,1,k0)

[∫ ∞

0
1{(κ·l)u>2τ }dlu

]

= 0,

for κ = 0 and (κ · l)0 = k0 ≤ 2τ .
For any κ ≥ 0, (Zκθ , ϕ) increases to (Zκ, ϕ) as θ decreases to 0 since∫ σ

0 1{R̂u=0}dLu = 0 Nx̃0 -a.e. (recall x̃0 = (x0, r0, 1, k0) with r0 > 0). Therefore
for ϕ ≥ 0, we have

(Z, ϕ) ≥ (Zκ, ϕ) ≥ (Zκθ , ϕ) ≥ 0.

We consider the function vκθ defined on D̄ by:

vκθ (x) = Nx[1 − e−(Zκθ ,ϕ)].

We shall omit the indices κ or θ when they are zero. For example, we write

v(x) = Nx[1 − e−(Z,ϕ)].

Since the support of Zκθ is a subset of ∂D, we deduce that 1 − e−(Zθ ,ϕ) is
bounded from above by 1{RD∩∂D �=∅}, where RO , with O an open subset of D, is
the range of (the spatial component of ) the Brownian snake in O, that is

RO = {Ws(t ∧ τO(W̃s)), s ≥ 0, t ≥ 0}.
In particular forx ∈ D,vκθ (x) is bounded from above byuD(x) = Nx[1{RD∩∂D �=∅}].
Notice that uD is the maximal nonnegative solution in D of �u = 4u2. This is a
consequence of proposition 4.4 in [11] and the fact that the law of B stopped when
it first reaches ∂D is the law of a Brownian motion stopped when it first reaches
∂D. From the monotone convergence theorem, we deduce that vκθ (x) ↑ vκ(x) as
θ ↓ 0 for any x ∈ D.

Proposition 4.1. Let ϕ be a measurable nonnegative function defined on ∂D. The
function vκ(x) = Nx[1 − e−(Zκ ,ϕ)] defined on D is a nonnegative solution of
�u = 4u2 in D.

We first recall some results on exit measures.
LetO be an open subset ofD. Let�O = O× R̄+ ×{0, 1}×R

+ and x̃0 ∈ �O .
As in [13], let X�O(dx̃) be the exit measure of the Brownian snake W̃ out of �O
under the excursion measure (notice condition (H) is satisfied here). We also define
the σ -field E�O which is intuitively generated by the paths W̃s up to their exit time
of O. More precisely, let

ηs = inf

{

s′;
∫ s′

0
1{ζu≤τO(W̃u)} du > s

}

.
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and define the process W̃ ′
s = W̃ηs under Nx̃0 . The σ -field E�O is generated by W̃ ′

and the collection of all Nx̃0 -negligible set of C(R+,Wx̃0).
Now we describe the excursion of W̃ outside �O . The random open set {s ∈

[0, σ ], τO(W̃s) < ζs} can be written as a countable union of disjoint open intervals
(ai, bi), i ∈ I , where I is a set of indices possibly empty. Because of the property
of the Brownian snake, notice that for s ∈ [ai, bi], τO(W̃s) and W̃s(τO(W̃s)) are

constant equal to ti = ζai and x̃i = ˆ̃
Wai . We then define the excursion W̃ i outside

�O as an element of C(R+,Wx̃i ) by

W̃ i
s (t) = W̃(ai+s)∧bi (t + ti ), t ∈ [0, ζ is = ζ(ai+s)∧bi − ti ).

We recall theorem 2.4 of [13] (see also proposition 7 of [4]):

Theorem 4.2 (Le Gall). Conditionally on E�O , the point measure
∑

i∈I
δ
W̃ i is under

Nx̃0 a Poisson measure with intensity
∫
X�O(dx̃) Nx̃ (·).

Proof of proposition 4.1. Let O and Q be open subsets of R
d such that Ō ⊂ Q

and Q̄ ⊂ D. The necessity of Q will appear later. There exists ε0 > 0, such that
Q̄ ∩ Dε0 = ∅. Let x̃0 ∈ �O . Let ϕ be a nonnegative continuous function defined
on D̄. We set

(Z
κ,ε
θ , ϕ) = 1

2

∫ σ

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}dL

0,ε
u ,

where we recall that dL0,ε
u = 1

ε
1{Ŵu∈Dε} du.

With obvious notations, we have under Nx̃0 : for any ε ∈ (0, ε0) and θ > 0,

(Z
κ,ε
θ , ϕ) =

∑

i∈I

1

2

∫ ∞

0
ϕ(Ŵ i

s )1{R̂iu≥θ}1{Ĵ iu=1}
1

ε
1{Ŵ i

s∈Dε} ds.

We deduce from theorem 4.2 that for any x̃0 ∈ �O ,

Nx̃0

(

e−(Z
κ,ε
θ , ϕ) |E�O

)

= exp

[

−
∫
X�O(dx̃)Nx̃

(

1 − e−(Z
κ,ε
θ , ϕ)

)]

.

We will now prove that the law of Zκ,εθ under Nx̃ is the law of 1{r>θ,j=1}Zκ,εθ
under Nx , where x̃ = (x, r, j, k). Notice from the Markov property of� that W̃s =
(Ws, Rs, Js,Ks) under N(x,r,j,k) is distributed as W̃ ′

s = (Ws,min{Rs, r}, jJs, k +
Ks) under N(x,+∞,1,0) = Nx . In particular,

Z
κ,ε
θ (dy) = 1

2

∫ ∞

0
δ
Ŵu
(dy)1{R̂u≥θ}1{Ĵu=1}

1

ε
1{Ŵu∈Dε} du,

under Nx̃ is distributed as Z′κ,ε
θ under Nx , where,

Z′κ,ε
θ (dy) = 1

2

∫ ∞

0
δ
Ŵ ′
u
(dy)1{R̂′

u≥θ}1{Ĵ ′
u=1}

1

ε
1{Ŵ ′

u∈Dε} du,
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with (Ŵ ′
u, R̂

′
u, Ĵ

′
u, K̂

′
u) the end point of the path W̃ ′

u. We have under Nx ,

Z′κ,ε
θ = 1

2

∫ ∞

0
δ
Ŵu

1{min(R̂u,r)≥θ}1{j Ĵu=1}
1

ε
1{Ŵu∈Dε} du = 1{r≥θ,j=1}Zκ,εθ . (6)

We deduce that for x̃ = (x, r, j, k), and either r > 0 or θ > 0, we have

Nx̃

[

1 − e−(Z
κ,ε
θ , ϕ)

]

= 1{r≥θ,j=1}Nx
[

1 − e−(Z
κ,ε
θ , ϕ)

]

.

Remark 4.3. Notice that 1−exp[−(Zκ,εθ , ϕ)] ≤ 1{RQ∩∂Q�=∅}, and Nx̃[1{RQ∩∂Q�=∅}]
= uQ(x) is uniformly bounded onO. In particular we get from dominated conver-
gence as ε ↓ 0 (along the sequence (εk, k ≥ 1) of lemma 3.1), that

Nx̃

[
1 − e−(Zκθ , ϕ)

]
= 1{r≥θ,j=1}Nx

[
1 − e−(Zκθ , ϕ)

]
. (7)

Therefore, we get

Nx̃0

(

e−(Z
κ,ε
θ , ϕ) |E�O

)

= exp

[

−
∫
X�O(dx, dr, dj, dk)1{r≥θ,j=1}Nx

×
(

1 − e−(Z
κ,ε
θ , ϕ)

)]

.

Arguing as in the above remark, and letting θ decreases to 0, we also have, from
dominated convergence, that

Nx̃0

(
e−(Zκ, ϕ) |E�O

)
= exp

[

−
∫
X�O(dx, dr, dj, dk)1{r>0,j=1}Nx

×
(

1 − e−(Zκ, ϕ)
)]
.

Using formula (36) from [4], we deduce that

Nx̃0

[∫
X�O(dx, dr, dj, dk)(1 − 1{r>0,j=1})

]

= Ex̃0

[
1 − 1{R(T )>0,(κ·l)T≥2τ }

]
,

where T is the exit time for B of O. Recall that x̃0 = (x0, r0, j0, k0) is such that
r0 > 0 and j0 = 1. Since x0 ∈ Ō ⊂ D, we deduce that the local time l and also (κ ·l)
didn’t increase before T . Therefore a.s. (κ · l)T = (κ · l)0 = k0 < 2τ , where we use
that j0 = 1 for the last inequality. Since T is finite a.s., we deduce that R(T ) > 0
a.s. Hence we get that Nx̃0 -a.e.

∫
X�O(dx, dr, dj, dk)(1 − 1{r>0,j=1}) = 0. This

implies that for any x0 ∈ O,

Nx̃0

(
e−(Zκ, ϕ) |E�O

)
= exp

[

−
∫
XO(dx)Nx

(
1 − e−(Zκ, ϕ)

)]

,

where XO(dx) = X�O(dx, R̄+, {0, 1},R+).
From class monotone theorem, we deduce this equality is true for any measur-

able nonnegative function ϕ defined on ∂D. Set r0 = +∞, j0 = 1 and k0 = 0
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and take the expectation with respect to Nx0 , to deduce that vκ(x0) = Nx0 [1 −
e−(Zκ, ϕ)] is bounded in O and satisfies: for any x0 ∈ O,

vκ(x0) = Nx0 [1 − e−(XO, vκ)].

But, under Nx0 , XO is distributed as the exit measure of O of the Brownian
snake with underlying motion a Brownian notion started at x0. SinceO is arbitrary
(but for Ō ⊂ D), we deduce from corollary 4.3 of [12] that vκ is a nonnegative
solution of �u = 4u2 in D. ��

5. Properties of vκ
θ for θ > 0

Let ϕ be a bounded nonnegative measurable function defined on ∂D. The same
ideas as in [1] lead to the equation satisfied by vκθ . We assume in this section that
θ > 0.

Proposition 5.1. The function vκθ is bounded on D̄.

Proof. By definition, we know that vκθ is non negative. To get the upper bound, for
every x ∈ D̄, we have from (5) and (4)

vκθ (x) ≤ Nx

[
(Zκθ , ϕ)

]

= 1

2
Nx

[∫ +∞

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵi=1}dLu

]

= 1

2
Ex

[∫ +∞

0
ϕ(Bu)1{R(u)≥θ}1{ 1

2 (κ·l)u≤τ }dlu
]

= 1

2
Ex

[∫ +∞

0
ϕ(Bu) e−θu e− 1

2 (κ·l)u dlu
]

.

