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1. Introduction

The pure aggregation framework focuses on the best way to combine estima-
tors (seen as deterministic functions) in order to attain nearly the best risk of
these estimators and in order to quantify the residual term. Given N estimators
fk, 1 ≤ k ≤ N and a sample X = (X1, . . . , Xn) from the model f , the problem

is to find an aggregated estimate f̂ which performs nearly as well as the best
fλ, λ ∈ U , where:

fλ =
N∑

k=1

λkfk,

and U is a certain subset of RN (we assume that linear combinations of the
estimators are valid candidates). The performance of the estimator is measured
by a loss function L. Common loss functions include Lp distance (with p = 2 in
most cases), Kullback-Leibler or other divergences, Hellinger distance, etc. The

aggregation problem can be formulated as follows: find an aggregate estimator f̂
such that for some C ≥ 1 constant, f̂ satisfies an oracle inequality in expectation,
i.e.:

E

[
L(f, f̂)

]
≤ Cmin

λ∈U
L(f, fλ) +Rn,N , (1)
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or in deviation, i.e. for ε > 0 we have with probability greater than 1− ε:

L(f, f̂) ≤ Cmin
λ∈U

L(f, fλ) +Rn,N,ε, (2)

with remainder terms Rn,N and Rn,N,ε which do not depend on f or fk, 1 ≤
k ≤ N . If C = 1, then the oracle inequality is sharp.

Historically, three types of problems were identified depending on the choice
of U . In the model selection problem, the estimator mimics the best estimator
amongst f1, . . . , fN , that is U = {ek, 1 ≤ k ≤ N}, with ek = (λj , 1 ≤ j ≤
N) ∈ R

N the unit vector in direction k given by λj = 1{j=k}. In the convex
aggregation problem, fλ are the convex combinations of fk, 1 ≤ k ≤ N , i.e. U
is the simplex Λ+ ⊂ R

N with:

Λ+ = {λ = (λk, 1 ≤ k ≤ N) ∈ R
N , λk ≥ 0 and

∑
1≤k≤N

λk = 1}. (3)

Finally in the linear aggregation problem, U = R
N is the entire linear span of the

initial estimators. Recently, these problems were generalized to �q-aggregation
in [29], who define it as aggregation with U = �q(tn), i.e. a ball of radius tn > 0
in �q-norm, 0 ≤ q ≤ 1.

Early papers usually consider the L2 loss in expectation as in (1). For the
regression model with random design, optimal bounds for the L2 loss in ex-
pectation for model selection aggregation was considered in [31] and [30], for
convex aggregation in [20] with improved results for large N in [33], and for
linear aggregation in [28], where knowledge of the density of the design is re-
quired. These results were extended to the case of regression with fixed design
for the model selection aggregation in [15] and [16], and for affine estimators in
the convex aggregation problem in [14]. A unified aggregation procedure which
achieves near optimal loss for all three problems simultaneously was proposed
in [8].

For density estimation, first results include [10] and [32] who independently
considered the model selection aggregation under the Kullback-Leibler loss in
expectation. For positive, integrable functions p, q, let D (p‖q) denote the gen-
eralized Kullback-Leibler divergence given by:

D (p‖q) =
∫

p log(p/q)−
∫

p+

∫
q. (4)

This is a Bregman divergence, introduced in [7], thereforeD (p‖q) is non-negative
and D (p‖q) = 0 if and only if a.e. p = q. The Kullback-Leibler loss of an estima-

tor f̂ is given byD (f ||f̂). In [10] and [32], the authors introduced the progressive
mixture rule to give a series of estimators which verify oracle inequalities with
optimal remainder terms. They introduced the sequential risk for estimating f
with weights δ:

Rseq(f, n, δ) =
1

n+ 1

n∑
i=0

E

[
D(f ||f̂δ,i)

]
,
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where the estimators f̂δ,i depend only on the first i observations. They proved
that there exists a progressive mixture procedure associated to the weights δ∗seq
such that

Rseq(f, n, δ
∗
seq) ≤ inf

j≥1

(
1

n+ 1
log

1

πj
+Rseq(f, n, δj)

)
.

This method was later generalized as the mirror averaging algorithm in [21]
and applied to various problems. Corresponding lower bounds which ensure the
optimality of this procedure were shown in [22]. The convex and linear aggre-
gation problems for densities under the L2 loss in expectation were considered
in [26].

While a lot of papers considered the expected value of the loss, relatively few
papers address the question of optimality in deviation, that is with high proba-
bility as in (2). For the regression problem with random design, [1] shows that
the progressive mixture method is deviation sub-optimal for the model selection
aggregation problem, and proposes a new algorithm which is optimal for the L2

loss in deviation and expectation as well. Another deviation optimal method
based on sample splitting and empirical risk minimization on a restricted do-
main was proposed in [23]. For the fixed design regression setting, [25] considers
all three aggregation problems in the context of generalized linear models and
gives constrained likelihood maximization methods which are optimal in both
expectation and deviation with respect to the Kullback-Leibler loss. More re-
cently, [13] extends the results of [25] for model selection by introducing the
Q-aggregation method and giving a greedy algorithm which produces a sparse
aggregate achieving the optimal rate in deviation for the L2 loss. More general
properties of this method applied to other aggregation problems as well are
discussed in [12].

For the density estimation, optimal bounds in deviation with respect to the
L2 loss for model selection aggregation are given in [3]. The author gives a
non-asymptotic sharp oracle inequality under the assumption that f and the
estimators fk, 1 ≤ k ≤ N are bounded, and shows the optimality of the remain-
der term by providing the corresponding lower bounds as well. The penalized
empirical risk minimization procedure introduced in [3] inspired our current
work. Here, we consider a more general framework which incorporates, as a spe-
cial case, the density estimation problem. Moreover, we give results in deviation
for the Kullback-Leibler loss instead of the L2 loss considered in [3].

The spectral density model is equivalent to estimating the covariance func-
tion cov(X·, X·+h) for all integers h from a stationary Gaussian sequence. It
can be seen as the estimation of a Toeplitz covariance operator and has many
applications.

Linear aggregation of lag window spectral density estimators with L2 loss
was studied in [11]. The method we propose is more general as it can be
applied to any set of estimators fk, 1 ≤ k ≤ N , not only kernel estima-
tors. Moreover, we establish oracle inequalities for the model selection type
of risk, which has a less aggressive target than the linear aggregation risk (it
aims the minimal risk over a finite choice instead the minimal risk over all
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linear combinations), but leads to better performance than thelinear aggrega-
tion due to smaller aggregation price. Also, this paper concerns optimal bounds
in deviation for the Kullback-Leibler loss instead of the L2 loss in expecta-
tion.

We now present our main contributions. We propose aggregation schemes
for the estimation of probability densities on R

d and the estimation of spectral
densities of stationary Gaussian sequences. We prove sharp oracle inequalities
in deviation for the Kullback-Leibler loss. Indeed, for initial estimators fk, 1 ≤
k ≤ N , we propose an aggregate estimator f̂ that verifies the following: for
every f belonging to a large class of functions F , with probability greater than
1− exp(−x) for all x > 0,

D
(
f‖f̂

)
≤ min

1≤k≤N
D (f‖fk)+Rn,N,x.

We propose two methods of aggregation for non-negative estimators, see Propo-
sitions 2.4 and 2.6. Contrary to the usual approach of giving an aggregate es-
timator which is a linear or convex combination of the initial estimators, we
consider an aggregation based on a convex combination of the logarithms of
these estimators. The aggregate estimators f̂ = fD

λ̂
for the probability density

model and f̂ = fS
λ̂

for the spectral density model with λ̂ = λ̂(X1, . . . , Xn) ∈
Λ+ maximize a penalized maximum likelihood criterion. The exact form of
the convex aggregates fD

λ̂
and fS

λ̂
will be precised in later sections for each

setup.

The first method concerns estimators with a given total mass and produces
an aggregate fD

λ̂
which has also the same total mass. This method is particularly

adapted for density estimation as it provides an aggregate which is also a proper
density function. We use this method to propose an adaptive nonparametric
density estimator for maximum entropy distributions of order statistics in [9].
The second method, giving the aggregate fS

λ̂
, does not have the mass conserving

feature, but can be applied to a wider range of statistical estimation problems,
in particular to spectral density estimation. We show that both procedures give
an aggregate which verifies a sharp oracle inequality with a bias and a variance
term. Indeed, the bias term is new in oracle inequalities. It appears from the
estimation of linear functionals of f and not from estimation of f itself. In most
cases, this bias is of order 1/n or smaller under mild smoothness assumptions on
f and on the estimators (fk, 1 ≤ k ≤ N). The smoothness parameter does not
interfere at all with the rates, it only appears in the constants of the remaining
term.

When applied to density estimation, our results provide sharp oracle inequal-
ities with the optimal remainder term of order log(N)/n. Theorem 3.1 proposes

an aggregate estimator f̂D
∗ such that we have, for any x > 0, with probability

higher than 1− exp(−x):

D
(
f‖f̂D

∗

)
≤ min

1≤k≤N
D (f‖fk)+

β(logN + x)

n
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where β is an explicit constant depending only on the infinity norm of the
logarithms of f and fk, 1 ≤ k ≤ N . In this case, the empirical measure provides
an unbiased estimator of linear functionals of f and there is no bias term.

In the case of spectral density estimation, we need to assume a small amount
of smoothness for the logarithm of the true spectral density and of the estima-
tors. We require that there exists some r > 1/2 such that the logarithms of the
functions belong to the periodic Sobolev space Wr. We show that this also im-
plies that the spectral density itself belongs to Wr and see that our assumption
is slightly more restrictive than the usual assumption in the literature: that f
belongs to W1/2. Theorem 3.5 proposes an aggregate estimator f̂S

∗ such that,
for any x > 0, with probability higher than 1− exp(−x):

D
(
f‖f̂S

∗

)
≤ min

1≤k≤N
D (f‖fk)+β′ log(N) + x

n
+

α

n

where β′ and α are constants which depend only on the regularity and the
Sobolev norm of the logarithms of f and fk, 1 ≤ k ≤ N .

To show the optimality in deviation of the aggregation procedures, we give the
corresponding tight lower bounds as well, with the same remainder terms, see
Propositions 4.2 and 4.3. This complements the results of [22] and [3] obtained
for the density estimation problem. In [22] the lower bound for the expected
value of the Kullback-Leibler loss was shown with the same order for the re-
mainder term, while in [3] similar results were obtained in deviation for the L2

loss. The proof of Proposition 4.2 is quite close to the proof of lower bounds
in expectation in [22]. However, this construction based on the Haar basis does
not check the additional smoothness assumptions in Proposition 4.3. A new
construction of test functions f1, ..., fN and a new proof for the spectral density
model can be found in Section 5.

