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Abstract. We consider a Brownian snake (W, s > 0) with underlying process a reflected
Brownian motion in a bounded domain D. We construct a continuous additive functional
(Ls,s = 0) of the Brownian snake which counts the time spent by the end points W, of
the Brownian snake paths on d D. The random measure Z = f (SWTa’L.Y is supported by 9 D.
Then we represent the solution v of Au = 4u? in D with weak Neumann boundary condition
¢ > 0 by using exponential moment of (Z, ¢) under the excursion measure of the Brownian
snake. We then derive an integral equation for v. For small ¢ it is then possible to describe
negative solution of Au = 4u? in D with weak Neumann boundary condition ¢.

In contrast to the exit measure of the Brownian snake out of D, the measure Z is more
regular. In particular we show it is absolutely continuous with respect to the surface measure
on 9D for dimension 2 and 3.

1. Introduction

The Dirichlet problem associated to the equation Au = 4u? has led to a consider-
able amount of work by many authors and the Brownian snake introduced by Le
Gall in [13] has proved to be a powerful tool for this study. For example, in [14],
Le Gall prove a representation formula for all nonnegative solutions in dimension
2, using the continuity of the density of the exit measure. The Brownian snake is a
path-valued Markov process which, loosely speaking, represents a cloud of branch-
ing Brownian particles and the exit measure of the Brownian snake is a measure
supported by the particles when they leave D for the first time.

In this paper we give a probabilistic representation formula for the nonnegative
solution of the non linear Neumann problem in a bounded smooth domain D:

Au = 4u® in D,
ou (D)
— +ku=¢ onadD,
on
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where « is a nonnegative continuous function on 9D, du/dn(x) is the outward
normal derivative of u at x € dD, and ¢ is a nonnegative measurable function
defined on 0 D.

As for the Dirichlet problem associated to Au = 4u? (see [13]), we will prove
that solutions of (1) can be represented using a random measure, Z, built from
the Brownian snake. However, for the Neumann problem, the underlying motion
will be a reflected Brownian motion in D. We expect the measure Z will play the
same role as the exit measure for the Dirichlet problem and that this probabilistic
representation will lead to new results for the Neumann problem, such as a trace
boundary representation. With this goal in mind, it might be interesting to study the
properties and regularity of Z. We give here some results in this direction (see sec-
tion 8), but many interesting problems (as the regularity of the density in dimension
2 or 3) are still open.

In [1], the author considered for underlying motion of the Brownian snake a
reflected Brownian motion in D killed when it reaches a fixed subset F of dD.
Then, using a random measure built from this Brownian snake, the author repre-
sented nonnegative solution of Au = 4u? with mixed Neumann-Dirichlet boundary
conditions:

ou
— =f ondD\F
an

u=g on F.

However, for technical reasons, it was not possible to consider the case F' = @ of
Neumann’s boundary conditions.

Let us now present our results. We consider a Brownian snake (Ws, s > 0) with
underlying process a reflected Brownian motion in D (see [10] for a definition and
properties of the Brownian snake). Let us recall that W; is a path stopped at its
lifetime ¢y, and that for a fixed s, it is distributed according to a reflected Brownian
motion in D. We define in section 3 the following continuous additive functional
(CAF) of the Brownian snake:

51
&
LS :/(; EI{WuGDF} du,

where WS = W, (&) is the end of the path Wy and D; is the e-neighborhood of 9 D
in D. Intuitively, as ¢ | 0, dL¢ converges to, say d Ly, the infinitesimal increment
of the local time of the path Wy on 0 D at time ;. In particular, the CAF L increases
at times s such that W, € 9D. See lemma 3.1 for the precise statement.

Then we define the random measure Z by the formula

1 o
2y =5 [ o, @ dL.,

where 8, is the Dirac mass at point a. In particular the support of Z is a subset of 3 D.
Under the excursion measure, N, of the Brownian snake started at pointx € D, Z
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is finite, but its total mass is not integrable under N,. We prove in proposition 6.3
that the function

b0 =N, [1-em@9],

where (Z, ¢) = f ¢(y) Z(dy) and ¢ > 0, is a nonnegative solution of (1) with
Kk =0.

In section 8, we consider the properties of the measure Z. In particular, we
prove in proposition 8.4 that this measure is absolutely continuous with respect to
the surface measure on d D if the dimension of the space is 2 or 3. Let us note that
the measure Z is more regular than the so-called exit measure which is singular for
d > 3 (see [2]).

To study the function v, it is necessary to introduce a family of measures Zy
which increases to Z as 6 decreases to 0, and which have an integrable total mass
under N,.. The idea is to kill the underlying reflected Brownian motion (B;, t > 0)
at time t(0), where (1(0),6 > 0) is a family of random variables increasing to
400 as 0 decreases to 0. The random variables 7(0) are independent of B and
exponential with parameter 6. Let R be the right continuous inverse of t(-). R is
build in such a way that it is a Markov process. Then we may consider the Brownian
snake (W, R;) associated to the spatial motion (B, R). Then we consider formally
the measure

1 o
Zo(dy) = 5 fo 8y, @) ip<r,(z,)) dLs-
The precise definition is given by formula (5). Then it is easier to study the function
vp(x) = Ny [ 1 — "]

and deduce the properties of v since vg increases to v as 6 decreases to 0.
In particular, using the special Markov property introduced by Le Gall in [12],
we prove in section 4, proposition 4.1, that v € C2(D) and solves

Av=4?% in D.

Section 5 is devoted to the proof of proposition 5.6, which states that vg is a
weak solution of

Au —20u = 4u® in D,
ou
— =¢ ondD.
on
By letting 6 decreases to 0, we get in section 6, proposition 6.3, that v is a weak
solution of (1) with x = 0.

Let ! be the local time of B on d D. By considering a reflected Brownian motion
t

1
killed when the continuous additive functional 2 / k(By) dl, reaches the value

0
of an independent exponential random variable of parameter 1, instead of the initial
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reflected Brownian motion, the previous results can be extended to the general case
k continuous and nonnegative.

The next sections deal with the particular case x = 0. More precisely, we prove
in section 7, lemma 7.4, that a bounded function u is a weak nonnegative solution
of (1) (with k = 0), if and only if it solves the two integral equations

4/ u(y)? dy=/ o(y) o (dy),
D aD

where o is the surface measure on 0 D, and
1
u(x) +2/ g(x, u(y)* dy —aD/ u(y)dy = —/ g(x, y)e(y) a(dy),
D D 2 Jop

where al_)1 =/ pdy, and g(x, y) is the green function of the reflected Brownian
motion:

+00
glx,y) = /0 [p:(x,y) —ap]l dt,

with p;(x, y) the density transition kernel of the reflected Brownian motion. Fur-
thermore, there is a unique nonnegative weak solution of (1) (with ¥ = 0), thanks
to corollary 7.5. Notice however, there might exist other weak solutions to (1), for
example negative solutions as stated in proposition 7.2.2.

Eventually, in section 9 we recall some useful facts on reflected Brownian
motion and on probabilistic representation of linear partial differential equations.
This section also includes the proof of the convergence of the approximating scheme
of the CAF L.

2. Notations

Let D be a bounded domain (connected open subset of R¢) with C3 boundary. Let
D be the closure of D.

First we consider a reflected Brownian motion B in D. For every xo € D, we
denote by Py, its law when starting at point x¢ at time 0. Some facts on this process
are recalled in the appendix.

Let us now construct a process that allow us to stop the paths according to
exponential independent times of parameter 6, which must increase to 400 as 6
decreases to 0. We first consider a Poisson measure N on R} x R with intensity
dx dt, independent of B. We denote by (x;, #;);<s the atoms of this measure and
we set

R(r) = inf{x;; t; <1},

with the usual convention inf J = +o0.
_ Weset Ry = [0, +00) U {+00}. The path (R(¢), f > 0) is a cadlag decreasing
R -valued process starting from +-00. We have, for every + > 0 and every 6 > 0,

P(R(t) > ) = P(N([0,6] x [0,¢]) = 0) = e 7.
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So, forevery ¢, R(¢) is distributed as an exponential random variable of parameter ¢.
Notice that (0) = inf{r > 0; R(t) < 6} is distributed as an exponential random
variable with parameter 6. And the family of random variables (t(6),0 > 0)
increases as 6 decreases to 0.

Moreover, we have, for every 0 < s < ¢,

R(t) = min{R(s), inf{x;; s < t; <1}} @ R(s) A R(t — 5), (2)

where R is an independent copy of R. Consequently, R is an homogeneous Markov
process.

Finally, let T be an exponential random variable of parameter 1 independent of
B and R. We denote by [ the local time of B on d D and we set

t
(k- D)y =/ K (By)dls.
0
Then, the process (®;, ¢t > 0) defined by
O = (Bry RO, 1y 1y, ey e 1)

is an homogeneous E = R? x R, x {0, 1} x R, -valued Markov process. Let Pz,
denote its law, when started at Xy € E at time 0. B
Let || || be the Euclidean norm on R?. For every r,r’ € Ry we set

dir,r) = |arctan r — arctan r’!

with the convention arctan(+o00) = 7. We denote by 8(j, j) the discrete distance
on {0, 1}. Eventually, for X = (x, r, j, k) and y = (v, r’, j/, k') in E, we set

dp(%,3) = lx =yl +d(r, r') + 80, j") + 1k = K'l.

dg is adistance on E and (E, dg) is a Polish space.

We now describe the Brownian snake with underlying motion ® (see [4]). The
spatial motion will correspond to the underlying reflected Brownian motion. The
other three components are only used to kill the reflected paths at nice random
times.

Akilled path in E is a cadlag E-valued function w = (w(u), u € [0, ¢)) where
¢ is called the lifetime of w. We will denote w(u) = (W (u), R(u), J(u), K (u)) for
u € [0, ¢), and we assume that W and K are continuous. Let J be the set of killed
pathsin E. For Xo = (xo, 10, jo. ko) € E,letW;, be the set of killed paths starting at
point Xo. For w € Wk,, we set the end point of the path w: (W, R, J,K)= w(¢—)
if the limit exists, d otherwise where 9 is an isolated cemetery point added to E.

