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Abstract. We introduce probability-graphons which are probability kernels that generalize
graphons to the case of weighted graphs. Probability-graphons appear as the limit objects to
study sequences of large weighted graphs whose distribution of subgraph sampling converge.
The edge-weights are taken from a general Polish space, which also covers the case of decorated
graphs. Here, graphs can be either directed or undirected. Starting from a distance dm
inducing the weak topology on measures, we define a cut distance on probability-graphons,
making it a Polish space, and study the properties of this cut distance. In particular, we
exhibit a tightness criterion for probability-graphons related to relative compactness in the
cut distance. We also prove that under some conditions on the distance dm, which are
satisfied for some well-know distances like the Prohorov distance, and the Fortet-Mourier
and Kantorovitch-Rubinstein norms, the topology induced by the cut distance on the space
of probability-graphons is independent from the choice of dm. Eventually, we prove that this
topology coincides with the topology induced by the convergence in distribution of the sampled
subgraphs.

1. Introduction

1.1. Motivation and literature review. Networks appear naturally in a wide variety of
context, including for example: biological networks [BS02, LL09], epidemics processes [DM10,
KMS17], electrical power grids [AAN04] and social networks [AB02, New03]. Most of those
problems involve large dense graphs, that is graphs that have a large number of vertices and a
number of edges that scales as the square of the number of vertices. Those graphs are too large to
be represented entirely in the targeted applications. The idea is then to go from a combinatorial
representation given by the graph to an infinite continuum representation.

In the case of unweighted graphs (i.e. graphs without edge-weights), a theory was developed to
study the asymptotic behaviour of large dense graphs, with the limit objects being the so-called
graphons. The properties of graphons were studied in a series of articles started by [LS06, FLS06,
BJR10, BCL+08, BCL+12]. We shall refer to the monograph [Lov12] which exposes in details
the theory of graphons developed in this series of articles. Graphons can be used to define models
of random graphs with latent vertex-type variables (called W -random graphs) generalizing the
Erdös-Rényi graph and the stochastic block model (SBM). The space of graphons can be equipped
with the so-called cut distance, making it a compact space, and whose topology is that of the
convergence in distribution for all sampled subgraphs, or equivalently of the convergence for
subgraph homomorphism densities.

In recent years, graphons have been used in several application context: non-parametric
estimation methods and algorithms for massive networks [BC17], SIS epidemic models [DDZ22],
the study of transferability properties for Graph Neural Networks [KV23]. Furthermore, there
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has been recent developments in the study of mean-field systems using graphons: stochastic
games and their Nash equilibria [LS22], opinion dynamic on a graphon [AN22], cooperative
multi-agent reinforcement learning [HWYZ23], to cite a few.

However, most real-world phenomenon on the above networks involve weighted networks,
where each edge in the graph carries additional information such as intensity or frequency of
interaction, or transfer capacity.

There exists many models of random weighted graphs. For example configuration models
with edges having independent exponential weights have been considered in [BVDHH10, ADL13,
AL15], see also [Gar09, HG13] where the distribution of the weight of an edge depends on the
types of its end-points. Random geometric graphs with vertices and edges having independent
Gaussian weights have been considered in [AMGM18].

Weighted SBMs (sometimes also called labeled SBMs), in which each edge independently
receives a random weight whose distribution depends on the community labels of its end-points,
have been studied to solve community detection in [LMX13] (see also [XML14] for more general
models where vertex-labels come from a compact space), and exact community recovery in [JL15],
and to get bounds on the number of misclassified vertices in [YP16, XJL20]. Note that weighted
SBMs correspond to a special case of the probability-graphons we study in this article where
the space of vertex-labels is finite (they correspond to the stepfunction probability-graphons we
define in Section 3).

Concomitantly to our work, in [AD23], the authors studied mean-field equations on large real-
weighted graphs modeling interactions with a probability kernel from [0, 1]2 to M1(R) the set of
probability measures on R, but they did not study the topological properties of the set of those
probability kernels. Recently, in [HV23], the authors studied the limit of the total weight of the
minimum spanning tree (MST) for a sequence of random weighted graphs. Following what has
been done for the uniform spanning tree in [HNT18, ANS22], one expects the local and scaling
limits of the MST to be directly constructed from the limit of the random weighted graphs.

Motivated by those examples, we shall consider probability-graphons as possible limits of large
weighted graphs; they are defined as maps from [0, 1]2 to the space of probability measures M1(Z)
on a Polish space Z. When Z is compact, this question has been considered in [LS10] and in
[Lov12, Section 17.1] using convergence of homomorphism densities of subgraphs decorated with
real functions defined on Z, see also [?] on multigraphs where Z = N, but the metric properties
of the set of probability-graphons W1 have only been established when Z is finite, see [FOSU16].
The work [KLS22] is an extension of [LS10] where M1(Z) is replaced by the dual space Z of a
separable Banach space B. As M1(Z) is a subset of the dual of Cb(Z), this approach covers our
setting when Cb(Z) is separable, that is, Z compact (see Section 2 below). The norm introduced
on the space of Z-valued graphons therein implies the convergence of homomorphims densities
of B-decorated sub-graphs, however there is no equivalence a priori.

In this paper we study the topological property of the space of probability-graphons W1
when Z is a general Polish space: the space W1 is a Polish topological space and we give
“natural” cut distances on W1 which are complete. One of the main difficulty is that the space
of probability measures M1(Z) can be endowed with many distances which induce the topology
of weak convergence, each of them giving rise to a different cut distance on W1. We prove
that the topology induced on W1 does not depend on the initial choice of the distance on
M1(Z), provided this distance satisfies some simple general conditions. However, we stress
that not all of these cut distances are complete. We also check that this topology characterizes
the convergence in distribution of the sampled subgraphs with random weights on the edges
or equivalently the convergence of the homomorphism densities of Cb(Z)-decorated subgraphs.
Similarly to the graphon setting, we prove the convergence in distribution of large sampled
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weighted subgraphs from a probability-graphon W to itself. We also provide a tightness criterion
for studying the convergence of weighted graphs towards probability-graphons; this criterion
generalizes the tightness condition in [KR11] for multigraphs where Z = N.

In conclusion, we believe that the unified framework developed here is easy-to-work-with and
will allow to use probability-graphons to study large (random) weighted graphs.

1.2. New contribution. Through the article, measure will always be used to denote a positive
measure.

1.2.1. Definition of probability-graphons. In this article, we define an analogue of graphons for
weighted graphs, which we call probability-graphons, and study their properties. To avoid any
confusion, in the rest of the article we say real-valued graphons instead of graphons. We consider
the general case where weighted graphs take their edge-weights in a Polish space Z (e.g. Z, R
or Rd), which thus also covers the case of decorated graphs, multi-graphs (graphs with possibly
multiple edges between two vertices) and dynamical graphs (where edge-weights evolve over
time).

We define a probability-graphon as a probability kernel W : [0, 1]2 → M1(Z), where M1(Z)
is the space of probability measures on Z. A probability-graphon can be interpreted as follows:
for two “vertex type” x and y in [0, 1], the weight z of an edge between two vertices of type
x and y is distributed as the probability measure W (x, y; dz). In particular, the special case
Z = {0, 1} allows to recover real-valued graphons: as any real-valued graphon w : [0, 1]2 → [0, 1]
can be represented as a probability-graphon W (x, y; ·) = w(x, y)δ1 + (1 − w(x, y))δ0, where δz
denote the Dirac mass located at z. Let us mention that it is possible to define the probability-
graphons on a more general probability space (Ω,A, µ) than [0, 1] for the vertex-types, see
Remark 3.4 for details. In this article, we also define and study the properties of signed measure-
valued kernels which are bounded (in total mass/total variation norm) measurable functions
W : [0, 1]2 7→ M±(Z) whose values are signed measures, but for brevity we mainly focus on
probability-graphons in this introduction.

As probability-graphons are measurable functions, we identify probability-graphons that are
equal for almost every (x, y) ∈ [0, 1]2, and we denote by W1 the space of probability-graphons.
Moreover, as we consider weighted graphs that are unlabeled (that is vertices are unordered),
we need to consider probability-graphons up to “relabeling”: for a measure-preserving map φ :
[0, 1] → [0, 1] (relabeling map for probability-graphons), we define Wφ(x, y; ·) = W (φ(x), φ(y); ·);
we say that two probability-graphons are weakly isomorphic if there exists measure-preserving
maps φ,ψ : [0, 1] → [0, 1] such that Uφ = Wψ for a.e. (x, y) ∈ [0, 1]2. We denote by W̃1 the space
of probability-graphons where we identity probability-graphons that are weakly isomorphic.

We can always assume that weighted graphs are complete graphs by adding all missing edges
and giving them a weight/decoration ∂ which is a cemetery point added to Z. Any weighted
graph G can be represented as a probability-graphon WG in the following way: denote by n the
number of vertices of G and divide the unit interval [0, 1] into n intervals I1, · · · , In of equal
lengths, then WG is defined for (x, y) ∈ Ii × Ij as WG(x, y; ·) = δM(i,j), where M(i, j) is the
weight on the edge (i, j) in G. Note that weighted graphs can be either directed or undirected,
in the case of undirected weighted graphs their limit objects are symmetric probability-graphons,
that is probability-graphons W such that W (x, y; ·) = W (y, x; ·).

1.2.2. The cut distance for probability-graphons and its properties. While there is a usual distance
on the field of reals R, this is not the case for probability measures, measures or signed measures
endowed with the weak topology. Some commonly used distances include the Prohorov distance
dP which can be defined on measures, and the Kantorovitch-Rubinstein norm ∥ ·∥KR (sometimes
also called the bounded Lipschitz norm) and the Fortet-Mourier norm ∥ · ∥FM defined on signed
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measures but metrizing the weak topology on measures. (Note that in general the weak topology
is not metrizable on signed measures, see Section 2 below.) We also use a norm ∥ · ∥F based
on a convergence determining sequence F ⊂ Cb(Z). See Section 3.8 for definition of those
distances. To define an analogue of the cut norm for probability-graphons, we first need to
choose a distance dm that metrizes the weak topology on the space of sub-probability measures
M≤1(Z) (i.e. measures with total mass at most 1); we then define the cut distance d□,m for
probability-graphons as:

d□,m(U,W ) = sup
S,T⊂[0,1]

dm

(
U(S × T ; ·),W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1], and where W (S ×
T ; ·) =

∫
S×T W (x, y; ·) dxdy is a sub-probability measure and similarly for U . Moreover, if the

distance dm is derived from a norm Nm defined on the space of signed measures M±(Z), then
the cut distance d□,m derives from the cut norm N□,m defined on signed measure-valued kernels:

N□,m(W ) = sup
S,T⊂[0,1]

Nm

(
W (S × T ; ·)

)
.

We then define the unlabeled cut distance δ□,m on the space of unlabeled probability-graphons
W̃1 as:

δ□,m(U,W ) = inf
φ
d□,m(U,Wφ) = min

φ,ψ
d□,m(Uφ,Wψ),

where the infimum is taken over all measure-preserving maps φ and ψ, see Proposition 3.18 for
alternative expressions of δ□,m (including proof that the minimum exist for the second expression)
and see Theorem 3.17 that states that δ□,m is indeed a distance on W̃1. In Proposition 4.13, we
prove an equivalent of the weak regularity lemma for probability-graphons.

An interesting fact is that under some conditions on dm, the topology induced by the associated
cut distance δ□,m does not depend on the particular choice of dm. The following proposition is
a particular case of Theorem 5.5 together with Corollary 4.14.

Proposition 1.1. The cut distances δ□,P , δ□,KR, δ□,FM and δ□,F induce the same topology on
the space of probability-graphons W̃1.

Recall that Z is a Polish space. We now state that W̃1 is also Polish for the distance δ□,P
(but not for δ□,F !), and we refer to Theorem 5.10 for other distances.

Theorem 1.2. The space of probability-graphons (W̃1, δ□,P) is a Polish metric space.

We prove an analogue of Prohorov’s theorem with a tightness criterion for probability-graphons.
We say that a subset of probability-graphons K ⊂ W̃1 is tight if the set of probability measures
{MW : W ∈ K} is tight (in the sense of probability measures), where MW (·) = W ([0, 1]2; ·).
The next result is consequence of Theorem 5.1 as well as Corollary 4.14.

Theorem 1.3 (Compactness property). Consider the topology on W̃1 from Proposition 1.1.
(i) If a sequence of elements of W̃1 is tight, then it has a converging subsequence.

(ii) If Z is compact, then the space W̃1 is compact.