In conclusion, we introduce two aggregated procedures based on penalized
maximum likelihood criterion for exponential family of functions and show
their sharp asymptotic optimality in deviation with respect to their Kullback-
Leibler risk. The progressive mixture rule is a strong competitor of our pro-
cedure for the probability density model: it satisfies an oracle inequality in
expectation but with far less restrictive assumptions and it behaves better nu-
merically in our brief examples, for large enough sample sizes (larger than 200).
No such competitor exists for the spectral density model that we also treat
here.

The rest of the paper is organised as follows. In Section 2 we introduce the
notation and give the basic definitions used in the rest of the paper. We present
the two types of convex aggregation method for the logarithms in Sections 2.1
and 2.2. We give a general sharp oracle inequality in deviation for the Kullback-
Leibler loss for each method and setup. In Section 3 we apply the methods for
the probability density together with numerical implementation and the spectral
density estimation problems. The results on the corresponding lower bounds can
be found in Section 4 for both problems. Proofs were gathered in Section 5. We
summarize the properties of Toeplitz matrices and periodic Sobolev spaces in
the Appendix.
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2. Aggregation procedures for the Kullback-Leibler divergence

In this section, we propose two convex aggregation methods, suited for models
submitted to different type of constraints: non-negative functions with fixed
given total mass and non-negative functions without mass restriction. First, we
introduce the setups and the aggregation procedures suited for each type of
constraint. Then, we state non-asymptotic oracle inequalities for the Kullback-
Leibler divergence in a general form.

Let h : Rd → R+ be a reference probability density with support H := {x ∈
R

d : h(x) > 0}. Note that H can be compact or not. We consider the set G

G = {f : Rd → R+, measurable : ‖ log(f/h)‖∞ < +∞},

with the convention that log(0/0) = 0. Notice that any function in the set G is
integrable. Moreover, we have that ‖ log(f/h)‖∞ < ∞ implies that necessarily f
and h have the same support. Thus, the Kullback-Leibler divergence D (f ′‖f),
defined in (4), is finite for any functions f ′, f belonging to G.

We consider a probabilistic model P = {Pf ; f ∈ G}, with Pf a proba-
bility distribution depending on f . We assume that we have a sample X =
(X1, . . . , Xn), n ∈ N

∗ with distribution Pf . In the sequel, the examples we con-
sider are models Pf that correspond either to a probability density model or to
a spectral density model.

More precisely, the probability density model corresponds to a sample of
i.i.d. random variables with common probability density functions (pdf) f . The
random variables X = (X1, ..., Xn) has joint pdf f⊗n(x) = f(x1) · ... · f(xn),
with x = (x1, ..., xn) in (Rd)n.

The spectral density model corresponds to a sample issued from a station-
ary Gaussian sequence with spectral density function (sdf) f . Let 1/(2π)1[−π,π]

be the reference density and (Xk)k∈Z be a stationary, centered Gaussian se-
quence with covariance function γj = Cov (Xk, Xk+j), for j ∈ Z. Under the
standard assumption that

∑∞
j=0 |γj | < +∞, the spectral density f associated

to the process is the even function defined on [−π, π] whose Fourier coefficients
are γj :

f(x) =
∑
j∈Z

γj
2π

eijx =
γ0
2π

+
1

π

∞∑
j=1

γj cos(jx), x ∈ [−π, π].

Note that, γ0 =
∫ π

−π
f(x)dx.

Now, suppose we have (fk, 1 ≤ k ≤ N), N distinct estimators belonging
to G. We propose two aggregation methods based on these estimators and the
available sample, that behave, with high probability, as well as the best initial
estimator fk∗ in terms of the Kullback-Leibler divergence, where k∗ is defined
as:

k∗ = argmin
1≤k≤N

D (f‖fk) . (5)

The first aggregation method concerns setups where f as well as (fk, 1 ≤
k ≤ N) have a given total mass supposed equal to 1 without loss of generality:
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∫
f =

∫
f1 = ... =

∫
fN = 1. This is the case in both the probability density

model and in the spectral density model with given variance γ0.
We set the classical notation for nonparametric exponential family of func-

tions:
f(x) = et(x)−ψ · h(x), fk(x) = etk(x)−ψk · h(x) x ∈ R

d, (6)

where ψ =
∫
h log(h/f) and t = ψ + log(f/h), giving that

∫
t h = 0 and that

ψ = log(
∫
et h) is a normalization constant (when needed). Similarly for tk and

ψk.
We proceed in this case by aggregating (tk, 1 ≤ k ≤ N) into a convex combi-

nation

tλ =

N∑
k=1

λktk, with λ in the simplex Λ+,

and by constructing

fD
λ (x) = etλ(x)−ψλ · h(x), with ψλ = log

(∫
etλ · h

)
,

where ψλ is the normalization constant.
The second aggregation method concerns setups where f and (fk, 1 ≤ k ≤

N) are non-negative with arbitrary total mass, e.g. the more realistic spectral
density model with unknown variance. In this case, we proceed by aggregating
log(fk/h) =: gk into a convex combination

gλ =

N∑
k=1

λkgk, with λ in the simplex Λ+,

and leave the resulting function unnormalized:

fS
λ (x) = egλ(x) · h(x).

It is easy to see that the normalized fS
λ /

∫
fS
λ is actually the same as fD

λ .
However, the criteria we estimate and penalize in order to define the optimal
coefficients λ̂D

∗ and λ̂S
∗ are different and the two aggregation methods lead to

two different estimators.
With previous notation, we check that, for all f in G:∫
f ≤ e‖log(f/h)‖∞ , |ψ| ≤ ‖ log(f/h)‖∞ and ‖ t‖∞ ≤ 2 ‖ log(f/h)‖∞ . (7)

Remark 2.1. At this point we notice that the assumption that f belongs to
the class G is quite restrictive. Indeed, assuming e.g. that h is the indicator
function on [0,1] implies that there exist two constants 0 < c ≤ C such that
c ≤ f(x) ≤ C for all x in [0,1]. However, if f tends to 0 in the probability density
model, [32] suggested data augmentation to raise the function above 0. That
means mixing the data with an auxiliary sample drawn from the distribution ϕ
and use (fk + ϕ)/2 instead of fk. We may choose ϕ uniformly distributed over
a compact set that covers all data.
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Moreover, the functions f and fk, 1 ≤ k ≤ N may be unbounded, or tend to
0, through the reference probability density h. Consider e.g. h(x) = (1− α)/xα

for x in [0,1] and some α between 0 and 1, or an exponential distribution on
non-negative real numbers, or a Gaussian distribution on the real line. These
cases are not covered by the L2 aggregation procedure.

We fix some additional notation. We denote by In an integrable estimator
of the function f measurable with respect to the sample X = (X1, . . . , Xn).
The estimator In may be a biased estimator of f as is the periodogram in the
spectral density model for example. We note f̄n the expected value of In:

f̄n = Ef [In].

For a measurable function p on R
d and a measure Q on R

d (resp. a measurable
function q on R

d), we write 〈p,Q〉 =
∫
p(x)Q(dx) (resp. 〈p, q〉 =

∫
pq) when the

integral is well defined. We shall consider the L2(h) norm given by ‖p‖L2(h) =(∫
p2h

)1/2
.

We describe now the implementation using data of our two aggregation meth-
ods of the estimators (fk, 1 ≤ k ≤ N) and first results. For each of the two previ-
ously defined aggregation methods, we see how the Kullback-Leibler discrepance
between the estimated f and the convex combination fλ (which is either fD

λ or
fS
λ ) can be reduced to a linear functional of f . Such linear functionals can be
estimated with fast rates in a biased or, sometimes, an unbiased way. We pe-
nalize this estimator to get the criterion Hn(λ), a concave function of λ to be
maximized over the simplex Λ+. The resulting argument of this optimization,
λ̂∗, provides our aggregated procedure f̂∗ = fλ̂∗

that is optimal in deviation.
Proofs are structured in two main steps, for each aggregation method. First,

f as well as fk, 1 ≤ k ≤ N belong to G and Lemmas 2.3 and 2.5 show that the
penalized criterion Hn(λ) has a unique maximizer provided that {tk, 1 ≤ k ≤
N}, respectively {gk, 1 ≤ k ≤ N}, are linearly independent. Moreover Hn(λ) is
proved strongly concave around its maximum.

Next, we assume additionally that ‖ log(fk/h)‖∞ are uniformly bounded by
some constant K > 0 for all 1 ≤ k ≤ N , see Remark 2.1 on such constraint. We
state in the following Propositions 2.4 and 2.6 oracle inequalities in deviation
under quite general form. Indeed, the remainder term in these inequalities is
decomposed for each method into a bias term for estimating the linear functional
〈·, f〉 of f and the maximum of N stochastic terms which are centered at second
order. No additional smoothness assumptions are required here.

2.1. Non-negative functions with given total mass

In this Section, we shall consider non-negative functions with mass 1, but what
follows can readily be adapted to functions with any given total mass, such as
spectral density function with given variance.

We want to estimate f based on the estimators fk ∈ G for 1 ≤ k ≤ N which
we assume to be non-negative with mass 1. Recall the representation (6) of f
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and fk. For λ ∈ Λ+ defined by (3), recall that the aggregated estimator fD
λ is

given by the convex combination of (tk, 1 ≤ k ≤ N):

fD
λ = exp (tλ − ψλ) h with tλ =

N∑
k=1

λktk and ψλ = log

(∫
etλ h

)
.

Notice that fD
λ is such that ‖ tλ ‖∞ ≤ max1≤k≤N ‖ tk ‖∞ < +∞, that is fD

λ ∈ G.
The Kullback-Leibler divergence for the estimator fD

λ of f is given by:

D
(
f‖fD

λ

)
=

∫
log

(
f/fD

λ

)
f = 〈t− tλ, f〉+ψλ − ψ. (8)

Minimizing the Kullback-Leibler distance is thus equivalent to maximizing λ �→
〈tλ, f〉−ψλ. Notice that 〈tλ, f〉 is linear in λ and the function λ �→ ψλ is convex
since ∇2ψλ is the covariance matrix of the random vector (tk(Yλ), 1 ≤ k ≤ N)
with Yλ having probability density function fD

λ . Let In be a non-negative esti-
mator of f based on the sample X = (X1, . . . , Xn), which may be the empirical
measure or a biased estimator with f̄n = Ef [In]. We estimate the scalar product
〈tλ, f〉 by 〈tλ, In〉. To select the aggregation weights λ, we consider on Λ+ the
penalized empirical criterion HD

n (λ) given by:

HD
n (λ) = 〈tλ, In〉−ψλ − 1

2
penD(λ),

with penalty term:

penD(λ) =

N∑
k=1

λk D
(
fD
λ ‖fk

)
=

N∑
k=1

λkψk − ψλ.