For i € W, we define the exit time of an open set O C R? by

To(w) = inf{u > 0, W(u) & O},

with the usual convention inf # = +o00. Notice we just consider the spatial motion
W to define the exit time.
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Fort > 0 letd, (resp. 8;) be the Skorokhod distance on the space D([0, 7], R+)
(resp. D([0, 7], {0, 1})) of R4 -valued (resp. {0, 1}-valued) cadlag functions defined
on [0, t]. Then, for w and W’ in W, we set

d(, w') = dp(w(0), w'(0)) + ¢ — ¢l

+ s ([wo - wol+ Ko -K))
0<t<(¢AL")

N
+ / (d(Rer. R A 8,04, 1) A1 Yt
i : L

where R<; (resp. J<;) for instance stands for the restriction of R (resp. J) to [0, ¢].
It is easy to check that d is a distance on WV and that (W, d) is a Polish space. We
agree that very point X € E can be considered as a trivial killed path with lifetime
¢ =0.

Let (WS, s > 0) = ((Wy, Ry, Js, Ky), s = 0) be the canonical process on
C(R,, Ws,), the set of continuous functions on [0, +00) into Wk,. We will denote
by ¢, the lifetime of W;. For i € Wy, let P be the probability on C(R, Wy))
under which the canonical process is a Brownian snake with underlying Markov
process O starting at w and constant after o = inf{s > 0; g = 0} (see [4] sec-
tion 4.1). We denote by Ny, the excursion measure of the Brownian snake away
from the trivial path Xo in Wy, and o = inf{s > 0; {; = 0} its duration. Recall
that (WS, I%S, JAS, Ies) denote the end path of W, when it exists and 9 otherwise.
Eventually, we write Ny, = Ny 400,1,0) as well as Wy = Wy 1.00,1,0)-

We recall the formula for the first moment of the Brownian snake ([4]).

Let F be a nonnegative measurable function defined on W5, . We have

o o
Ni, [ / F(Wy) ds] = / ds Eg [F(OW)], 3)
0 0
where ©) is distributed under P;, as © but killed at time s.

3. The additive functional L

Let us consider the continuous additive functional (CAF) of the Brownian snake
defined for o > 0, ¢ > 0 by: for s > 0,
La,e _ *1 1 —ady
5T = /o o W.en.) © du,
where D, = {x € D;dist (x,dD) < &}, and dist (x, dD) denote the Euclidean

distance from x to the boundary of D.
Intuitively, as ¢ | 0, % 1 (WaeD, }du converge to the infinitesimal increment of

the local time on 3 D of W,, atits lifetime. The term e ~%%, with @ > 0, is introduced
in order to get a CAF with finite L> moments.

The nextlemma gives the convergence of the CAF L%¢.Let Xo = (xo, 1o, jo, ko)
€ E suchthatxg € D.Recall that/ is the local time of the reflected Brownian motion
B ondD.
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Lemma 3.1. There exists a sequence (i, k > 0) decreasing to 0 such that Nz -a.e.

foralls > 0, L?’Sk converge to a limit say Ly as k — oo. The process (Lg, s > 0)
is a continuous additive functional of the Brownian snake. The Revuz measure
of the continuous additive functional L, 1, defined on Wy, is given by: for any
nonnegative measurable function defined on Wy,

o
(1, F) = Bz, [ | rem dlu} ,
0
where ©W = (@), u’ € [0, u)). We also have the formula

Nz, [ /0 F(W,) dLu} = (1, F). )

The proof of this lemma is postponed to the appendix 9.4.

Remark. For a > 0, the continuous additive functional LY = OS e % d[L,, is
the limit of Ly* foralls > O N 7,-a.e. (see the proof of the above lemma). Its
Revuz measure defined on W, is given by py (dw) = e~ % w(dw), where ¢ is the
lifetime of w. Notice that w is not finite since (u, 1) = 400, whereas p,, is finite
(thanks to (22), (23) and (25)), and we have

o0 o
(e, 1) = Ey, |:/ e dlui| = f e * du/ pu(xo, y) o(dy),
0 0 aD

the o-potential of the local time [/, with o (dx) as the surface measure on d D. Fol-
lowing the terminology of [11], i, is of finite energy and is the measure associated
to LY. From (33), by letting ¢ decreases to 0, we get its energy £ (ity):

1 & _
E(na) = 5 Ny, [(Lf;)z] = 2E., [ /0 di e u“(B,)z]
oo —_
where u*(y) = E, |:/ e % dlu:|, for y € D, is the a-potential of the local
0
time /. m]

4. The measures Z*

It is clear that the measure d L increases only when W, € dD.For6 > 0, we define
under Ny, the random measure Z on dD. Let ¢ be a measurable non negative
function defined on d D. We extend ¢ by setting ¢ (d) = 0. We set

1 7 .
(Z5, 9) =5 /0 Wil =)L, =1y Lu- ©)

Notice that since J, and R, are decreasing Nz -a.e., we have, for 0 > 0, Zg =0
if X9 = (x0, 0, 0, ko) or X9 = (x¢, 0, jo, ko). Therefore, we will be interested only
in the nontrivial case where Xo = (xq, 9, jo, ko) wWith jo=1landry > 0.
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We shall omit the indices « (resp. #) in Zj when x = 0 (resp. § = 0). For
1 [° .
example, we write Z for Z 0. Notice that (Zy, ¢) can be represented as 3 / o(W,)
0

L4 ~gydLu, since for « = 0, Ny,-ae. [
X0 = (xo, ro, 1, ko), with ry > 0), since

o o0
Nz, [/0 1{11,:0}6“4 = Exg.ro.1.k0) [/O 1{<K-1)u>2r}dlu} =0,

fork =0and (x - 1)g = ko < 2.

For any « > 0, (Zg, ¢) increases to (Z*, ¢) as 6 decreases to 0 since
foa l{kl,=0}dLu = 0 Ng,-a.e. (recall Xo = (xo, ro, 1, ko) with rop > 0). Therefore
for ¢ > 0, we have

{J{zo}dLu = 0. This is clear (recall

(Z,9) = (Z°,9) = (Z5,¢) = 0.
We consider the function vj; defined on D by:
VS (x) = Ny[1 — e~ @9,
We shall omit the indices « or 8 when they are zero. For example, we write
v(x) = Ny[1 — e” %97,

Since the support of Zj is a subset of 9D, we deduce that 1 — e~ (%09 ig
bounded from above by 1 (RPN DA} where R?, with O an open subset of D, is
the range of (the spatial component of ) the Brownian snake in O, that is

= {Ws(t Ato(Wy)),s > 0,1 > 0}.

Inparticular forx € D, vy (x) is bounded fromabove by u p (x) = Nx[1ir 005 psgsy]-
Notice that u p is the maximal nonnegative solution in D of Au = 4u?. This is a
consequence of proposition 4.4 in [11] and the fact that the law of B stopped when
it first reaches 0D is the law of a Brownian motion stopped when it first reaches
0 D. From the monotone convergence theorem, we deduce that v (x) 1 v*(x) as
6 | Oforanyx € D.

Proposition 4.1. Let ¢ be a measurable nonnegative function defined on 0 D. The
function v*(x) = N[l — e~ %9 defined on D is a nonnegative solution of
Au = 4u? in D.

We first recall some results on exit measures.

Let O be an open subset of D. Let 29 = O x R4 x {0, 1} x R* and x9 € Qo.
As in [13], let X0 (d%) be the exit measure of the Brownian snake W out of Qo
under the excursion measure (notice condition (H) is satisfied here). We also define
the o-field £20 which is intuitively generated by the paths Wy up to their exit time
of O. More precisely, let

S/
ns = inf {S/;/o L, <oy 4> S
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and define the process W/ = W, under N 7,- The o-field £ is generated by 14
and the collection of all N -negligible set of C (RT, Wso)-

Now we describe the excursion of W outside Q0. The random open set {s €
[0, 0], To (Ws) < ¢y} can be written as a countable union of disjoint open intervals
(ai, bi),i € I, where I is a set of indices possibly empty. Because of the property
of the Brownian snake, notice that f9r s € la;, bi], ‘Eo(WS) and WS(‘Eo(WS)) are

constant equal to #; = ¢, and X; = W,ll..We then define the excursion W' outside
Qo as an element of C(RT, W,) by

Wsl (t) = W(ai-‘rs)/\b,' (t + tl')» re [Oa é.sl = ;(ai-‘rs)/\b,' - ti)~
We recall theorem 2.4 of [13] (see also proposition 7 of [4]):

Theorem 4.2 (Le Gall). Conditionally on £0, the point measure Z 8yyi is under
iel
Ny, a Poisson measure with intensity f X0 (d5x) Nz ().

Proof of proposition 4.1. Let O and Q be open subsets of RY such that 0 ¢ Q
and QO C D. The necessity of Q will appear later. There exists &9 > 0, such that
Q N Dy, = 0. Let Xg € Q¢. Let ¢ be a nonnegative continuous function defined
on D. We set

G 0
(Z’(.;’89 ®) = 5/0 @(Wu)l{ﬁu29}1{jM:1}dLu’s7

where we recall that dLg’g = é I{WueDg} du.

With obvious notations, we have under N, : for any € € (0, &9) and 6 > 0,

1

-1 ds.
£

1o
€ —
(Zy ’ﬁf’)—ZQ/O YW i g1 iy

iel

{(WieDs)

We deduce from theorem 4.2 that for any xXo € Qp,
K,€ K,
Ni, <e—(ze - ¢) |590) = exp [— / X% (dF)Ng (1 —e (% ‘P)>] .

We will now prove that the law of Z;* under Ny is the law of 1j~¢ j—1yZy*

under N, where X = (x, r, j, k). Notice from the Markov property of ® that VT/S =
(Ws, Ry, Js, Ky) under Ny ;. j 1) is distributed as W, = (W, min{Ry, r}, jJy, k +
K) under N(; 100,1,00 = Ny. In particular,

1o 1
2" (dy) = 5/0 8y, @ 201 =1y 5 Liep,) 41

under N; is distributed as Z’ g’g under N, where,

K. L[ 1
Zt )y =5 | i @ gy Ly Apien,y 4
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with (W., R, J!, K.) the end point of the path W/.. We have under N,

1 o0
1K€ K&
2o = E/o 33, Lmin( 2oy du=n) 5 Yobenyy A4 = Lo=0.j=124"- (6)

We deduce that for x = (x, r, j, k), and either r > 0 or 6 > 0, we have
K, K,
Nz [1 —e (% "p)} =120, j=yNx [1 —e "p)} :

Remark 4.3. Notice that 1—exp[—(Zy"*, ¢)] < 1{gons 04 ad Nz [1;r0n5 02)]
= ug(x) is uniformly bounded on O. In particular we get from dominated conver-
gence as ¢ | 0 (along the sequence (gx, k > 1) of lemma 3.1), that

N [1 — e (% <p)] = 120, j=1}Ny [1 _o—(Zg, w)] ' )

Therefore, we get

K,€
Nz, <e—(ze - 9) |590) = exp [—/XQO(dx,dr, dj, dk)1>p, j=1)Ny

X (1 — e_(Zg’a’ go)):| .