This last quantity is bounded since ϕ is bounded on ∂D, θ > 0, and since

sup
x∈D̄

Ex

[∫ +∞

0
e−θs dls

]

< +∞,

thanks to (24). ��

Proposition 5.2. The function vκθ is solution of the integral equation: for all x ∈ D̄,

vκθ (x)+ 2Ex

[∫ +∞

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

= 1

2
Ex

[∫ +∞

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

. (8)
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Proof. We follow the proof of theorem 4.2 of [1]. By definition of vκθ and Zκθ , we
have, for every x ∈ ∂D,

vκθ (x) = Nx

[
1 − e−(Zκθ ,ϕ)

]

= Nx

[

1 − exp

(

−1

2

∫ +∞

0
ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1}dLs

)]

= 1

2
Nx

[∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1}

× exp

(

−1

2

∫ +∞

s

dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)]

.

Let us recall P∗
w̃

is the law of the Brownian snake started at w̃ and killed when its
lifetime reaches 0 (see the end of section 2). We denote by E∗

w̃
the expectation with

respect to P∗
w̃

. Now, we replace

exp

(

−1

2

∫ +∞

s

dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)

by its predictable projection to get

vκθ = 1

2
Nx

[∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1}

× E∗
W̃s

[

e

(
− 1

2

∫ +∞
0 dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)]]

.

Let us now compute, for w̃ = (W,R, J,K) ∈ Wx ,

E∗
W̃s

[

e− 1
2

∫ +∞
0 dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

]

= E∗
W̃s

[
e−(Zκθ ,ϕ)

]
.

We consider the Brownian snake under P∗
w̃

and we set (αi, βi)i∈I the excursion inter-

vals of ζs− inf[0,s] ζr above 0. For every i ∈ I , we define W̃ i ∈ C(R+,Wζαi ,w̃(ζαi )
)

by setting, for every s ≥ 0,

W̃ i
s (t) = W̃(αi+s)∧βi (ζαi + t) t ∈ [0, ζ is = ζ(αi+s)∧βi − ζαi ).

We have

(Zκθ , ϕ) =
∑

i∈I

1

2

∫ ∞

0
ϕ(Ŵ i

u)1{R̂iu≥θ}1{Ĵ iu=1} dL
i
u,

where Li is the CAF of lemma 3.1 for the snake W̃ i . Let us recall the Poissonian
representation of the Brownian snake (proposition 2.5 of [12]). For w̃ ∈ Wx , the
point measure

∑

i∈I
δ
(ζαi ,W̃

i )
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is under P∗
w̃

a Poisson point measure with intensity

2 1[0,ζ )(t)dt Nw̃(t)(dW).

Thus we have

E∗
w̃

[
e−(Zκθ ,ϕ)

]
= exp

(

−2
∫ ζ

0
dt Nw̃(t)

[
1 − e−(Zκθ ,ϕ)

])

= exp

(

−2
∫ ζ

0
dt 1{R(t)≥θ,J (t)=1}NW(t)

[
1 − e−(Zκθ ,ϕ)

])

= exp

(

−2
∫ ζ

0
dt 1{R(t)≥θ,J (t)=1}vκθ (W(t))

)

,

with w̃(t) = (W(t), R(t), J (t),K(t)) where we used equation (7) for the second
equality. Since the processes Rs and Js are decreasing, we have

vκθ (x) = 1

2
Nx

[∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1} exp

(

−2
∫ ζs

0
dt vκθ

(
Ws(t)

)
)]

.

Eventually we get, using equation (4), the equation

vκθ (x) = 1

2
Ex

[∫ +∞

0
dls ϕ(Bs)1{R(s)≥θ}1{(κ·l)s≤2τ } exp

(

−2
∫ s

0
dt vκθ

(
Bt
)
)]

= 1

2
Ex

[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s exp

(

−2
∫ s

0
dt vκθ (Bt )

)]

(9)

that we will re-use at the end of the proof.
Let us now compute

Ex

[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s
(

1 − exp

(

−2
∫ s

0
dt vκθ (Bt )

))]

= 2 Ex

[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s

×
∫ s

0
dt vκθ (Bt ) exp

(

−2
∫ s

t

du vκθ (Bu)

)]

= 2
∫ +∞

0
dt Ex

[

vκθ (Bt )

∫ +∞

t

dls ϕ(Bs) e−θs e− 1
2 (κ·l)s

× exp

(

−2
∫ s

t

du vκθ (Bu)

)]

= 2
∫ +∞

0
dt Ex

[
vκθ (Bt ) e−θt e− 1

2 (κ·l)t EBt

×
[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s e(−2
∫ s

0 du v
κ
θ (Bu))

]]

= 4
∫ +∞

0
dt Ex

[
vκθ (Bt )

2 e−θt e− 1
2 (κ·l)t

]
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by equation (9). Now, if we rewrite equation (9) as

vκθ (x) = 1

2
Ex

[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s
]

−1

2
Ex

[∫ +∞

0
dls ϕ(Bs) e−θs e− 1

2 (κ·l)s
(

1 − exp

(

−2
∫ s

0
dt vκθ (Bt )

))]

,

the last computation gives the sought-after equation. ��

Proposition 5.3. Let T be a stopping time (with respect to the natural filtration of
B), finite a.s. Then vκθ satisfies the equation: for all x ∈ D̄,

vκθ (x)+ 2Ex

[∫ T

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

= Ex

[
vκθ (BT ) e−θT e− 1

2 (κ·l)T
]

+ 1

2
Ex

[∫ T

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

.

Proof. Let us first compute

Ex

[∫ +∞

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

= Ex

[∫ T

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

+Ex

[∫ +∞

T

vκθ (Bs)
2 e−θs e− 1

2 (κ·l)s ds
]

= Ex

[∫ T

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

+Ex

[

e−θT e− 1
2 (κ·l)T EBT

[∫ +∞

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]]

,

by the strong Markov property of B. Now, by proposition 5.2, we have,

EBT

[∫ +∞

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

= 1

4
EBT

[∫ +∞

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

− 1

2
vκθ (BT ).



Neumann’s problem and Brownian snake 489

So, plugging this equality into the previous formula gives

Ex

[∫ +∞

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

= Ex

[∫ T

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

+1

4
Ex

[

e−θT e− 1
2 (κ·l)T EBT

[∫ +∞

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]]

−1

2
Ex

[
e−θT e− 1

2 (κ·l)T vκθ (BT )
]

= Ex

[∫ T

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

+1

4
Ex

[∫ +∞

T

ϕ(Bs) e−θs e− 1
2 (κ·l)s dls

]

−1

2
Ex

[
e−θT e− 1

2 (κ·l)T vκθ (BT )
]
,

using the strong Markov property again. Subtracting to (8) two times the last equa-
tion gives the result. ��
Corollary 5.4. The function vκθ belongs to C2(D) and is solution of �u = 4u2 +
2θu on D.

Proof. Let x ∈ D. As D is an open subset, there exists ε > 0 such that the ball
B(x, ε) centered at x and of radius ε is included in D. Let T be the exit time of B
out of this ball. Then, under Px , (Bu)0≤u≤T is a standard Brownian motion stopped
when it leaves B(x, ε) and lT = 0 Px-a.s. Proposition 5.3 gives now

vκθ (x)+ 2Ex

[∫ T

0
vκθ (Bs)

2 e−θs ds
]

= Ex

[
vθ (BT ) e−θT

]

where B is a standard Brownian motion and classical results on the Brownian
motion give the proposition. ��
Proposition 5.5. The function vκθ is continuous on D̄.

Proof. We fix a time t > 0 and we apply proposition 5.3 to T = t . We have

vκθ (x) = Ex

[
vκθ (Bt )

]
e−θt −Ex

[
vκθ (Bt )

(
1 − e− 1

2 (κ·l)t
)]

e−θt

+1

2
Ex

[∫ t

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

−2Ex

[∫ t

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

.

As ϕ and vκθ are bounded, the three last terms converge to 0 uniformly in x and, as
t decreases to 0 thanks to (26) with n = 1. Furthermore for fixed t > 0, the appli-
cation x �→ Ex

[
vκθ (Bt )

]
is continuous on D̄. This implies that vκθ is continuous

on D̄. ��
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Let C2
b (D) be the set of bounded functions defined onD which are of class C2

with bounded derivatives of order 1 and 2.

Proposition 5.6. If ϕ is continuous on ∂D, then, for every test function φ ∈
C2
b (D) ∩ C1(D̄), we have

∫

D

�φ(x)vκθ (x)dx − 4
∫

D

φ(x)vκθ (x)
2dx − 2θ

∫

D

φ(x)vκθ (x)dx

=
∫

∂D

∂φ

∂n
(y)vκθ (y)σ (dy)−

∫

∂D

φ(y)ϕ(y)σ (dy)−
∫

∂D

φ(y)vκθ (y)κ(y)σ (dy).

In particular, for φ = 1, we have

4
∫

D

vκθ (x)
2dx + 2θ

∫

D

vκθ (x)dx =
∫

∂D

ϕ(y)σ (dy)+
∫

∂D

κ(y)vκθ (y)σ (dy).

Proof. The proof is similar to the proof of theorem 4.10 of [1]. First, we use the
definition of the reflected Brownian motion via a martingale problem (see [9]). This
gives that, for every x ∈ D̄t > 0, and φ ∈ C2

b (D) ∩ C1(D̄),

Ex

[
φ(Bt )− φ(x)

] = 1

2
Ex

[∫ t

0
�φ(Bs)ds

]

− 1

2
Ex

[∫ t

0

∂φ

∂n
(Bs)dls

]

.

So, multiplying by vκθ (x) and integrating on D leads to, for every t > 0,

∫

D

vκθ (x)Ex
[
φ(Bt )− φ(x)

]
dx

= 1

2

∫ t

0
ds

∫

D

vκθ (x)Ex
[
�φ(Bs)

]
dx − 1

2

∫

D

vκθ (x)Ex

[∫ t

0

∂φ

∂n
(Bs)dls

]

dx

= 1

2

∫ t

0
ds

∫

D

�φ(x)Ex
[
vκθ (Bs)

]
dx − 1

2

∫

D

vκθ (x)Ex

[∫ t

0

∂φ

∂n
(Bs)dls

]

dx

because of the symmetry of the density of Bs . Using the symmetry again and then
proposition 5.3 with T = t , we have

∫

D

vκθ (x)Ex
[
φ(Bt )− φ(x)

]
dx

=
∫

D

φ(x)Ex
[
vκθ (Bt )− vκθ (x)

]
dx

=
∫

D

φ(x)Ex

[
vκθ (Bt ) e− 1

2 (κ·l)t −vκθ (x)
]
dx

−
∫

D

φ(x)Ex

[
vκθ (Bt )

(
1 − e− 1

2 (κ·l)t
)]
dx

=
∫

D

φ(x)
(
vκθ (x) eθt −vκθ (x)

)
dx

+2
∫

D

φ(x) eθt Ex

[∫ t

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

dx
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−1

2

∫

D

φ(x) eθt Ex

[∫ t

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

dx

−
∫

D

φ(x)Ex

[
vκθ (Bt )

(
1 − e− 1

2 (κ·l)t
)]
dx.