Remark 2.2. The penalty term in the definition of HD
n can be multiplied by any

constant θ ∈ (0, 1) instead of 1/2. The choice of 1/2 is optimal in the sense that
it ensures that the constant exp(−6K)/4 in (14) of Proposition 2.4 is maximal,
giving the sharpest result.

The penalty term is always non-negative and finite. Notice that HD
n simplifies

to:

HD
n (λ) =

N∑
k=1

λk ·
(
〈tk, In〉−

1

2
ψk

)
− 1

2
ψλ, (9)

which is obviously concave function of λ, as ψλ is convex in λ.
Lemma 2.3 below asserts that the function HD

n , defined by (9), admits a
unique maximizer on Λ+ and that it is strictly concave around this maximizer.

Lemma 2.3. Let f and (fk, 1 ≤ k ≤ N) be non-negative functions with mass
1, elements of G such that (tk, 1 ≤ k ≤ N) are linearly independent. Then there

exists a unique λ̂D
∗ ∈ Λ+ such that:

λ̂D
∗ = argmax

λ∈Λ+

HD
n (λ). (10)
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Furthermore, for all λ ∈ Λ+, we have:

HD
n (λ̂D

∗ )−HD
n (λ) ≥ 1

2
D

(
fD
λ̂D
∗
‖fD

λ

)
. (11)

Using λ̂D
∗ defined in (10), we set:

f̂D
∗ = fD

λ̂D
∗
, t̂D∗ = tλ̂D

∗
and ψ̂D

∗ = ψλ̂D
∗
. (12)

We show that the convex aggregate estimator f̂D
∗ verifies almost surely the

following non-asymptotic inequality with a bias and a variance term.

Proposition 2.4. Let K > 0. Let f and (fk, 1 ≤ k ≤ N) be non-negative
functions with mass 1, elements of G such that (tk, 1 ≤ k ≤ N) are linearly
independent and max1≤k≤N ‖ tk ‖∞ ≤ K. Let X = (X1, . . . , Xn) be a sample
from the model Pf . Then the following inequality holds:

D
(
f‖f̂D

∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek),

with the functional Bn given by, for � ∈ L∞(R):

Bn(�) =
〈
�, f̄n − f

〉
. (13)

and the function V D
n : Λ+ → R given by:

V D
n (λ) =

〈
In − f̄n, tλ − tk∗

〉
−e−6K

4

N∑
k=1

λk ‖ tk − tk∗ ‖2L2(h) . (14)

The bias term Bn is new in the aggregation results. We stress the fact that
it is a bias for estimating the linear functional 〈�, f〉 appearing in the definition
of the risk and not a bias for estimating the function f . The bias for linear
functionals can be made O(1/n), and thus negligible in front of the variance,
under very mild assumptions on the function f .

Obviously, when f is a pdf, we plug the empirical measure in 〈�, f〉 and the
resulting estimator n−1

∑n
i=1 �(Xi) is unbiased.

2.2. Non-negative functions

In this Section, we shall consider non-negative functions. We want to estimate
a function f ∈ G based on the estimators fk ∈ G for 1 ≤ k ≤ N . Since most of
the proofs in this Section are similar to those in Section 2.1, we only give them
when there is a substantial new element. Recall the representation (6) of f and
fk. For λ ∈ Λ+ defined by (3), we consider the aggregate estimator fS

λ given by
the convex aggregation of log(fk/h) =: gk, for 1 ≤ k ≤ N :

fS
λ = egλ ·h with gλ =

N∑
k=1

λkgk. (15)
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Notice that ‖ log(fS
λ /h)‖∞ ≤ max1≤k≤N ‖gk ‖∞ < +∞, that is fS

λ ∈ G. The
Kullback-Leibler distance for the estimator fS

λ of f is given by:

D
(
f‖fS

λ

)
=

∫
f log

(
f/fS

λ

)
−

∫
f +

∫
fS
λ = 〈g − gλ, f〉−

∫
f +

∫
fS
λ . (16)

By our assumptions f and fS
λ belong to G, thus D

(
f‖fS

λ

)
< ∞ for all λ ∈ Λ+.

Minimization of the Kullback-Leibler distance given in (16) is therefore equiv-
alent to maximizing λ �→ 〈gλ, f〉−

∫
fS
λ . Notice that 〈gλ, f〉 is linear in λ and

the function λ �→
∫
fS
λ is convex, since the Hessian matrix ∇2

∫
fS
λ is given by:[

∇2
∫
fS
λ

]
i,j

=
∫
gigjf

S
λ , which is positive-semidefinite. As In is a non-negative

estimator of f based on the sample X = (X1, . . . , Xn), we estimate the scalar
product 〈gλ, f〉 by 〈gλ, In〉. Here we select the aggregation weights λ based on
the penalized empirical criterion HS

n (λ) given by:

HS
n (λ) = 〈gλ, In〉−

∫
fS
λ − 1

2
penS(λ),

with the penalty term:

penS(λ) =

N∑
k=1

λk D
(
fS
λ ‖fk

)
=

N∑
k=1

λk

∫
fk −

∫
fS
λ .

The choice of the factor 1/2 for the penalty is justified by arguments similar to
those given in Remark 2.2. The penalty term is always non-negative and finite.
Notice that HS

n simplifies to:

HS
n (λ) =

N∑
k=1

λk

(
〈gk, In〉−

1

2

∫
fk

)
− 1

2

∫
fS
λ . (17)

Thus, the new criterion HS
n is also the sum of a linear term in λ and of a concave

term −(1/2)
∫
fS
λ . The proofs are very similar to those in the previous section,

for this reason.
Lemma 2.5 below asserts that the function HS

n admits a unique maximizer
on Λ+ and that it is strictly concave around this maximizer.

Lemma 2.5. Let f and (fk, 1 ≤ k ≤ N) be elements of G such that (gk, 1 ≤
k ≤ N) are linearly independent. Let HS

n be defined by (17). Then there exists

a unique λ̂S
∗ ∈ Λ+ such that:

λ̂S
∗ = argmax

λ∈Λ+

HS
n (λ). (18)

Furthermore, for all λ ∈ Λ+, we have:

HS
n (λ̂

S
∗ )−HS

n (λ) ≥
1

2
D

(
fS
λ̂S
∗
‖fS

λ

)
. (19)
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Using λ̂S
∗ defined in (18), we set:

f̂S
∗ = fS

λ̂D
∗

and ĝS∗ = gλ̂S
∗
. (20)

We show that the convex aggregate estimator f̂S
∗ verifies almost surely the

following non-asymptotic inequality with a bias and a variance term.

Proposition 2.6. Let K > 0. Let f and (fk, 1 ≤ k ≤ N) be elements of G such
that (gk, 1 ≤ k ≤ N) are linearly independent and max1≤k≤N ‖gk ‖∞ ≤ K. Let
X = (X1, . . . , Xn) be a sample from the model Pf . Then the following inequality
holds:

D
(
f‖f̂S

∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek),

with the functional Bn given by (13), and the function V S
n : Λ+ → R given by:

V S
n (λ) =

〈
gλ − gk∗ , In − f̄n

〉
−e−3K

4

N∑
k=1

λk ‖gk − gk∗ ‖2L2(h) .

3. Applications and numerical implementation

In this section we apply the methods established in Section 2.1 and 2.2 to the
problems of density estimation and spectral density estimation, respectively. By
construction, the aggregate fD

λ of Section 2.1 is more adapted for the density
estimation problem as it produces a proper density function. In this model, we
choose to use the unbiased empirical estimator of the linear functional of f .
Next, Theorem 3.1 makes the remainder term explicit uniformly over pdf’s f
such that ‖ log(f/h)‖∞ ≤ L, for some L > 0. A short numerical study might
inspire the reader for future developments.

For the spectral density estimation problem, the aggregate fS
λ will provide the

optimal results. It is more convenient in this case to plug-in the periodogram In
in order to get a biased estimator 〈�, In〉 of 〈�, f〉. In order to control the bias and
make it negligible with respect to the stochastic term, we assume that log(f/h)
belongs to a Sobolev ellipsoid of smoothness r, for some r > 1/2 arbitrarily close
to 1/2. Note that r is not needed anywhere in the procedure, it only appears in
the constants of the remainder term and does not affect the rate logN/n. We
show that our smoothness assumption implies that

∑
j≥1 j

2rCov (X·, X·+j) ≤ L
which is slightly more restrictive than the usual assumption in spectral density
models that

∑
j≥1 j

2Cov (X·, X·+j) ≤ L, when (Xj , j ∈ Z) is a stationary
Gaussian sequence with spectral density function f .

3.1. Probability density model

Recall that the model {Pf , f ∈ FD(L)} corresponds to i.i.d. random sam-
pling from a probability density f ∈ FD(L), that is the random variable X =
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(X1, . . . .Xn) has density f⊗n(x) =
∏n

i=1 f(xi), with x = (x1, . . . , xn) ∈ (Rd)n.
We consider the following subset of probability density functions, for
L > 0:

FD(L) = {f ∈ G; ‖ tf ‖∞ ≤ L and

∫
f = 1}.

Recall that for any fixed f in G, the function tf := ψ+log(f/h) has the sup-norm
bounded as follows ‖tf‖∞ ≤ 2‖ log(f/h)‖∞ which is finite by assumption. We
refer to Remark 2.1 for a discussion on this assumption. We want to establish
here an oracle inequality uniformly over f which is the reason why we assume
that ‖tf‖∞ is uniformly bounded. This bound does not appear anywhere in the
algorithm, but only in the remainder term that is a price for aggregation of
estimators.

The aggregation procedure involves estimation of linear functionals < �, f >,
for functions � in L1(h). We estimate the probability measure f(x)dx by the
empirical measure In, giving

〈�, In〉 =
1

n

n∑
i=1

�(Xi) (21)

which is an unbiased estimator of 〈�, f〉.
In the following Theorem, we give a sharp non-asymptotic oracle inequality

in probability for the aggregation procedure f̂D
∗ with a remainder term of order

log(N)/n. We prove in Section 4.1 the lower bound giving that this remainder
term is optimal.