Arguing as in the above remark, and letting 6 decreases to 0, we also have, from
dominated convergence, that

Ni, <e—(ZK’¢’) |590) — exp [—/XQO(dx,dr, dj. dk)1=0 j—1)Ny

X (1 - e_(ZK’ (p))] .

Using formula (36) from [4], we deduce that

N5, |:/ XS0 (dx, dr, dj, dk)(1 — 1{r>0,j:1})] = Ei, [1 — {r()>0,6c)7227} ] »

where T is the exit time for B of O. Recall that Xy = (xo, ro, jo, ko) is such that
ro > Oand jo = 1.Sincexg € O C D, we deduce that the local time [ and also (k -{)
didn’t increase before T'. Therefore a.s. (k- 1)7 = (k -1)g = kg < 27, where we use
that jo = 1 for the last inequality. Since T is finite a.s., we deduce that R(T) > 0
a.s. Hence we get that N; -a.e. [ X0 (dx, dr,dj, dk)(1 — 1{;~0, j=1;) = 0. This
implies that for any xo € O,

Ny, (72" #)1£%0) = exp [— / XO@oN, (1- e~ ‘P))] ,

where X© (dx) = X%0(dx,RT, {0, 1}, R1).
From class monotone theorem, we deduce this equality is true for any measur-
able nonnegative function ¢ defined on dD. Set rp = 400, jo = l and kg = 0
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and take the expectation with respect to Ny, to deduce that v (xp) = Ny [1 —
K
e_(Z ’ g‘))] is bounded in O and satisfies: for any xo € O,

V¥ (x0) = Ny [1 — e~ (X7

But, under N, X O is distributed as the exit measure of O of the Brownian
snake with underlying motion a Brownian notion started at x¢. Since O is arbitrary
(but for O C D), we deduce from corollary 4.3 of [12] that v* is a nonnegative
solution of Au = 4u? in D. O

5. Properties of vy for 6 > 0

Let ¢ be a bounded nonnegative measurable function defined on dD. The same
ideas as in [1] lead to the equation satisfied by v;;. We assume in this section that
6 > 0.

Proposition 5.1. The function vy is bounded on D.

Proof. By definition, we know that v} is non negative. To get the upper bound, for
every x € D, we have from (5) and (4)

vs () < N.[(Z§, 9)]

1 r p+oo R
=§NX/0 ‘P(W")luéuze}l{fi:l}dLu}

1 +oo
= EIEX [/O w(Bu)l{R<u>29}1{;(K-l>u<r}‘”u}
1 r p+oo 1
| [ et a,
0

This last quantity is bounded since ¢ is bounded on d D, 6 > 0, and since

+00
sup E, |:/ e 08 dls:| < 400,
0

xeD
thanks to (24). O

Proposition 5.2. The function v is solution of the integral equation: for all x € D,

+00 1
vy (x) + 2E, |:/ Ug(BS)2 e 05 o3 (kDs ds]
0

1 oo —0s —4 (D)
=§IEX A o(Bg)e e 2V s dig . (8)
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Proof. We follow the proof of theorem 4.2 of [1]. By definition of v; and Zj;, we
have, for every x € 0D,

V() =N, [1- e

1 +o00 R
= N, |:1 — exp (—5/0 (p(WV)l{IQSZG}I{fs:l}dLS)}

1 +o0
= ENX [/(; dLS (p(W )l{R >0} { _1}

1 +o0 N
X eXp <_§/ dLu(p(W”)l{féuze}l{jFI})} .
s

Let us recall P} is the law of the Brownian snake started at w and killed when its
lifetime reaches O (see the end of section 2). We denote by E* the expectation with
respect to P* . Now, we replace

1 “+o00 A
exp (_5/ AL ‘p(W")l{éuze}l{fF”)
N

by its predictable projection to get
1 +00 N
K
vy = ENX |:‘/(; dLg ‘/’(Ws)l{lésza}l{f::l}

x E*~ |: (** dLu ‘ﬂ(Wu)l {Ru >9)1(fu1)>j|i|
W; '

Let us now compute, for w = (W, R, J, K) € W,,

1
EX e 2 fo dLy (/’(Wu)l (Ru >9)1(ju=1) — EX e—(Zg,(p) )
W, Wy

s

‘We consider the Brownian snake under P*i) and we set («;, Bi)ics the excursion inter-

vals of ¢; —inf|o ] ¢ above 0. Forevery i € I, we define Wie CR+, W, i(z4.))
by setting, for every s > 0,

Wsl (1) = W(Oti+S)/\ﬁi ({Oli +1) tel0, gsl = Llai+)7Bi — gdi)'
We have

(ZG ‘P) Z / ‘P( {Rl>0 {Ji:” dLlua

iel

where L' is the CAF of lemma 3.1 for the snake W'. Let us recall the Poissonian
representation of the Brownian snake (proposition 2.5 of [12]). For w € W, the
point measure

Z‘S(za,.,v”vu

iel
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is under P7; a Poisson point measure with intensity
2 1[0’;) (1)dt N@(t) dw).

Thus we have
« ¢ .
E; [e_(ZO"/’)] = exp (—2/0 dt Ny [1 - e_(ZG"")D
‘ —(Z5.9)
= €xp (—2/ dt Lira=6.70=1}Nw) [1 —e 4e¥ ])
0

¢
= exp (—2/ dt 1{R(t)>9,J(t)_1}Ug(W(t))) ,
0

with w(t) = (W(t), R(t), J(t), K (t)) where we used equation (7) for the second
equality. Since the processes R and J; are decreasing, we have

1 +00 ~ s
v () = SNy [/0 dLs p(W)l iz _ 17—y €XP (—2/0 dt vg(WS(t))>:|.

Eventually we get, using equation (4), the equation
1 +0o0 s
vp (1) = SEx [/ dls 9(B) 1R (5)=0y{(c-1), <27} €XP (—2/ dt vy (Bz))}
0 0

1 “+o00 ] K
- EEX [ / dly p(By) e~ e 20Ds exp (-2 / dt vg(B,))} 9)
0 0

that we will re-use at the end of the proof.
Let us now compute

+00 1 K}
E, |:/ dls ¢(By) e 05 gmalkDs <1 — exp <—2/ dt vg(B,)>>i|
0 0

+00 .
— Z]EX [/ dl; ¢(BY) e—@s e—j(KJ)s
0

X fs dt vy (By) exp (—2 /S du vg(Bu))i|
0 t

+o0 +00 1
=2 / dtE, [vg (By) [ dls p(By) e 7 e 2(<Ds
0 t

X exp (—Z/S du vg(Bu))i|
t

+o00 1
= 2/ dtE, [vg(B,)e_G’ e 2By
0
too 1 s K
« [ / dl; o(By) e e HEDs (25 du vowmﬂ
0

~+00 ]
= 4[ di By [vg(Bt)2 e ¥ e_f(’('l)’]
0
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by equation (9). Now, if we rewrite equation (9) as

1 +oo
vg () = Sy [/ dl; p(Bs)e e_;(m]
0

1 400 o _l( D s
_E]Ex dlgp(By)e e 2% s | 1 —exp | —2 | dtvy(By) ,
0 0

the last computation gives the sought-after equation.

Proposition 5.3. Let T be a stopping time (with respect to the natural filtration of
B), finite a.s. Then v, satisfies the equation: for all x € D,

T
v (x) + 2E, [/ v (By)? e 05 e 0Ds ds]
0

1 r ,
—F, [vg(BT) e 0T e*%“'”T] + 5E: [/ 0(By) e =7 Ds dzs} .
0

Proof. Let us first compute

+00 1
E. [ / vg (By)?e " e 2 (s ds]
0
T 1
=E, [/ vg(Bs)Z e—@s e—j(K-l)S ds:|
0
+o0o !
+E, [ / vl (Bs)? e e 2D dsi|
T
T 1
=E, [/ Vi (By)?e e 2 s ds]
0

+o00
+E, [e‘” e_%(’”)T Ep, |:/ vg(BS)2 e s e_%("'l)s ds]i| ,
0

by the strong Markov property of B. Now, by proposition 5.2, we have,

+00 .
Ep, [/ vg (By) e~ ez ds]
0

1 e —0s o—3 (D) "
= -Ep, @(Bs)e e 2 Sdly | — vy (Br).
4 ; 2
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So, plugging this equality into the previous formula gives

+00 1
E, |:/ vy (BS)2 e 05 e 2(Ds dsj|
0
T 1
— ]Ex / vg (B_Y)z e_0S e—j(KJ)s ds}
0

+oo
E, |:e_9T e_%(’('l)T Ep, |:/ ©(By) e s e_%(’('l)i dl{”
0

T
— E)c / Ug(Bx)z e—@S e—%(K-l)S ds}
0

“+o00 .
E, [ f @(By)e 5 em2(Ds dls]
T

—3E [T e DT By,

+

using the strong Markov property again. Subtracting to (8) two times the last equa-
tion gives the result. O

Corollary 5.4. The function vj; belongs to C 2(D) and is solution of Au = 4u® +
20u on D.

Proof. Let x € D. As D is an open subset, there exists & > 0 such that the ball
B(x, ) centered at x and of radius ¢ is included in D. Let T be the exit time of B
out of this ball. Then, under Py, (B, )o<u<r is a standard Brownian motion stopped
when it leaves B(x, ¢) and [T = 0 P,-a.s. Proposition 5.3 gives now

T
o (x) + 2B, [ /O o (By)? e 08 dsi| =E, [vs(Br)e™"" ]

where B is a standard Brownian motion and classical results on the Brownian
motion give the proposition. O

Proposition 5.5. The function vy is continuous on D.