1.2.3. Sampling from probability-graphons and its link with the cut distance. Finally, we link
the topology of the cut distance δ□,m with subgraph sampling. The probability-graphons allow
to define models of random weighted graphs (the W -random graph model) which generalize
weighted SBM random graphs, and which plays the role of sampled subgraphs for probability-
graphons. The W -random graph (or sampled subgraph of size k) G(k,W ) has two parameters,
a number of vertices k and a probability-graphon W for edge-weights, and is defined as follows:
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first let X1, · · · , Xk be k independent random “vertex-types” uniformly distributed over [0, 1];
then given X1, · · · , Xk, each edge receive a weight independently, where the weight of the edge
(i, j) is distributed as W (Xi, Xj ; ·).

We also provide the a.s. convergence of sampled subgraphs for the topology from Proposition 1.1,
see Theorem 6.13 together with Corollary 5.6.

Theorem 1.4. Let W be a probability-graphon. Then, a.s. the sequence of sampled subgraphs
(G(k,W ))k∈N∗ converges to W for the topology from Proposition 1.1.

To prove this theorem, we adapt the proof scheme of [Lov12, Sections 10.5 and 10.6] relying
on the first and second sampling lemmas for real-valued graphons. The proof is done using the
cut distance δ□,F because of the good approximations properties of ∥ · ∥F .

In the case of unweighted graphs, the homomorphism numbers hom(F,G) count the number
of occurence of a graph F (often called a motif or a graphlet) as an induced subgraph of G,
and their normalized counterparts, the homomorphism densities t(F,G) allow to characterize a
graph (up to relabeling and twin-vertices expansion), and also characterize the topology on real-
valued graphons. In the case of weighted graphs and probability-graphons, we need to replace
absence/presence of edges (which is 0-1 valued) by test functions from Cb(Z) decorating the
edges. Hence, we define the homomorphism density of a G-graph F g which is a finite graph
F = (V,E) whose edges are decorated with a family of functions g = (ge)e∈E from a subset
G ⊂ Cb(Z) (in practice, we only consider the cases G = Cb(Z) or G = F ⊂ Cb(Z) a convergence
determining sequence), in a probability-graphon W as:

t(F g,W ) = MF
W (g) :=

∫
[0,1]V

∏
(i,j)∈E

W (xi, xj ; gi,j)
∏
i∈V

dxi,

where W (x, y; f) =
∫

Z f(z)W (x, y; dz). Moreover, MF
W defines a measure on ZE (which we still

denote by MF
W ) which is defined by MF

W (⊗e∈Ege) = MF
W (g) for g = (ge)e∈E . Note that when

F is the complete graph with k vertices, MF
W is the joint measure of all the edge-weights of the

random graph G(k,W ), and thus characterizes the random graph G(k,W ).
In the counting Lemma 7.5 and the weak counting Lemma 7.7, we prove that the cut norm

∥ · ∥□,F allows to control the homomorphism densities. Conversely, in the inverse counting
Lemma 7.8, we prove that the cut norm ∥·∥□,F can be controlled by the homomorphism densities.
In particular, the topology of the cut distance turns out to be exactly the topology of convergence
in distribution for sampled subgraphs of any given size; the next result is a direct consequence
of Theorem 7.11

Theorem 1.5 (Characterization of the topology). Let (Wn)n∈N and W be unlabeled probability-
graphons from W̃1. The following properties are equivalent:

(i) (Wn)n∈N converges to W for the topology from Proposition 1.1.
(ii) limn→∞ t(F g,Wn) = t(F g,W ) for all Cb(Z)-graph F g.

(iii) limn→∞ t(F g,Wn) = t(F g,W ) for all F-graph F g, for some convergence determining
sequence F .

(iv) For all k ≥ 2, the sequence of sampled subgraphs (G(k,Wn))n∈N converges in distribution
to G(k,W ).

Now, we can turn back to the initial problem of finding a limit object for a convergent sequence
of weighted graphs (Gn)n∈N; here convergent means that for all k ≥ 2, the sequence (G(k,Gn) =
G(k,WGn

))n∈N of sampled subgraphs of size k (defined above) converges in distribution (to some
limit random graph). Note that the tightness criterion for a sequence of probability-graphons
(Wn)n∈N can be equivalently rephrased as tightness of the sequence (G(2,Wn))n∈N of sampled
subgraphs of size 2. Hence, the convergence in distribution of the sequence (G(2, Gn))n∈N implies
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its tightness, and thus the tightness of the sequence of probability-graphons (WGn)n∈N. Then,
Theorem 1.3 guarantees the existence of a probability-graphon W which is a sub-sequential limit
of the sequence (WGn

)n∈N in the cut distance δ□,F , and then Theorem 1.5 guarantees that for
all k ≥ 2, the sequence (G(k,Gn))n∈N converges in distribution to G(k,W ).

As a consequence, probability-graphons are precisely the limit objects for sequences of weighted
graphs (Gn)n∈N (and also for random weighted graphs) whose number of vertices goes to infinity
(otherwise the limit would simply be a weighted graph) and such that for each size k ≥ 2, the
sequence of sampled subgraphs (G(k,Gn))n∈N converges in distribution.

Remark 1.6 (Extension to vertex-weights). The framework we have developed for probability-
graphons could easily be extended to add weights on the vertices, or equivalently to allow for
self-loops (i.e. edges linking a vertex to itself). In this case, weighted graphs and probability-
graphons have a two-variable kernel (probability-graphon) W e for edge-weights as before, and a
one-variable kernel W v : [0, 1] → M1(Z) for vertex-weights. Note that this implies, as expected,
that the same measure-preserving map φ : [0, 1] → [0, 1] must be used for both kernels W v and
W e when relabeling.

1.3. Organization of the paper. The rest of the paper is organized as follows. In Section 2,
we define some notations used throughout the paper, and remind some properties of the weak
topology on the space of signed measures. In Section 3, we define probability-graphons and
signed-measure valued kernels, we then define the cut distance and the cut norm and study
their properties, and we also give some exemple of distances with the Prohorov distance dP ,
the Kanrorovitch-Rubinstein and Fortet-Mourier norms ∥ · ∥KR and ∥ · ∥FM, and the norm
∥ · ∥F based on a convergence determining sequence. In Section 4, we define the steppings
of a probability-graphon (which are stepfunction approximations corresponding to conditional
expectations on [0, 1]2), we define the tightness criterion for probability-graphons, and we prove
the weak regularity property of the cut distance. In Section 5, we prove the theorem linking
the tightness criterion with relative compactness for the cut distance, we prove that under some
conditions the topology of the cut distance does not depend on the choice of the initial distance
dm, and we prove that the space of probability-graphons with the cut distance is a Polish space.
In Section 6, we define the subgraph G(k,W ) sampled from a probability-graphon W , we then
prove approximation bound in the cut norm ∥ · ∥□,F between probability-graphons and their
sampled subgraphs. In Section 7, we prove the counting lemmas linking the cut distance with
the homomorphism densities, and prove that the topology induced by the cut distance coincides
with the topology of convergence in distribution for all the sampled subgraphs.
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2. Notations and topology on the space of signed measures

Through the article, measure will always be used to denote a positive measure.
Let N = Z+ be the set of non-negative integers, N∗ = N\{0} the set of positive integers,

and, for n ∈ N∗, we define the integer set [n] = {1, . . . , n}. For k ∈ N∗, the set [0, 1]k is
endowed with the Borel σ-field and the Lebesgue measure λk; and we write λ for λk when the
context is clear. The supremum of a real-valued function f defined on [0, 1]k is denoted by
∥f∥∞ = supx∈[0,1]k f(x).

Let d be a distance on a topological space (X,O).
(i) The distance d is continuous w.r.t. the topology O if the identity map from (X,O) to

(X, d) is continuous.
(ii) The distance d is sequentially continuous w.r.t. the topology O if for any sequence

(xn)n∈N in X which converges to some limit x for the topology O, we also have that
limn→∞ d(xn, x) = 0.

Let d and d′ be two distances on a space X. We say that d′ is continuous (resp. uniformly
continuous) w.r.t. d if the identity map from (X, d) to (X, d′) is continuous (resp. uniformly
continuous).

Remark 2.1. If the topology O is metrizable (i.e. can be generated by a distance on the space
X), then the topology on X induced by the distance d is equivalent to O if and only if for
every sequence with values in X, convergence for d is equivalent to convergence for O (see
[Eng89, Theorem 4.1.2]). Moreover, when the topology is metrizable, then topological notions
and their sequential counterparts coincides (e.g. compact and sequentially compact sets, closed
and sequentially closed sets, see [Eng89, Proposition 4.1.1 and Theorem 4.1.17]).
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Remark 2.2. For a function, continuity always implies sequential continuity; and the converse
is also true when the topology is metrizable.

A map φ : Ω1 → Ω2 between two probability spaces (Ωi,Ai, πi), i = 1, 2, is measure-preserving
if it is measurable and if for everyA ∈ A2, π2(A) = π1(φ−1(A)). In this case, for every measurable
non-negative function f : Ω2 → R, we have:

(1)
∫

Ω1

f(φ(x)) π1(dx) =
∫

Ω2

f(x) π2(dx).

We denote by S[0,1] the set of bijective measure-preserving maps from [0, 1] with the Lebesgue
measure to itself, and by S̄[0,1] the set of measure-preserving maps from [0, 1] with the Lebesgue
measure to itself.

Let (Z,OZ) be some (non-empty) Polish space, and let B(Z) be the Borel σ-field on Z
generated by the topology OZ. We denote by Cb(Z) the space of real-valued continuous bounded
functions on (Z,OZ). We denote by M±(Z) the space of finite signed measures on (Z,B(Z));
M+(Z) the subspace of measures; M≤1(Z) the subspace of measures with total mass at most 1;
and M1(Z) the subspace of probability measures. We have:

M1(Z) ⊂ M≤1(Z) ⊂ M+(Z) ⊂ M±(Z).
For a signed measure µ ∈ M±(Z), we remind the definition of the Hahn-Jordan decomposition

µ = µ+ − µ− where µ+, µ− ∈ M+(Z) are mutually singular measures (that is µ+(A) = 0 and
µ−(Ac) = 0 for some measurable set A), as well as the total variation measure of µ which is
defined as |µ| = µ+ + µ− ∈ M+(Z). Note that for a measure µ ∈ M+(Z), we simply have
|µ| = µ. For a signed-measure µ ∈ M±(Z) and a real-valued measurable function f defined on
Z, we write µ(f) = ⟨µ, f⟩ =

∫
f dµ =

∫
Z f(x)µ(dx) the integral of f w.r.t. µ whenever it is

well defined. For a signed measure µ ∈ M±(Z), we denote by ∥µ∥∞ = µ+(Z) + µ−(Z) its total
mass, which is also equal to the supremum of µ(f) over all measurable functions f with values
in [−1, 1].

We endow M±(Z) with the topology of weak convergence, that is the smallest topology
for which the maps µ 7→ µ(f) are continuous for all f ∈ Cb(Z). In particular, a sequence of
signed measures (µn)n∈N weakly converges to some µ ∈ M±(Z) if and only if, for every function
f ∈ Cb(Z), we have limn→+∞ µn(f) = µ(f). Let us recall that M+(Z) and M1(Z) endowed
with the topology of weak convergence are Polish spaces.

Remark 2.3 (The weak topology on M±(Z)). The topology of weak convergence on the set of
signed measures M±(Z) is equivalent to the weak-∗ topology on M±(Z) seen as a subspace of
the topological dual of Cb(Z) (see the paragraph after Definition 3.1.1 in [Bog18]). As usual in
probability theory, this topology will be simply called the weak topology (this is also consistent
with [Bog18]).

We recall that a sequence of [0, 1]-valued functions F = (fk)k∈N in Cb(Z), with f0 = 1 the
constant function equal to one, is:

(i) Separating if for every measures µ, ν from M±(Z) (or equivalently just from M+(Z))
such that for every k ∈ N, µ(fk) = ν(fk), then µ = ν.

(ii) Convergence determining if for every (µn)n∈N and µ measures from M+(Z) such
that we have limn→+∞ µn(fk) = µ(fk) for all k ∈ N, then (µn)n∈N weakly converges to
µ.

Notice that a convergence determining sequence is also separating. A sequence of functions
is separating if and only if it separates the points of Z (see [EK09, Theorem 3.4.5]). There
always exists a convergence determining sequence on Polish spaces, see [Bog18, Corollary 2.2.6]
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or the proof of Proposition 3.4.4 in [EK09] (which are stated for probability measures but can be
extended to finite positive measures as we required that 1 belongs to F). Note that there does
not exist a convergence determining sequence for M±(Z) as the weak topology is not metrizable
on M±(Z) (see Remark 2.6 below).