Theorem 3.1. Let L,K > 0. Let f ∈ FD(L) and (fk, 1 ≤ k ≤ N) be el-
ements of FD(K) such that (tk, 1 ≤ k ≤ N) are linearly independent. Let
X = (X1, . . . , Xn) be an i.i.d. sample from f and In be defined in (21). Let

f̂D
∗ be given by (12). Then for any x > 0 we have with probability greater than
1− exp(−x):

D
(
f‖f̂D

∗

)
−D (f‖fk∗) ≤ β(log(N) + x)

n
,

with β = 2 exp(6K + 2L) + 4K/3.

Remark 3.2. We can also use the aggregation method of Section 2.2 and consider
the normalized estimator f̃S

∗ = f̂S
∗ /

∫
f̂S
∗ = fD

λ̂S
∗
, which is a proper density

function. Notice that the optimal weights λ̂D
∗ (which defines f̂D

∗ ) and λ̂S
∗ (which

defines f̃S
∗ ) maximize different criteria. Indeed, according to (18) the vector λ̂S

∗
maximizes:

HS
n (λ) = 〈gλ, In〉−

1

2

∫
fS
λ − 1

2

N∑
k=1

λk

∫
fk,

and according to (10) the vector λ̂D
∗ maximizes:
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HD
n (λ) = 〈tλ, In〉−

1

2
ψλ − 1

2

N∑
k=1

λkψk

= 〈gλ, In〉−
1

2
ψλ +

1

2

N∑
k=1

λkψk

= 〈gλ, In〉−
1

2
log

(∫
fS
λ

)
,

where we used the identity gλ = tλ−
∑N

k=1 λkψk for the second equality and the

equality log(
∫
fS
λ ) = log

(∫
etλ−

∑N
k=1 λkψk h

)
= ψλ −

∑N
k=1 λkψk for the third.

That shows that the resulting aggregated estimators are different.

3.2. Spectral density model

In this section we apply the convex aggregation scheme of Section 2.2 to spec-
tral density estimation of stationary centered Gaussian sequences. Let h =
1/(2π)1[−π,π] be the reference density and (Xk)k∈Z be a stationary, centered
Gaussian sequence with covariance function γ defined as, for j ∈ Z:

γj = Cov (Xk, Xk+j).

Notice that γ−j = γj . Then the joint distribution of X = (X1, . . . , Xn) is a
multivariate, centered Gaussian distribution with covariance matrix Σn ∈ R

n×n

given by [Σn]i,j = γi−j for 1 ≤ i, j ≤ n. Notice the sequence (γj)j∈Z is semi-
definite positive.

We make the following standard assumption on the covariance function γ:

∞∑
j=0

|γj | < +∞. (22)

The spectral density function f associated to the process is the even function
defined on [−π, π] whose Fourier coefficients are γj :

f(x) =
∑
j∈Z

γj
2π

eijx =
γ0
2π

+
1

π

∞∑
j=1

γj cos(jx).

Condition (22) ensures that the spectral density is well-defined, continuous and
bounded. It is also even and non-negative as (γj)j∈Z is semi-definite positive.
The function f completely characterizes the model as:

γj =

∫ π

−π

f(x) eijx dx =

∫ π

−π

f(x) cos(jx) dx for j ∈ Z. (23)

For � ∈ L1(h), we define the corresponding Toeplitz matrix Tn(�) of size n×n
by:

[Tn(�)]j,k =
1

2π

∫ π

−π

�(x) ei(j−k)x dx.
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Notice that Tn(2πf) = Σn. Some properties of the Toeplitz matrix Tn(�) are
collected in Section A.1.

We choose the following estimator of f , for x ∈ [−π, π]:

In(x) =
∑
|j|<n

γ̂j
2π

ejx =
γ̂0
2π

+
1

π

n−1∑
j=1

γ̂j cos(jx), (24)

with (γ̂j , 0 ≤ j ≤ n− 1) the empirical estimates of the covariances (γj , 0 ≤ j ≤
n− 1):

γ̂j =
1

n

n−j∑
i=1

XiXi+j . (25)

The function In is a biased estimator, where the bias is due to two different
sources: truncation of the infinite sum up to n, and renormalization in (25) by
n instead of n− j (but it is asymptotically unbiased when n goes to infinity as
condition (22) is satisfied). The expected value f̄n of In is given by:

f̄n(x) =
∑
|j|<n

(
1− |j|

n

)
γj
2π

ejx =
γ0
2π

+
1

π

n−1∑
j=1

(n− j)

n
γj cos(jx).

In order to be able to apply Proposition 2.6, we assume that f and the
estimators f1, . . . , fN of f belongs to G (they are in particular positive and
bounded) and are even functions. In particular the estimators f1, . . . , fN and

the convex aggregate estimator f̂S
∗ defined in (20) are proper spectral densities

of stationary Gaussian sequences.

Remark 3.3. By choosing h = 1/(2π)1[−π,π], we restrict our attention to spec-
tral densities that are bounded away from +∞ and 0, see [24] and [6] for the
characterization of such spectral densities. Note that we can apply the aggrega-
tion procedure to non even functions fk, 1 ≤ k ≤ N , but the resulting estimator
would not be a proper spectral density in that case.

To prove a sharp oracle inequality for the spectral density estimation, since
In is a biased estimator of f , we shall assume some regularity on the functions
f and f1, . . . , fN in order to be able to control the bias term. More precisely
those conditions will be Sobolev conditions on their logarithm, that is on the
functions log(f/h) and log(f1/h), . . . , log(fN/h).

For � ∈ L2(h), the corresponding Fourier coefficients are defined for k ∈ Z

by ak = 1
2π

∫ π

−π
e−ikx �(x) dx. From the Fourier series theory, we deduce that∑

k∈Z
|ak|2 = ‖�‖2L2(h) and a.e. �(x) =

∑
k∈Z

ak e
ikx. If furthermore

∑
k∈Z

|ak|
is finite, then � is continuous, �(x) =

∑
k∈Z

ak e
ikx for x ∈ [−π, π] and ‖�‖∞ ≤∑

k∈Z
|ak|.

For r > 0, we define the Sobolev norm ‖�‖2,r of � as:

‖�‖22,r = ‖�‖2L2(h) +{�}22,r with {�}22,r =
∑
k∈Z

|k|2r|ak|2.
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The corresponding Sobolev space is defined by:

Wr = {� ∈ L2(h); ‖�‖2,r < +∞}.

For r > 1/2, we can bound the supremum norm of � by its Sobolev norm:

‖�‖∞ ≤
∑
k∈Z

|ak| ≤ Cr{�}2,r ≤ Cr ‖�‖2,r, (26)

where we used Cauchy-Schwarz inequality for the second inequality with

C2
r =

∑
k∈Z∗

|k|−2r < +∞. (27)

The proof of the following Lemma seems to be part of the folklore, but since
we didn’t find a proper reference, we give it in Section A.2.

Lemma 3.4. Let r > 1/2, K > 0. There exists a finite constant C(r,K) such
that for any g ∈ Wr with ‖g‖2,r ≤ K, then we have ‖exp(g)‖2,r ≤ C(r,K).

For r > 1/2, we consider the following subset of functions:

FS
r (L) = {f ∈ G : ‖gf ‖2,r ≤ L/Cr and gf even}, with gf = log(f/h).

(28)
For f ∈ FS

r (L), we deduce from (26) that gf is continuous (and bounded by L).
This implies that f is a positive, continuous, even function and thus a proper
spectral density. Notice that 2π ‖f ‖∞ ≤ exp(L). We deduce from (23) that
γk =

∫ π

−π
e−ikx f(x) dx and thus:

‖f ‖22,r =
γ2
0

4π2
+

1

2π2

∞∑
k=1

(1 + k2r)γ2
k.

Thus Lemma 3.4 and (26) imply also that the covariance function associated to
f ∈ FS

r (L) satisfies (22). We also get that
∑∞

j=1 jγ
2
j < +∞, which is a standard

assumption for spectral density estimation.

The following Theorem is the main result of this section.

Theorem 3.5. Let r > 1/2, K,L > 0. Let f ∈ FS
r (L) and (fk, 1 ≤ k ≤ N)

be elements of FS
r (K) such that (gk, 1 ≤ k ≤ N) are linearly independent. Let

X = (X1, . . . , Xn) be a sample of a stationary centered Gaussian sequence with

spectral density f and In be defined in (24). Let f̂S
∗ be given by (15). Then for

any x > 0, we have with probability higher than 1− exp(−x):

D
(
f‖f̂S

∗

)
−D (f‖fk∗) ≤ β(log(N) + x)

n
+

α

n
,

with β = 4(K eL +e2L+3K) and α = 4KC(r, L)/Cr.



Optimal exponential bounds for aggregation 2275

Remark 3.6. When the value of γ0 is given, we shall use the aggregation method
of Section 2.1 after normalizing the estimators fk, 1 ≤ k ≤ N by dividing fk by∫
fk. The final estimator of f would take the form f̃D

λ̂D
∗
= γ0f

D
λ̂D
∗

and verifies a

similar sharp oracle inequality as f̂S
∗ (that is without the term α/n of Theorem

3.5). When the value of γ0 is unknown, it could be estimated empirically by
γ̂0 = 1

n

∑n
i=1 X

2
i . Then we could use γ̂0f

D
λ̂D
∗

to estimate f . However the empir-

ical estimation of γ0 introduces an error term of order 1/
√
n, which leads to a

suboptimal remainder term for this aggregation method.

3.3. Numerical implementation

In this section we apply the aggregation method fD
λ established in Section 2.1

to the problem of density estimation. We compare the performance of our aggre-
gation scheme to the progressive mixture method introduced by [10] and [32],
which proves to be a strong competitor.

To the best of our knowledge, there is no progressive mixture rule for spectral
density estimation.

We consider two examples of probability densities to estimate: a shifted and
truncated version of the Claw distribution and of the Smooth Comb distribution
used in [26]. A random variable is distributed according to the Claw distribution
if its density fClaw is given by:

fClaw(x) = α

(
1

2
ϕ(2x− 1) +

4∑
k=0

0.1 · ϕ
(
2x− 0.5k

0.1

))
1[0,1](x),

where ϕ is the density function of a standard normal random variable, and α
a normalizing constant. The Smooth Comb distribution has density function
fSmComb defined as, for x ∈ R:

fSmComb(x) = a

5∑
k=0

ϕ

(
6x− 3− (65 + 96 · 2−k)/21

32 · 2−k/63

)
1[0,1](x),

with normalizing constant a.
Given a sample of the underlying distribution, we use the first part of it to

create kernel density estimators with different bandwidths, then use the second
part to perform the aggregation. We consider 5 different estimators with the
normal kernel and bandwidths h = 0.005, 0.0075, 0.01, 0.02, 0.05. We create 100
samples of size 1000, and then use n = 50, 100, 200, 500, 1000 of the available
size to estimate the true density, allocating 80% of the sample to creating the
kernel estimators and 20% for the aggregation part.