Proof. We fix a time ¢ > 0 and we apply proposition 5.3 to T = ¢. We have

vg (x) = By [vf (B ] e ™" —E, [vg (B) (1 - e—%w-l»)] e b
1 t
+5Ex U o(By) e~ e 3D dls]
0

t
_ZEx [/ vg(Bs)z e—(')s e—%(l(-l).r ds} .
0

As ¢ and vg are bounded, the three last terms converge to O uniformly in x and, as
t decreases to 0 thanks to (26) with n = 1. Furthermore for fixed 7 > 0, the appli-
cation x +— E, [vg (Bt)] is continuous on D. This implies that vy is continuous
on D. O
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Let CZ(D) be the set of bounded functions defined on D which are of class C2
with bounded derivatives of order 1 and 2.

Proposition 5.6. If ¢ is continuous on 9D, then, for every test function ¢ €
CE(D) N CY(D), we have

/ A (x)vy (x)dx —4/ ¢(x)vg(x)2dx —20/ @ (x)vy (x)dx
D D D
0
— [ Fonsmedn - [ smemedn - [ smuermo.
ap on aD aD
In particular, for ¢ = 1, we have
4/ vg(x)zdx—}-Z@/ vy (x)dx =/ (p(y)a(dy)—i-/ k(Y)vg (y)o (dy).
D D aD aD

Proof. The proof is similar to the proof of theorem 4.10 of [1]. First, we use the
definition of the reflected ]_3rownian motion viaa martingale problem (see [9]). This
gives that, for every x € Dt > 0, and ¢ € Cg(D) nclD),

1 t 1 " 3¢
Ec[o(B) — ¢ (x)] = EEX [fo A(P(Bs)dS} - EEX [/0 %(Bs)dls} .

So, multiplying by v (x) and integrating on D leads to, for every ¢ > 0,

fD W (OB [$(B,) — d(0)]dx

1 4 P 1 . t 8¢
= E/o ds/DU9 (X)Ex[Afﬁ(Bs)]dx — E/Dvg )E, |:/0 %(Bx)dls} dx

s [ apom o Bolax — L [ vrom [ [ 2By, | a
_5/0 st B0 [0 s)]x—ivag(meO (8,) } x

because of the symmetry of the density of B. Using the symmetry again and then
proposition 5.3 with T = ¢, we have

va(S(x)Ex[qb(Bt) — ¢ (x)]dx
— fD $ (O [vf (B) — vf (x)]dx
= f BB, v (B) e 3D —uf () dx
D
—/D¢>(x)Ex [vg(Bt) (1 - e—%“'”t)] dx
=/ d:(x)(vg(x) el —vg(x))dx

D
t
+2/ ¢ (x) e’ E, [/ ug(Bs)zefﬂsef%w'l)s dsi| dx
D 0
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1 t
_Ef d(x) e E, [/ 0(By) e~ =205 dls}dx
D 0

—fD¢>(x)1Ex [vg(B,) (1 _ e—%“’)f)] dx.

So, we have, for every t > 0,
1 1 d¢
2/dx Ad(x)— /dsE vy (Bs )] fdxve(x) -E, |:/0 — (B )dl:|
2/ qb(x)ve(x)—(em—l)dx
D t
+2/ ¢(x)%e9’Ex [/ v (By)? e % _2("‘1)5ds] dx
D

t
—lf ¢(x)1e9’Ex [/ 0(By) e =7 Ds dls}dx
2 D t 0
1 1
_ _ K _ a5 (kD)
/D¢<x)tEx[v9<B,>(1 e 2 )]dx.

Now we let # goes to 0 and use the continuity B as well as the continuity of v; on
D, the lemmas 9.2, 9.3, 9.4 and 9.5 to get the equation of the proposition. O

Fork € N, « € (0, 1], let CK%(2) be the set of functions defined on 2 which
are k times differentiable such that their k™ derivative is Holder with parameter o.

Proposition 5.7 (Recall that 6 > 0). Let ¢ € C L.« (3 D) be nonnegative. The func-
tion vg belongs to C*(D) N C' (D) and it is the unique nonnegative solution of the
Neumann problem

Au = 4u? +20u inD
u (10)

— = aD.
™ ¢ on

Furthermore, vg belongs to Cc>*(D).

Proof. Since ¢ € C1*(3D), we deduce from propositions 9.6 and 9.9, that the
function % E, [ O+°° @(By)e % dlx] belongs to C>%(D). Since vg is bounded, we

deduce from proposition 9.8, that the function E, [ f0+°° vg(By)? e % ds] belongs

to C%!(D). Thanks to (8), this implies that vy € C% 1(D) Using propositions 9.7
and 9.9, we deduce again from (8), that vg € C2%%(D). From proposition 9.7, we
get that vy is a solution of (10).

Let us check the uniqueness of solutions to (10). Letu € C 2(D)yNn CcY(D) be
another nonnegative solution of (10). Set w = u — vg. The function w solves

Aw—kw=0 inD
Jw
— =0 onadD,
on
where k = 4(u + vg) + 26 > 0 belongs to C'(D). From the maximum principle

(see theorem 8 in [15]), we get that either that w < 0 or w > 0 is constant in D.
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Using —w instead of w, we deduce that w is constant in D. Therefore we have
u = vg + c. Subtracting (10) applied to u and vg, we get that c(4vy +2c +6) = 0.
Either ¢ = 0 or vy is constant. If vy is constant, from (10) we get that ¢ = 0 and
by construction vg = 0. This in turn implies that c(2c 4+ 0) = 0. Since u = c is
nonnegative, we get that u = 0. In any case ¢ = 0 and thus we have u = vy. O

6. Properties of v*

Let ¢ be a bounded nonnegative measurable function defined on 9 D. Recall that
fork > 0and x € D, v*(x) = Ny [1 —e=@" ¥ ] and v* < = .

Proposition 6.1. The function v* is bounded on D for k > 0.
The proof of this theorem is at the end of this section.

Proposition 6.2. The function v* is continuous on D.
Proof. By construction, we have that vy increases to v as 6 decreases to 0. From
proposition 5.3, we get by dominated convergence: for x € D,

t
v (x) + Ex [/ V¥ (By)2e 2D ds} =B, [v"(B;) e 2* ]

0
! t ~6eD)
+=E, @(By)e 2% s di|.
2 0

Now, as ¢ and v* are bounded, we conclude as in the proof of proposition 5.5. O

By dominated convergence, we deduce from proposition 5.6 the next result as
0 decreases to 0.

Proposition 6.3. Assume ¢ is a continuous nonnegative function on dD. For any
test function ¢ € Cbz(D) N CY(D), we have:
/ A (x)v*(x) dx — 4/ & (X)V* (x)? dx

D D

0
- / L) o dy) - / b9 o (dy) - / PO (3o (dy).
ap on aD aD
(1)
In particular, for ¢ = 1, we have
4 / v (x)2dx = / 9o (dy) + / k(MU () (dy).
D aD aD
Notice that any function v € C2(D)N (D) solution of the Neumann problem

(1) satisfies the integral equation (11), for any test function.

Definition 6.4. We say that a bounded measurable function v which satisfies (11)
for any test function is a weak solution of the Neumann problem (1).

We will mainly consider weak solutions that are continuous on D.
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Proof of proposition 6.1. Because v° < v = 1Y, it is enough to prove the proposi-
tion for v.

Let g be a continuous nonnegative function defined on dD. Consider the
Dirichlet problem in D:

Au —20u = 4u® in D,

12
u=g onadD. (12)

From [7], we know there exists only one nonnegative solution to this equation ug,
and uy belongs to C*(D)NC%D). Since L = % — 0 is the infinitesimal generator
of the Brownian motion killed at an independent exponential time with parameter
6 > 0, we also have the following integral equation:

ug(x) + 2E, [/ID ug(Bg)r e dsi| =E, [g(Br,) e ™], (13)
0

where tp = inf{r > 0; B; ¢ D}. This integral representation is also valid for
6 = 0. The next lemma give a regularity result on uy when g is smooth. Recall that
D has a C3 boundary.

Lemma 6.5. Let6 > 0.1fg € C%%(d D), then the nonnegative solution ug of (13)
lies in C>% (D), where o/ = min(e, 1/2).

This result doesn’t seem optimal since o’ might be less than «. The proof of this
lemma is in section 9.5.

From now on, we assume that & > 0. Notice that under the hypothesis of
lemma 6.5, the normal derivative of ug is continuous and well defined. However
this normal derivative can be negative at some point of d D. We can’t represent ug as
N, [1 — e=%#:9)], with ¢ the normal derivative of uy in general. For our purpose it
will be sufficient to consider u y ¢ solution of (13) with g constant equal to N > 0.
From (13), we have uyy 9 < N in D. Therefore the normal derivative of uy g, say
N ¢ 1s nonnegative.

Let us find a lower bound for ¢y ¢ independent of 6 > 0. Since D is bounded
with C3 boundary, there exists ryp > 0, such that for any xo € 9D, the open
ball B(xo — ronx,, ro) with radius ro centered at xo — rony,, where ny, is the
outward normal of D at point xg, lies in D. Let wy be the unique nonnegative
solution of Au = 4u” in B(xp — rony,, ro) with boundary condition wy = N on
9B (xg —rony,, o). In particular wy € C2%(D), thanks to lemma 6.5. Since Uyp <
N in D, we deduce that uy 9 < wy on dB(xg — rohy,, Fo). Let z = uny g — wi.
The function z satisfies Az —kz > 0in D withk =4(unyp +wy) >0andz <0
on dB(xg — rony,, r'o). From the maximum principle (theorem 6 in [15]), we get
that z < 0in B(xg — rony,, ro), hence

ung <wy in B(xo — ronxgy, o).
Since wy (xg) = un g(x0) = N, we have for ¢ > 0 small enough
wy (x0) — wy (X0 — &nyy) < un g(xo) — un,g(xo — enyy).

This implies that ¢ (x0) < ¢n ¢ (x0), Where ¢ is the normal derivative of wy.
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Lemma 6.6. There exists a constant co depending only on ry and the dimension
d, such that ¢y (xg) = (N — co)/ro forall N > O.

For the clarity of the exposition, the proof of this lemma is postponned to
section 9.5.
Let ¢ > 0 measurable defined on dD. Let N > ro sup,c;p l¢(x)| +co. Notice
N is independent of & > 0. Since uy g is in C2""(D) for some « > 0, we get
3141\/,9
on

that uy ¢ is a strong solution of (10) with boundary condition ¢y g =

dD. We deduce from proposition 5.7, that ux g (x) = Ny [l — e_(zg"pN-f’)]. From

lemma 6.6, we deduce that ¢ < ¢y ¢ and thus vy < uy¢ < N. Since this upper

bound is uniform in & > 0, we deduce that v itself is bounded from above by N.
O

7. An integral equation for v

From (23), we see the green kernel
o
G(x,y) =/ [p:(x,y) —apldt, whereap = 1// dy,
0 D

is well defined a.e. in D x D. If h is a measurable bounded function defined on
D, we set Gh(x) = fD G(x, y)h(y) dy. If ¢ is a measurable bounded function
defined on 3D, we set Gpo (x) = [, G(x, y)o(y) o(dy).