So, we have, for every t > 0,

1

2

∫

D

dx �φ(x)
1

t

∫ t

0
ds Ex

[
vκθ (Bs)

] − 1

2

∫

D

dx vκθ (x)
1

t
Ex

[∫ t

0

∂φ

∂n
(Bs)dls

]

=
∫

D

φ(x)vκθ (x)
1

t
(eθt −1)dx

+2
∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
vκθ (Bs)

2 e−θs e− 1
2 (κ·l)s ds

]

dx

−1

2

∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ϕ(Bs) e−θs e− 1

2 (κ·l)s dls
]

dx

−
∫

D

φ(x)
1

t
Ex

[
vκθ (Bt )

(
1 − e− 1

2 (κ·l)t
)]
dx.

Now we let t goes to 0 and use the continuity B as well as the continuity of vκθ on
D̄, the lemmas 9.2, 9.3, 9.4 and 9.5 to get the equation of the proposition. ��

For k ∈ N, α ∈ (0, 1], let Ck,α(�) be the set of functions defined on � which
are k times differentiable such that their kth derivative is Hölder with parameter α.

Proposition 5.7 (Recall that θ > 0). Let ϕ ∈ C1,α(∂D) be nonnegative. The func-
tion vθ belongs to C2(D)∩C1(D̄) and it is the unique nonnegative solution of the
Neumann problem

�u = 4u2 + 2θu in D
∂u

∂n
= ϕ on ∂D.

(10)

Furthermore, vθ belongs to C2,α(D̄).

Proof. Since ϕ ∈ C1,α(∂D), we deduce from propositions 9.6 and 9.9, that the

function 1
2 Ex

[∫ +∞
0 ϕ(Bs) e−θs dls

]
belongs toC2,α(D̄). Since vθ is bounded, we

deduce from proposition 9.8, that the function Ex

[∫ +∞
0 vθ (Bs)

2 e−θs ds
]

belongs

to C0,1(D̄). Thanks to (8), this implies that vθ ∈ C0,1(D̄). Using propositions 9.7
and 9.9, we deduce again from (8), that vθ ∈ C2,α(D̄). From proposition 9.7, we
get that vθ is a solution of (10).

Let us check the uniqueness of solutions to (10). Let u ∈ C2(D) ∩ C1(D̄) be
another nonnegative solution of (10). Set w = u− vθ . The function w solves

�w − kw = 0 in D
∂w

∂n
= 0 on ∂D,

where k = 4(u + vθ ) + 2θ > 0 belongs to C1(D̄). From the maximum principle
(see theorem 8 in [15]), we get that either that w ≤ 0 or w > 0 is constant in D.
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Using −w instead of w, we deduce that w is constant in D. Therefore we have
u = vθ + c. Subtracting (10) applied to u and vθ , we get that c(4vθ + 2c+ θ) = 0.
Either c = 0 or vθ is constant. If vθ is constant, from (10) we get that ϕ = 0 and
by construction vθ = 0. This in turn implies that c(2c + θ) = 0. Since u = c is
nonnegative, we get that u = 0. In any case c = 0 and thus we have u = vθ . ��

6. Properties of vκ

Let ϕ be a bounded nonnegative measurable function defined on ∂D. Recall that
for κ ≥ 0 and x ∈ D̄, vκ(x) = Nx

[
1 − e−(Zκ ,ϕ)] and vκ ≤ v0 = v.

Proposition 6.1. The function vκ is bounded on D̄ for κ ≥ 0.

The proof of this theorem is at the end of this section.

Proposition 6.2. The function vκ is continuous on D̄.

Proof. By construction, we have that vκθ increases to vκ as θ decreases to 0. From
proposition 5.3, we get by dominated convergence: for x ∈ D̄,

vκ(x)+ Ex

[∫ t

0
vκ(Bs)

2 e− 1
2 (κ·l)s ds

]

= Ex

[
vκ(Bt ) e− 1

2 (κ·l)t ]

+1

2
Ex

[∫ t

0
ϕ(Bs) e− 1

2 (κ·l)s dls
]

.

Now, as ϕ and vκ are bounded, we conclude as in the proof of proposition 5.5. ��
By dominated convergence, we deduce from proposition 5.6 the next result as

θ decreases to 0.

Proposition 6.3. Assume ϕ is a continuous nonnegative function on ∂D. For any
test function φ ∈ C2

b (D) ∩ C1(D̄), we have:
∫

D

�φ(x)vκ(x) dx − 4
∫

D

φ(x)vκ(x)2 dx

=
∫

∂D

∂φ

∂n
(y)vκ(y) σ (dy)−

∫

∂D

φ(y)ϕ(y) σ (dy)−
∫

∂D

φ(y)κ(y)vκ(y)σ (dy).

(11)

In particular, for φ = 1, we have

4
∫

D

vκ(x)2dx =
∫

∂D

ϕ(y)σ (dy)+
∫

∂D

κ(y)vκ(y)σ (dy).

Notice that any function v ∈ C2(D)∩C1(D̄) solution of the Neumann problem
(1) satisfies the integral equation (11), for any test function.

Definition 6.4. We say that a bounded measurable function v which satisfies (11)
for any test function is a weak solution of the Neumann problem (1).

We will mainly consider weak solutions that are continuous on D̄.
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Proof of proposition 6.1. Because vκ ≤ v = v0, it is enough to prove the proposi-
tion for v.

Let g be a continuous nonnegative function defined on ∂D. Consider the
Dirichlet problem in D:

�u− 2θu = 4u2 in D,

u = g on ∂D.
(12)

From [7], we know there exists only one nonnegative solution to this equation uθ ,
and uθ belongs to C2(D)∩C0(D̄). Since L = �

2 − θ is the infinitesimal generator
of the Brownian motion killed at an independent exponential time with parameter
θ > 0, we also have the following integral equation:

uθ (x)+ 2Ex

[∫ τD

0
uθ (Bs)

2 e−θs ds
]

= Ex

[
g(BτD) e−θτD ] , (13)

where τD = inf{t ≥ 0;Bt �∈ D}. This integral representation is also valid for
θ = 0. The next lemma give a regularity result on uθ when g is smooth. Recall that
D has a C3 boundary.

Lemma 6.5. Let θ > 0. If g ∈ C2,α(∂D), then the nonnegative solution uθ of (13)
lies in C2,α′

(D̄), where α′ = min(α, 1/2).

This result doesn’t seem optimal since α′ might be less than α. The proof of this
lemma is in section 9.5.

From now on, we assume that θ > 0. Notice that under the hypothesis of
lemma 6.5, the normal derivative of uθ is continuous and well defined. However
this normal derivative can be negative at some point of ∂D. We can’t represent uθ as
Nx

[
1 − e−(Zθ ,ϕ)], with ϕ the normal derivative of uθ in general. For our purpose it

will be sufficient to consider uN,θ solution of (13) with g constant equal toN > 0.
From (13), we have uN,θ < N in D. Therefore the normal derivative of uN,θ , say
ϕN,θ is nonnegative.

Let us find a lower bound for ϕN,θ independent of θ > 0. Since D is bounded
with C3 boundary, there exists r0 > 0, such that for any x0 ∈ ∂D, the open
ball B(x0 − r0nx0 , r0) with radius r0 centered at x0 − r0nx0 , where nx0 is the
outward normal of D at point x0, lies in D. Let wN be the unique nonnegative
solution of �u = 4u2 in B(x0 − r0nx0 , r0) with boundary condition wN = N on
∂B(x0 − r0nx0 , r0). In particularwN ∈ C2(D̄), thanks to lemma 6.5. Since uN,θ <
N in D, we deduce that uN,θ ≤ wN on ∂B(x0 − r0nx0 , r0). Let z = uN,θ − wN .
The function z satisfies �z− kz ≥ 0 in D with k = 4(uN,θ +wN) ≥ 0 and z ≤ 0
on ∂B(x0 − r0nx0 , r0). From the maximum principle (theorem 6 in [15]), we get
that z ≤ 0 in B(x0 − r0nx0 , r0), hence

uN,θ ≤ wN in B(x0 − r0nx0 , r0).

Since wN(x0) = uN,θ (x0) = N , we have for ε > 0 small enough

wN(x0)− wN(x0 − εnx0) ≤ uN,θ (x0)− uN,θ (x0 − εnx0).

This implies that φN(x0) ≤ ϕN,θ (x0), where φN is the normal derivative of wN .
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Lemma 6.6. There exists a constant c0 depending only on r0 and the dimension
d, such that φN(x0) ≥ (N − c0)/r0 for all N > 0.

For the clarity of the exposition, the proof of this lemma is postponned to
section 9.5.

Let ϕ ≥ 0 measurable defined on ∂D. Let N ≥ r0 supx∈∂D |ϕ(x)| +c0. Notice
N is independent of θ > 0. Since uN,θ is in C2,α(D̄) for some α > 0, we get

that uN,θ is a strong solution of (10) with boundary condition ϕN,θ = ∂uN,θ

∂n
on

∂D. We deduce from proposition 5.7, that uN,θ (x) = Nx

[
1 − e−(Zθ ,ϕN,θ )]. From

lemma 6.6, we deduce that ϕ ≤ ϕN,θ and thus vθ ≤ uN,θ ≤ N . Since this upper
bound is uniform in θ > 0, we deduce that v itself is bounded from above by N .

��

7. An integral equation for v

From (23), we see the green kernel

G(x, y) =
∫ ∞

0
[pt (x, y)− aD]dt, where aD = 1/

∫

D

dy,

is well defined a.e. in D̄ × D̄. If h is a measurable bounded function defined on
D, we set Gh(x) = ∫

D
G(x, y)h(y) dy. If ϕ is a measurable bounded function

defined on ∂D, we set Gϕσ(x) = ∫
∂D
G(x, y)ϕ(y) σ (dy).