The results of the estimations can be found in Figure 1. We can observe that
for small sample sizes the convex aggregation method performs better in terms
of risk and dispersion, but as the sample size increases, the progressive mixture
method yields better results.
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Fig 1. Boxplots of the Kullback-Leibler (KL) and L2 distance of the estimators for the Claw
and the Smooth Comb density with different sample sizes.

Further numerical studies may include a hybrid procedure that would benefit
from our aggregated procedure for small samples and from the progressive mix-
ture procedure for large enough samples. The latter might also be introduced
for the spectral density model, which characterizes the covariance of stationary
series and is of great interest for many applications.
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4. Lower bounds

In this section we show that the aggregation procedure given in Section 2 is
optimal by giving a lower bound corresponding to the upper bound of Theo-
rem 3.1 and 3.5 for the estimation of the probability density function as well as
for the spectral density.

4.1. Probability density estimation

In this section we suppose that the reference density is the uniform distribution
on [0, 1]d: h = 1[0,1]d .

Remark 4.1. If the reference density is not the uniform distribution on [0, 1]d,
then we can apply the Rosenblatt transformation, see [27], to reduce the problem
to this latter case. More precisely, according to [27], if the random variable Z has
probability density h, then there exists two maps T and T−1 such that U = T (Z)
is uniform on [0, 1]d and a.s. Z = T−1(U). Then if the random variable X has
density f = exp(g)h, we deduce that T (X) has density fT = exp(g◦T−1)1[0,1]d .
Furthermore, if f1 and f2 are two densities (with respect to the reference density
h), then we have D (f1‖f2) = D

(
fT
1 ‖fT

2

)
.

We give the main result of this Section. Let Pf denote the probability measure
when X1, . . . , Xn are i.i.d. random variable with density f .

Proposition 4.2. Let N ≥ 2, L > 0. Then there exist N probability densities
(fk, 1 ≤ k ≤ N), with fk ∈ FD(L) such that for all n ≥ 1, x ∈ R

+ satisfying:

log(N) + x

n
< 3

(
1− e−L

)2
, (29)

we have:

inf
f̂n

sup
f∈FD(L)

Pf

(
D

(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)

n

)
≥ 1

24
e−x,

with the infimum taken over all estimators f̂n based on the sample X1, . . . , Xn,
and β′ = 2−17/2/3.

4.2. Spectral density estimation

In this section we give a lower bound for aggregation of spectral density es-
timators. Let Pf denote the probability measure when (Xn)n∈Z is a centered
Gaussian sequence with spectral density f . Recall the set of positive even func-
tion FS

r (L) ⊂ G defined by (28) for r ∈ R.

Proposition 4.3. Let N ≥ 2, r > 1/2, L > 0. There exist a constant C(r, L)
free of N and N spectral densities (fk, 1 ≤ k ≤ N) belonging to FS

r (L) such
that for all n ≥ 1, x ∈ R

+ satisfying:

log(N) + x

n
<

C(r, L)

log(N)2r
(30)
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we have:

inf
f̂n

sup
f∈FS

r (L)

Pf

(
D

(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)

n

)
≥ 1

24
e−x,

(31)

with the infimum taken over all estimators f̂n based on the sample sequence
X = (X1, . . . , Xn), and β′ = 8−5/2/3.

5. Proofs

5.1. Proofs of results in Section 2

Proof of Lemma 2.3. Consider the form (9) of HD
n (λ). Obviously, the function

λ �→
N∑

k=1

λk(〈tk, In〉−
1

2
ψk)

is linear in λ and that λ �→ ψλ is convex. Notice that ∇ψλ = (
〈
tk, f

D
λ

〉
, 1 ≤ k ≤

N). This implies that for all λ, λ′ ∈ Λ+:

(λ− λ′) · ∇ψλ′ +D
(
fD
λ′‖fD

λ

)
=

N∑
k=1

(λk − λ′
k)

〈
tk, f

D
λ′
〉
+
〈
tλ′ − tλ, f

D
λ′
〉
+ψλ − ψλ′

= ψλ − ψλ′ . (32)

Since ψλ is convex and differentiable, we deduce from (9) that HD
n is concave

and differentiable. We also have by the linearity of LD
n and (32) that for all

λ, λ′ ∈ Λ+:

HD
n (λ)−HD

n (λ′) = (λ− λ′) · ∇HD
n (λ′)− 1

2
D

(
fD
λ′‖fD

λ

)
. (33)

The concave function HD
n on a compact set attains its maximum at some points

Λ∗ ⊂ Λ+. For λ̂∗ ∈ Λ∗, we have for all λ ∈ Λ+:

(λ− λ̂∗) · ∇HD
n (λ̂∗) ≤ 0, (34)

see for example Equation 4.21 of [5]. Using (33) with λ′ = λ̂∗ and (34), we

get (11). Let λ̂1
∗ and λ̂2

∗ be elements of Λ∗. Then by (11), we have:

0 = HD
n (λ̂1

∗)−HD
n (λ̂2

∗) ≥
1

2
D

(
fD
λ̂1
∗
‖fD

λ̂2
∗

)
,

which implies that a.e. fD
λ̂1
∗
= fD

λ̂2
∗
. By the linear independence of (tk, 1 ≤ k ≤ N),

this gives λ̂1
∗ = λ̂2

∗, giving the uniqueness of the maximizer.
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Proof of Proposition 2.4. Using (8), we get:

D
(
f‖f̂D

∗

)
−D (f‖fk∗) =

〈
tk∗ − t̂D∗ , f

〉
+ψ̂D

∗ − ψk∗ .

By the definition of k∗, together with penD(ek) = 0 for all 1 ≤ k ≤ N and the

strict concavity (11) of HD
n at λ̂D

∗ with λ = ek∗ , we get:

D
(
f‖f̂D

∗

)
−D (f‖fk∗) ≤

〈
tk∗ − t̂D∗ , f

〉
+ψ̂D

∗ − ψk∗

+HD
n (λ̂D

∗ )−HD
n (ek∗)− 1

2
D

(
f̂D
∗ ‖fk∗

)
=

〈
t̂D∗ − tk∗ , In − f

〉
− 1

2
D

(
f̂D
∗ ‖fk∗

)
− 1

2
penD(λ̂D

∗ )

= Bn

(
t̂D∗ − tk∗

)
+AD

n ,

with:

AD
n =

〈
t̂D∗ − tk∗ , In − f̄n

〉
− 1

2
D

(
f̂D
∗ ‖fk∗

)
− 1

2

N∑
k=1

λ̂D
∗,k D

(
f̂D
∗ ‖fk

)
. (35)

We recall, see Lemma 1 of [2], that for any non-negative integrable functions
p and q on R

d satisfying ‖ log(p/q)‖∞ < +∞, we have:

D (p‖q) ≥ 1

2
e−‖log(p/q)‖∞

∫
p (log(p/q))

2
. (36)

We have:

D
(
f̂D
∗ ‖fk

)
≥ 1

2
e−‖log(f̂D

∗ /fk)‖∞

∫
f̂D
∗

(
log(f̂D

∗ /fk)
)2

≥ 1

2
e−4K−‖̂tD∗ −ψ̂D

∗ ‖∞

∫
h
(
log(f̂D

∗ /fk)
)2

≥ 1

2
e−6K

(
‖ t̂D∗ − tk ‖

2

L2(h) +(ψ̂D
∗ − ψk)

2
)

≥ 1

2
e−6K ‖ t̂D∗ − tk ‖

2

L2(h),

where we used (36) for the first inequality, the fact that ψ ≤ ‖tf‖∞, as well as∫
tfh = 0. By using this lower bound on D

(
f̂D
∗ ‖fk

)
to both terms on the right

hand side of (35), we get:

AD
n ≤

〈
t̂D∗ − tk∗ , In − f̄n

〉
−e−6K

4
‖ t̂D∗ − tk∗ ‖2L2(h)

− e−6K

4

N∑
k=1

λ̂D
∗,k ‖ t̂D∗ − tk ‖

2

L2(h)

=
〈
t̂D∗ − tk∗ , In − f̄n

〉
−e−6K

4

N∑
k=1

λ̂D
∗,k ‖ tk − tk∗ ‖2L2(h)

= V D
n (λ̂D

∗ ),
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where the first equality is due to the following bias-variance decomposition
equality which holds for all � ∈ L2(h) and λ ∈ Λ+:

N∑
k=1

λk ‖ tk − �‖2L2(h) = ‖ tλ − �‖2L2(h) +

N∑
k=1

λk ‖ tλ − tk ‖2L2(h) . (37)

The function V D
n is affine in λ, therefore it takes its maximum on Λ+ at some

ek, 1 ≤ k ≤ N , giving:

D
(
f‖f̂D

∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek).

This concludes the proof.

Proof of Lemma 2.5. Notice that for all λ, λ′ ∈ Λ+:∫
fλ −

∫
fλ′ = (λ− λ′) · ∇

∫
fλ′ +D (fλ′‖fλ) . (38)

The proof is then similar to the proof of Lemma 2.3 using (38) instead of (32).