Remark 2.4 (The Borel σ-field on M±(Z)). By [Bog18, Corollary 5.1.9], the Borel σ-field on
M±(Z), associated with the weak topology, is countably generated and can be generated by
either:

• the family of maps µ 7→ µ(fn) where the sequence (fn)n∈N of functions from Cb(Z) is
separating;

• the family of maps µ 7→ µ(B) where B ∈ A and the subset A ⊂ B(Z) is countable and
generates the whole σ-field B(Z) (such subset A always exists, see [Bog07b, Corollary
6.7.5]).

Note that the Borel σ-field of a Polish space is generated by any family of Borel functions that
separates points (see [Bog07b, Theorem 6.8.9]).

Furthermore, the maps µ 7→ µ+ and µ 7→ µ− (and thus also µ 7→ |µ|) are measurable (see
[DF64, Theorem 2.8] and Remark 2.4). As a consequence, the map µ 7→ ∥µ∥∞ is also measurable
(in fact it is even lower semicontinuous by [Bog18, Theorem 2.7.4]). Note that M1(Z) and M+(Z)
are closed, and thus measurable, subsets of M±(Z).

We define the following two important properties for subsets of signed measures, which are
related to relative compactness (see Lemma 2.8 below).

Definition 2.5. Let M ⊂ M±(Z) be a subset of signed measures.
(i) The set M is bounded (in total variation) if:

sup
µ∈M

∥µ∥∞ < +∞.

(ii) The set M is tight if for all ε > 0, there exists a compact set K ⊂ Z such that:
sup
µ∈M

|µ|(Kc) ≤ ε.

Remark 2.6 (On the compact sets and metrizability of the weak topology). Recall that Z is
a Polish space. We stress that the weak topology on signed measures is not metrizable unless
it coincides with the strong topology (see [Var58, Theorem 4.1]), which happens only when the
initial space Z is finite (see [Bog18, Proposition 3.1.8]).

Moreover, the closed norm ball {µ ∈ M±(Z) : ∥µ∥∞ ≤ 1} of M±(Z) is metrizable if and
only if Z is compact (see [Bog18, Proposition 3.1.8 and Theorem 3.1.9]).

Let M ⊂ M±(Z). The following properties are equivalent (see [Bog18, Theorems 2.3.4 and
3.1.9]):

(i) M is weakly compact (i.e. M is compact for the weak topology);
(ii) M is sequentially weakly compact (that is every sequence (µn)n∈N in M has a subsequence

that converges to some limit µ ∈ M);
(iii) M is compact for the sequential weak topology (for which sets are closed if and only if

they are closed under weak convergence).
Moreover, when any of those is true, M is tight, bounded, and metrizable in the weak topology.
Furthermore, the Kantorovitch-Rubinstein and Fortet-Mouriet norms ∥·∥KR and ∥·∥FM (defined
in Section 3.8.2) can be used to generate the weak topology on a weakly compact set (see [Bog18,
Remark 3.2.5]).

Nevertheless, the weak topology on the unit sphere {µ ∈ M±(Z) : ∥µ∥∞ = 1} of M±(Z) is
always metrizable with a complete metric, making the unit sphere a Polish space, however, the
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Kantorovitch-Rubinstein and Fortet-Mouriet norms ∥·∥KR and ∥·∥FM do not provide a complete
metrization in this case (see [Bog18, Theorem 3.2.8]).
Remark 2.7 (On the compactness of M1(Z)). Let M be either M1(Z), M≤1(Z) or the closed
norm ball {µ ∈ M±(Z) : ∥µ∥∞ ≤ 1} of M±(Z). Then, M is weakly compact if and only if Z
is compact.

We give a short proof of this statement. As M1(Z) is closed in M±(Z) for the weak topology,
if M is weakly compact, then M1(Z) is also weakly compact, and thus Z is compact by [Var58,
Theorem 3.4]. Conversely, if Z is compact, then by [Bog18, Theorem 1.3.3], we know that
M±(Z) (endowed with the weak topology) is the topological dual space of Cb(Z) (endowed with
the uniform convergence topology), thus using Banach-Alaoglu theorem (see [Bog18, Theorem
1.3.6]), we get that the closed unit norm-ball of M±(Z), and thus M, are compact for the weak
topology.

We recall the following result, which is an equivalent of Prohorov’s theorem for signed measures.
Lemma 2.8 (Prohorov’s theorem for signed measures, [Bog18, Theorems 2.3.4 and 3.1.9]). Let Z
be a Polish space, and let M ⊂ M±(Z) be a subset of signed measures on Z. Then the following
conditions are equivalent:

(i) M is relatively sequentially compact, that is every sequence (µn)n∈N in M contains a
subsequence which weakly converges in M±(Z).

(ii) M is relatively compact for the weak topology, that is the closure of M is compact for
the weak topology.

(iii) The family M is tight and bounded.
Remark 2.9 (On the weak sequential topology). When the space Z is infinite, the weak topology
does not coincide with the weak sequential topology on M±(Z) (but recall from Remark 2.6 that
their compact sets are the same). Recall that if the space Z is compact, then the unit norm ball
of M±(Z) is metrizable, and thus the weak topology and the weak sequential topology coincide
on it. However, if the space Z is non-compact, then the weak topology and the weak sequential
topology do not coincide on the unit norm ball of M±(Z).

We give a short proof of those statements according to Z being compact or not.
(i) Remind that when Z is an infinite compact space (for instance Z = [0, 1]), the Banach

space Cb(Z) is infinite-dimensional and separable (using Stone-Weierstrass theorem),
and its topological dual is (Cb(Z))∗ = M±(Z) (see [Bog18, Theorem 1.3.3]). Thus, using
[HS96, Theorem 2.5], we get the existence of a countable subset which is weak sequentially
closed yet weak dense in M±(Z). In particular, the weak sequential topology and the
weak topology do not coincide on M±(Z).

(ii) Assume that the space Z is non-compact. Thus, Z contains a countable closed subset
F whose points are at mutual distances uniformly bounded away from zero. By [Bog18,
Remark 3.1.7], the weak topology on M±(F ) for a closed subset F coincides with the
trace of the weak topology on the whole space. By [Bog18, Section 3.1, p. 102], M±(F )
is homeomorphic to ℓ1 both endowed with their weak topology, weak convergence on ℓ1

is equivalent to norm convergence, and the weak topology on ℓ1 is not sequential, even
on the unit norm ball. Hence, the weak topology on M±(Z) is not sequential, even on
the unit norm ball.

We define the notion of a quasi-convex distance, which generalizes the convexity of a norm.
Definition 2.10 (Quasi-convex distance). Let (X, d) be a metric space which is a convex subset
of a vector space. The distance d is quasi-convex if for all x1, x2, y1, y2 ∈ X and all α ∈ [0, 1],
we have:

d(αx1 + (1 − α)x2, αy1 + (1 − α)y2) ≤ max(d(x1, y1), d(x2, y2)).
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In particular, any distance (on a convex subset of a vector space) which derive from a norm
is quasi-convex.

Lemma 2.11. Let dm be distance on Mϵ(Z) with ϵ ∈ {+,±} which is quasi-convex and
sequentially continuous with respect to the weak topology. Then, dm is uniformly continuous
with respect to ∥ · ∥∞ on Mϵ(Z).

Proof. We shall simply consider the case M = M+(Z), the other case being simpler. We first
check that for all µ ∈ M and ε > 0, there exists η > 0 such that for all ν ∈ M, we have that
∥µ − ν∥∞ < η implies dm(µ, ν) < ε. As dm is sequentially continuous w.r.t. the weak topology,
it is also (sequentially) continuous w.r.t. the strong topology. Let µ ∈ M and ε > 0. Then, the
set {ν ∈ M : dm(µ, ν) < ε} is an open set of M containing µ both for dm and for the strong
topology. Thus, it contains a neighborhood of µ for the strong topology {ν ∈ M : ∥µ−ν∥∞ < η}
for η > 0 small enough. This proves the claim.

As dm is quasi-convex and M is a cone, for µ, ν ∈ M we have:

dm(µ, µ+ ν) = dm

(
1
2 · (2µ+ 0), 1

2 · (2µ+ 2ν)
)

≤ max(dm(2µ, 2µ), dm(0, 2ν)) = dm(0, 2ν).

Let ε > 0 be fixed. We choose η ∈ (0, 1) such that ∥ν∥∞ < η, with ν ∈ M, implies dm(0, ν) < ε.
Let µ, ν ∈ M be such that ∥µ − ν∥∞ < η/2. Let λ′ = µ + ν and f (resp. g) the density of µ
(resp. ν) with respect to λ′. We set π = min(f, g)λ′, µ′ = (f − g)+ λ

′ and ν′ = (f − g)− λ
′ so

that π, µ′, ν′ ∈ M, µ = π + µ′ and ν = π + ν′. Since µ′ − ν′ = µ− ν and µ′ and ν′ are mutually
singular, we deduce that ∥µ′∥∞ + ∥ν′∥∞ < η/2. We get:

dm(µ, ν) = dm(π + µ′, π + ν′) ≤ dm(π, π + µ′) + dm(π, π + ν′)
≤ dm(0, 2µ′) + dm(0, 2ν′)
≤ 2ε.

Hence, the distance dm is uniformly continuous with respect to ∥ · ∥∞ on M. □

3. Measured-valued graphons and the cut distance

In Section 3.1, we introduce the measure-valued graphons, which are a generalization of real-
valued graphons (i.e. [0, 1]-valued measurable functions defined on [0, 1]2). We refer to the
monography [Lov12] on real-valued graphons for more details. In Sections 3.2, 3.3 and 3.4, we
introduce the cut distance, and its unlabeled variant, on the space of measure-valued graphons
which are analogous to the ones for real-valued graphons (see [Lov12, Chapter 8]). In Section 3.5,
we define a weak isomorphism relation for measure-valued graphons based on this distance.
Then, in Section 3.6, we give an alternative combinatorial formulation of the cut distance for
stepfunctions.

3.1. Definition of measure-valued graphons. We start by defining measure-valued kernels
and graphons which are a generalization of real-valued kernels and graphons. Recall that Z is a
Polish space and M±(Z) is the space of finite signed measures.

Definition 3.1 (Signed measure-valued kernels). A signed measure-valued kernel or M±(Z)-
valued kernel is a map W from [0, 1]2 to M±(Z), such that:

(i) W is a signed-measure in dz: for every (x, y) ∈ [0, 1]2, W (x, y; ·) belongs to M±(Z).
(ii) W is measurable in (x, y): for every measurable set A ⊂ Z, the function (x, y) 7→

W (x, y;A) defined on [0, 1]2 is measurable.
(iii) W is bounded:

(2) ∥W∥∞ := sup
x,y∈[0,1]

∥W (x, y; ·)∥∞ < +∞.



12 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND JULIEN WEIBEL

We denote by W1 (resp. W≤1, resp. W+, resp. W±) the space of probability measure-
valued kernels or simply probability-graphons (resp. sub-probability measure-valued kernels,
resp. measure-valued kernels, resp. signed measure-valued kernels), where we identify kernels
that are equal a.e. on [0, 1]2, with respect to the Lebesgue measure. Then, (2) should be read
with an essential supremum instead of a supremum. In what follows, we always assume for
simplicity that we choose representatives of measure-valued kernels such that ∥W∥∞ is also the
essential supremum of (x, y) 7→ ∥W (x, y; ·)∥∞.

For M ⊂ M±(Z), we denote by WM the subset of signed measure-valued kernel W ∈ W±
which are M-valued: W (x, y; ·) ∈ M for every (x, y) ∈ [0, 1]2.
Remark 3.2 (On real-valued kernels). Let Z = {0, 1} be equipped with the discrete topology.
Every real-valued graphon w can be represented using a probability-graphon W defined for every
x, y ∈ [0, 1] by W (x, y; dz) = w(x, y)δ1(dz) + (1 − w(x, y))δ0(dz), where δz is the Dirac mass
located at z. In particular we have that w(x, y) = W (x, y; {1}) for x, y ∈ [0, 1].