From now on, let ϕ be a bounded measurable nonnegative function on ∂D.

Proposition 7.1. Let v(x) = Nx

[
1 − e−(Z, ϕ)

]
. Then v satisfies the integral

equation: for x ∈ D̄,

v(x)+ 2Gv2(x)− aD

∫

D

v(y) dy = 1

2
Gϕσ(x). (14)

Notice that (14) may have many different nonnegative solutions (see remark 7.3).
However, there is a unique nonnegative solution to (14) satisfying the integral con-
dition 4

∫
D
v(y)2 dy = ∫

∂D
ϕ(y) σ (dy) (the proof of this fact is similar to what

follows lemma 7.4).

Proof. From proposition 5.2 (with κ = 0), we have

vθ (x)+ 2Ex

[∫ +∞

0
vθ (Bs)

2 e−θs ds
]

= 1

2
Ex

[∫ +∞

0
ϕ(Bs) e−θs dls

]

. (15)

From (25), we deduce that

Ex

[∫ +∞

0
ϕ(Bs) e−θs dls

]

=
∫ ∞

0
ds e−θs

∫

D

ϕ(y)[ps(x, y)− aD]σ(dy)
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+aD
∫ ∞

0
ds e−θs

∫

D

ϕ(y)σ (dy)

= Gϕσ(x)+ aD

θ

∫

∂D

ϕ(y) σ (dy)

+
∫ ∞

0
ds (e−θs −1)

∫

D

ϕ(y)[ps(x, y)− aD]σ(dy).

The third term of the last equality goes to 0 as θ ↓ 0, thanks to (22) and (23).
Therefore, we have

Ex

[∫ +∞

0
ϕ(Bs) e−θs dls

]

= Gϕσ(x)+ aD

θ

∫

∂D

ϕ(y) σ (dy)+ o(1).

By a similar argument, we have

Ex

[∫ +∞

0
vθ (Bs)

2 e−θs ds
]

= Gv2
θ (x)+ aD

θ

∫

D

vθ (y)
2 dy + o(1).

From the second equations of propositions 5.6 and 6.3 we get that

4
∫

D

vθ (y)
2 dy + 2θ

∫

D

vθ (y) dy = 4
∫

D

v(y)2 dy.

Since vθ increases uniformly to v as θ decreases to θ , we have vθ = v + o(1) in
D̄. We deduce that

4
∫

D

vθ (y)
2 dy = 4

∫

D

v(y)2 dy − 2θ
∫

D

v(y) dy + o(1) and

Gv2
θ = Gv2 + o(1) in D̄.

Plugging those results in (15), we get that for x ∈ D̄,

v(x)+ 2Gv2(x)+ 2
aD

θ

∫

D

v(y)2 dy − aD

∫

D

v(y) dy

= 1

2
Gϕσ(x)+ 1

2

aD

θ

∫

∂D

ϕ(y) σ (dy)+ o(1).

Using the second equation of proposition 6.3 we get (14), as θ goes to 0. ��
We assume ϕ ≥ 0 is non zero, that is

∫
∂D
ϕ(y) σ (dy) > 0. We consider the

functions defined on D̄ by,

w1(x) = w1 = 1

2

[

aD

∫

∂D

ϕ(y) σ (dy)

]1/2

> 0,

w2(x) = 1

2
Gϕσ(x),

wn(x) = −2
n−1∑

k=1

G(wkwn−k)(x)+ cn, for n ≥ 3,
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where we set

cn = − aD

2w1

∫

D

n−1∑

k=2

wk(y)wn+1−k(y) dy.

The functions are well defined, because the function ϕ is bounded. By symmetry
of G, we have for n ≥ 3,

∫

D

wn(y) dy = −2
∫

D

n−1∑

k=1

wk(y)wn−k(y)G1(y) dy +
∫

D

cn dy = cn

aD
,

because G1 = 0. In particular we deduce from the definition of cn−1, that for
n ≥ 4,

∫

D

n−1∑

k=1

wk(y)wn−k(y) dy

= 2w1

∫

D

wn−1(y) dy +
∫

D

n−2∑

k=2

wk(y)wn−k(y) dy = 0. (16)

For f a measurable function defined on D̄ (resp. ∂D), we define ‖f ‖∞ =
sup{|f (x)|; x ∈ D̄} (resp. ‖f ‖∞ = sup{|f (x)|; x ∈ ∂̄D}).
Proposition 7.2. (1) There exists η0 > 0 (depending on ϕ), such that the series

v+
η =

∑

n≥1

ηn/2wn and v−
η =

∑

n≥1

(−1)nηn/2wn

are absolutely convergent (for the norm ‖·‖∞) for η ∈ [0, η0). The functions
v+
η and v−

η are continuous in D̄.
(2) For η > 0, small enough, we have that v+

η (resp. v−
η ) is the only nonnegative

(resp. non positive) continuous weak solution to the Neumann problem

�u = 4u2 in D, and
∂u

∂n
= ηϕ on ∂D. (17)

In particular v+
η (x) = Nx

[
1 − e−η(Z,ϕ)], for η > 0, small enough.

Proof. 1) From (21), (22) and (23), it is clear that there exists a constant cD , such
that for any measurable function f (resp. h) defined on D̄ (resp. ∂D),

‖Gf ‖∞ ≤ cD ‖f ‖∞ and ‖Ghσ ‖∞ ≤ cD ‖h‖∞ .

We have by recurrence that ‖wn ‖∞ ≤ βn ‖ϕ ‖n/2∞ , where

β1 = 1

2

√

aD

∫

∂D

σ(dy), β2 = 1

2
cD,
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and for n ≥ 3,

βn = 2cD

n−1∑

k=1

βkβn−k + √
aDρ

n−1∑

k=2

βkβn+1−k,

with ρ = [‖ϕ ‖∞ /
∫
∂D
ϕ(y) σ (dy)

]1/2. It is easy to check there exists η̃0 > 0
(depending only on β1, cD and ρ) such that the series g(r) = ∑

k≥3 βkr
k is con-

vergent for r ∈ [0, η̃0), and that g(r) is the smallest solution of

g(r) = 2cD
[
(g(r)+ β1r + β2r

2)2 − β2
1 r

2
]

+ 1

r

√
aDρ

[
g(r)+ β2r

2
]2
.

It is then clear that the series vδη = v+
η or v−

η , as δ = +1 or δ = −1, are absolutely

convergent for η ∈ [0, η0 = η̃0/ ‖ϕ ‖1/2
∞ ).

From the continuity of p, (22), (23), we have that Gϕσ is continuous on D̄.
By recurrence, we get that wn is continuous for n ≥ 3. This implies that vδη is
continuous on D̄.

2) Furthermore, let us note that, by the product of two series, for η ∈ [0, η0),

(vδη)
2 =

∑

n≥2

δnηn/2
n−1∑

k=1

(wkwn−k)

and, as G(w2
1) = 0,

G
(
(vδη)

2
)

=
∑

n≥3

δnηn/2
n−1∑

k=1

G(wkwn−k).

Then, we have that, for η ∈ [0, η0),

vδη(x) =
∑

n≥1

δnηn/2wn(x)

= δ
√
ηw1 + ηw2(x)− 2

∑

n≥3

δnηn/2
n−1∑

k=1

G(wkwn−k)(x)+
∑

n≥3

δnηn/2cn

= δ
√
ηw1 + η

2
Gϕσ(x)− 2G((vδη)

2)(x)+
∑

n≥3

δnηn/2cn.

From the symmetry of G and the fact that G1 = 0, we get

∫

D

vδη(y) dy = δ
√
η

aD
w1 + η

2

∫

D

Gϕσ(y) dy

−2
∫

D

G((vδη)
2)(y) dy +

∑

n≥3

δnηn/2

aD
cn
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= δ
√
η

aD
w1 + η

2

∫

∂D

ϕ(x)G1(x)σ (dx)

−2
∫

D

(vδη(x))
2G1(x)dx +

∑

n≥3

δnηn/2

aD
cn

= δ
√
η

aD
w1 +

∑

n≥3

δnηn/2

aD
cn.

Plugging this in the previous equation, we get that

vδη(x) = η

2
Gϕσ(x)− 2G((vδη)

2)(x)+ aD

∫

D

vδη(y) dy.

Hence vδη solves (14) with ϕ replaced by ηϕ.

Remark 7.3. By considering w′
n defined as wn but for c′n = 0, it is easy to get that

v′
η = ∑

n≥1 η
n/2w′

n is well defined, continuous, nonnegative and solution of (14)
for η > 0 small enough. Since c3 �= 0, we havew′

η �= v+
η . Hence (14) doesn’t have

a unique nonnegative continuous solution.

We have
∫

D

vδη(y)
2 dy =

∫

D

∑

n≥2

δnηn/2
n−1∑

k=1

wk(y)wn−k(y) dy

=δ
2η

aD
w2

1 + δ3η3/2w1

∫

D

Gϕσ(y) dy

+
∑

n≥4

ηn/2δn
∫

D

n−1∑

k=1

wk(y)wn−k(y) dy

=η
4

∫

∂D

ϕ(y) σ (dy),

where we used (16) for the last equality as well as the symmetry of G and the fact
that G1 = 0. Thus we have that vδη solves also

4
∫

D

u(y)2 dy =
∫

∂D

ϕ(y) σ (dy), (18)

with ϕ replaced by ηϕ. The next lemma states that the two integral equations (14)
and (18) characterize the weak solutions of the Neumann problem (1) (with κ = 0).
Its proof is postponed at the end of this section.

Lemma 7.4. Any bounded measurable functionu satisfying (14) and (18) is a weak
solution of the Neumann problem (1) (with κ = 0). That is, for any test function
φ ∈ C2

b (D) ∩ C1(D̄), we have:
∫

D

�φ(y)u(y) dy − 4
∫

D

φ(y)u(y)2 dy

=
∫

∂D

∂φ

∂n
(y)u(y) σ (dy)−

∫

∂D

φ(y)ϕ(y) σ (dy). (19)
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From this lemma, we get that v+
η and v−

η are continuous weak solution of the
Neumann problem (1) (with κ = 0 and ϕ replaced by ηϕ). From propositions
6.2 and 6.3, we have that vη(x) = Nx

[
1 − e−η(Z,ϕ)] is also a continuous weak

solution.
To complete the proof of the proposition, we just have to check that v+

η = vη.
This will be done once we prove the uniqueness of the continuous weak solutions.