From now on, let ¢ be a bounded measurable nonnegative function on 9 D.

Proposition 7.1. Let v(x) = N, [1 —e(Z, (p)]_ Then v satisfies the integral
equation: for x € D,

v(x) + 2Gv2(x) — aD[ v(y) dy = % Gyo (x). (14)
D

Notice that (14) may have many different nonnegative solutions (see remark 7.3).
However, there is a unique nonnegative solution to (14) satisfying the integral con-
dition 4 [, v(y)? dy = J5p ©(y) a(dy) (the proof of this fact is similar to what
follows lemma 7.4).

Proof. From proposition 5.2 (with x = 0), we have

+00 +o0
ve(x) + 2K, [ / vo(By)*e ds} = %E [ / @(Bs)e " dls} . (15)
0 0

From (25), we deduce that

+o00
E, [ / @(Bs)e " dzs}
0

=/ ds e*‘“/ e)ps(x,y) —aplo(dy)
0 D
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+aD/ ds e_“/ o(y)o (dy)
0 D
= Ggo (x) + %D / o(y) o (dy)
. oD
+/0 ds (e7% —D/Dso(y)[ps(x,y) —aplo(dy).

The third term of the last equality goes to 0 as 6 | 0, thanks to (22) and (23).
Therefore, we have

oo —0s ap
E, / e(Bs)e " di =G¢0(X)+7/ o(y) o(dy) +o(1).
0 aD

By a similar argument, we have

oo 2 —0Os 2 ap 2
E, / ve(Bs)?e ™ ds| = Gug(x) + 7/ vo(y)” dy + o(1).
0 D

From the second equations of propositions 5.6 and 6.3 we get that

4/ 09 (»)? dy+2e/ 0 () dy=4f ()2 dy.
D D D

Since vg increases uniformly to v as 6 decreases to 6, we have v9 = v + o(1) in
D. We deduce that

4] vo(»)? dy = 4/ v(y)* dy — 29/ v(y) dy +o(1) and
D D D
Gv} = Gv* +o(l) inD.

Plugging those results in (15), we get that for x € D,
2 4p 2
v+ 260700+ 22 [ vty —ap [ v dy
D D

e Lap d 1
=5 €00(x)+§7 anﬂ()’)G( y) +o(l).

Using the second equation of proposition 6.3 we get (14), as 6 goes to 0. O

We assume ¢ > 0 is non zero, that is faD o(y) o(dy) > 0. We consider the
functions defined on D by,

1 172
wi(x) =wy = 3 [ap /aD o(y) cr(dy)} >0,

1
wa(x) = 5 Goo (x),

n—1
W () = =2 Gwwy—) () + ¢, forn =3,
k=1
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where we set

n—1
a
_ap. / > we(was1-4 () dy.
Wi Dk:2

The functions are well defined, because the function ¢ is bounded. By symmetry
of G, we have forn > 3,

Cn

[wmay==2[ Zwk@)wn (0610 dy+ [ e dy =

aD

because G1 = 0. In particular we deduce from the definition of ¢,_1, that for
n Z 4’

n—1
/ 3 k1) dy

_2w1/ w1 () dy + DZwk@)wn LMdy=0.  (16)
k=2

For f a measurable function defined on D (resp. D), we define || f [lc =
sup{| f(x)[; x € D} (resp. || f llooc = sup{lf(x)[; x € dD}).

Proposition 7.2. (1) There exists ny > 0 (depending on @), such that the series

+=Zn"/2wn and v, Z( D" ?w,

n>1 n>1

are absolutely convergent (for the norm |||l ) for n € [0, no). The functions

vg‘ and v, are continuous in D.
(2) For n > 0, small enough, we have that v,‘y" (resp. v,) is the only nonnegative
(resp. non positive) continuous weak solution to the Neumann problem

]
Au=4u’> inD, and ﬁ =n¢ ondD. 17

In particular v, T(x) = [1 — e_"(z"/’)],for n > 0, small enough.

Proof. 1) From (21), (22) and (23), it is clear that there exists a constant ¢p, such
that for any measurable function f (resp. i) defined on D (resp. d D),

I1Gfllo =cnll flloo and  [[Gholloe < cp 7o -

We have by recurrence that || wy, |00 < Bu |l @ ||g</,2, where

N | =

1
B =1 aD/ 0@, fr=5ep,
oD



Neumann’s problem and Brownian snake 497

and forn > 3,

n—1 n—1
Bu=2cp Y BiBuk+app Y BPuti—k:

k=1 k=2

with p = [Il@lloe / f3p ©() cr(dy)]l/z. It is easy to check there exists 79 > 0
(depending only on B1, cp and p) such that the series g(r) = Zk23 Bir* is con-
vergent for r € [0, 7p), and that g(r) is the smallest solution of

1 2
§(r) = 2ep [(¢) + Bur + Bor? = B3| + ~ app [¢0) + por?] .

It is then clear that the series vf] = v;}' orv,’,

convergent for n € [0, no = 7o/ || ¢ ||oo ). _
From the continuity of p, (22), (23), we have that Ggo is continuous on D.
By recurrence, we get that w, is continuous for n > 3. This implies that vg is

as § = +1 or § = —1, are absolutely

continuous on D.
2) Furthermore, let us note that, by the product of two series, for n € [0, n9),

n—1
Wp)* =Y 8" " (ww,p)
n>2 k=1

and, as G(w%) =0,

G (wp?) = 8" "/ZZkawn 0.

n>3
Then, we have that, for € [0, ng),

vh () =Y 8" Pwn(x)

n>1

= 8y/wi +nwa(n) =2 8" "/ZZG(wkwn D@+ 8" e

n>3 n>3

= 8\/51,()1 + EG(/)O'(X) — ZG((U;S’) )(x) + ZSnnnﬂcn

n>3

From the symmetry of G and the fact that G1 = 0, we get

5/m
fvs(w dy = iwlﬂf Gpo(y) dy
D ap 2

2 [ G dy+ >

n>3

§n n/2
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= Mw + = / ¢(x)G1(x)o (dx)
ap 2 aD
§n n/2
-2 Gl(x)d
| @ienorw DS

n>3

= —wi + Cn.
ap

8\/5 Z 8”7’]"/2
n>3

Plugging this in the previous equation, we get that
W) = 2690 () — 260 +ap / W) dy.
D

Hence vg solves (14) with ¢ replaced by ne.
Remark 7.3. By considering w), defined as w, but for ¢, = 0, it is easy to get that

v,’7 = Zn>1 n”/ zw; is well defined, continuous, nonnegative and solution of (14)

for n > 0 small enough. Since c3 # 0, we have w,’7 #* v,;r. Hence (14) doesn’t have
a unique nonnegative continuous solution.

We have

[ wrar=[ Yo S s 0) dy

n>2 k=1

87
:—w12+83n3/2w1/ Goo(y) dy
ap D

—1
+) s [ Zwk(y)wn_k(w dy

n>4 k=1

:g/ o(y) o(dy),
aD

where we used (16) for the last equality as well as the symmetry of G and the fact
that G1 = 0. Thus we have that vg solves also

4/ u(y)? dy=/ o(y) o(dy), (18)
D oD

with ¢ replaced by ne. The next lemma states that the two integral equations (14)
and (18) characterize the weak solutions of the Neumann problem (1) (with « = 0).
Its proof is postponed at the end of this section.

Lemma 7.4. Any bounded measurable function u satisfying (14) and (18) is a weak
solution of the Neumann problem (1) (with k = 0). That is, for any test function
¢ € CH(D) N CY(D), we have:
[ a0t dy =4 [ s ay
D

/ —(y)u(y) o(dy) — /aqu(y)w(y) o (dy). (19)
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+

From this lemma, we get that v, and v, are continuous weak solution of the

Neumann problem (1) (with x = 0 and ¢ replaced by n¢). From propositions
6.2 and 6.3, we have that v, (x) = N, [1 —e™7%)] is also a continuous weak
solution.

To complete the proof of the proposition, we just have to check that v)‘f = vy.
This will be done once we prove the uniqueness of the continuous weak solutions.

Let n» > 0 and ¢ > 0 small enough, so that ‘vg‘(x) > ¢ > 0in D for
8 € {+1, —1} (this can be done since w; > 0). Consider u a continuous nonnega-
tive solution of (19), with ¢ replaced by n¢. Since v;“ is a positive solution of (19),
by subtraction, we get

a
/ wN[AP(Y) +49 ()¢ ()] = / a—¢(y)w(y) o (dy),
D ap on

with w = u — v;" and ¢ = —4(u + v;"). From theorem 5.5 of [9], we deduce that
w = 0 (the finiteness of the gauge in [9] is implied by the fact thatg(y) < —e < 0
for y € D). In particular, U;:_ is the unique continuous nonnegative solution of (19),
for n > 0 small enough. This implies that for n > 0, small enough, v,‘y" x) =
N, [1 —enZo)],

Similarly, we get that v, is the unique continuous non positive solution of (19),
for n > 0 small enough. O

Corollary 7.5. Let ¢ > 0, such that faD o) o(dy) > 0. Then v(x) = N;

[1 — e_(z"”)] is the only nonnegative weak solution of (1) (with k = 0).