Let W ∈ W± be a signed measure-valued kernel. Define the map W+ : [0, 1]2 → M+(Z) to
be the positive part of W , i.e. for every (x, y) ∈ [0, 1]2, W+(x, y; ·) is the positive part of the
measure W (x, y; ·). Similarly define W− : [0, 1]2 → M+(Z) the negative part of W ; and then
define |W | = W+ +W− the total variation of W and ∥W∥ = |W |(Z) the total mass of W .
Lemma 3.3 (The positive part W+ of a kernel). The maps W+, W− and |W | are all measure-
valued kernels, and the map ∥W∥ : (x, y) 7→ ∥W (x, y; ·)∥∞ is measurable.
Proof. The statements for |W | and ∥W∥ are immediate consequences of the statements for W+

and W−; and as the proof for W+ and W− are similar, we only need to prove that W+ is a
measure-valued kernel. It is immediate that W+ is bounded and that for every (x, y) ∈ [0, 1]2,
W+(x, y; ·) is a measure in M+(Z). Thus, we are left to prove the measurability of W+ in (x, y).
By [DF64, Proposition 2.1] and Remark 2.4, a signed measure-valued kernel U is measurable in
(x, y) (i.e. for every A ∈ B(Z), the map (x, y) 7→ U(x, y;A) is measurable) if and only if the map
(x, y) 7→ U(x, y; ·) is measurable from [0, 1]2 (with its Borel σ-field) to M±(Z) equipped with the
Borel σ-field generated by the weak topology. By [DF64, Theorem 2.8], the map µ 7→ µ+, that
associate to a signed measure the positive part of its Hahn-Jordan decomposition, is measurable
from M±(Z) to M+(Z) both endowed with the Borel σ-field generated by the weak topology.
Considering the composition of W and µ 7→ µ+, we get that W+ is measurable in (x, y) and is
thus a measure-valued kernel. □

Remark 3.4 (Probability-graphons W : Ω × Ω → M1(Z)). Similarly to the case of real-valued
graphons, it is possible to replace the vertex-type space [0, 1] by any standard probability space
(Ω,A, π) that might be more appropriate to represent vertex-types for some applications, and
to consider probability-graphons of the form W : Ω × Ω → M1(Z). We recall that a standard
probability space (Ω,A, π) is a probability space such that there exists a measure-preserving
map φ : [0, 1] → Ω, where [0, 1] is endowed with the Borel σ-field and the Lebesgue measure. In
particular, every Polish space endowed with its Borel σ-field is a standard probability space. As
an example, the space [0, 1]2 equipped with the Borel σ-field and the Lebesgue measure λ2 is a
standard probability space; we will reuse this fact later.

Using the measure preserving map φ, it is then possible to consider an unlabeled version Wφ

of W constructed on Ω′ = [0, 1], and to modify the definition of the cut distance δ□,m similarly
as in [Jan13, Theorem 6.9] to allow each probability-graphons to be constructed on different
standard probability spaces. For simplicity, in this article we only consider the equivalent case
where all probability-graphons are constructed on Ω = [0, 1].
Remark 3.5 (Symmetric kernels). We shall consider non-symmetric measure-valued kernels
and probability-graphons in order to handle directed graphs whose adjacency matrices are thus



PROBABILITY-GRAPHONS: LIMITS OF LARGE DENSE WEIGHTED GRAPHS 13

a priori non-symmetric. We say that a measure-valued kernel or graphon W is symmetric if for
a.e. x, y ∈ [0, 1], W (x, y; ·) = W (y, x; ·).

We define stepfunctions measure-valued kernel which are often used for approximation.
Definition 3.6 (Signed measure-valued stepfunctions). A signed measure-valued kernel W ∈
W± is a stepfunction if there exists a finite partition of [0, 1] into measurable (possibly empty)
sets, say P = {S1, · · · , Sk}, such that W is constant on the sets Si×Sj, for 1 ≤ i, j ≤ k. We say
that W and the partition P are adapted to each other. We write |P| = k the number of elements
of the partition P.
3.2. The cut distance. We define a distance and a norm on signed measure-valued graphons
and kernels, called the cut distance and the cut norm respectively which are analogous to the cut
norm for real-valued graphons and kernels, see [Lov12, Chapter 8]. For a signed measure-valued
kernel W ∈ W± and a measurable subsets A ⊂ [0, 1]2, we denote by W (A; ·) the signed measure
on Z defined by:

W (A; ·) =
∫
A

W (x, y; ·) dxdy.

Definition 3.7 (The cut distance d□,m). Let dm be a quasi-convex distance on M a convex
subset of M±(Z) containing the zero measure. The associated cut distance d□,m is the function
defined on W2

M by:

(3) d□,m(U,W ) = sup
S,T⊂[0,1]

dm

(
U(S × T ; ·),W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1].
Notice that the right-hand side of (3) is well defined as M contains the zero measure (and

thus if U belongs to WM then U(A; ·) belongs to M).
Definition 3.8 (The cut norm N□,m). The cut norm N□,m associated with a norm Nm on
M±(Z) is the function defined on W± by:

N□,m(W ) = sup
S,T⊂[0,1]

Nm

(
W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1].
The next proposition states that the cut distance (resp. norm) is indeed a distance (resp.

norm); its extension to distances on M+(Z) and M±(Z) is immediate.
Proposition 3.9 (d□,m is a distance, N□,m is a norm). The cut distance d□,m associated with a
distance dm on M≤1(Z) (resp. M+(Z)) is a distance on W1 (resp. W+). The cut norm N□,m
associated with a norm Nm on M±(Z) is a norm on W±.

Moreover, when the distance dm on M≤1(Z) (resp. M+(Z)) derives from a norm Nm on
M±(Z), then the distance d□,m derives also from the norm N□,m.
Proof. Let dm be a distance on M≤1(Z) (the proof for the case M+(Z) is similar). It is clear
that d□,m is symmetric and satisfies the triangular inequality. Thus, we only need to prove that
d□,m is separating. Let U and W be two probability-graphons such that d□,m(U,W ) = 0. Then,
for every measurable subsets S, T ⊂ [0, 1], we have U(S × T ; ·) = W (S × T ; ·). Let F = (fk)k∈N
be a separating sequence. For every k ∈ N, and for every measurable subsets S, T ⊂ [0, 1], we
have that U(S × T ; fk) = W (S × T ; fk). This implies that U(x, y, fk) dxdy = W (x, y, fk) dxdy
for all k ∈ N. Hence, we deduce that for all k ∈ N, U(x, y; fk) = W (x, y; fk) for almost every
(x, y) ∈ [0, 1]2. Thus, U(x, y; ·) = W (x, y; ·) for almost every (x, y) ∈ [0, 1]2. This implies that
d□,m is separating on W1, and thus a distance on W1.

The proof for the cut norm is similar. The proof of the last part of the proposition is clear. □
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3.3. Graphon relabeling, invariance and smoothness properties. The analogue of graph
relabelings for graphons are measure-preserving maps. Recall the definition of a measure-
preserving map from Section 2, and in particular (1). Recall S̄[0,1] denotes the set of measure-
preserving (measurable) maps from [0, 1] to [0, 1] endowed with the Lebesgue measure, and S[0,1]
denotes its subset of bijective maps.

The relabeling of a signed measure-valued kernel W by a measure-preserving map φ, is the
signed measure-valued kernel Wφ defined for every x, y ∈ [0, 1] and every measurable set A ⊂ Z
by:

Wφ(x, y;A) = W (φ(x), φ(y);A) for x, y ∈ [0, 1] and A ⊂ Z measurable.
We say that a subset K ⊂ W± is uniformly bounded if:

(4) sup
W∈K

∥W∥∞ < +∞.

Definition 3.10 (Invariance and smoothness of a distance on kernels). Let d be a distance on
W1 (resp. W+ or W±). We say that the distance d is:

(i) Invariant: if d(U,W ) = d(Uφ,Wφ) for every bijective measure-preserving map φ ∈
S[0,1] and U, V ∈ W1 (resp. U, V belongs to W+ or W±).

(ii) Smooth: if a.e. weak convergence implies convergence for d, that is, if (Wn)n∈N and W
are kernels from W1 (resp. kernels from W+ or W± that are uniformly bounded and)
such that for a.e. (x, y) ∈ [0, 1]2, Wn(x, y; ·) weakly converges to W (x, y; ·) as n → ∞,
then limn→∞ d(Wn,W ) = 0.

We say that a norm N on W± is invariant (resp. smooth) if its associated distance d on W± is
invariant (resp. smooth).

We shall see in Section 3.8 some examples of distances dm for which the associated cut distance
d□,m is invariant and smooth. The invariance property from Definition 3.10 is always satisfied
by the cut distance, and thus also by the cut norm.

Lemma 3.11 (d□,m is invariant). Let dm be a distance on M≤1(Z) (resp. M+(Z), resp.
M±(Z)). Then the cut distance d□,m on W1 (resp. W+, resp. W±) is invariant.

Proof. For a signed measure-valued kernel W , a bijective measure-preserving map φ ∈ S[0,1], and
measurable sets S, T ⊂ [0, 1], we have thanks to (1):∫

S×T
Wφ(x, y; ·) dxdy =

∫
S×T

W (φ(x), φ(y); ·) dxdy =
∫
φ(S)×φ(T )

W (x, y; ·) dxdy.

Hence, taking the supremum over every measurable sets S, T ⊂ [0, 1], we get that the cut distance
d□,m is invariant. □

When a smooth distance on W1 or W+ derives from a distance on M1(Z) or M+(Z), we have
the following result.

Lemma 3.12 (Smoothness and the weak topology). Let dm be a distance on M≤1(Z) (resp.
M+(Z) or M±(Z)) such that the distance d□,m on W1 (resp. W+ or W±) is smooth. Then, the
distance dm is continuous w.r.t. the weak topology on M1(Z) (resp. M+(Z)).

Proof. Let (µn)n∈N, and µ be measures from M1(Z) (resp. M+(Z)) such that (µn)n∈N weakly
converges to µ. Consider the constant measure-valued graphons (resp. kernels) Wn ≡ µn, n ∈ N,
and W ≡ µ. Then, for every x, y ∈ [0, 1], Wn(x, y; ·) weakly converges to W (x, y; ·) as n → ∞. As
the distance d□,m is smooth, we get that limn→∞ d□,m(Wn,W ) = 0. Considering S = T = [0, 1]
in the cut distance, we deduce that limn→∞ dm(µn, µ) = 0. □
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The next lemma is a partial converse of Lemma 3.12, it gives sufficient conditions for d□,m to
be smooth. Remind the definition of a quasi-convex distance in Definition 2.10.

Proposition 3.13 (d□,m is smooth). Let dm be distance on Mϵ(Z) with ϵ ∈ {+,±} which is
quasi-convex and sequentially continuous w.r.t. the weak topology (on Mϵ(Z)). Then, the cut
distance d□,m is smooth.

Moreover, for all U,W ∈ Wϵ, and for all measurable A ⊂ [0, 1]2, we have:

(5) dm(U(A; ·),W (A; ·)) ≤ essup
(x,y)∈A

dm(U(x, y; ·),W (x, y; ·)).

To prove Proposition 3.13, we first need to prove the following lemma for approximation by
M-valued kernels taking finitely many values.

Lemma 3.14. Let W ∈ W± and a subset A ⊂ [0, 1]2. There exists a sequence (Wn)n∈N in W±
such that (Wn(A; ·))n∈N weakly converges to W (A; ·) and for all n ∈ N, Wn is finitely valued and
takes its values in {W (x, y; ·) : (x, y) ∈ A}.

Proof. By scaling, we may assume that ∥W∥∞ ≤ 1. Let (fk)k∈N be a convergence determining
sequence with f0 = 1 and fk takes values in [0, 1]. Thus, for all (x, y) ∈ [0, 1]2, ϵ ∈ {±1}
and k ∈ N, we have Wϵ(x, y; fk) ∈ [0, 1]. For all n ∈ N, let (Cn,i)1≤i≤dn

be a partition of
[0, 1]2(n+1) into dn = n2(n+1) hypercubes of edge-length rn = 1/n. Then, for all n ∈ N and
i ∈ [dn], define Bn,i = A ∩ (W+(·; (fi)0≤i≤n,W−(·; (fi)0≤i≤n)−1(Cn,i); thus we get a partition
(Bn,i)1≤i≤dn

of A. If Bn,i ̸= ∅, fix some µn,i ∈ {W (x, y; ·) : (x, y) ∈ Bn,i}. If A ̸= [0, 1]2, fix some
µ∂ ∈ {W (x, y; ·) : (x, y) ∈ [0, 1]2 \ A}. For n ∈ N, we define Wn = 1Ac µ∂ +

∑dn

i=1 1Bn,i
µn,i,

which is finitely valued and takes its values in {W (x, y; ·) : (x, y) ∈ A}.
Let k ∈ N and ϵ ∈ {±}. For all n ≥ k, we have:

|Wϵ(A; fk) − (Wn)ϵ(A; fk)| ≤
dn∑
i=1

∫
Bn,i

|Wϵ(x, y; fk) − (µn,i)ϵ| dxdy ≤ 1
n

·

As (fk)k∈N is convergence determining, this implies that ((Wn)ϵ(A; ·))n∈N weakly converges to
Wϵ(A; ·) for ϵ ∈ {±}. Hence, (Wn(A; ·))n∈N weakly converges to W (A; ·). □

Proof of Proposition 3.13. As dm is quasi-convex, (5) is immediate when U and W take only
finitely many values. Now, assume that U and W are arbitrary Mϵ(Z)-valued kernels. Let
ε > 0. As dm is sequentially continuous w.r.t. the weak topology, using Lemma 3.14, there exist
two Mϵ(Z)-valued kernel U ′ and W ′ such that dm(U ′(A; ·), U(A·)) < ε and U ′ is finitely valued
and takes its values in {U(x, y; ·) : (x, y) ∈ A}, and similarly for W ′ and W . Thus, we have:

dm(U(A; ·),W (A; ·)) ≤ 2ε+ essup
(x,y)∈A

dm(U(x, y; ·),W (x, y; ·)),

and this being true for all ε > 0, we get (5).