Let η > 0 and ε > 0 small enough, so that
∣
∣
∣vδη

∣
∣
∣(x) ≥ ε > 0 in D̄ for

δ ∈ {+1,−1} (this can be done since w1 > 0). Consider u a continuous nonnega-
tive solution of (19), with ϕ replaced by ηϕ. Since v+

η is a positive solution of (19),
by subtraction, we get

∫

D

w(y)[�φ(y)+ 4q(y)φ(y)] =
∫

∂D

∂φ

∂n
(y)w(y) σ (dy),

with w = u− v+
η and q = −4(u+ v+

η ). From theorem 5.5 of [9], we deduce that
w = 0 (the finiteness of the gauge in [9] is implied by the fact that q(y) ≤ −ε < 0
for y ∈ D̄). In particular, v+

η is the unique continuous nonnegative solution of (19),
for η > 0 small enough. This implies that for η > 0, small enough, v+

η (x) =
Nx

[
1 − e−η(Z,ϕ)].

Similarly, we get that v−
η is the unique continuous non positive solution of (19),

for η > 0 small enough. ��
Corollary 7.5. Let ϕ ≥ 0, such that

∫
∂D
ϕ(y) σ (dy) > 0. Then v(x) = Nx[

1 − e−(Z,ϕ)
]

is the only nonnegative weak solution of (1) (with κ = 0).

Proof. From the last part of the proof of proposition 7.2, concerning uniqueness
of weak solution, we see with v+

η replaced by v that it is enough to check that
v(x) ≥ ε > 0 in D. For η ∈ (0, 1] small enough, we have

v(x) ≥ v+
η (x) = Nx

[
1 − e−η(Z,ϕ)

]
.

For ε > 0 and η > 0 small enough, we get that v+
η ≥ ε on D, since w1 > 0. ��

Proof of lemma 7.4. From the definition of the kernel G and the symmetry of p
we get that for any bounded measurable function f :

∫

D

Gf (y) dy = 0 and
∫

∂D

Gf σ(y) dy = 0.

From [5], we get that:

• If f is a bounded measurable function defined onD, thenGf is a weak solution

of
�

2
w = −f + aD

∫

D

f (y) dy with Neumann boundary condition
∂w

∂n
= 0.

And for any test function φ ∈ C2
b (D) ∩ C1(D̄),

∫

D

�φ(y)w(y) dy + 2
∫

D

φ(y)f (y) dy − 2aD

∫

D

φ(y) dy

∫

D

f (y) dy

=
∫

∂D

∂φ

∂n
(y)w(y) σ (dy).
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• If h is a bounded measurable function defined on ∂D, then 1
2 Ghσ is a weak solu-

tion of
�

2
w = aD

2

∫

∂D

h(y) σ (dy)with Neumann boundary condition
∂w

∂n
= h.

And for any test function φ ∈ C2
b (D) ∩ C1(D̄),

∫

D

�φ(y)w(y) dy − aD

∫

D

φ(y) dy

∫

∂D

h(y) σ (dy)

=
∫

∂D

∂φ

∂n
(y)w(y)σ (dy)−

∫

∂D

φ(y)h(y) σ (dy).

Let u be a bounded measurable function defined on D̄, satisfying (14) and (18).
Let φ ∈ C2

b (D) ∩ C1(D̄), be a test function. Using the symmetry of G, the above
remarks, we then deduce from (14) by multiplying by �φ and integrating on D,
that

∫

D

�φ(y)u(y) dy − 4
∫

D

φ(y)u(y)2 dy + 4aD

∫

D

φ(y) dy

∫

D

u(y)2 dy

+2
∫

∂D

∂φ

∂n
(y)Gu2(y)σ (dy)− aD

∫

D

�φ(y) dy

∫

D

u(y) dy

= aD

∫

D

φ(y) dy

∫

∂D

ϕ(y) σ (dy)

+
∫

∂D

∂φ

∂n
(y)

1

2
Gϕ(y)σ (dy)−

∫

∂D

φ(y)ϕ(y) σ (dy).

Use (18) for the third term, (14) for the fourth and the Green formula
∫
D
�φ(y) dy =

∫
∂D

∂φ
∂n
(y) σ (dy) for the fifth of the left member to get (19). ��

8. Properties of Z

We can give estimate of the probability of hitting small balls for the measure Z.
Letx0 ∈ ∂D, andB∂D(x0, ε)be the ball on the boundary ofD centered atx, with

radius ε > 0: B∂D(x0, ε) = {y ∈ ∂D; |x − y| < ε}. We write Z(B∂D(x0, ε)) =
(Z, 1B∂D(x0,ε)).

Proposition 8.1. For every compact set K ⊂ D, there exists 1/2 > ε0 > 0 and
a constant cd > 0 (which depends on the dimension d) such that for any x ∈ K ,
x0 ∈ ∂D, ε ∈ (0, ε0),

Nx[Z(B∂D(x0, ε)) > 0] ≥






cd if d = 2 or 3,

cd(log(1/ε))−1 if d = 4,

cdε
d−4 if d ≥ 5.

Proof. We fix θ > 0 and notice that Nx[Z(B∂D(x0, ε)) > 0] ≥ Nx[Zθ(B∂D(x0, ε))

> 0]. Consequently, it is enough to get a lower bound for Zθ .
Let us set

gθ (x, y) =
∫ +∞

0
ps(x, y)e

−θsds
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and recall the following estimates: there exists a constant α (which depends on d
and θ ) such that for all (x, y) ∈ D̄ × D̄,

gθ (x, y) ≤ αh(x, y)

with

h(x, y) =
{(

1 + ln+ 1
‖x−y‖

)
if d = 2

‖x − y ‖2−d if d ≥ 3,

where ln+(r) = max(0, ln(r)) (see for instance [3], Corollary 3.3 or [6], Theorem
3.4 (iv)). Now, by Cauchy-Schwartz inequality, we have

Nx[Zθ(B∂D(x0, ε)) > 0] ≥ Nx[Zθ(B∂D(x0, ε))]2

Nx[Zθ(B∂D(x0, ε))2]
·

The first moment is easy to estimate: we have, by definition of Zθ

Nx[Zθ(B∂D(x0, ε))] = Nx

[∫ σ

0
1{Ŵs∈B∂D(x0,ε)}1{R̂s≥θ}dLs

]

= Ex

[∫ +∞

0
1{Bs∈B∂D(x0,ε)}e

−θsdls
]

=
∫

B∂D(x0,ε)

gθ (x, y)σ (dy)

and, as gθ is bounded below by a constant on K × ∂D, there exists ε0 > 0 such
that for any x ∈ K , x0 ∈ ∂D, ε ∈ (0, ε0],

Nx[Zθ(B∂D(x0, ε))] ≥ cdε
d−1.

For the second moment, let us first prove the following lemma

Lemma 8.2. For every nonnegative measurable function ϕ on ∂D,

Nx((Zθ , ϕ)
2) = 4

∫

D

dy gθ (x, y)

(∫

∂D

σ(dz)gθ (y, z)ϕ(z)

)2

.

Proof. Using the definition of the measure Zθ then the Markov property, we have

Nx[(Zθ , ϕ)
2] = Nx

[(∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

)2
]

= 2Nx

[∫ σ

0
dLu

∫ σ

u

dLu′1{R̂u≥θ}1{R̂u′≥θ}ϕ(Ŵu)ϕ(Ŵu′)

]

= 2Nx

[∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)E

∗
W̃u

[∫ σ

0
dLu′1{R̂u′≥θ}ϕ(Ŵu′)

]]

= 4Nx

[∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

∫ ζu

0
dt N

W̃u(t)

[
(Zθ , ϕ)

]
]
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where we used the Poissonian representation, stated in the proof of proposition 5.2,
of the Brownian snake under E∗

w̃
(see also proposition 2.5 of [12]). Then, thank to

formula (6), we get

Nx[(Zθ , ϕ)
2] = 4Nx

[∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

∫ ζu

0
dt N(Wu(t),+∞,1,0)[(Zθ , ϕ)]

]

.

Now, using formula (4) twice, we have

Nx[(Zθ , ϕ)
2] = 4Ex

[∫ +∞

0
dlu e−θu ϕ(Bu)

∫ u

0
dt EBt

[∫ +∞

0
ϕ(Bs) e−θs dls

]]

= 4Ex

[∫ +∞

0
dt

∫ +∞

t

dlu e−θu ϕ(Bu)EBt

[∫ +∞

0
ϕ(Bs) e−θs dls

]]

= 4Ex

[∫ +∞

0
dt e−θt

EBt

[∫ +∞

0
ϕ(Bs) e−θs dls

]2
]

= 4
∫

D

dy gθ (x, y)

(∫

∂D

σ(dz)gθ (y, z)ϕ(z)

)2

.

��
Applying this result with ϕ = 1B∂D(x0,ε), we have

Nx

(
Zθ(B∂D(x0, ε))

2)

= 4
∫

D

dy gθ (x, y)

∫ ∫

B∂D(x0,ε)2
σ(dz)σ (dz′)gθ (y, z)gθ (y, z′)

= 4
∫ ∫

B∂D(x0,ε)2
σ(dz)σ (dz′)

∫

D

dy gθ (x, y)gθ (y, z)gθ (y, z
′).

We set

ψx,θ (z, z
′) =

∫

D

dy gθ (x, y)gθ (y, z)gθ (y, z
′).

The upper bounds for the kernel gθ lead to: for x ∈ K , z, z′ ∈ ∂D,

ψx,θ (z, z
′) ≤






C if d ≤ 3

C
(

1 + ln+ 1
|z−z′|

)
if d = 4

C|z− z′|4−d if d ≥ 5.

We then deduce easily, using the regularity of ∂D, that there exists ε0 ∈ (0, 1/2],
and cd > 0, such that for any x ∈ K , ε ∈ (0, ε0], x0 ∈ ∂D,

Nx

(
Zθ(B∂D(x0, ε))

2) ≤






cdε
2(d−1) if d = 2 or 3

cdε
6
(
ln 1

ε

)
if d = 4

cdε
d+2 if d ≥ 5.

To finish, it suffices to combine the Cauchy-Schwartz inequality with the estimates
for the first and second moment. ��
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From the upper bound of gθ , we get the next lemma.

Lemma 8.3. For d = 2, 3, for every x ∈ D and every θ > 0, the function

ψx,θ (y, y
′) =

∫

D

dz gθ (x, z)gθ (z, y)gθ (z, y
′)

is continuous on ∂D × ∂D.