Proof. From the last part of the proof of proposition 7.2, concerning uniqueness

of weak solution, we see with vn+ replaced by v that it is enough to check that

v(x) > e > 0in D. For n € (0, 1] small enough, we have
V() 2 v () = Ny [1 =710
For ¢ > 0 and n > 0 small enough, we get that v,;r > g on D, since w; > 0. O

Proof of lemma 7.4. From the definition of the kernel G and the symmetry of p
we get that for any bounded measurable function f:

/Gf(y)dy:O and / Gfo(y)dy =0.
D aD

From [5], we get that:

e If f is a bounded measurable function defined on D, then G f is a weak solution

A a
of Ew =—f+ an f(y) dy with Neumann boundary condition a—w =0.
D n

And for any test function ¢ € Ci (D)N CY(D),
f Ap(y)w(y) dy + 2/ ¢ f(y)dy — 2aD/ d() dy/ f(y)dy
D D D D

d
:/ a—¢(y)w(y)o(dy)-
ap on
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e If /1 is abounded measurable function defined on 0 D, then % Gho is a weak solu-
A 0
tionof —w = 4b / h(y) o (dy) with Neumann boundary condition o h.
2 2 aD _ al’l
And for any test function ¢ € le(D) ncl(p),

/A¢(y)w(y) dy—aD/ (163)) dy/ h(y) o(dy)
D D oD
9
- / 2 o - f SRy o (dy).
ap on oD

Let u be a bounded measurable function defined on D, satisfying (14) and (18).
Let¢ € CZ(D) N C'(D), be a test function. Using the symmetry of G, the above
remarks, we then deduce from (14) by multiplying by A¢ and integrating on D,
that

/ AG(u(y) dy — 4 f 6 () dy + 4ap [ () dy f u(y)* dy
D D D D
0
+2 / a—¢(y>Gu2<y)a(dy)—aD / Ap(y) dy / u(y) dy
ap on D D
— ap / $() dy / o(y) o (dy)
D oD
a¢ 1
+ / % () = Go(y)o(dy) — / M) o (dy).
ap On 7" 2 aD

Use (18) for the third term, (14) for the fourth and the Green formula f pAd(y) dy =
fBD g—f (y) o(dy) for the fifth of the left member to get (19). |

8. Properties of Z

We can give estimate of the probability of hitting small balls for the measure Z.
Letxg € dD,and Byp(xo, €) be the ball on the boundary of D centered at x, with

radius ¢ > 0: Byp(xg, &) = {y € aD; |x — y| < €}. We write Z(Byp(xo, €)) =

(Z’ lBap(xo,é‘))-

Proposition 8.1. For every compact set K C D, there exists 1/2 > gy > 0 and

a constant cq > 0 (which depends on the dimension d) such that for any x € K,
xo € 0D, ¢ € (0, &),

cd ifd =2or3,
N,[Z(Byp(x0,€)) > 0] > { cq(log(1/e)™"  ifd =4,
cqed™? ifd > 5.

Proof. Wefix6 > OandnoticethatN,[Z(Byp(xo, €)) > 0] > N[Zg(Byp(x0, €))
> 0]. Consequently, it is enough to get a lower bound for Zy.
Let us set

+o00 )
go(x,y) = / ps(x, y)e*‘%ds
0
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and recall the following estimates: there exists a constant o (which depends on d
and 0) such that for all (x, y) € D x D,

go(x,y) <ah(x,y)
with
1 P
. (1+1n+ W_y”) ifd =2
x—yl* ifd > 3,

where In () = max(0, In(r)) (see for instance [3], Corollary 3.3 or [6], Theorem
3.4 (iv)). Now, by Cauchy-Schwartz inequality, we have

Ny [Zg(Byp(x0, €)1
Nx[Zg(Byp(xo, €)) > 0] = N, [Zs Bap (0. )2

The first moment is easy to estimate: we have, by definition of Zg

(o2
Ny[Zg(Bap(xo, €))] = Ny [/0 I{WseBaD(xo,s)}I{I%J,ze}dLS]

+oo o5
=Ey [/ 1(B,eByp(xo.e)€ “dls}
0

= / go(x, y)o(dy)
By p(x0,€)

and, as gy is bounded below by a constant on K x 9D, there exists g9 > 0 such
that for any x € K, xg € 9D, ¢ € (0, &],

Nx[Zo(Bap (x0, )] = cae” ™.
For the second moment, let us first prove the following lemma

Lemma 8.2. For every nonnegative measurable function ¢ on 0D,

2
Nx((Ze,¢)2)=4/Ddyge(x,y) (/aDo(dz)ge(y,z)w(z)> .

Proof. Using the definition of the measure Zy then the Markov property, we have

o 2
Nel(Zo, 9)*] = Ny [( /0 dLul{Ruze}ﬁl’(Wu)) }

r ro o
= 2Nx /0 dLu / dLu’l{ﬁuzg}l{ﬁlt/zg}go(wu)(p(wu’)]
L u

g o
= 2N, /O ALul g -0 (WiEy, UO dLu’l{zé,,ze}‘/’(W“’)H

o R Cu
= 4N, /() dLul{Iéuzg}(P(Wu)/o dt NWu(t)[(Ze’ §0)]]
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where we used the Poissonian representation, stated in the proof of proposition 5.2,
of the Brownian snake under E}; (see also proposition 2.5 of [12]). Then, thank to
formula (6), we get

o . Cu
N [(Zo, ¢)2] = 4N, |:/(; dLul{éuzg}w(Wu)[) dt N(Wu(t),+oo,l,0)[(ZGa <ﬂ)]] .

Now, using formula (4) twice, we have

B —+00 u —+00
N,[(Zo. )?] = 4, / dl, e o(B,) f dtEg, [ f so(Bs)eeSdlsH
0 0 0

- +00 +00 +00
= 4E, / dt / dl, e " ¢(B,)Ep, [ / go(Bs)e_esdlSH
L JO t 0
+00

i +00 2
= 4E, / dr e V" Ep, [ / @(Bs)e ¥ dls]
0 0

2
=4/ dy go(x,y) (/ O(dz)ge(y,z)w(z)> -
D aD

Applying this result with ¢ = 1, (x.), We have
Ni(Zo(Bap (xo. €))?)

=4/ dy go(x,y) // o(dz)o(dZ)ge(y, 2)ge(y, 7))
D Byp (x,€)?

=4// a(dz)a(dz’)/ dy go(x, y)go(y, 2)80(y, 7).
Byp(x0,8)? D

We set
Vro(z,2) = /Ddy go(x, ¥)80 (v, 2)80(y, 2).

The upper bounds for the kernel gy lead to: forx € K, z,7/ € 9D,

c ifd <3
Yoz, 7)< {C (1 +ln, ﬁ) ifd =4
Clz — /| ifd > 5.

We then deduce easily, using the regularity of d D, that there exists ¢g € (0, 1/2],
and ¢4 > 0, such that for any x € K, ¢ € (0, g0l, xo € D,

cge?d=b ifd=2or3
Ni(Zo(Byp(x0.€))?) < {cae®(Inl) ifd =4

cgedt? ifd > 5.

To finish, it suffices to combine the Cauchy-Schwartz inequality with the estimates
for the first and second moment. O
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From the upper bound of gg, we get the next lemma.

Lemma 8.3. Ford = 2,3, for every x € D and every 6 > 0, the function

Vro(y,y) = /D dz go(x,2)80(z, ¥)g0(z, ¥

is continuous on 0D x dD.

Proposition 8.4. Ifd = 2 or 3, the measure Z is absolutely continuous with respect
to the surface measure o, Ny-a.e., for x € D.

Proof. Mimicking the proof of theorem 5.1 in [2], we getthatford = 2or3,x € D,
Ny-a.e., Zy is absolutely continuous with respect to o forany 0 > 0. Let A C 9D
be measurable, such that fA o(dy) = 0. We deduce that (Zy,14) = 0, Ny-a.e.
Since Zy increases to Z as 6 decreases to 0, we deduce that Ny-a.e., (Z,14) =0
for any Borel set A C 9D such that fA o(dy) = 0. Since supp Z C 9D, this
implies that Z is absolutely continuous with respect to o . O

If A is a subset of R?, let dim(A) denote its Hausdorff dimension. For a measure
w on R, let supp u denote its closed support.

Proposition 8.5. We have, for every x in D,
dim(supp Z) >3 A (d —1) Ny-a.e.on{Z # 0}.
Proof. Letd > 4. We will first prove that
dim(supp Zg) >3 A (d —1) Ny-a.e.on{Zy # 0}. (20)

Notice that since Zy increases to Z as 0 decreases to 0, we have N, -a.e.,

supp Z = U supp Zg,
keN

for any sequence (6, k € N) that decreases to 0. This implies the proposition.

The proof of (20) is an adaptation of the proof of Theorem 6.1 of [2]. We set,
fora > 0, he(r) = r3|1Inr|®. Using lemma 8.2 and a polarization argument, we
have for every ¢ > 0,

Ny [/D ZG(dY)Ze(BaD()’:S))} =4/| | o (dy)o (dy)ro(y, y).
y=y'l<e

The upper bounds for 1, ¢ obtained in the proof of proposition 8.1 yield for & small
enough and x € D, that

C'(x)3|lne| ifd =4
N, |:/D Ze(dy)Ze(BaD(y,s))i| < {C,(x)€3 itd > 5.
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In the case d > 5, we have for n € N large enough,

t |:~/8D “o (dy)l{Ze (BaD(y,Zn))>na23n]i|

<n 2N, [ / Zo(dy)Z’ (Ban (v, 2‘"))}
< Cam-azig
=C'(x)n"“.

If « > 2, we deduce that

+00
Z I{Ze (Ba[)(y,Z_"))Zna2_3"} < 00 Zg(dy) — .a.e. N, —ae.

n=1

This implies that

Zo(B , €
lim sup M < 00, Zo(dy).a.e. N, —a.e.
e—0 he(e)

and a well-known result gives that the /,-Hausdorff measure of supp Zy is strictly
positive Ny-a.e. on {Zy # 0}.
The case d = 4 is similar (with o« > 3). In particular we deduce (20). |

9. Appendix
9.1. Reflected Brownian motion

The properties of the reflected Brownian motion B in D are from [5] and [16].
Fort > 0,x,y € D, let p:(x, y) be the density of the reflected Brownian motion
B; when By = x € D. The density is a continuous function on (0, c0) x D x D.
It is also symmetric on D x D.
For any g9 > 0, there exists a constant ¢ such that for any x € D, t € (0,1],
e € (0, e0l,

1
—/ pe(x,y) dy < ¢/, 1)
& D,

and
/aD pi(x,y) o(dy) < /1, (22)

where o (dy) is the surface measure on 0 D.
There exist two positive constant ¢ and 8 such that for ¢+ > 1, we have for all
x,yeD

|pi(x,y) —ap| < ce™ P, (23)

where ap,' = [, dy.
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We deduce from (22) and (23) that for any 6 > 0, there exists a constant ¢ such
that, forall x € D,

/ T et s / ps(x, y)o(dy) <c. (24)
0 oD

The local time of B on 0D, = (I;,t > 0), is a continuous additive functional
of B with Revuz measure o (dy). In particular we have for any nonnegative function
f defined on Rt x 3D

E[/O f(s,Bs>dls]= fo ds f Fs.yps(r ) ody).  (25)

From this last equation and (22), it is easy to prove by recurrence that for 7 > 0
and n > 1, there exists a constant K, such that for all ¢+ € [0, T'],

sup B, [I"] < K,1"/2. (26)
xeD

The density p;(x, y) as a function of x belongs to cY(D)NC?(D) for (s, y) €
(0, 00) x D. Furthermore (see [16] p.600) there ex_ists a constant ¢ > 0 such that

for (s, y) € (0,00) x D,and x = (x1,...,xq) € D,
d
‘a’; S (x, y)| < e 5@, 27)
L
and also
aps —1,2
5 -(x, y)|dy =cs™ /7 (28)
D | 0Xi

9.2. Convergence lemmas

In this section, we present some convergence results which are used for proving
proposition 5.6. They all concern reflected Brownian motion.