Let (Wn)n∈N and W be Mϵ(Z)-valued kernels which are uniformly bounded by some constant
C < ∞ and such that for a.e. (x, y) ∈ [0, 1]2, the sequence ((Wn(x, y; ·))n∈N converges toW (x, y; ·)
for the weak topology, and thus also for dm. Let ε > 0 and S, T ⊂ [0, 1]. As dm is quasi-convex
and sequentially continuous w.r.t. the weak topology, using Lemma 2.11, there exists η > 0 such
that for all µ, ν ∈ Mϵ(Z), we have that ∥µ− ν∥∞ < η implies dm(µ, ν) < ε. For all n ∈ N, define
the measurable set:

An = {(x, y) ∈ S × T : dm(Wn(x, y; ·),W (x, y; ·)) < ε}.

By assumption, we have that limn→∞ λ(An) = λ(S×T ). Let N ∈ N be such that for n ≥ N , we
have λ((S×T )\An) < η/C. Let n ≥ N . Remark that Wn((S×T )\An; ·) and W ((S×T )\An; ·)
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have total mass at most Cλ(Acn) < η. Thus, we have that dm(Wn(An; ·),Wn(S × T ; ·)) < ε and
dm(W (An; ·),W (S × T ; ·)) < ε. Hence, using (5) we get that:

dm(Wn(S × T ; ·),W (S × T ; ·)) ≤ 2ε+ dm(Wn(An; ·),W (An; ·))
≤ 2ε+ essup

(x,y)∈An

dm(Wn(x, y; ·),W (x, y; ·))

≤ 3ε.

Taking the supremum over S, T ⊂ [0, 1], we get d□,m(Wn,W ) ≤ 3ε. This being true for all ε > 0,
we conclude that (Wn)n∈N converges to W for d□,m, and thus d□,m is smooth. □

3.4. The unlabeled cut distance. We can now define the cut distance for unlabeled graphons.

Definition 3.15 (The unlabeled cut distance δ□,m). Set K ∈ {W1,W+,W±}. Let d be an
invariant distance on the kernel space K. The premetric δ□ on K, also called the cut distance,
is defined by:

(6) δ□(U,W ) = inf
φ∈S[0,1]

d(U,Wφ) = inf
φ∈S[0,1]

d (Uφ,W ) .

Notice that δ□ satisfies the symmetry property (as d is invariant) and the triangular inequality.
Hence, δ□ induces a distance (that we still denote by δ□) on the quotient space K̃d = K/ ∼d

of kernels in K associated with the equivalence relation ∼d defined by U ∼d W if and only if
δ□(U,W ) = 0.

When the metric d = d□,m on K = W1 (resp. W+, resp. W±) derives from a metric dm on
M≤1(Z) (resp. M+(Z), resp. M±(Z)), and is thus invariant thanks to Lemma 3.11, we write
δ□,m for δ□ and K̃m for K̃d□,m . We shall see in Theorem 5.5 and Corollary 5.6 that under some
conditions, different choices of distance dm, which induces the weak topology on M≤1(Z), lead
to the same quotient space, then simply denoted by W̃1, with the same topology.

3.5. Weak isomorphism. Similarly to Theorem 8.13 in [Lov12], when the distance dm is such
that d□,m is invariant and smooth, we can rewrite the cut distance δ□,m as a minimum instead
of an infimum using measure-preserving maps, see the last equality in (7).

We introduce a weak isomorphism relation that allows to “un-label” probability-graphons.

Definition 3.16 (Weak isomorphism). We say that two signed measure-valued kernels U and
W are weakly isomorphic (and we note U ∼ W ) if there exists two measure-preserving maps
φ,ψ ∈ S̄[0,1] such that Uφ(x, y; ·) = Wψ(x, y; ·) for a.e. x, y ∈ [0, 1].

We denote by W̃± = W±/ ∼ (resp. W̃1 = W1/ ∼) the space of unlabeled signed measure-
valued kernels (resp. probability-graphons) i.e. the space of signed measure-valued kernels (resp.
probability-graphons) where we identify signed measure-valued kernels (resp. probability-graphons)
that are weakly isomorphic.

Notice that U ∼ W implies that ∥U∥∞ = ∥W∥∞ (we recall that signed measure-valued kernels
are only defined for a.e. x, y ∈ [0, 1] and that ∥W∥∞ in (2) is an essup in general). In particular,
the notion of uniformly bounded subset defined in (4) naturally extends to W̃±. The last part
of this section is devoted to the proof of the following key result.

Theorem 3.17 (Weak isomorphism and δ□). Let d be a distance defined on W1 (resp. W+ or
W±) which is invariant and smooth. Then, two kernels are weakly isomorphic, i.e. U ∼ W , if
and only if U ∼d W , i.e. δ□(U,W ) = 0.

Furthermore, the map δ□ is a distance on W̃1 = W̃1,d (resp. W̃+ = W̃+,d or W̃± = W̃±,d).



PROBABILITY-GRAPHONS: LIMITS OF LARGE DENSE WEIGHTED GRAPHS 17

As a first step in the proof of Theorem 3.17, following [Lov12], we give a nice description of
δ□ using couplings. We say that a measure µ on [0, 1]2 is a coupling measure on [0, 1]2 (between
two copies of [0, 1] each equipped with the Lebesgue measure) if the projection maps on each
components τ, ρ : [0, 1]2 → [0, 1] (where [0, 1]2 is equipped with the measure µ and [0, 1] with the
Lebesgue measure λ) are measure-preserving. Thus for every kernel W on ([0, 1],B([0, 1]), λ),
the function W τ is a kernel on the probability space ([0, 1]2,B([0, 1]2), µ), and similarly for the
projection ρ.

Let φ be a given measure-preserving map from [0, 1] with the Lebesgue measure to [0, 1]2 with
a coupling measure µ. For an invariant distance d on W1 (resp. W±), we define a distance, say
dµ, on kernels on ([0, 1]2,B([0, 1]2), µ) by:

dµ(U ′,W ′) = d(U ′φ,W ′φ).
It is easy to see that, for U and W kernels on [0, 1], we have dµ(Uτ ,W τ ) = d(U,W ) as d is
invariant and τ ◦φ is a measure-preserving map from [0, 1] to itself; and similarly dµ(Uρ,W ρ) =
d(U,W ).

A straightforward adaptation of the proof of [Lov12, Theorem 8.13] gives the next result.

Proposition 3.18 (Minima in the cut distance δ□). Let d be a distance defined on W1 (resp.
W+ or W±) which is invariant and smooth. Then, we have the following alternative formulations
for the cut distance δ□ on W1 (resp. W+ or W±):

(7)

δ□(U,W ) = inf
φ∈S[0,1]

d(U,Wφ) = inf
φ∈S̄[0,1]

d(U,Wφ)

= inf
ψ∈S[0,1]

d(Uψ,W ) = inf
ψ∈S̄[0,1]

d(Uψ,W )

= inf
φ,ψ∈S[0,1]

d(Uψ,Wφ) = min
φ,ψ∈S̄[0,1]

d(Uψ,Wφ),

and
δ□(U,W ) = min

µ
dµ (Uτ ,W ρ)

where µ range over all coupling measures on [0, 1]2.

Proof of Theorem 3.17. We deduce from the last equality in (7) that δ□(U,W ) = 0 if and only
if there exist measure-preserving maps φ,ψ ∈ S̄[0,1] such that Uψ(x, y; ·) = Wφ(x, y; ·) for a.e.
x, y ∈ [0, 1]. This gives that the equivalence relations ∼d and ∼ are the same. □

3.6. The cut norm for stepfunctions. For a quasi-convex distance dm, the cut distance dm
for stepfunctions can be reformulated using a finite combinatorial optimization. For a collection
of subsets P, denote by σ(P) the σ-field generated by P.

Lemma 3.19 (Combinatorial optimization of quasi-convex dm for stepfunctions). Let dm be
a quasi-convex distance on M a convex subset of M±(Z) containing the zero measure. Let
U,W ∈ WM be M-valued stepfunctions adapted to the same finite partition P. Then, there
exists S, T ∈ σ(P) such that:

d□,m(U,W ) = dm(U(S × T ; ·),W (S × T ; ·)).

Proof. Let P = {S1, . . . , Sk} with k = |P| the size of the partition P. First, remark that the
quantity d□,m(U,W ) = dm(U(S′ × T ′; ·),W (S′ × T ′; ·)) depends on S′ and T ′ only through the
values of λ(S′ ∩ Si) and λ(T ′ ∩ Si) for 1 ≤ i ≤ k. Thus, the cut distance between U and W can
be reformulated as:

d□,m(U,W ) = sup
0≤αi,βi≤λ(Si); 1≤i≤k

dm

 ∑
1≤i,j≤k

αiβj µi,j(·),
∑

1≤i,j≤k

αiβj νi,j(·)

 ,
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where µi,j (resp. νi,j) is the constant value of U(x, y; ·) (resp. W (x, y; ·)) when x ∈ Si and
y ∈ Sj . Moreover, when we fix the value of β = (βi)1≤i≤k, the quantity

dm

 ∑
1≤i,j≤k

αiβj µi,j(·),
∑

1≤i,j≤k

αiβj νi,j(·)


is a quasi-convex function of α = (αi)1≤i≤k, and thus realizes its maximum on the extremal
points of the hypercube

∏k
i=1[0, λ(Si)], i.e. when αi equals 0 or λ(Si) for every 1 ≤ i ≤ k. By

symmetry, a similar argument holds for β. The cut distance can thus be reformulated as the
combinatorial optimization:

d□,m(U,W ) = max
I,J⊂[k]

dm

 ∑
i∈I,j∈J

µi,j(·),
∑

i∈I,j∈J
νi,j(·)

 .

Let I, J ⊂ [k] that maximizes this combinatorial optimization, and take S = ∪i∈ISi and T =
∪j∈JSj to conclude. □

3.7. The supremum in S and T in the cut distance d□,m. In this section, we prove that
the supremum in the cut distance d□,m is achieved by some subsets S, T ⊂ [0, 1].

For W ∈ M±(Z) and f, g : [0, 1] → [0, 1] measurable, we define the signed measure:

W (f ⊗ g; ·) =
∫

[0,1]2
W (x, y; ·)f(x)g(y) dxdy.

Remark that if we have W ∈ Wϵ with ϵ ∈ {1,≤ 1,+,±}, then we have W (f ⊗ g; ·) ∈ Mϵ(Z).

Lemma 3.20 (The supremum in the cut distance d□,m for quasi-convex distance dm). Let dm be
a quasi-convex distance on Mϵ(Z) with ϵ ∈ {+,±} that is sequentially continuous w.r.t. the weak
topology. Let U,W ∈ Wϵ. Then, there exist measurable subsets S, T ⊂ [0, 1] such that f = 1S
and g = 1T achieve the supremum in:

sup
f,g

dm

(
U(f ⊗ g; ·),W (f ⊗ g; ·)

)
where the supremum is taken over measurable functions f, g from [0, 1] to itself.