Proposition 8.4. If d = 2 or 3, the measureZ is absolutely continuous with respect
to the surface measure σ , Nx-a.e., for x ∈ D.

Proof. Mimicking the proof of theorem 5.1 in [2], we get that for d = 2 or 3, x ∈ D,
Nx-a.e., Zθ is absolutely continuous with respect to σ for any θ > 0. Let A ⊂ ∂D

be measurable, such that
∫
A
σ(dy) = 0. We deduce that (Zθ , 1A) = 0, Nx-a.e.

Since Zθ increases to Z as θ decreases to 0, we deduce that Nx-a.e., (Z, 1A) = 0
for any Borel set A ⊂ ∂D such that

∫
A
σ(dy) = 0. Since supp Z ⊂ ∂D, this

implies that Z is absolutely continuous with respect to σ . ��

IfA is a subset of R
d , let dim(A) denote its Hausdorff dimension. For a measure

µ on R
d , let supp µ denote its closed support.

Proposition 8.5. We have, for every x in D,

dim(supp Z) ≥ 3 ∧ (d − 1) Nx-a.e. on {Z �= 0}.

Proof. Let d ≥ 4. We will first prove that

dim(supp Zθ) ≥ 3 ∧ (d − 1) Nx-a.e. on {Zθ �= 0}. (20)

Notice that since Zθ increases to Z as θ decreases to 0, we have Nx-a.e.,

supp Z =
⋃

k∈N

supp Zθk

for any sequence (θk, k ∈ N) that decreases to 0. This implies the proposition.
The proof of (20) is an adaptation of the proof of Theorem 6.1 of [2]. We set,

for α > 0, hα(r) = r3| ln r|α . Using lemma 8.2 and a polarization argument, we
have for every ε > 0,

Nx

[∫

D

Zθ(dy)Zθ
(
B∂D(y, ε)

)
]

= 4
∫

|y−y′|<ε
σ(dy)σ (dy′)ψx,θ (y, y′).

The upper bounds forψx,θ obtained in the proof of proposition 8.1 yield for ε small
enough and x ∈ D, that

Nx

[∫

D

Zθ(dy)Zθ
(
B∂D(y, ε)

)
]

≤
{
C′(x)ε3| ln ε| if d = 4

C′(x)ε3 if d ≥ 5.
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In the case d ≥ 5, we have for n ∈ N large enough,

Nx

[∫

∂D

Zθ (dy)1{
Zθ

(
B∂D(y,2−n)

)
≥nα2−3n

}

]

≤ n−α23n
Nx

[∫

∂D

Zθ (dy)Z
θ
(
B∂D(y, 2−n)

)
]

≤ C′(x)n−α23n2−3n

= C′(x)n−α.

If α > 2, we deduce that

+∞∑

n=1

1{
Zθ

(
B∂D(y,2−n)

)
≥nα2−3n

} < ∞ Zθ(dy)− .a.e. Nx − a.e.

This implies that

lim sup
ε→0

Zθ
(
B∂D(y, ε)

)

hα(ε)
< ∞, Zθ (dy).a.e. Nx − a.e.

and a well-known result gives that the hα-Hausdorff measure of supp Zθ is strictly
positive Nx-a.e. on {Zθ �= 0}.

The case d = 4 is similar (with α > 3). In particular we deduce (20). ��

9. Appendix

9.1. Reflected Brownian motion

The properties of the reflected Brownian motion B in D̄ are from [5] and [16].
For t > 0, x, y ∈ D̄, letpt (x, y) be the density of the reflected Brownian motion

Bt when B0 = x ∈ D̄. The density is a continuous function on (0,∞)× D̄ × D̄.
It is also symmetric on D̄ × D̄.

For any ε0 > 0, there exists a constant c such that for any x ∈ D̄, t ∈ (0, 1],
ε ∈ (0, ε0],

1

ε

∫

Dε

pt (x, y) dy ≤ c/
√
t, (21)

and
∫

∂D

pt (x, y) σ (dy) ≤ c/
√
t, (22)

where σ(dy) is the surface measure on ∂D.
There exist two positive constant c and β such that for t ≥ 1, we have for all

x, y ∈ D̄
|pt (x, y)− aD| ≤ c e−βt , (23)

where a−1
D = ∫

D
dy.
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We deduce from (22) and (23) that for any θ > 0, there exists a constant c such
that, for all x ∈ D̄,

∫ ∞

0
e−θs ds

∫

∂D

ps(x, y)σ (dy) ≤ c. (24)

The local time of B on ∂D, l = (lt , t ≥ 0), is a continuous additive functional
ofB with Revuz measure σ(dy). In particular we have for any nonnegative function
f defined on R

+ × ∂D

Ex

[∫ ∞

0
f (s, Bs) dls

]

=
∫ ∞

0
ds

∫
f (s, y)ps(x, y) σ (dy). (25)

From this last equation and (22), it is easy to prove by recurrence that for T > 0
and n ≥ 1, there exists a constant Kn such that for all t ∈ [0, T ],

sup
x∈D̄

Ex[lnt ] ≤ Knt
n/2. (26)

The density ps(x, y) as a function of x belongs to C1(D̄)∩C2(D) for (s, y) ∈
(0,∞) × D̄. Furthermore (see [16] p.600) there exists a constant c > 0 such that
for (s, y) ∈ (0,∞)× D̄, and x = (x1, . . . , xd) ∈ D̄,

∣
∣
∣
∣
∂ps

∂xi
(x, y)

∣
∣
∣
∣ ≤ c s−(d+1)/2, (27)

and also
∫

D

∣
∣
∣
∣
∂ps

∂xi
(x, y)

∣
∣
∣
∣ dy ≤ c s−1/2. (28)

9.2. Convergence lemmas

In this section, we present some convergence results which are used for proving
proposition 5.6. They all concern reflected Brownian motion.

Lemma 9.1.

lim
t→0

∫

D

1

t
Ex[l2t ]dx = 0.

Proof. Let us recall that we denote by τD the exit time of B out of D. For every
x ∈ D t0 > 0, we have for t ∈ (0, t0],

1

t
Ex[l2t ] = 1

t
Ex[l2t 1t>τD ]

≤ 1

t
Ex[l4t ]1/2

Px(t > τD)
1/2

≤ CPx(t > τD)
1/2,
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thanks to (26). So, for every x ∈ D, we deduce that

lim
t→0

1

t
Ex[l2t ] = 0.

Moreover, thanks to (26), 1
t
Ex[l2t ] is bounded and the dominated convergence the-

orem gives the result. ��
The next lemma is lemma 4.13 in [1].

Lemma 9.2. For every continuous function φ on D̄ and every continuous function
ψ on ∂D,

lim
t→0

∫

D

dx φ(x)
1

t
Ex

[∫ t

0
ψ(Bs)dls

]

=
∫

∂D

σ(dy)φ(y)ψ(y).

Lemma 9.3. For every bounded measurable functionφ onD and every continuous
function ψ on D,

lim
t→0

∫

D

dx φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs) e−θs e− 1

2 (κ·l)s ds
]

=
∫

D

φ(x)ψ(x)dx.

Proof. We first write
∫

D

dx φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs) e−θs e− 1

2 (κ·l)s ds
]

=
∫

D

dx φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)ds

]

−
∫

D

dx φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)

(
1 − e−θs e− 1

2 (κ·l)s
)
ds

]

.

The first term converges to the expected limit by the continuity of B. The second
one goes to 0 as t decreases to 0, since for t ≤ 1,

∣
∣
∣
∣

∫

D

dx φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)

(
1 − e−θs e− 1

2 (κ·l)s
)
ds

]∣∣
∣
∣

≤ C

∫

D

1

t
Ex

[∫ t

0

(
1 − e−θs e− 1

2 (κ·l)s
)
ds

]

dx

≤ C

∫

D

1

t
Ex

[∫ t

0

(

θs + 1

2
(κ · l)s

)

ds

]

dx

≤ C

∫

D

(
t + Ex[lt ]

)
dx,

and thanks to (26). ��
Lemma 9.4. For every continuous function φ on D̄ and every continuous function
ψ on ∂D,

lim
t→0

∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs) e−θs e− 1

2 (κ·l)s dls
]

dx =
∫

∂D

φ(y)ψ(y)σ (dy).
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Proof. As for lemma 9.3, we write
∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs) e−θs e− 1

2 (κ·l)s dls
]

dx

=
∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)dls

]

dx

−
∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)

(
1 − e−θs e− 1

2 (κ·l)s
)
dls

]

dx.

The first term converges to the expected expression by lemma 9.2. The second one
goes to 0 as t decreases to 0, since for t ≤ 1,

∣
∣
∣
∣

∫

D

φ(x)
1

t
eθt Ex

[∫ t

0
ψ(Bs)

(
1 − e−θs e− 1

2 (κ·l)s
)
dls

]

dx

∣
∣
∣
∣

≤ C

∫

D

1

t
Ex

[∫ t

0

(

θs + 1

2
(κ · l)s

)

dls

]

dx

≤ C

∫

D

Ex[lt ]dx + C

∫

D

1

t
Ex[l2t ]dx

thanks to (26) for the first term and lemma 9.1 for the second. ��
Lemma 9.5. For every bounded measurable functionφ on D̄ and every continuous
function ψ on D̄,

lim
t→+∞

∫

D

φ(x)
1

t
Ex

[
ψ(Bt )

(
1 − e− 1

2 (κ·l)t
)]
dx = 1

2

∫

∂D

φ(y)ψ(y)κ(y)σ (dy).

Proof. We write
∫

D

φ(x)
1

t
Ex

[
ψ(Bt )

(
1 − e− 1

2 (κ·l)t
)]
dx

=
∫

D

φ(x)
1

t
Ex

[

ψ(Bt )
1

2
(κ · l)t

]

dx

+
∫

D

φ(x)
1

t
Ex

[

ψ(Bt )

(

1 − e− 1
2 (κ·l)t −1

2
(κ · l)t

)]

dx

=
∫

D

φ(x)ψ(x)
1

t
Ex

[
1

2
(κ · l)t

]

dx

+
∫

D

φ(x)
1

t
Ex

[(
ψ(Bt )− ψ(x)

)1

2
(κ · l)t

]
dx

+
∫

D

φ(x)
1

t
Ex

[

ψ(Bt )

(

1 − e− 1
2 (κ·l)t −1

2
(κ · l)t

)]

dx.