Lemma 9.1.
1
li —E.[I?)dx = 0.
frg 7 Bl

Proof. Let us recall that we denote by 7p the exit time of B out of D. For every
x € Dty > 0, we have for ¢ € (0, 19],

1 2 1 2
;Ex [lt] = ;Ex[l; 1t>rD]

1
< ;Ex[l,“]mm(r > p)!/?

< CPy(t > tp)'/?,
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thanks to (26). So, for every x € D, we deduce that
.1 5
lim —E,[[;]=0.
t—0t

Moreover, thanks to (26), %IE x [1,2] is bounded and the dominated convergence the-
orem gives the result. O

The next lemma is lemma 4.13 in [1].

Lemma 9.2. For every continuous function ¢ on D and every continuous function
Y ondD,

lim dX¢(X) E [/ v (B )dl} /aDd(dy)qﬁ(y)w(y)-

Lemma 9.3. Forevery bounded measurable function ¢ on D and every continuous
function i on D,

lim dx¢(x) e‘”JE U W (By) e 0% e~ Ds dsi|=/ ¢ ()Y (x)dx.
D

Proof. We first write

! 1
/ dx¢>(x)l ' E, [ / W (By)e 9 e 2t Ds ds]
D t 0
l t
=/ dx ¢ (x)-e" E, U w(Bs)ds]
D t 0
t
—/ dx p(0) 2 e U w(BS)<1—e—“e—i“'l)s)ds]
D t 0

The first term converges to the expected limit by the continuity of B. The second
one goes to 0 as ¢ decreases to 0, since forz < 1,

g0 Leorp, [/ I//(B) Se z“”s)ds}

< / U (1-e* —z“")s)ds]dx
<c [ <0s+ (c - z)) ]dx
/ (t+E (1) dx,
and thanks to (26). o

Lemma 9.4. For every continuous function ¢ on D and every continuous function
Y onaD,

t
lim ¢<x)1e9’Ex [ / Y (By)e e 20D dls}dx= / PNV (o (dy).
t—=0Jp t 0 aD
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Proof. As for lemma 9.3, we write

t
/ <;>(x)l R, U W (By) e 0% e~ 2Ds dls] dx
D t 0

- / 6 ()~ ' E, [ f t wBs)dzs] dx
D t 0

t
—/ ¢(x)l e E, [/ ¥ (By) (1 —e s e—%("‘”-f) dlx] dx.
D t 0

The first term converges to the expected expression by lemma 9.2. The second one
goes to 0 as ¢ decreases to 0, since for r < 1,

t
/ S E, [/ W (By) (1 —ebs e—%(“)s) dls} dx
D ! 0

1 ! 1
< cf -E, U <es + = (k- l)s) dls} dx
Dt 0 2

1
<C / Ey[l;]dx + C / —E, [I?1dx
D D1

thanks to (26) for the first term and lemma 9.1 for the second. |

Lemma 9.5. For every bounded measurable function ¢ on D and every continuous
function  on D,

1 1
lim fD B E, [w(B) (1- 16D ) | dx = 5 fa SOOI @),

t——+00

Proof. We write

1 1
_ _ a5 (kD
/D¢<x>tﬂ<:x[w(3,>(1 e 3 ) ] ax
1 1
= / ¢ (x)~Ey [WBt)—(K -l»]dx
D t 2
+/ ¢>(x)1Ex |:W(Bt) (1 _eben L -l):)} dx
D t 2
1 1
=f ¢ ()Y (x)-E, [—(K -l»}dx
D t 2

1 1
+ /D 60| (¥ (B) = ¥ () 5 - 1) Jdx

+ [ ¢O)-Ex |Y(B) |1 —e 257 —=(k - )¢ | | dx.
D t 2

The first term converges to the sought-after term by lemma 9.2. The third term is
bounded from above by

1 e, _1
/Dfi’(x);Ex Y(B)|1—e 2 t—E(K'l); dx

and so converges to 0 by lemma 9.1.

1 2
<c | “EPdx
pt
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For the second term, we fix ¢ > 0. As i is continuous on D, it is uniformly
continuous and there exists a n > 0 such that

Vx,yeD, |x -yl <n=|¥x)— v <e

Now, we write

1 1
' / g, [(WB,) )i .l>,] dx
pt 2

1
< cf SB[ (B — VUil Jdx
D!
1
€ [ SB[ B) ~ 00|t
pt
1 1
58/ —Ex[l,]dx+C/ —Ex[l\B,—x\ant]dx
D! pt
1 1
< e/ LB ltdx + c/ LB 21 2R, - x| = ) Pdx
D! Dt
1 1
< ef L e hdx + cf L BB, - x| = ) dx,
Dt D \/;

where we used (26) for the last inequality. Now, by lemma 9.2, the first term is less
than some constant times ¢ for ¢ say less than 1. The second one goes to 0 as t goes
to 0 and this complete the proof. O

9.3. Linear boundary problem

Recall D is a bounded domain with C3 boundary. We first recall some results on

_ 0
the Neumann problem. If u € C (D), let o (x) denote the outward normal deriv-

ative of u at x € 9D. Let & > 0 and ¢ a bounded measurable function defined
on dD. A function u is a strong solution to the Neumann problem N (g, 6) if
u € C3(D)N CY(D) and

A .
Eu —0Ou=0 inD,
Su (29)
— =¢ ondD.
on
A function u is a weak solution to the Neumann problem N (¢, ) ifu € C (D) and
for any function ¢ such that ¢ € Cg(D) NCY(D) and d¢/dn = 0on dD, we have

A 1
/ w590 dx —9/ u(0)$(x) dx = ‘5/ 0P () o (dx).
D D oD

From the Green formula, it is clear that any strong solution is a weak solution.
Using the local time /, we can represent solution to the Neumann problem in
D. We refer to [9] for the next proposition.
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Proposition 9.6. Let 0 > 0 and ¢ be a bounded measurable function defined on
0 D. The function

wg (x) = %Ex [ /0 Tt o (By) dls]

is continuous in D. Furthermore it is also the only weak solution of the Neumann
problem N (g, 0).

If ¢ is more regular, then we get strong solution to N (¢, 6). Fork € N, @ €
(0, 1], recall that Ck’“(Q) is the set of functions defined on 2 which are k times
differentiable such that their k" derivative is Holder with parameter o.

From theorem 2.3 in [16], we have

Proposition 9.7. Let6 > 0, f € C%%(D) and ¢ € C®%(dD). Then, the function
defined for x € D by

wo (x) = —E, [ / e f(By) ds}+1ﬂ<:x [ / e " ¢(By) dzs}
0 2 0

belongs to C%(D) N CY(D) and solves

A .
—u—6u=f inD,
2" (30)
— =¢ ondD.
on
The next proposition is a consequence of (27) and (28).
Proposition 9.8. Let¢ > 0, and f bounded measurable defined on D. The function
defined on D by

-‘rOO o0
E[ f(Bye ds} = f ds / dy ps(x, ) f(y)e ™
0 0 D

belongs to cl(D).
From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.9. Ler 6 > 0, f € C**(D) and ¢ € C“"(E)Q). There exists a
unique strong solution to (30). Furthermore it belongs to C>* (D).

We end this section with well known results for the Dirichlet problem. Let
¢ > 0 and f a measurable function defined on D and g a measurable func-
tion defined on dD. A function u is a strong solution to the Dirichlet problem if
u e C*(D)NC%D) and

A .
—u—0u=f inD,
2 ’ (€29)]

u=g ondD.

The next two results can be found in [7].
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Proposition 9.10. Let 6 > 0. Let g be a bounded measurable function defined on
0 D. The function defined on D by

ug(x) = Ex [g(Bry) e 0]

belongs to C*° (D) and 5 Sug — Oug = 0in D. Furthermore, if g € C%dD), then
Uy € CO(D) andug = gon aD.

Proposition 9.11. Let 0 > 0. Let f be a bounded measurable function defined on
D. The function defined on D by

uo(x) = —E, [ / P F(Bye dsi|
0

belongs to C%1(D) N Co(ﬁ) and ug = 0 on dD. Furthermore, if f € C%%(D),
then ug € C%(D) and & Sug —0Oug = finD.

From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.12. Ler 6 > 0, f € C%%(D) and g € C*>*(dD). There exists a
unique strong solution to (31). Furthermore it belongs to Cc>*(D).

9.4. Proof of lemma 3.1

Assume o > 0 and let &y > 0 be fixed. For x € D, consider
u®(x) = E, |:/ e~ * —1p, (Bs) ds:| = / ds e*‘“/dy ps(x,y) —1p.(y),
0 & 0 e

the a-potential of the continuous additive functional f(; % 1p.(By) ds for the re-
flected Brownian motion in D. We deduce from (21) and (23) that for ¢ € (0, &g,

x € D,
‘”(x)| / c—+/ “Tc+apl.

Therefore, u®*¢ is uniformly bounded in D for ¢ € (0, g9]. From the continuity
of the density p of B, (21) and (23), it is easy to deduce that u®* converges as &
decreases to O to the a-potential of /, the local time on 9 D:

W (x) = E, [ f e dzs} - / Vs e / o (dy) ps(x, y).
0 0

Furthermore this convergence is uniform in D. Notice also that the continuity of
the density p implies the uniform continuity of * and u®*¢ for & € (0, 9] on D .