Proof. Define the map Ψ : (f, g) 7→ dm(U(f ⊗ g; ·),W (f ⊗ g; ·)), and denote C = supf,g Ψ(f, g),
where the supremum is taken over measurable functions f, g from [0, 1] to itself. Let (fn)n∈N and
(gn)n∈N be sequences of measurable functions from [0, 1] to itself such that limn→∞ Ψ(fn, gn) =
C. As the unit ball of L∞([0, 1], λ) is compact for the weak-∗ topology (with primal space
L1([0, 1], λ)), upon taking subsequences, we may assume that (fn)n∈N (resp. (gn)n∈N) weak-∗
converges to some f (resp. g) which take values in [0, 1]. Thus, (fn ⊗ gn)n∈N weak-∗ converges
to f ⊗ g in L∞([0, 1]2, λ2). In particular, for every h ∈ Cb(Z), as W [h] is a real-valued kernel,
this implies that limn→∞ W (fn ⊗ gn;h) = W (f ⊗ g;h). This being true for every h ∈ Cb(Z), we
get that the sequence (W (fn ⊗ gn; ·))n∈N in Mϵ(Z) weakly converges to W (f ⊗ g; ·) ∈ Mϵ(Z);
and similarly for U . As dm is sequentially continuous w.r.t. the weak topology on Mϵ(Z), we
get that C = limn→∞ Ψ(fn, gn) = Ψ(f, g).

Now, we show that we can replace the functions f and g by functions that only take the values
0 and 1 (i.e. indicator functions). We first fix g and do this for f . Let X be a random variable
uniformly distributed over [0, 1], and consider the random function 1X≤f . Remark that we have
E[W (1X≤f ⊗ g; ·)] = W (f ⊗ g; ·), and similarly for U . As dm is quasi-convex and sequentially
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continuous w.r.t. the weak topology, we have:

C ≥ sup
x∈[0,1]

dm(U(1x≤f ⊗ g; ·),W (1x≤f ⊗ g; ·))

≥ dm

(
E[U(1X≤f ⊗ g; ·)],E[W (1X≤f ⊗ g; ·)]

)
= dm(U(f ⊗ g; ·),W (f ⊗ g; ·))
= C,

where in the second equality we used the quasi-convex supremum inequality from (5) with the
Mϵ(Z)-valued kernels U ′(x, y; ·) = U(1x≤f ⊗ g; ·) and W ′(x, y; ·) = W (1x≤f ⊗ g; ·), and A =
[0, 1]2. All inequalities being equalities, this imposes:

C = sup
x∈[0,1]

dm(U(1x≤f ⊗ g; ·),W (1x≤f ⊗ g; ·)) = lim
n→∞

dm(U(1rn≤f ⊗ g; ·),W (1rn≤f ⊗ g; ·)),

for some sequence (xn)n∈N in [0, 1]. Upon taking a subsequence, we may assume that the sequence
(xn)n∈N monotonically converges to some x ∈ [0, 1]. In particular, the sequence of functions
(1xn≤f )n∈N (monotonically) converges to the function f ′ = 1x≤f (resp. f ′ = 1x<f ) if (xn)n∈N
is non-decreasing (resp. decreasing), and thus also weak-∗ converges in L∞([0, 1], λ). Using,
as in the first part of the proof, the sequential continuity of the function Ψ w.r.t. the weak-∗
topology on L∞([0, 1], λ), we get that Ψ(f ′, g) = dm(U(f ′ ⊗g; ·),W (f ′ ⊗g; ·)) = C, that is we can
replace f by the indicator function f ′. The same argument allows to replace g by an indicator
function. □

3.8. Examples of distance dm. We consider usual distances and norms on M+(Z) or M±(Z)
that induce the weak topology on M+(Z). All the distances we consider are quasi-convex, and
all the norms we consider are sequentially continuous w.r.t. the weak topology on M±(Z). Thus
their associated cut distances are invariant and smooth by Lemma 3.11 and Proposition 3.13.
Properties for the cut distances associated with those distances and norms are summarized in
Corollaries 4.14 and 5.6.

In this section, we assume that (Z, d0) is a Polish metric space, and remind that B(Z) denotes
its Borel σ-field.

3.8.1. The Prohorov distance dP . The Prohorov distance dP is a complete distance defined on
the set of finite measures M+(Z) that induces the weak topology (see [Bil99, Theorem 6.8]). It
is defined for µ, ν ∈ M+(Z) as:

(8) dP(µ, ν) = inf{ε > 0 : ∀A ∈ B(Z), µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε},

where Aε = {x ∈ Z : ∃y ∈ A, d0(x, y) < ε}. For probability measures, we only need one
inequality in (8) to define the Prohorov distance; however for positive measures we need both
inequalities as two arbitrary positive measures might not have the same total mass. For dm = dP ,
we use the subscript m = P. We now prove that the Prohorov distance is quasi-convex.

Lemma 3.21. The Prohorov distance dP is quasi-convex on M+(Z).

Proof. Let µ1, µ2, ν1, ν2 ∈ M+(Z) and let α ∈ [0, 1]. Let ε > max(dP(µ1, ν1), dP(µ2, ν2)), then
for all i ∈ {1, 2} and B ∈ B(Z), we have that µi(B) ≤ νi(Bε)+ε and νi(B) ≤ µi(Bε)+ε. Taking
a linear combination of those inequalities, we get that for all B ∈ B(Z), we have that αµ1(B) +
(1 −α)µ2(B) ≤ αν1(Bε) + (1 −α)ν2(Bε) + ε, and similarly when swapping the role (µ1, µ2) and
(ν1, ν2). Hence, we get that dP(αµ1 + (1 − α)µ2, αν1 + (1 − α)ν2) ≤ ε, and taking the infimum
over ε, we get that dm(αµ1 + (1 − α)µ2, αν1 + (1 − α)ν2) ≤ max(dm(µ1, ν1), dm(µ2, ν2)). □
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3.8.2. The Kantorovitch-Rubinshtein and Fortet-Mourier norms. The Kantorovitch-Rubinshtein
norm ∥·∥KR (sometimes also called the bounded Lipschitz distance) and the Fortet-Mourier norm
∥ · ∥FM are two norms defined on M±(Z) that induce the weak topology on M+(Z) (see Section
3.2 in [Bog18] for definition and properties of those norms). They are defined for µ ∈ M±(Z)
by:

∥µ∥KR = sup
{∫

Z
f dµ : f is 1-Lipschitz and ∥f∥∞ ≤ 1

}
,

∥µ∥FM = sup
{∫

Z
f dµ : f is Lipschitz and ∥f∥∞ + Lip(f) ≤ 1

}
,

where ∥f∥∞ = supx∈Z |f(x)| is the infinite norm and Lip(f) is the smallest constant L > 0 such
that f is L-Lipschitz. Those two norms are metrically equivalent, see beginning of Section 3.2
in [Bog18]:
(9) ∥µ∥FM ≤ ∥µ∥KR ≤ 2∥µ∥FM.

Note that we have ∥µ∥KR ≤ ∥µ∥∞, and thus those two norms are sequentially continuous w.r.t.
the weak topology on M±(Z).

An easy adaptation of the proof for Theorem 3.2.2 in [Bog18] gives the following comparison
between dP , ∥ · ∥KR and ∥ · ∥FM.

Lemma 3.22 (Comparison of dP , ∥ · ∥KR and ∥ · ∥FM). Let µ, ν ∈ M+(Z). Then, we have:
dP(µ, ν)2

1 + dP(µ, ν) ≤ ∥µ− ν∥FM ≤ ∥µ− ν∥KR ≤
(
2 + min(µ(Z), ν(Z))

)
dP(µ, ν).

In particular, the Prohorov distance dP is uniformly continuous w.r.t. ∥ · ∥KR and ∥ · ∥FM on
M+(Z); and ∥ · ∥KR and ∥ · ∥FM are uniformly continuous w.r.t. dP on M≤1(Z).

For the special choice Nm = ∥ · ∥KR (resp. Nm = ∥ · ∥FM), we use the subscript m = KR (resp.
m = FM).

3.8.3. A norm based on a convergence determining sequence. From a convergence determining
sequence F = (fk)k∈N, where f0 = 1 and fk ∈ Cb(Z) takes values in [0, 1], we define a norm on
M±(Z) metrizing the weak topology on M+(Z), for µ ∈ M±(Z), by:

(10) ∥µ∥F =
∑
k∈N

2−k|µ(fk)|.

Note that we have ∥µ∥F ≤ 2∥µ∥∞, and thus ∥ · ∥F is sequentially continuous w.r.t. the weak
topology on M±(Z). For the special choice Nm = ∥ · ∥F , we use the subscript m = F .

Even though the norm ∥ · ∥F is not complete when Z is not compact (see Lemma 3.23 below),
the cut norm ∥ · ∥□,F and the cut distance δ□,F will turn out to be very useful in Sections 6
and 7 to link the topology of the cut distance to the homomorphism densities. Recall dF is the
distance derived from the norm ∥ · ∥F .

Lemma 3.23 (dF is not complete in general). Let F be a convergence determining sequence.
Then, the distance dF is complete over M1(Z) if and only if M1(Z) is a compact space, i.e. , if
and only if Z is compact.

Proof. Theorem 3.4 in [Var58] states that Z is compact if and only if M1(Z) is compact. When
this is the case, any distance metrizing the weak topology on M1(Z) is complete.

Reciprocally, assume that dF is a complete metric over M1(Z) and write F = (fm)m∈N. Let
(µn)n∈N be an arbitrary sequence of probability measures from M1(Z). For every m ∈ N, as
fm takes values in [0, 1], we have for every n ∈ N that µn(fm) ∈ [0, 1]. Hence, using a diagonal



PROBABILITY-GRAPHONS: LIMITS OF LARGE DENSE WEIGHTED GRAPHS 21

extraction, there exists a subsequence (µnk
)k∈N of the sequence (µn)n∈N such that for every

m ∈ N, the sequence (µnk
(fm))k∈N converges, that is, (µnk

)k∈N is a Cauchy sequence for the
distance dF . As we assumed the distance dF to be complete, this implies that the sequence
(µn)n∈N has a convergent subsequence. The sequence (µn)n∈N being arbitrary, we conclude that
the space M1(Z) is sequentially compact, and thus compact by Remark 2.6. □

For W ∈ W± and f ∈ Cb(Z), we denote by W [f ] the real-valued kernel defined by:

(11) W [f ](x, y) = W (x, y; f) =
∫

Z
f(z) W (x, y; dz).

We denote by ∥ · ∥□,R (resp. ∥ · ∥+
□,R) the cut norm (resp. one-sided version of the cut norm)

for real-valued kernels defined as:

(12) ∥w∥□,R = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

w(x, y) dxdy
∣∣∣∣ and ∥w∥+

□,R = sup
S,T⊂[0,1]

∫
S×T

w(x, y) dxdy,

where w is a real-valued kernel w (see [Lov12, Section 8.2], resp. [Lov12, Section 10.3], for
definition and properties of those objects).

The following two remarks link the cut norm ∥ · ∥□,F of a signed measure-valued kernel W
with the cut norm ∥ ·∥□,R of the real-valued kernels W [f ] for some particular choices of functions
f ∈ Cb(Z). We will reuse those facts in Section 6.

Remark 3.24 (Link between ∥ · ∥□,F and ∥ · ∥+
□,R). For µ ∈ M±(Z) we have:

(13) ∥µ∥F = sup
ε∈{±1}N

∑
n∈N

2−nεnµ(fn) = sup
ε∈{±1}N

µ

(∑
n∈N

2−nεnfn

)
,

with ε = (εn)n∈N. Hence, for a signed measure-valued kernel W ∈ W±, we have:

(14) ∥W∥□,F = sup
ε∈{±1}N

sup
S,T⊂[0,1]

W

(
S × T ;

∑
n∈N

2−nεnfn

)
= sup
ε∈{±1}N

∥∥∥∥∥W
[∑
n∈N

2−nεnfn

]∥∥∥∥∥
+

□,R

.

Remark 3.25 (Inequality with ∥ · ∥□,F and ∥ · ∥□,R). For a signed measure-valued kernel W ,
we have:

∥W∥□,F = sup
S,T⊂[0,1]

∞∑
n=0

2−n
∣∣∣∣∫
S×T

W (x, y, fn) dxdy
∣∣∣∣

≤
∞∑
n=0

2−n sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y, fn) dxdy
∣∣∣∣

=
∞∑
n=0

2−n∥W [fn]∥□,R.(15)

4. Tightness and weak regularity

In this section, using a conditional expectation approach as in [Lov12, Chapter 9], we provide
approximations of signed measure-valued kernels and probability-graphons by stepfunctions with
an explicit bound on the quality of the approximation. This procedure takes into account that
signed measure-valued kernels are infinite-dimensional valued.
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4.1. Approximation by stepfunctions. We start by introducing the partitioning of a signed
measure-valued kernel.