Proof of Proposition 2.6. Similarly to the proof of Proposition 2.4 we obtain
that:

D
(
f‖f̂S

∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+AS

n ,

with:

AS
n =

〈
ĝS∗ − gk∗ , In − f̄n

〉
− 1

2
D

(
f̂S
∗ ‖fk∗

)
− 1

2

N∑
k=1

λ̂S
∗,k D

(
f̂S
∗ ‖fk

)
. (39)

Since ‖ log(f̂S
∗ /fk)‖∞ = ‖gλ̂∗ − gk ‖ ≤ 2K for 1 ≤ k ≤ N , we can apply (36)

with f̂S
∗ and fk:

D
(
f̂S
∗ ‖fk

)
≥ 1

2
e−‖log(f̂

S
∗ /fk)‖∞

∫
f̂S
∗

(
log(f̂S

∗ /fk)
)2

≥ 1

2
e−2K−‖̂gS

∗‖∞

∫
h
(
ĝS∗ − gk

)2
≥ 1

2
e−3K ‖ ĝS∗ − gk ‖

2

L2(h), (40)

where in the second and third inequalities we use that ‖ ĝS∗ ‖∞ ≤
max1≤k≤N ‖gk ‖∞ ≤ K. Applying (40) to both terms on the right hand side
of (39) gives:

An(λ̂
S
∗ ) ≤

〈
ĝS∗ − gk∗ , In − f̄n

〉
−e−3K

4
‖ ĝS∗ − gk∗ ‖2L2(h)

− e−3K

4

N∑
k=1

λ̂S
∗,k ‖ ĝS∗ − gk ‖

2

L2(h)
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=
〈
ĝS∗ − gk∗ , In − f̄n

〉
−e−3K

4

N∑
k=1

λ̂S
∗,k ‖gk − gk∗ ‖2L2(h)

= V S
n (λ̂S

∗ ),

where we used (37) for the second equality. The function V S
n is affine in λ,

therefore it takes its maximum on Λ+ at some ek, 1 ≤ k ≤ N , giving:

D
(
f‖f̂S

∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek).

This concludes the proof.

Proof of Theorem 3.1. By Proposition 2.4, we have that:

D
(
f‖f̂D

∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek). (41)

Since In(dy) is an unbiased estimator of f(y)dy, we get Bn

(
t̂D∗ − tk∗

)
= 0.

Notice that

P

(
V D
n (ek) ≥

β(log(N) + x)

n

)
≤ e−x

N
for all 1 ≤ k ≤ N, (42)

implies

P

(
max

1≤k≤N
V D
n (ek) ≥

β(log(N) + x)

n

)
≤ e−x,

which will provide a control of the second term on the right hand side of (41).
Thus, the proof of the theorem will be complete as soon as (42) is proved.

To prove (42), we use the concentration inequality of Proposition 5.3 in [3]
which states that for Y1, . . . , Yn independent random variables with finite vari-
ances such that |Yi − EYi| ≤ b for all 1 ≤ i ≤ n, we have for all u > 0 and
a > 0:

P

(
1

n

n∑
i=1

(Yi − EYi − aVar Yi) >

(
1

2a
+
b

3

)
u

n

)
≤ e−u . (43)

Let us choose Yi = tk(Xi)−tk∗(Xi) for 1 ≤ i ≤ n. Then, since fk and fk∗ belong
to FD(K), we have |Yi − EYi| ≤ 4K, and:

Var Yi ≤
∫

(tk − tk∗)2f ≤ e2L ‖ tk − tk∗ ‖2L2(h) . (44)

Applying (43) with a = exp(−6K − 2L)/4, b = 4K and u = log(N) + x, we
obtain:

e−x

N
≥ P

(〈
tk − tk∗ , In − f̄n

〉
−e−6K−2L

4
Var Y1 >

β(log(N) + x)

n

)

≥ P

(〈
tk − tk∗ , In − f̄n

〉
−e−6K

4
‖ tk − tk∗ ‖2L2(h) >

β(log(N) + x)

n

)

= P

(
V D
n (ek) >

β(log(N) + x)

n

)
,
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where the second inequality is due to (44). This proves (42) and completes the
proof.

Proof of Theorem 3.5. Using Proposition 2.6 and the notations defined there,
we have that:

D
(
f‖f̂S

∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek). (45)

First step: Concentration inequality for max1≤k≤N V S
n (ek).

We shall prove that

P

(
max

1≤k≤N
V S
n (ek) ≥

β(log(N) + x)

n

)
≤ e−x . (46)

It is enough to prove that for each 1 ≤ k ≤ N :

P

(
V S
n (ek) ≥

βu

n

)
≤ e−u . (47)

Indeed take u = log(N)+x and the union bound over 1 ≤ k ≤ N to deduce (46)
from (47).

The end of this first step is devoted to the proof of (47). Recall definition (63)
of Toeplitz matrices associated to Fourier coefficients. We express the scalar
product 〈�, In〉 for � ∈ L

∞([−π, π]) in a matrix form:

〈�, In〉 =
1

2πn

n∑
i=1

n∑
j=1

XiXj

∫ π

−π

�(x) cos((i− j)x) dx =
1

n
XTTn(�)X. (48)

We have the following expression of the covariance matrix of X: Σn = 2πTn(f).

Since f is positive, we get that Σn is positive-definite. Set ξ = Σ
−1/2
n X so that

ξ is a centered n-dimensional Gaussian vector whose covariance matrix is the
n-dimensional identity matrix. By taking the expected value in (48), we obtain:

E 〈�, In〉 =
〈
�, f̄n

〉
=

1

n
tr (Rn(�)),

where tr (A) denotes the trace of the matrix A, and Rn(�) = Σ
1
2
nTn(�)Σ

1
2
n . There-

fore the difference
〈
�, In − f̄n

〉
takes the form:

〈
�, In − f̄n

〉
=

1

n

(
ξTRn(�)ξ − tr (Rn(�))

)
.

We shall take � = gk − gk∗ . For this reason, we assume that � is even and
‖�‖∞ ≤ 2K. Let η = (ηi, 1 ≤ i ≤ n) denote the eigenvalues of the symmetric
matrix Rn(�), with η1 having the largest absolute value. Similarly to Lemma
4.2. of [4], we have that for all a > 0:

e−u ≥ P

(〈
�, In − f̄n

〉
≥ 2 |η1|u

n
+

2 ‖η‖√u

n

)
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≥ P

(〈
�, In − f̄n

〉
≥ 2 |η1|u

n
+

‖η‖2

an
+

au

n

)
, (49)

where we used for the second inequality that 2
√
vw ≤ v/a+aw for all v, w, a > 0.

Let us give upper bounds for |η1| and ‖η‖2. We note ρ(A) for A ∈ R
n×n

the spectral radius of the matrix A. Then by the well-known properties of the
spectral radius, we have that:

|η1| = ρ(Rn(�)) ≤ ρ(Σn)ρ(Tn(�))

We deduce from (64) that ρ(Σn) = ρ(2πTn(f)) ≤ 2π ‖f ‖∞ ≤ exp(L) and
ρ(Tn(�)) ≤ ‖�‖∞ ≤ 2K. Therefore we obtain:

|η1| ≤ 2K eL . (50)

As for ‖η‖2, we have:

‖η‖2 = tr
(
R2

n(�)
)
= tr

(
(ΣnTn(�))

2
)
≤ ρ(Σn)

2 tr
(
T 2
n(�)

)
≤ e2L n ‖�‖2L2(h),

(51)
where we used (65) for the last inequality. Using (50) and (51) in (49) gives:

e−u ≥ P

(〈
�, In − f̄n

〉
≥ 4K eL u

n
+

e2L ‖�‖2L2(h)

a
+

au

n

)

≥ P

(〈
�, In − f̄n

〉
−e−3K

4
‖�‖2L2(h) ≥

βu

n

)
,

where for the second inequality we set a = 4 exp(2L + 3K). This proves (47),
thus (46).

Second step: Upper bound for the bias term Bn(ĝ
S
∗ − gk∗)

We set �∗ = ĝS∗ − gk∗ and we have ‖�∗ ‖2,r ≤ 2K/Cr. Let (ak)k∈Z be the cor-
responding Fourier coefficients, which are real as �∗ is even. We decompose the
the bias term as follows:

Bn(�∗) =
〈
f̄n − f, �∗

〉
=

〈
f̄n,1 − f, �∗

〉
−
〈
f̄n,2, �∗

〉
, (52)

with f̄n,1, f̄n,2 given by, for x ∈ [−π, π]:

f̄n,1(x) =
∑
|j|<n

γj
2π

eijx and f̄n,2(x) =
1

n

∑
|j|<n

|j|γj
2π

eijx .

For the first term of the right hand side of (52) notice that:

f̄n,1(x)− f(x) = −
∑
|j|≥n

γj
2π

eijx .
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We deduce that
〈
f̄n,1 − f, �∗

〉
=

〈
f̄n,1 − f, �̄∗

〉
, with �̄∗ =

∑
|j|≥n aj e

ijx. Then,
by the Cauchy-Schwarz inequality, we get:∣∣〈f̄n,1 − f, �̄∗

〉∣∣ ≤ ‖ f̄n,1 − f ‖L2(h) ‖ �̄∗ ‖L2(h) .

Thanks to Lemma 3.4, we get:

‖ f̄n,1 − f ‖2L2(h) =
∞∑

|j|≥n

γ2
j

4π2
≤

∞∑
|j|≥n

|j|2r
n2r

γ2
j

4π2

≤ 1

n2r
{f}22,r ≤ 1

n2r
‖f ‖22,r ≤ C(r, L)2

n2r
·

This gives ‖ f̄n,1 − f ‖L2(h) ≤ C(r, L)n−r. Similarly, we have ‖ �̄∗ ‖L2(h) ≤
n−r{�∗}2,r ≤ n−r ‖�∗ ‖2,r ≤ 2Kn−r/Cr. We deduce that:

∣∣〈f̄n,1 − f, �̄∗
〉∣∣ ≤ 2KC(r, L)

Cr
n−2r. (53)

For the second term on the right hand side of (52), we have:

〈
f̄n,2, �∗

〉
=

1

n

∑
|j|<n

|j|γj
2π

aj .

Using the Cauchy-Schwarz inequality and then Lemma 3.4, we get as r > 1/2:

∣∣〈f̄n,2, �∗〉∣∣ ≤ 1

n
{�∗}2,1/2{f}2,1/2 ≤ 1

n
‖�∗ ‖2,r ‖f ‖2,r ≤ 2KC(r, L)

Cr
n−1. (54)

Therefore combining (53) and (54), we obtain the following upper bound for the
bias:

|Bn(�∗)| ≤
4KC(r, L)

Cr
n−1. (55)

Third step: Conclusion

Use (46) and (55) in (45) to get the result.

5.2. Proofs of results in Section 4

In the following proof, we shall use the Hellinger distance which is defined as
follows. For two non-negative integrable functions p and q, the Hellinger distance
H(p, q) is defined as:

H(p, q) =

√∫
(
√
p−√

q)
2
.

A well known property of this distance is that its square is smaller then the
Kullback-Leibler divergence defined by 4, that is for all non-negative integrable
functions p and q, we have:

H2(p, q) ≤ D (p‖q) .
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Proof of Proposition 4.2. Since the probability densities (fk, 1 ≤ k ≤ N) be-
longs to FD(L), we have:

inf
f̂n

sup
f∈FD(L)

Pf

(
D

(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)

n

)

≥ inf
f̂n

max
1≤k≤N

Pfk

(
D

(
fk‖f̂n

)
≥ β′ (log(N) + x)

n

)

≥ inf
f̂n

max
1≤k≤N

Pfk

(
H2(fk, f̂n) ≥

β′ (log(N) + x)

n

)
.