Because L%? depends only on the spatial motion W, the three other compo-
nents of the Brownian snake, that is R, J and K doesn’t play any role in what
follows. However we shall keep the notation defined in section 2. Let x € E with
first component x € D.
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Now we compute / = Nz[L%* L‘;’s/] and show it converges to a limit as ¢ and
¢’ decrease to 0. We have

o o , o s /
I'=Nz UO dL?"S/ def’S}wLNg [/0 dL?“/O de,"f]
s

The time reversal property of the Itd measure and the properties of N; readily imply
that the latter itself enjoys the same invariance property. In particular the two terms
of the right member are equal. From the Markov property of the Brownian snake
(see [12]), we deduce that

o
I =2N; [ /0 Ao B (15 ]} .

K

We deduce from proposition 2.1 of [13] that for w € Wk,
! ;- ’
E*w[Lg’g 1= Zf dt Nw(l)[(%_m Lg’g 1,
0
where ¢ is the lifetime of w. Therefore using formula (3) we get that

/ o 1 /
Ne[L&®] = Eg [ / ™ —1p,, (By) ds} = u (x).
0 € '
Thus, for w € Wy,
’ { _ ’

EZ[Lyf]= 2/0 dt e " u®t (W()). (32)

Using (3) again, we get
o0 l u ,
I = 4[ du E, [e_““ - IDS(BM)/ dt e " u** (B,)}
0 € 0

=4E, |:/oodt e u“’g(B,)u“’E,(Bt)] . (33)
0

Since the function u® ¢ are uniformly bounded and converge as ¢ | 0, we deduce
form dominated convergence that I converge as ¢ and &’ decrease to 0. This implies
that L3¢ converge in L2(N;).

Now we use standard techniques to prove the a.e. convergence of Ly fors > 0
(see [13] p. 402). For s > 0, we set

M; = LY + B [LgF].

The process M® = (MZ,s > 0) is continuous N;-a.e. thanks to the continuity of
u®?® and (32). Since LE® € L'(N;) (recall that Nz [L%?] = u**(x)), we deduce
from the Markov property of the Brownian snake that M¢ is a continuous martin-
gale under N;. Notice that MZ, = L$® converges in L?(N;) as ¢ | 0. From the
maximal Doob inequality, we get for § > 0,

N; |:sup ME— m?

s>0

1 ,
> 5} < N [(L%€ — L%)2).
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In particular M# converges to a continuous martingale M = (M;,s > 0) and
there exists a sequence (g, k > 1) decreasing to 0, such that Njz-a.e. limg_,
sup,_ o | Ms* — MS| = 0. Because of the uniform convergence of u*¢, we deduce
that N;z-a.e. forall s > 0, L%k converge to a limit

Is
LY = M — 2/ dt e " u*(Wy(1)). (34)
0

Therefore, the process (LY,s > 0) is a continuous additive functional of the
Brownian snake.
The measures dLy** on Rt converge weakly to dL¢. The function f,/(s) =

e@=)% defined on R* is continuous and bounded for any o’ > 0, N;-a.e. We

deduce that the measure dL?,’g = fy(s)dLY® converges weakly to dL‘S"/ =
Jor (s)d LY. We write L for LY. The first part of the lemma is proved.

Let F be a nonnegative continuous function defined on W;. Assume F is
bounded from above by a. From (3), we have

N; [/0 F(Ws)dL?’Sk} =E; [/oo F(©W)eou 1 1p,, (B.) dui| . (35
0 0 Ek

From theorem 7.2 of [16], we get that the right member converges, as ¢ decreases

to 0, to
o0
E; [/ F(@®)eau dlu:|.
0

To prove the convergence of N; [foa F(WS)dL?’g"] to N; [fog F(WS)de,‘],

using Fatou’s lemma with F and a — F, we see it is enough to check that N3 [Lg’sk ]
converges to Nz [L%].
We have from the convergence of u*-¢ that

Jim Ne [L55] = lim ™ () = u*(x).
Thanks to the upper bound of u*-¢, we deduce from (32) by dominated convergence

that N; [E:I/ [Lo ®*1] converge to N;[2 Jo>dt e u®*(Wy(r)].
Notice that for s > 0, we have from (34)

)
N; [L2] = Ni[Moo] = N;[L9] + N; [2/ dt e u"‘(WS(t)):|. (36)
0

Using the law of ¢, under the It6 measure, we have

Ls o0 1
e [2/ dre “Q(W"(t))] =2 [ BB =
0 0 TS
Z/wefax/grE [ OI(B )] 1 efrz/z d
= u r,
0 i AV
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where we set r = t/./s. From dominated convergence, using the continuity of u*

and the continuity of the path B, we see thatlim;_, g N;z[2 fo Sdt e ¥ u* (Wi (1))] =
u®(x). Using Fatou’s lemma we get

Nz[L%] < lim inf Ng[L%%]
k—o00
= lim Ni[L%®*] — lim Ng[E¥, [L%%]]
k— 00 k—00 s

e_’2/2 dr.

o
1
=u*(x) -2 e_“ﬁrE[u“B - )]
(x) fo L% (B )] —=
We see that limg_, o N3z [L$] = 0. Therefore we deduce from equation (36) that

Ls
Nz [LY] = lin%)Ng |:2/ dt e u“(Ws(t)):| = u®(x).
§— 0

As we said, this implies the convergence of Nj [ Ig F (WS)dL?"S"] to
N; [ I F(WX)dL‘j,‘]. From (35), we deduce that

N; [/g F(W,)e % dLS] =E; [/OO F(O@W)eou dlu] )
0 0

This hold for any bounded continuous function F'. By monotone class theorem, this
holds also for all nonnegative measurable function F. By monotone convergence,
let « | O to prove the end of the lemma.

9.5. Proof of lemmas 6.5 and 6.6
Proof of lemma 6.5. Since g € C>*(3D), we deduce from propositions 9.10 and
9.12 that £, [g(B,D) 6_9”’] belongs to C%%(D) and solve (31) with f = 0. Since
™
ug is bounded, we get from proposition 9.11, that E, |:/ Up (BS)2 e 08 dsi|
0

belongs to c%1(D) N C%D). From (13), we deduce that ug itself belongs to
Cc%1(D). Using proposition 9.11 and (13) again, we get that uy belongs to
Cz""(D). We see from (13), we need to check the regularity of h(x) =

™
E, |:f Up (Bs)2 e 08 dsj| on d D to end the proof of this lemma.
0
Notice that

h(x) = H(x) — Ex [H(By,)e ],

o0
where H(x) = E, [/ ug(Bs)2 e 0 ds:|. Since ug is bounded we have, thanks
0

to proposition 9.8 that H belongs to C!(D).
The proof will be complete, once we prove that E, [H (Bep) e_etD] belongs to
C%1/2(D). Indeed, from (13), we then will get that ug € C%'/2(D). This in turn,
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will imply thanks to proposition 9.12, that & € Cc2¥ (D), with &’ = min(a, %).
From (13), we will deduce that ug € Cz""/(D).

To prove that E, [H(B;,) e ?™] € C®V2(D), we will check that if g €
C'(3D), then the function w(x) = E [g(By,) e ?™] belongs to C%/2(D). No-
tice B can be replaced by a Brownian motion in R¢, say B’, in the definition of w.

Let D(x) = {y € R?; y +x € D}, and tp(y) = inf{r > 0, B/ & D(x)} the exit
time of D(x) for B’. Since g € C'(3D), we have for x, y € D,

w(x) = w)| = [Bo [g(By,,) e™"20 ] — B [g(By,,, e

< cEy [ B;D(x) — BQD(” H + cEo [|TD(x) - TD(y)H
12
= o [(B;mx) - B;my))z] + cEo HTD(X) B rD(y)”

¢Eo [|tpe) — T[] + ¢Bo [|tbe) — o]
12

IA

IA

cEo [|tp@) — Ty ]

since sup,.p Eoltp(y)] = sup,p E;[tp] < oo. This last inequality is a conse-
quence of propositions 9.11 and 9.12 with & = 0, ¢ = 0 and f = 1, so that the
function F(z) = E.[tp] belongs to C>! (D). Using the strong Markov property of
B attime T = Tp(x) A Tp(y), We get

Eo [|tpe) — tow|] = Eo [Eg, [tpe) + T ]]

< sup E;[zp]
z€D;d(z,dD)<|x—y|

<clx—yl,

because the function F(z) = E [tp] b_elongs to C1(D). In conclusion there exists
a constant ¢ > 0 such that forx, y € D,

lwx) —w®)| <cylx =yl
Thatis w € C%1/2(D). o

Proof of lemma 6.6. By symmetry we get that wy is radial. For y € B(0, rp), we
have wy (xo —ronx, +y) = h(|yl), and & is defined on [0, o] and of class C?.The
function 4 is the unique nonnegative solution of

d—1
W'(r) + ——h (r) = 4h(r)> forr € (0, ro), (37)
r
W(©0)=0 and h(rg) = N.
From the maximum principle, we get that for r € (0, rol, y € B(xo — rony,, 1),

wy(y) < max wy (2) = h(r).
2€dB(xo—Tr0nxy,")

This implies the function % is increasing over [0, r9]. Since, from the maximum
principle, wy (xo — rohy,) > 0 we have h > 0.
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Lett = inf{r € (0, rg]; h”(r) < 0}, with the convention inf @ = +o00. We first
assume that r > 0. If ¢ < rg, from the continuity of 2" we deduce that #”(t) = 0
and from (37) that //(r) > 0. By differentiating (37), we get that 2" (¢) > 0. This
contradict the fact 2" (t — &) > h”(¢) = 0 for any ¢ > 0 small enough. Hence we
have either t = 0 or t = +o00.

Ift = 0, thereis asequence (zx > 0, k > 1) decreasing to O such that 2" () < 0.
Since i € C%([0, ro]), we get i (0) < 0 by continuity. Since 2’ > 0 and 4’(0) = 0,
this implies that A”(0) = 0 and lim, o A'(r)/r = 0. Let r | 0 in (37) to get
h(0) = 0, which is absurd since wy > 0in B(xg — rony,, ro). Therefore, we have
t = 4o00.

In conclusion, we get that A” (r) > 0 on (0, ro]. This implies that

rh"(r) +h'(r) = '(r) on [0, ro].
By integration we deduce that

N — h(0)

ro

h'(ro) >

Notice that wy is bounded from above by the maximal solution wp,x of Au = 4y?
in B(xp — rony,, ro). This implies

h(0) = wn (xg — rO”xo) < Wmax (xp — rOnxo) = €0,

where the constant ¢y depends only on o and d. This end the proof of the lemma
since h'(rg) = ¢y (x0). O
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