Definition 4.1 (The stepping operator). Let W ∈ W± be a signed measure-valued kernel and
P = {S1, · · · , Sk} be a finite partition of [0, 1]. We define the kernel stepfunction WP adapted to
the partition P by averaging W over the partition subsets:

WP(x, y; ·) = 1
λ(Si)λ(Sj)

W (Si × Sj ; ·) for x ∈ Si, y ∈ Sj,

when λ(Si) ̸= 0 and λ(Sj) ̸= 0, and WP(x, y; ·) = 0 the null measure otherwise. We call the map
W 7→ WP defined on W± the stepping operator (associated with the finite partition P).

Since the signed measure-valued kernel are defined up to an a.e. equivalence, the value of
WP(x, y; ·) for x ∈ Si, y ∈ Sj when λ(Si)λ(Sj) is unimportant.

Remark 4.2 (Link with conditional expectation). The stepfunction WP can be viewed as the
conditional expectation of W w.r.t. the (finite) sigma-field σ(P×P) on [0, 1]2, where W : [0, 1]2 →
M±(Z) is seen as a random signed measure in M±(Z) and the probability measure on [0, 1]2 is
the Lebesgue measure.

Remark 4.3 (Steppings are convex stable). Let M ⊂ M±(Z) be a convex subset of measures,
for instance M is M1(Z), M≤1(Z), M+(Z) or M±(Z). Whenever W ∈ W± is a M-valued
kernel, then by simple computation its stepping WP is also a M-valued kernel.

In the following remark, we give a characterization of refining partitions that generate the
Borel σ-field of [0, 1].

Remark 4.4 (On refining partitions that generates the Borel σ-field). Let (Pk)k∈N be a sequence
of refining partitions of [0, 1]. It generates the Borel σ-field of [0, 1] (that is, {S : S ∈ Pk, k ∈ N}
generates the Borel σ-field of [0, 1]) if and only if (Pk)k∈N separates points (that is, for every
distinct x, y ∈ [0, 1], there exists k ∈ N such that x and y belong to different classes of Pk).

Indeed, assume that (Pk)k∈N separates points, and consider the countable family of Borel-
measurable functions F = {1S : S ∈ Pk, k ∈ N} which separates points. Thus, by [Bog07b,
Theorem 6.8.9] (remark that a Polish space is a Souslin space, see [Bog07b, Definition 6.6.1]),
the family F generates the Borel σ-field of [0, 1]. This implies that the family of Borel sets
{S : S ∈ Pk, k ∈ N} generates the Borel σ-field of [0, 1].

Conversely, assume there exist x, y ∈ [0, 1] which are not separated by (Pk)k∈N, i.e. for all
k ∈ N, x and y belong to the same class of Pk. This implies that the set {x} does not belong to
the σ-field generated by (Pk)k∈N, and thus (Pk)k∈N does not generate the Borel σ-field of [0, 1].

Recall the definition of the norm ∥ · ∥∞ on W± defined in (2). The following lemma allows to
approximate any signed measure-valued kernel by its steppings.

Lemma 4.5 (Approximation using the stepping operator). Let W ∈ W± be a signed measure-
valued kernel (which is bounded by definition). Let (Pn)n∈N be a refining sequence of finite
partitions of [0, 1] that generates the Borel σ-field on [0, 1]. Then, the sequence (WPn

)n∈N is
uniformly bounded by ∥W∥∞, and weakly converges to W almost everywhere (on [0, 1]2).

Proof. Set Wn = WPn for n ∈ N. By definition of the stepping operator, we have for every n ∈ N
and every (x, y) ∈ [0, 1]2 that the total mass of Wn(x, y; ·) is upper bounded by ∥W∥∞.

Recall that for W ∈ W± and f ∈ Cb(Z), the real-valued kernel W [f ] is defined by (11).
First assume that W ∈ W+. Let F = (fk)k∈N be a convergence determining sequence, with by
convention f0 = 1. For every k ∈ N and n ∈ N, an immediate computation gives Wn[fk] =
(W [fk])Pn

. For every k ∈ N, as W [fk] is a real-valued kernel, we can apply the closed martingale
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theorem (as (W [fk])Pn can be viewed as a conditional expectation, see Remark 4.2), and we
get that limn→∞ Wn[fk] = W [fk] almost everywhere, since (Pn)n∈N generates the Borel σ-
field. Hence, as the sequence (fk)k∈N is convergence determining, the sequence (Wn)n∈N weakly
converges to W almost everywhere.

Now, for W ∈ W±, write W = W+ − W− where W+,W− ∈ W+ (see Lemma 3.3). By
linearity of the stepping operator, remark that we have Wn = (W+)Pn − (W−)Pn for all n ∈ N.
By the first case, we have that the sequence ((W+)Pn)n∈N weakly converges a.e. to W+, and
similarly for ((W−)Pn

)n∈N and W−. Hence, the sequence (Wn)n∈N weakly converges to W
almost everywhere. □

We first provide a separability result on the space of probability-graphons.

Proposition 4.6 (Separability of W1 and W̃1). Let d be a smooth distance on W1 (resp. W+
or W±). Then, the space (W1, d) (resp. (W+, d) or (W±, d)) is separable.

If furthermore d is invariant (which implies that δ□ is a distance), then the space (W̃1, δ□)
(resp. (W̃+, δ□) or (W̃±, δ□)) is separable.

Proof. We shall consider the space of probability-graphons W1, as the proofs for W+ and W±
are similar. Applying Lemma 4.5 with the sequence of dyadic partitions, for every probability-
graphon W , we can find a sequence of probability-graphon stepfunctions adapted to finite dyadic
partitions and converging to W almost everywhere on [0, 1]2.

As the space Z is separable, the space of probability measures M1(Z) is also separable for the
weak topology (see [Bil99, Theorem 6.8]). Let A ⊂ M1(Z) be an at most countable dense (for the
weak topology) subset. Then, for any stepfunction W ∈ W1 adapted to a finite dyadic partition,
we can approach it everywhere on [0, 1]2 by a sequence of A-valued stepfunctions adapted to the
same finite dyadic partition.

Hence, for every W ∈ W1, there exists a sequence (Wn)n∈N in the countable set of A-valued
stepfunctions adapted to a finite dyadic partition that converges to W almost everywhere on
[0, 1]2. As d is smooth, we get that this convergence also holds for d. Thus, the space (W1, d) is
complete.

Remind that by Theorem 3.17, when the distance d is invariant and smooth, then the premetric
δ□ is a distance on W̃1. In that case, convergence for d implies convergence for δ□, and thus the
space (W̃1, δ□) is also separable. □

4.2. Tightness. Similarly to the case of signed measures (remind Lemma 2.8), we introduce
a tightness criterion for signed measure-valued kernels that characterizes relative compactness,
see Proposition 4.8 below. For a signed measure-valued kernel W ∈ W±, we define the measure
MW ∈ M+(Z) by:

(16) MW (dz) = |W |([0, 1]2; dz) =
∫

[0,1]2
|W |(x, y; dz) dxdy,

where for every x, y ∈ [0, 1], |W |(x, y; ·) is the total variation of W (x, y; ·) (see Lemma 3.3). In
particular, if W is a probability-graphon then MW is a probability measure from M1(Z). Notice
also that if W and U are weakly isomorphic, then MW = MU , so that the application W 7→ MW

can be seen as a map from W̃1 (resp. W̃±) to M1(Z) (resp. M+(Z)).

Definition 4.7 (Tightness criterion). A subset K ⊂ W± (resp. K ⊂ W̃±) is said to be tight if
the subset of measures {MW : W ∈ K} ⊂ M+(Z) is tight.

The following proposition shows the equivalence between a global tightness criterion and
a local tightness criterion. Recall that uniformly bounded subsets of W̃± are discussed after
Definition 3.16. Recall also λ2 is the Lebesgue measure on [0, 1]2.
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Proposition 4.8 (Alternative tightness criterion). Let K ⊂ W± (or K ⊂ W̃±) be a uniformly
bounded subset of signed measure-valued kernels. The set K is tight if and only if for every ε > 0,
there exists a compact set K ⊂ Z, such that for every W ∈ K we have:

(17) λ2

(
{(x, y) ∈ [0, 1]2 : |W |(x, y;Kc) ≤ ε}

)
> 1 − ε.

Proof. As the left hand side of (17) is invariant by relabeling, it is enough to do the proof for
W±. Let K ⊂ W± be uniformly bounded and set C = supW∈K ∥W∥∞ < ∞. Assume that for
every ε > 0, there exists a compact set K ⊂ Z, such that (17) holds for every W ∈ K. Let
1 > ε > 0. Thus, there exists a compact subset K ⊂ Z such that for every W ∈ K there exists a
subset AW ⊂ [0, 1]2 with (Lebesgue) measure at least 1 − ε, such that for every (x, y) ∈ AW , we
have |W |(x, y;Kc) ≤ ε. We have that for all W ∈ K:

MW (Kc) =
∫

[0,1]2
|W |(x, y;Kc) dxdy ≤ ∥W∥∞λ2(AcW ) + ελ2(AW ) ≤ (C + 1)ε.

Hence, the subset of measures {MW : W ∈ K} ⊂ M+(Z) is tight, that is K is tight.
Conversely, suppose that K is tight. Let ε > 0. There exists a compact set K ⊂ Z such

that for every W ∈ K, we have MW (Kc) < ε2. For W ∈ K, define AW = {(x, y) ∈ [0, 1]2 :
|W |(x, y;Kc) ≤ ε}. We have:

ε2 > MW (Kc) =
∫

[0,1]2
|W |(x, y;Kc) dxdy ≥ ελ2(AcW ).

Hence, λ2(AW ) > 1 − ε, and consequently Equation (17) holds. □

We end this section on a continuity result of the map W 7→ MW .

Lemma 4.9 (Regularity of the map W 7→ MW ). Let dm be a distance on M≤1(Z) (resp.
M+(Z)). Then the map W 7→ MW is 1-Lipschitz, and thus continuous, from (W̃1,m, δ□,m)
(resp. (W̃+,m, δ□,m)) to (M1(Z), dm) (resp. (M+(Z), dm)).

Proof. Taking S = T = [0, 1] in Definition (3) of d□,m, we get that dm(MU ,MW ) ≤ d□,m(W,U).
As MUφ = MU for any measure-preserving map φ thanks to (1), we deduce from Definition (6)
of δ□,m that dm(MU ,MW ) ≤ δ□,m(U,W ). □

4.3. Weak regularity. We shall consider the following extra regularities of distances on the set
of signed measure-valued kernels w.r.t. the stepping operator. For a finite partition P, denote
by |P| the size of the partition P, i.e. the number of sets composing P.

Definition 4.10 (Regularities of distances). Let d be a distance on W1 (resp. W+ or W±).
(i) Weak regularity. The distance d is weakly regular if whenever the subset K of W1

(resp. W+ or W±) is tight (resp. tight and uniformly bounded), then for every ε > 0,
there exists m ∈ N∗, such that for every kernel W ∈ K, and for every finite partition Q
of [0, 1], there exists a finite partition P of [0, 1] that refines Q such that:

|P| ≤ m|Q| and d(W,WP) < ε.

(ii) Regularity w.r.t. the stepping operator. The distance d is regular w.r.t. the stepping
operator if (resp. for any finite constant C ≥ 0) there exists a finite constant C0 > 0
such that for every W,U in W1 (resp. in W+ or W±, with ∥W∥∞ ≤ C and ∥U∥∞ ≤ C)
and every finite partition P of [0, 1], then we have:

(18) d(W,WP) ≤ C0 d(W,UP).
We say that a norm N on W± is weakly regular (resp. regular w.r.t. the stepping operator) if its
associated distance d on W± is weakly regular (resp. regular w.r.t. the stepping operator).
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The weak regularity property is an analogue to the weak regularity lemma for real-valued
graphons (see [Lov12, Lemma 9.15]). If a distance d is weakly regular, then for a subset K ⊂
M±(Z) which is tight and uniformly bounded, every K-valued kernel can be approximated by a
stepfunction with a uniform bound. The regularity w.r.t. the stepping operator states that the
stepping operator gives an almost optimal way to approximate a signed measure-valued kernel
using stepfunctions adapted to a given partition.

4.3.1. An example of cut distance regular w.r.t. the stepping operator. Remind the definition of a
quasi-convex distance in Definition 2.10. We first show that the stepping operator is 1-Lipschitz
for the cut distance d□,m when the distance dm is quasi-convex.