The first term converges to the sought-after term by lemma 9.2. The third term is
bounded from above by

∣
∣
∣
∣

∫

D

φ(x)
1

t
Ex

[

ψ(Bt )

(

1 − e− 1
2 (κ·l)t −1

2
(κ · l)t

)]

dx

∣
∣
∣
∣ ≤ C

∫

D

1

t
Ex[l2t ]dx

and so converges to 0 by lemma 9.1.
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For the second term, we fix ε > 0. As ψ is continuous on D̄, it is uniformly
continuous and there exists a η > 0 such that

∀x, y ∈ D̄, |x − y| < η �⇒ ∣
∣ψ(x)− ψ(y)

∣
∣ < ε.

Now, we write
∣
∣
∣
∣

∫

D

1

t
Ex

[
(
ψ(Bt )− ψ(x)

)1

2
(κ · l)t

]

dx

∣
∣
∣
∣

≤ C

∫

D

1

t
Ex

[∣
∣ψ(Bt )− ψ(x)

∣
∣1|Bt−x|<ηlt

]
dx

+ C

∫

D

1

t
Ex

[∣
∣ψ(Bt )− ψ(x)

∣
∣1|Bt−x|≥ηlt

]
dx

≤ ε

∫

D

1

t
Ex[lt ]dx + C

∫

D

1

t
Ex[1|Bt−x|≥ηlt ]dx

≤ ε

∫

D

1

t
Ex[lt ]dx + C

∫

D

1

t
Ex[l2t ]1/2

P(|Bt − x| ≥ η)1/2dx

≤ ε

∫

D

1

t
Ex[lt ]dx + C

∫

D

1√
t
Px(|Bt − x| ≥ η)1/2dx,

where we used (26) for the last inequality. Now, by lemma 9.2, the first term is less
than some constant times ε for t say less than 1. The second one goes to 0 as t goes
to 0 and this complete the proof. ��

9.3. Linear boundary problem

Recall D is a bounded domain with C3 boundary. We first recall some results on

the Neumann problem. If u ∈ C1(D̄), let
∂u

∂n
(x) denote the outward normal deriv-

ative of u at x ∈ ∂D. Let θ ≥ 0 and ϕ a bounded measurable function defined
on ∂D. A function u is a strong solution to the Neumann problem N(ϕ, θ) if
u ∈ C2(D) ∩ C1(D̄) and

�

2
u− θu = 0 in D,

∂u

∂n
= ϕ on ∂D.

(29)

A function u is a weak solution to the Neumann problemN(ϕ, θ) if u ∈ C(D̄) and
for any function φ such that φ ∈ C2

b (D)∩C1(D̄) and ∂φ/∂n = 0 on ∂D, we have

∫

D

u(x)
�

2
φ(x) dx − θ

∫

D

u(x)φ(x) dx = − 1

2

∫

∂D

ϕ(x)φ(x) σ (dx).

From the Green formula, it is clear that any strong solution is a weak solution.
Using the local time l, we can represent solution to the Neumann problem in

D. We refer to [9] for the next proposition.
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Proposition 9.6. Let θ > 0 and ϕ be a bounded measurable function defined on
∂D. The function

wθ(x) = 1

2
Ex

[∫ ∞

0
e−θs ϕ(Bs) dls

]

is continuous in D̄. Furthermore it is also the only weak solution of the Neumann
problem N(ϕ, θ).

If ϕ is more regular, then we get strong solution to N(ϕ, θ). For k ∈ N, α ∈
(0, 1], recall that Ck,α(�) is the set of functions defined on � which are k times
differentiable such that their kth derivative is Hölder with parameter α.

From theorem 2.3 in [16], we have

Proposition 9.7. Let θ > 0, f ∈ C0,α(D̄) and ϕ ∈ C0,α(∂D). Then, the function
defined for x ∈ D̄ by

wθ(x) = −Ex

[∫ ∞

0
e−θs f (Bs) ds

]

+ 1

2
Ex

[∫ ∞

0
e−θs ϕ(Bs) dls

]

belongs to C2(D) ∩ C1(D̄) and solves

�

2
u− θu = f in D,

∂u

∂n
= ϕ on ∂D.

(30)

The next proposition is a consequence of (27) and (28).

Proposition 9.8. Let θ > 0, andf bounded measurable defined onD. The function
defined on D̄ by

Ex

[∫ +∞

0
f (Bs) e−θs ds

]

=
∫ ∞

0
ds

∫

D

dy ps(x, y)f (y) e−θs

belongs to C1(D̄).

From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.9. Let θ > 0, f ∈ C0,α(D̄) and ϕ ∈ C1,α(∂D). There exists a
unique strong solution to (30). Furthermore it belongs to C2,α(D̄).

We end this section with well known results for the Dirichlet problem. Let
θ ≥ 0 and f a measurable function defined on D and g a measurable func-
tion defined on ∂D. A function u is a strong solution to the Dirichlet problem if
u ∈ C2(D) ∩ C0(D̄) and

�

2
u− θu = f in D,

u = g on ∂D.
(31)

The next two results can be found in [7].



510 R. Abraham, J.-F. Delmas

Proposition 9.10. Let θ ≥ 0. Let g be a bounded measurable function defined on
∂D. The function defined on D̄ by

uθ (x) = Ex

[
g(BτD) e−θτD ]

belongs to C∞(D) and �
2 uθ − θuθ = 0 in D. Furthermore, if g ∈ C0(∂D), then

uθ ∈ C0(D̄) and uθ = g on ∂D.

Proposition 9.11. Let θ ≥ 0. Let f be a bounded measurable function defined on
D. The function defined on D̄ by

uθ (x) = −Ex

[∫ τD

0
f (Bs) e−θs ds

]

belongs to C0,1(D) ∩ C0(D̄) and uθ = 0 on ∂D. Furthermore, if f ∈ C0,α(D),
then uθ ∈ C2,α(D) and �

2 uθ − θuθ = f in D.

From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.12. Let θ ≥ 0, f ∈ C0,α(D̄) and g ∈ C2,α(∂D). There exists a
unique strong solution to (31). Furthermore it belongs to C2,α(D̄).

9.4. Proof of lemma 3.1

Assume α > 0 and let ε0 > 0 be fixed. For x ∈ D̄, consider

uα,ε(x) = Ex

[∫ ∞

0
e−αs 1

ε
1Dε(Bs) ds

]

=
∫ ∞

0
ds e−αs

∫
dy ps(x, y)

1

ε
1Dε(y),

the α-potential of the continuous additive functional
∫ t

0
1
ε

1Dε(Bs) ds for the re-
flected Brownian motion in D̄. We deduce from (21) and (23) that for ε ∈ (0, ε0],
x ∈ D̄,

∣
∣uα,ε(x)

∣
∣ ≤

∫ 1

0
c
ds√
s

+
∫ ∞

1
e−αs[c + aD].

Therefore, uα,ε is uniformly bounded in D̄ for ε ∈ (0, ε0]. From the continuity
of the density p of B, (21) and (23), it is easy to deduce that uα,ε converges as ε
decreases to 0 to the α-potential of l, the local time on ∂D:

uα(x) = Ex

[∫ ∞

0
e−αs dls

]

=
∫ ∞

0
ds e−αs

∫
σ(dy) ps(x, y).

Furthermore this convergence is uniform in D̄. Notice also that the continuity of
the density p implies the uniform continuity of uα and uα,ε for ε ∈ (0, ε0] on D̄ .

Because Lα,ε depends only on the spatial motion W , the three other compo-
nents of the Brownian snake, that is R, J and K doesn’t play any role in what
follows. However we shall keep the notation defined in section 2. Let x̃ ∈ E with
first component x ∈ D̄.
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Now we compute I = Nx̃[Lα,εσ Lα,ε
′

σ ] and show it converges to a limit as ε and
ε′ decrease to 0. We have

I = Nx̃

[∫ σ

0
dLα,εs

∫ σ

s

dLα,ε
′

u

]

+ Nx̃

[∫ σ

0
dLα,εs

∫ s

0
dLα,ε

′
u

]

.

The time reversal property of the Itô measure and the properties of Nx̃ readily imply
that the latter itself enjoys the same invariance property. In particular the two terms
of the right member are equal. From the Markov property of the Brownian snake
(see [12]), we deduce that

I = 2Nx̃

[∫ σ

0
dLα,εs E∗

W̃s
[Lα,ε

′
σ ]

]

.

We deduce from proposition 2.1 of [13] that for w̃ ∈ Wx̃ ,

E∗
w̃[Lα,ε

′
σ ] = 2

∫ ζ

0
dt Nw̃(t)[e

−αt Lα,ε
′

σ ],

where ζ is the lifetime of w̃. Therefore using formula (3) we get that

Nx̃[Lα,ε
′

σ ] = Ex̃

[∫ ∞

0
e−αs 1

ε′
1Dε′ (Bs) ds

]

= uα,ε
′
(x).

Thus, for w̃ ∈ Wx̃ ,

E∗
w̃[Lα,ε

′
σ ] = 2

∫ ζ

0
dt e−αt uα,ε

′
(W(t)). (32)

Using (3) again, we get

I = 4
∫ ∞

0
du Ex

[

e−αu 1

ε
1Dε(Bu)

∫ u

0
dt e−αt uα,ε

′
(Bt )

]

= 4Ex

[∫ ∞

0
dt e−αt uα,ε(Bt )uα,ε

′
(Bt )

]

. (33)

Since the function uα,ε are uniformly bounded and converge as ε ↓ 0, we deduce
form dominated convergence that I converge as ε and ε′ decrease to 0. This implies
that Lα,εσ converge in L2(Nx̃ ).

Now we use standard techniques to prove the a.e. convergence ofLα,εs for s ≥ 0
(see [13] p. 402). For s > 0, we set

Mε
s = Lα,εs + E∗

W̃s
[Lα,εσ ].

The process Mε = (Mε
s , s > 0) is continuous Nx̃-a.e. thanks to the continuity of

uα,ε and (32). Since Lα,εσ ∈ L1(Nx̃ ) (recall that Nx̃[Lα,εσ ] = uα,ε(x)), we deduce
from the Markov property of the Brownian snake that Mε is a continuous martin-
gale under Nx̃ . Notice that Mε∞ = Lα,εσ converges in L2(Nx̃ ) as ε ↓ 0. From the
maximal Doob inequality, we get for δ > 0,

Nx̃

[

sup
s>0

∣
∣
∣Mε

s −Mε′
s

∣
∣
∣ > δ

]

≤ 1

δ2 Nx̃[(Lα,εσ − Lα,ε
′

σ )2].
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In particular Mε converges to a continuous martingale M = (Ms, s > 0) and
there exists a sequence (εk, k ≥ 1) decreasing to 0, such that Nx̃-a.e. limk→∞
sups>0

∣
∣Mεk

s −Ms

∣
∣ = 0. Because of the uniform convergence of uα,ε, we deduce

that Nx̃-a.e. for all s > 0, Lα,εks converge to a limit

Lαs = Ms − 2
∫ ζs

0
dt e−αt uα(Ws(t)). (34)

Therefore, the process (Lαs , s > 0) is a continuous additive functional of the
Brownian snake.