For the choice of (fk, 1 ≤ k ≤ N), we follow the choice given in the proof of
Theorem 2 of [22]. Let D be the smallest positive integer such that 2D/8 ≥ N
and Δ = {0, 1}D. For 0 ≤ j ≤ D − 1, s ∈ R, we set:

αj(s) =
T

D
1(0, 12 ]

(Ds− j)− T

D
1( 1

2 ,1]
(Ds− j),

where T verifies 0 < T ≤ D(1 − e−L). Notice the support of the function αj is
(j/D, (j + 1)/D]. Then for any δ = (δ1, . . . , δD) ∈ Δ, the function fδ defined
by:

fδ(y) = 1 +

D−1∑
j=0

δjαj(y1), y = (y1, . . . , yd) ∈ [0, 1]d,

is a probability density function with eL ≥ 1+T/D ≥ f ≥ 1−T/D ≥ e−L. This
implies that fδ ∈ FD(L). As shown in the proof of Theorem 2 in [22], there
exists N probability densities (fk, 1 ≤ k ≤ N) amongst {fδ, δ ∈ Δ} such that
for any i �= j, we have:

H2(fi, fj) ≥
8−3/2T 2

4D2
,

and f1 can be chosen to be the density of the uniform distribution on [0, 1]d.
Recall the notation p⊗n of the n-product probability density corresponding to
the probability density p. Then we also have (see the proof of Theorem 2 of [22])
for all 1 ≤ i ≤ N :

D
(
f⊗n
i ‖f⊗n

1

)
≤ nT 2

D2
·

Let us take T = D
√

(log(N) + x)/3n, so that with condition (29) we indeed
have T ≤ D(1 − e−L). With this choice, and the defintion of β′, we have for
1 ≤ i �= j ≤ N

H2(fi, fj) ≥ 4
β′ (log(N) + x)

n
and D

(
f⊗n
i ‖f⊗n

1

)
≤ log(N) + x

3
·

Now we apply Corollary 5.1 of [3] withm = N−1 and with the squared Hellinger

distance instead of the L2 distance to get that for any estimator f̂n:
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max
1≤k≤N

Pfk

(
H2(fk, f̂n) ≥

β′ (log(N) + x)

n

)
≥ 1

12
min

(
1, (N − 1) e−(log(N)+x)

)

≥ 1

24
e−x .

This concludes the proof.

Proof of Proposition 4.3. Similarly to the proof of Proposition 4.2, the left hand
side of (31) is greater than:

inf
f̂n

max
1≤k≤N

Pfk

(
H2(fk, f̂n) ≥

β′ (log(N) + x)

n

)
.

We shall choose a set of spectral densities (fk, 1 ≤ k ≤ N) similarly as in the
proof of Proposition 4.2 such that fk ∈ FS

r (L). Let us define ϕ : [0, π] → R as,
for x ∈ [0, π]:

ϕ(x) = ζ(x)1[0,π/2](x)− ζ(x)1[π/2,π](x) with ζ(x) = e−1/(x(π
2 −x)) .

We have that ϕ ∈ C∞(R) and:

‖ϕ‖∞ = e−16/π2

,

∫ π

0

ϕ = 0. (56)

Let D be the smallest integer such that 2D/8 ≥ N and Δ = {0, 1}D. For
1 ≤ j ≤ D, x ∈ [0, π], let ᾱj(x) be defined as:

ᾱj(x) = ϕ(Dx− (j − 1)π),

and for any δ = (δ1, . . . , δD) ∈ Δ and s ≥ 0, let the function fδ
s be defined by:

2π fδ
s (y) = 1 + s

D∑
j=1

δjᾱj(|y|), y ∈ [−π, π]. (57)

Since
∫ π

0
ϕ = 0, we get:

1

2π

∫ π

−π

f δ
s (x) dx = 1 and 1− s ‖ϕ‖∞ ≤ 2πfδ

s ≤ 1 + s ‖ϕ‖∞ . (58)

We assume that s ∈ [0, 1/2], so that 2πfδ
s ≥ 1/2. Let us denote gδs = gfδ

s
=

log(2πfδ
s ). We first give upper bounds for ‖(gδs)(p) ‖L2(h) with p ∈ N.

For p = 0, we have by (58):

‖gδs ‖L2(h) ≤ log

(
1

1− s ‖ϕ‖∞

)
≤ s ‖ϕ‖∞

1− s ‖ϕ‖∞
≤ 2s. (59)

For p ≥ 1, we get by Faà di Bruno’s formula that:

‖(gδs)(p) ‖L2(h) =

∥∥∥∥∥∥
∑
k∈Kp

p!

k1!k2! . . . kp!

(−1)k̄+1k̄!

(2πf δ
s )

k̄

p∏
�=1

(
(2πf δ

s )
(�)

�!

)k�

∥∥∥∥∥∥
L2(h)

, (60)
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with Kp = {k = (k1, . . . , kp) ∈ N
p;
∑p

�=1 �k� = p} and k̄ =
∑p

�=1 k�. The �-th
derivative of 2πfδ

s is given by, for y ∈ [0, π]:

(2πf δ
s (y))

(�) = sD�
D∑

j=1

δjϕ
(�)(Dy − (j − 1)π).

Therefore we have the following bound for this derivative:

‖(2πfδ
s (y))

(�) ‖∞ ≤ sD� ‖ϕ(�) ‖∞ .

From ϕ ∈ C∞(R), we deduce that ‖ϕ(�) ‖∞ is finite for all � ∈ N
∗. Since s ∈

[0, 1/2] and 2πfδ
s ≥ 1− s ‖ϕ‖∞ ≥ 1/2, there exists a constant C̄p depending on

p (and not depending on N), such that:

‖(gδs)(p) ‖L2(h) ≤ sC̄pD
p ≤ sC̄p

16p

log(2)p
log(N)p. (61)

In order to have fδ
s ∈ FS

r (L), we need to ensure that ‖gδs ‖2,r ≤ L/Cr. For
r ∈ N

∗, we have:

‖gδs ‖2,r =
√

‖gδs ‖
2
L2(h) + ‖(gδs)(r) ‖

2
L2(h).

Therefore if s ∈ [0, sr,L] with sr,L ∈ [0, 1/2] given by:

sr,L = log(N)−rC̄r,L, with C̄r,L = min

(
log(2)r

2
,
log(2)rL√

8Cr
,

log(2)rL√
2Cr16rC̄r

)
,

then by (59) and (61) we get:

‖gδs ‖2,r ≤
√

L2

2C2
r

+
L2

2C2
r

=
L

Cr
·

Let �r� and �r� denote the unique integers such that �r� − 1 < r ≤ �r� and
�r� ≤ r < �r�+ 1. For r /∈ N

∗, Hölder’s inequality yields:

‖gδs ‖2,r =
√

‖gδs ‖
2
L2(h) + {gδs}

2
2,r

≤
√

‖gδs ‖
2
L2(h) + {gδs}

2(r−
r�)
2,�r {gδs}

2(�r−r)
2,
r�

=

√
‖gδs ‖

2
L2(h) + ‖(gδs)(�r) ‖

2(r−
r�)
L2(h) ‖(gδs)(
r�) ‖

2(�r−r)
L2(h) .

Using (61) and (61) with p = �r� and p = �r�, we obtain:

‖(gδs)(�r) ‖
2(r−
r�)
L2(h) ‖(gδs)(
r�) ‖

2(�r−r)

L2(h) ≤ s2C̄
2(r−
r�)
�r C̄

2(�r−r)

r�

162r

log(2)2r
logN2r.

Hence if s ∈ [0, sr,L] with sr,L ∈ [0, 1/2] given by:

sr,L = log(N)−rC̄r,L,
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with

C̄r,L = min

⎛
⎝ log(2)r

2
,
log(2)rL√

8Cr
,

log(2)rL
√
2Cr16rC̄r−
r�

�r C̄
�r−r

r�

⎞
⎠ ,

we also have ‖gδs ‖2,r ≤ L/Cr, providing fδ
s ∈ FS

r (L).
Mimicking the proof of Theorem 2 in [22] and omitting the details, we first

obtain (see last inequality of p.975 in [22]) that for δ, δ′ ∈ Δ:

H2
(
f δ
s , f

δ′

s

)
≥ 8−3/2σ(δ, δ

′)

D

2

π
s2

∫ π

0

ϕ2,

with σ(δ, δ′) the Hamming distance between δ and δ′, and then deduce that
there exist (δk, 1 ≤ k ≤ N) in Δ with δ1 = 0 such that for any 1 ≤ i �= j ≤ N
and s ∈ [0, sr,L], we have (see first inequality of p.976 in [22]):

H2(fδi

s , f δj

s ) ≥ 2 · 8−5/2

π
s2

∫ π

0

ϕ2.

Notice fδ1

s = f0
s = h is the density of the uniform distribution on [−π, π].

With a slight abuse of notation, let us denote by Pf the joint probability
density of the centered Gaussian sequence X = (X1, . . . , Xn) corresponding to
the spectral density f . Assume X is standardized (that is Var (X1) = 1), which
implies

∫
f = 1. Let Σn,f denote the corresponding covariance matrix. Since

h = (1/2π)1[−π,π], we have Σn,h = In the n × n-dimensional identity matrix.
We compute:

D (Pf‖Ph) =

∫
Rn

Pf (x) log

(
Pf (x)

Ph(x)

)
dx

=

∫
Rn

Pf (x) log

(
1√

det(Σn,f )
exp

(
− 1

2
xT

(
Σ−1

n,f − In
)
x

))
dx

= −1

2
log (det(Σn,f ))−

1

2
Ef

[
XT

(
Σ−1

δ − In
)
X
]
.

The expected value in the previous equality can be written as:

Ef

[
XT

(
Σ−1

n,f − In
)
X
]
= tr

((
Σ−1

n,f − In
)
Ef [X

TX]
)
= tr (In − Σn,f ) = 0,

where for the last equality, we used that the Gaussian random variables are
standardized. This yields D (Pf‖Ph) = −1

2 log (det(Σn,f ))). We can use this
last equality for f = fδ

s since
∫
f δ
s = 1 thanks to (56), and obtain:

D
(
Pfδ

s
‖Pf0

s

)
= −1

2
log

(
det(Σn,fδ

s
)
)
.

Notice that for s ∈ [0, sr,L], we have 3/2 ≥ 1+ s ‖ϕ‖∞ ≥ 2πfδ
s ≥ 1− s ‖ϕ‖∞ ≥

1/2 thanks to (58) and (56). Therefore we have:

D
(
Pfδ

s
‖Pf0

s

)
≤ n

2
‖2πfδ

s − 1‖2L2(h) ≤
n

2

s2

π

∫ π

0

ϕ2, (62)
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where we used Σn,fδ
s
= Tn(2πf

δ
s ) and Lemma A.2 with � = 2πf δ

s for the first
inequality, and (57) for the second inequality. We set:

C(r, L) =
3C̄2

r,L

∫ π

0
ϕ2

2π
and s =

√
2π

3
∫ π

0
ϕ2

√
log(N) + x

n
,

so that (30) holds for s ∈ [0, sr,L]. We obtain for all δ1, δ2 ∈ Δ̄, δ ∈ Δ:

H2
(
f δ1
s , f δ2

s

)
≥ 4

β′(log(N) + x)

n
and D

(
Pfδ

s
‖Pf0

s

)
≤ log(N) + x

3
·

We conclude the proof as in the end of the proof of Proposition 4.2.

Appendix

A.1. Results on Toeplitz matrices

Let � ∈ L1(h) be a real function with h = 1/(2π)1[−π,π]. We define the corre-
sponding Toeplitz matrix Tn(�) of size n× n of its Fourier coefficients by:

[Tn(�)]j,k =
1

2π

∫ π

−π

�(x) ei(j−k)x dx for 1 ≤ j, k ≤ n. (63)

Notice that Tn(�) is Hermitian. It is also real if � is even. Recall that ρ(A)
denotes the spectral density of the matrix A.

Lemma A.1. Let � ∈ L2(h) be a real function.

1. All the eigenvalues of Tn(�) belong to [min �,max �]. In particular, we have
the following upper bound on the spectral radius ρ(Tn(�)) of Tn(�):

ρ(Tn(�)) ≤ ‖�‖∞ . (64)

2. For the trace of Tn(�) and T 2
n(�), we have:

tr (Tn(�)) =
n

2π

∫ π

−π

�(x) dx and tr
(
T 2
n(�)

)
≤ n ‖�‖2L2(h) . (65)

Proof. For Property (1), see Equation (6) of Section 5.2 in [19]. For Property
(2), the first part is clear and for the second part, see Lemma 3.1 of [17].

We use the following elementary result.

Lemma A.2. Let � ∈ L2(h) such that
∫
�h = 1 and �(x) ∈ [1/2, 3/2], then we

have:

log (det(Tn(�))) ≥ −n ‖�− 1‖2L2(h) . (66)
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Proof. Notice that by Property (1), the eigenvalues (νi, 1 ≤ i ≤ n) of Tn(�)
verify νi ∈ [1/2, 3/2]. For t ∈ [−1/2, 1/2], we have log(1 + t) ≥ t − t2, giving
that:

log (det(Tn(�))) =

n∑
i=1

log(νi) ≥
n∑

i=1

(νi − 1)− (νi − 1)2

= − tr
(
T 2
n(�− 1)

)
≥ −n ‖�− 1‖2L2(h),

where we used that Tn(�−1) = Tn(�)−In for the second equality and Property
(2) for the second inequality.

A.2. Proof of Lemma 3.4

The next Lemma is inspired by the work of [18] on fractional Sobolev spaces.
For r ∈ (0, 1) and � ∈ L2(h), we define:

Ir(�) =
1

2π

∫
[−π,π]2

|�(x+ y)− �(x)|2
|y|1+2r

dxdy,

where we set �(z) = �(z − 2π) for z ∈ (π, 2π] and �(z) = �(z + 2π) for z ∈
[−2π,−π).

Lemma A.3. Let r ∈ (0, 1). Then there exist constants 0 < cr < Cr < ∞
depending on r, such that for all � in L2(h) we have:

cr{�}22,r ≤ Ir(�) ≤ Cr{�}22,r. (67)

Proof. Using the Fourier representation of �, we get:

Ir(�) =
∑
k∈Z

|ak|2
∫ π

−π

|1− eiky |2
|y|1+2r

dy =
∑
k∈Z

|k|2r|ak|2
∫ |k|π

−|k|π

|1− eiz |2
|z|1+2r

dz.

For r ∈ (0, 1) and k ∈ Z
∗, we have

0<cr :=

∫ π

−π

|1− eiz |2
|z|1+2r

dz≤
∫ |k|π

−|k|π

|1− eiz |2
|z|1+2r

dz≤
∫
R

|1− eiz |2
|z|1+2r

dz=:Cr <+∞.

This yields (67).

First step: r ∈ (1/2, 1)

Let r ∈ (1/2, 1) and set L = CrK. Let f = eg with g ∈ Wr such that ‖g‖2,r ≤ K.

Thanks to (26), we have ‖g‖∞ ≤ CrK = L. Using that | ex − ey | ≤ eL |x − y|
for x, y ∈ [−L,L], we deduce that:

Ir(f) = Ir(e
g) ≤ e2L Ir(g) and ‖f ‖2L2(h) ≤ e2L . (68)
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Using (67) twice, we get:

‖f ‖22,r ≤ e2L
(
1 +

Cr

cr
{g}22,r

)
≤ e2CrK

(
1 +

Cr

cr
K2

)
.

Which proves the Lemma for r ∈ (1/2, 1).

Second step: r ∈ N
∗

Let r ∈ N
∗. For � ∈ Wr, the r-th derivative of �, say �(r), exists in L2(h) and:

{�}22,r = ‖�(r) ‖2L2(h) as well as ‖�‖22,r = ‖�‖2L2(h) + ‖�(r) ‖2L2(h) .

According to (26), we also get that for all p ∈ N with p < r we have ‖�(p) ‖∞ ≤
Cr−p{�(r)}2,r ≤ C1{�(r)}2,r.

Set L = CrK. Let f = eg with ‖g‖2,r ≤ K. We have ‖g(p) ‖∞ ≤ C1K
for all integer p < r. According to Leibniz’s rule, we get that f (r) = g(r)f +
Pr(g

(1), . . . , g(r−1))f , where Pr is a polynomial function of maximal degree r
such that:

max
x1,...,xr−1∈[−C1K,C1K]

|Pr(x1, . . . , xr−1)| ≤ Cr,1K
r. (69)

for some finite constant Cr,1. We deduce that:

‖f (r) ‖L2(h) ≤ eL ‖g(r) ‖L2(h) +eL Cr,1K
r.

Then use that ‖f ‖L2(h) ≤ eL to get the Lemma for r ∈ N
∗.

Third step: r > 1, r �∈ N
∗

Let r > 1 such that r �∈ N
∗. Set p = �r� ∈ N

∗ the integer part of r and
s = r − p ∈ (0, 1). For � ∈ Wr, the p-th derivative of �, say �(p), exists in L2(h)
and:

{�}22,r = {�(p)}22,s as well as ‖�‖22,r = ‖�‖2L2(h) +{�(p)}22,s. (70)

Thanks to (67) (twice) and the triangle inequality, we have for all measurable
function t:

cs{�t}22,s ≤ Is(�t) ≤ ‖ t‖2∞ Is(�) + Js(�, t) ≤ ‖ t‖2∞ Cs{�}22,s + Js(�, t), (71)

with

Js(�, t) =
1

2π

∫
[−π,π]2

�(x)2
|t(x+ y)− t(x)|2

|y|1+2s
dxdy.

Let K > 0 and set L = CrK. Let f = eg with g ∈ Wr such that ‖g‖2,r ≤ K.
Following the proof of Lemma A.3, we first give an upper bound of Js(�, f) in this
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context under the only condition that � ∈ L2(h). Using that | ex − ey | ≤ eL |x−y|
for x, y ∈ [−L,L], we deduce that:∫ π

−π

|f(x+ y)− f(x)|2
|y|1+2s

dy ≤ e2L
∫ π

−π

|g(x+ y)− g(x)|2
|y|1+2s

dy.

Since a.e. g(x) =
∑

k∈Z
ak e

ikx, we deduce that:

Js(�, f) ≤
e2L

2π

∫ π

−π

dx �(x)2
∑
k,j∈Z

|ak||aj |
∫ π

−π

|(1− eiky)(1− e−ijy)|
|y|1+2s

dy.

Let ε ∈ (0, 1/2) such that s+ ε ≤ 1. Since |1− eix | ≤ 2|x|s+ε for all x ∈ R, we
deduce that: ∫ π

−π

|(1− eiky)(1− e−ijy)|
|y|1+2s

dy ≤ C2,ε|k|s+ε|j|s+ε,

for some constant C2,ε depending only on ε. Using Cauchy-Schwarz inequality
and the fact that r − s− ε > 1/2, we get:∑

k∈Z

|k|s+ε|ak| ≤ Cr−s−ε{g}2,r.

We deduce that:

Js(�, f) ≤ e2L ‖�‖2L2(h) C2,εC2
r−s−ε{g}22,r. (72)

According to Leibniz’s rule, we get that f (p) = �f + g(p)f with � = Pp(g
(1), . . . ,

g(p−1)). We get:

cs{�f}22,s ≤ ‖f ‖2∞ Cs{�}22,s + Js(�, f)

≤ e2L Cs{f}22,s + e2L ‖�‖2L2(h) C2,εC2
r−s−ε{g}22,r, (73)

where we used (71) for the first inequality and (72) for the latter. Then use (69)
with r replaced by p to get that ‖�‖L2(h) ≤ ‖�‖∞ ≤ Cp,1K

p. Notice also that:

{f}22,s ≤ e2L
Cs

cs
{g}22,s,

using (67) twice and (68) (with s instead of r). We deduce that {�f}2,s is
bounded by a constant depending only on K, r and ε.

The upper bound of {g(p)f}22,s is similar. Using (71) and (72), we get:

cs{g(p)f}22,s ≤ ‖f ‖2∞ Is(g
(p)) + Js(g

(p), f)

≤ e2L Cs{g(p)}22,s + e2L ‖g(p) ‖2L2(h) C2,εC2
r−s−ε{g}22,r.

We deduce that {g(p)f}2,s, and thus f (p), is bounded by a constant depending
only on K, r and ε. Then use (70) and that ‖f ‖L2(h) ≤ ‖f ‖∞ ≤ eL to get the
Lemma for r > 1 and r �∈ N. This concludes the proof.
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