The measures dLα,εks on R
+ converge weakly to dLαs . The function fα′(s) =

e(α−α′)ζs defined on R
+ is continuous and bounded for any α′ ≥ 0, Nx̃-a.e. We

deduce that the measure dLα
′,ε
s = fα′(s)dLα,εs converges weakly to dLα

′
s =

fα′(s)dLαs . We write L for L0. The first part of the lemma is proved.
Let F be a nonnegative continuous function defined on Wx̃ . Assume F is

bounded from above by a. From (3), we have

Nx̃

[∫ σ

0
F(Ws)dL

α,εk
s

]

= Ex̃

[∫ ∞

0
F(�(u)) e−αu 1

εk
1Dεk (Bu) du

]

. (35)

From theorem 7.2 of [16], we get that the right member converges, as ε decreases
to 0, to

Ex̃

[∫ ∞

0
F(�(u)) e−αu dlu

]

.

To prove the convergence of Nx̃

[∫ σ
0 F(W̃s)dL

α,εk
s

]
to Nx̃

[∫ σ
0 F(W̃s)dL

α
s

]
,

using Fatou’s lemma with F and a−F , we see it is enough to check that Nx̃

[
L
α,εk
σ

]

converges to Nx̃

[
Lασ

]
.

We have from the convergence of uα,ε that

lim
k→∞

Nx̃

[
Lα,εkσ

] = lim
k→∞

uα,εk (x) = uα(x).

Thanks to the upper bound of uα,ε, we deduce from (32) by dominated convergence
that Nx̃[E∗

W̃s
[Lα,εkσ ]] converge to Nx̃[2

∫ ζs
0 dt e−αt uα(Ws(t))].

Notice that for s > 0, we have from (34)

Nx̃

[
Lασ

] = Nx̃[M∞] = Nx̃[Lαs ] + Nx̃

[

2
∫ ζs

0
dt e−αt uα(Ws(t))

]

. (36)

Using the law of ζs under the Itô measure, we have

Nx̃

[

2
∫ ζs

0
dt e−αt uα(Ws(t))

]

= 2
∫ ∞

0
e−αt

Ex[uα(Bt )]
1√
2πs

e−t2/2s dt

= 2
∫ ∞

0
e−α√

sr
Ex[uα(B√

sr )]
1√
2π

e−r2/2 dr,
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where we set r = t/
√
s. From dominated convergence, using the continuity of uα

and the continuity of the pathB, we see that lims→0 Nx̃[2
∫ ζs

0 dt e−αt uα(Ws(t))] =
uα(x). Using Fatou’s lemma we get

Nx̃[Lαs ] ≤ lim inf
k→∞

Nx̃[Lα,εks ]

= lim
k→∞

Nx̃[Lα,εkσ ] − lim
k→∞

Nx̃[E∗
Ws

[Lα,εkσ ]]

= uα(x)− 2
∫ ∞

0
e−α√

sr
Ex[uα(B√

sr )]
1√
2π

e−r2/2 dr.

We see that lims→0 Nx̃[Lαs ] = 0. Therefore we deduce from equation (36) that

Nx̃

[
Lασ

] = lim
s→0

Nx̃

[

2
∫ ζs

0
dt e−αt uα(Ws(t))

]

= uα(x).

As we said, this implies the convergence of Nx̃

[∫ σ
0 F(W̃s)dL

α,εk
s

]
to

Nx̃

[∫ σ
0 F(W̃s)dL

α
s

]
. From (35), we deduce that

Nx̃

[∫ σ

0
F(W̃s) e−αζs dLs

]

= Ex̃

[∫ ∞

0
F(�(u)) e−αu dlu

]

.

This hold for any bounded continuous function F . By monotone class theorem, this
holds also for all nonnegative measurable function F . By monotone convergence,
let α ↓ 0 to prove the end of the lemma.

9.5. Proof of lemmas 6.5 and 6.6

Proof of lemma 6.5. Since g ∈ C2,α(∂D), we deduce from propositions 9.10 and
9.12 that Ex

[
g(BτD) e−θτD ] belongs to C2,α(D̄) and solve (31) with f = 0. Since

uθ is bounded, we get from proposition 9.11, that Ex

[∫ τD

0
uθ (Bs)

2 e−θs ds
]

belongs to C0,1(D) ∩ C0(D̄). From (13), we deduce that uθ itself belongs to
C0,1(D). Using proposition 9.11 and (13) again, we get that uθ belongs to
C2,α(D). We see from (13), we need to check the regularity of h(x) =
Ex

[∫ τD

0
uθ (Bs)

2 e−θs ds
]

on ∂D to end the proof of this lemma.

Notice that

h(x) = H(x)− Ex

[
H(BτD) e−θτD ] ,

where H(x) = Ex

[∫ ∞

0
uθ (Bs)

2 e−θs ds
]

. Since uθ is bounded we have, thanks

to proposition 9.8 that H belongs to C1(D̄).
The proof will be complete, once we prove that Ex

[
H(BτD) e−θτD ] belongs to

C0,1/2(D̄). Indeed, from (13), we then will get that uθ ∈ C0,1/2(D̄). This in turn,
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will imply thanks to proposition 9.12, that h ∈ C2,α′
(D̄), with α′ = min(α, 1

2 ).

From (13), we will deduce that uθ ∈ C2,α′
(D̄).

To prove that Ex

[
H(BτD) e−θτD ] ∈ C0,1/2(D̄), we will check that if g ∈

C1(∂D), then the function w(x) = Ex

[
g(BτD) e−θτD ] belongs to C0,1/2(D̄). No-

tice B can be replaced by a Brownian motion in R
d , say B ′, in the definition of w.

LetD(x) = {y ∈ R
d; y+ x ∈ D}, and τD(x) = inf{t > 0, B ′

t �∈ D(x)} the exit
time of D(x) for B ′. Since g ∈ C1(∂D), we have for x, y ∈ D̄,

|w(x)− w(y)| =
∣
∣
∣E0

[
g(B ′

τD(x)
) e−θτD(x)

]
− E0

[
g(B ′

τD(y)
) e−θτD(y)

]∣∣
∣

≤ cE0

[∣∣
∣B ′
τD(x)

− B ′
τD(y)

∣
∣
∣
]

+ cE0
[∣∣τD(x) − τD(y)

∣
∣]

≤ cE0

[
(B ′
τD(x)

− B ′
τD(y)

)2
]1/2 + cE0

[∣∣τD(x) − τD(y)
∣
∣]

≤ cE0
[∣∣τD(x) − τD(y)

∣
∣]1/2 + cE0

[∣∣τD(x) − τD(y)
∣
∣]

≤ cE0
[∣∣τD(x) − τD(y)

∣
∣]1/2

,

since supz∈D E0[τD(z)] = supz∈D Ez[τD] < ∞. This last inequality is a conse-
quence of propositions 9.11 and 9.12 with θ = 0, ϕ = 0 and f = 1, so that the
function F(z) = Ez[τD] belongs to C2,1(D̄). Using the strong Markov property of
B at time τ = τD(x) ∧ τD(y), we get

E0
[∣∣τD(x) − τD(y)

∣
∣] = E0

[
EBτ

[
τD(x) + τD(y)

]]

≤ sup
z∈D;d(z,∂D)≤|x−y|

Ez[τD]

≤ c |x − y|,
because the function F(z) = Ez[τD] belongs to C1(D̄). In conclusion there exists
a constant c > 0 such that for x, y ∈ D̄,

|w(x)− w(y)| ≤ c
√

|x − y|.
That is w ∈ C0,1/2(D̄). ��
Proof of lemma 6.6. By symmetry we get that wN is radial. For y ∈ B(0, r0), we
havewN(x0 − r0nx0 +y) = h(|y|), and h is defined on [0, r0] and of class C2. The
function h is the unique nonnegative solution of

h′′(r)+ d − 1

r
h′(r) = 4h(r)2 for r ∈ (0, r0), (37)

h′(0) = 0 and h(r0) = N.

From the maximum principle, we get that for r ∈ (0, r0], y ∈ B(x0 − r0nx0 , r),

wN(y) < max
z∈∂B(x0−r0nx0 ,r)

wN(z) = h(r).

This implies the function h is increasing over [0, r0]. Since, from the maximum
principle, wN(x0 − r0nx0) > 0 we have h > 0.
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Let t = inf{r ∈ (0, r0];h′′(r) ≤ 0}, with the convention inf ∅ = +∞. We first
assume that t > 0. If t ≤ r0, from the continuity of h′′ we deduce that h′′(t) = 0
and from (37) that h′(t) > 0. By differentiating (37), we get that h′′′(t) > 0. This
contradict the fact h′′(t − ε) > h′′(t) = 0 for any ε > 0 small enough. Hence we
have either t = 0 or t = +∞.

If t = 0, there is a sequence (tk > 0, k ≥ 1)decreasing to 0 such thath′′(tk) ≤ 0.
Since h ∈ C2([0, r0]), we get h′′(0) ≤ 0 by continuity. Since h′ ≥ 0 and h′(0) = 0,
this implies that h′′(0) = 0 and limr↓0 h

′(r)/r = 0. Let r ↓ 0 in (37) to get
h(0) = 0, which is absurd since wN > 0 in B(x0 − r0nx0 , r0). Therefore, we have
t = +∞.

In conclusion, we get that h′′(r) > 0 on (0, r0]. This implies that

rh′′(r)+ h′(r) ≥ h′(r) on [0, r0].

By integration we deduce that

h′(r0) ≥ N − h(0)

r0
.

Notice thatwN is bounded from above by the maximal solutionwmax of�u = 4u2

in B(x0 − r0nx0 , r0). This implies

h(0) = wN(x0 − r0nx0) ≤ wmax(x0 − r0nx0) = c0,

where the constant c0 depends only on r0 and d . This end the proof of the lemma
since h′(r0) = φN(x0). ��
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