Lemma 4.11 (The stepping operator is 1-Lipschitz). Let dm be a quasi-convex distance on M
a convex subset of M±(Z) containing the zero measure. Then, the stepping operator associated
with a given finite partition of [0, 1] is 1-Lipschitz on WM for the cut distance d□,m.

Proof. Let U,W ∈ WM be M-valued kernels, and let P be a finite measurable partition of [0, 1].
As UP and WP are stepfunctions adapted to the same partition, and as dm is quasi-convex, we
can use Lemma 3.19 to get for some S, T ∈ σ(P) that:

d□,m(UP ,WP) = dm(UP(S × T ; ·),WP(S × T ; ·)) = dm(U(S × T ; ·),W (S × T ; ·)) ≤ d□,m(U,W ),

where the second equality comes from the fact that the integrals are equals as S, T ∈ σ(P) and
thus the integration is over full steps of the partition. Hence, the stepping operator is 1-Lipschitz
on WM for the cut distance dm. □

For a quasi-convex distance dm, the cut distance d□,m is regular w.r.t. the stepping operator
with C0 = 2 in (18) (and one can take C = +∞ in Definition 4.10 (ii)).

Lemma 4.12 (d□,m is regular w.r.t. the stepping operator). Let dm be a quasi-convex distance
on M a convex subset of M±(Z) containing the zero measure. Let W,U ∈ Wϵ be WM-valued
kernels, and let P be a finite partition of [0, 1]. Then, we have:

d□,m(W,WP) ≤ 2d□,m(W,UP).

Proof. The proof is similar to the proof of [Lov12, Lemma 9.12]. As dm is quasi-convex, using
Lemma 4.11, we get:

d□,m(W,WP) ≤ d□,m(W,UP) + d□,m(UP ,WP) ≤ 2d□,m(W,UP).

□

4.3.2. An example of weakly regular cut distance. We have the following general result. Recall
Definitions 3.10 and 4.10 on distances and norms on Wϵ, with ε ∈ {+,±}, being invariant,
smooth, weakly regular and regular w.r.t. the stepping operator.

Proposition 4.13 (Weak regularity of d□,m). Let dm be a quasi-convex distance on Mϵ(Z), with
ϵ ∈ {+,±}, which is sequentially continuous w.r.t. the weak topology. Then, the cut distance d□,m
on Wϵ is invariant, smooth, weakly regular and regular w.r.t. the stepping operator.

Using results from Section 3.8, we directly get the following weak regularity of the cut distance
d□,P and the cut norms ∥ · ∥□,F , ∥ · ∥□,KR and ∥ · ∥□,FM.

Corollary 4.14 (Weak regularity of usual distances and norms). The cut norms ∥·∥□,F , ∥·∥□,KR
and ∥ · ∥□,FM (resp. the cut distance d□,P) on W± (resp. W+) are invariant, smooth, weakly
regular and regular w.r.t. the stepping operator.
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Proof of Proposition 4.13. We deduce from Lemmas 3.11 and 4.12, Proposition 3.13 and that
the cut distance d□,m on Wϵ is invariant, smooth and regular w.r.t. the stepping operator. We
are left to prove that d□,m is weakly regular on Wϵ. We prove it by considering in the first step
the case Z compact and in a second step the general case Z Polish.

Step 1. We assume Z compact. As in the definition of weak regularity, let K ⊂ Wϵ be a
subset of Mϵ(Z)-valued kernels that is tight and uniformly bounded by some finite constant C.
Let M ⊂ Mϵ(Z) be the subset of elements of Mϵ(Z) with total mass at most C; in particular
M is a convex set containing 0 and K ⊂ WM. As Z is compact, from Remarks 2.6 and 2.7, we
know that the weak topology is metrizable on M and that M is compact, and thus sequentially
weakly compact. Hence, as dm is sequentially continuous w.r.t. the weak topology on Mϵ(Z),
we have that (M, dm) is sequentially compact, and thus compact.

Denote by B(µ, r) = {ν ∈ M : dm(µ, ν) < r} the open ball centered at µ ∈ M with
radius r > 0. Let ε > 0. As M is compact, there exist µ1, . . . , µn ∈ M, n ∈ N∗, such that
M = ∪ni=1B(µi, ε). For 1 ≤ i ≤ n, define Ai = B(µi, ε) \ ∪j<iB(µj , ε), so that {A1, . . . , An} is a
finite partition (with possibly some empty sets) of M.

Every M-valued kernel W can be approximated by a {µ1, . . . , µn}-valued kernel U defined
for every (x, y) ∈ [0, 1]2 by U(x, y; ·) = µi for i such that W (x, y; ·) ∈ Ai. Thus, by construction,
we have that for every (x, y) ∈ [0, 1]2, dm(W (x, y; ·), U(x, y; ·)) < ε. Applying the quasi-convex
supremum inequality from (5) to W and U , we get that:

d□,m(W,U) ≤ essup
(x,y)∈[0,1]2

dm(W (x, y; ·), U(x, y; ·)) ≤ ε.

Then, as the stepping operator is 1-Lipschitz for the cut norm, see Lemma 4.11, we have for
any finite partition P of [0, 1] that:

d□,m(W,WP) ≤ d□,m(W,U) + d□,m(U,UP) + d□,m(UP ,WP)
≤ 2ε+ d□,m(U,UP).(19)

Hence, to get the weak regularity property for M-valued kernels, we are left to prove it for
the much smaller set of V-valued kernels, where V is the convex hull of {µ1, . . . , µn}.

As dm is quasi-convex and sequentially continuous w.r.t. the weak topology, using Lemma 2.11,
there exists η > 0 such that for all µ, ν ∈ Mϵ(Z), we have that ∥µ − ν∥∞ < η implies that
dm(µ, ν) ≤ ε.

As V is a subset of a vector space with finite dimension n, the norm ∥ · ∥∞ seen over V is
equivalent to the L1-norm µ =

∑n
i=1 αiµi 7→ ∥α∥1 =

∑n
i=1 |αi|. We can now see V-valued kernel

as Rn-valued graphon with a cut norm derived from the L1-norm ∥ · ∥1, and in this case the
proof for the weak regularity Lemma 9.9 in [Lov12] can easily be adapted. Hence, we have the
weak regularity property for V-valued kernels: there exists m ∈ N∗, such that for every V-valued
kernel U ′, and for every finite partition Q of [0, 1] there exists a finite partition P of [0, 1] that
refines Q, and such that |P| ≤ m|Q| and supS,T⊂[0,1] ∥(U ′ − U ′

P)(S × T ; ·)∥∞ < η, and thus
d□,m(U ′, U ′

P) ≤ ε.
Taking U ′ = U in (19), we get that d□,m(W,WP) ≤ 3ε and |P| ≤ m|Q|. This concludes the

proof of the lemma when Z is compact.

Step 2. We consider the general case Z Polish. We now prove that d□,m is weakly regular
on Wϵ. Let K ⊂ Wϵ be a subset of Mϵ(Z)-valued kernels that is tight and uniformly bounded,
and denote by C = supW∈K ∥W∥∞ < ∞.

Let ε > 0. As dm is quasi-convex and sequentially continuous w.r.t. the weak topology, using
Lemma 2.11, there exists η > 0 such that for all µ, ν ∈ Mϵ(Z), we have that ∥µ−ν∥∞ < η implies
that dm(µ, ν) < ε. Without loss of generality, we assume that η ≤ ε. Let ηC = min(η, η/C).
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As K is tight, using Proposition 4.8, there exists a compact set K ⊂ Z, such that for every
W ∈ K the subset AW = {(x, y) ∈ [0, 1]2 : |W |(x, y;Kc) ≤ ηC/2} has Lebesgue measure at
least 1 − ηC/2. Let W ∈ K, and define the signed measure-valued kernel U by: U(x, y; ·) =
W (x, y; · ∩K) for every (x, y) ∈ AW , and U(x, y; ·) = 0 otherwise. Let S, T ⊂ [0, 1]. We have:

∥(W − U)(S × T ; ·)∥∞ ≤
∫
S×T

∥W (x, y; ·) − U(x, y; ·)∥∞ dxdy

≤
∫
AW ∩(S×T )

|W |(x, y;Kc) dxdy +
∫
Ac

W
∩(S×T )

∥W (x, y; ·)∥∞ dxdy

≤ ηC/2 + C · ηC/2
≤ η.

Thus, we have that dm(W (S × T ; ·), U(S × T ; ·)) < ε. Since this holds for all S, T ⊂ [0, 1], we
get that d□,m(W,U) ≤ ε.

Notice that the M±(Z)-valued kernel U is also a M±(K)-valued kernel, where K ⊂ Z is a
compact set, and that ∥U∥∞ ≤ ∥W∥∞ ≤ C. Further remark that, using Lemma 4.11, for every
W ∈ K and every finite partition P of [0, 1], we have that:

d□,m(W,WP) ≤ d□,m(W,U) + d□,m(U,UP) + d□,m(UP ,WP)
≤ 2ε+ d□,m(U,UP).

Hence, to get the weak regularity property for d□,m on K (see Definition 4.10 (i)), it is enough to
prove that d□,m restricted to Mϵ(K)-valued kernels is weakly regular, which is true by Step 1.
As a consequence, we get that d□,m on Wϵ is weakly regular. □

4.4. A stronger weak regularity lemma for d□,F . In this subsection, we prove a stronger
version of the weak regularity lemma for the special case of the cut distance d□,F . We shall use
this result for the proof of the second sampling Lemma 6.12.

Let F = (fn)n∈N, with f0 = 1 and fn takes values in [0, 1], be a convergence determining
sequence, which is assumed fixed in this section.

4.4.1. Comparison between ∥ · ∥□,F and an euclidian norm. To better understand the stepping
operator, we introduce a scalar product over signed measure-valued kernels. The link between
this scalar product and the norm ∥ · ∥□,F is given by Lemma 4.15. We define the scalar product
⟨·, ·⟩F on signed measure-valued kernels for U,W ∈ W± by:

⟨U,W ⟩F =
∑
n≥0

2−n⟨U [fn],W [fn]⟩,

where for all n the scalar product taken for U [fn] and W [fn] is the usual scalar product in
L2([0, 1]2, λ2) for real-valued kernels:

⟨U [fn],W [fn]⟩ =
∫

[0,1]2
U [fn](x, y)W [fn](x, y) dxdy.

The scalar product ⟨·, ·⟩F induces a norm on W± which we denote by ∥ · ∥2,F .
Let P be a finite partition of [0, 1]. As the stepping operator for measurable real-valued L2

functions on [0, 1]2 is a linear projection, and is idempotent and symmetric, and by definition of
the scalar product ⟨·, ·⟩F for signed measure-valued kernels, we have that the stepping operator
for signed measure-valued kernels is linear, idempotent and symmetric for ⟨·, ·⟩F . Moreover, the
stepping operator is the orthogonal projection for ⟨·, ·⟩F onto the space of stepfunctions with
steps in P.

Note that for a probability-graphon W ∈ W1, we have ∥W∥2,F ≤
√

2 as each fn takes values
in [0, 1]. The following technical lemma gives a comparison between ∥ · ∥□,F and ∥ · ∥2,F .
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Lemma 4.15 (Comparison between ∥ · ∥□,F and ∥ · ∥2,F ). For a signed measure-valued kernel
W ∈ W±, we have ∥W∥□,F ≤

√
2∥W∥2,F .

Proof. Let S, T ⊂ [0, 1] be measurable subsets. By the Cauchy-Schwarz inequality, we have
|⟨W [fn],1S×T ⟩|2 ≤ ∥W [fn]∥2

2 = ⟨W [fn],W [fn]⟩ for every n ≥ 0. Using this inequality along
with Jensen’s inequality, we get for every S, T ⊂ [0, 1] that:∑

n≥0
2−n|W (S × T, fn)|

2

=

∑
n≥0

2−n|⟨W [fn],1S×T ⟩|

2

≤
∑
n≥0

2−n+1|⟨W [fn],1S×T ⟩|2

≤
∑
n≥0

2−n+1⟨W [fn],W [fn]⟩

= 2(∥W∥2,F )2.

Taking the supremum over every measurable subsets S, T ⊂ [0, 1] gives the desired inequality. □

4.4.2. The weak regularity lemma for ∥ · ∥□,F . The following lemma gives an explicit bound on
the approximation of a signed measure-valued kernel, say W , by its steppings WP , with P a finite
partition on [0, 1]. Its proof is a straightforward adaptation of the proof of the weak regularity
lemma for real-valued graphons in [Lov12, Lemma 9.9].

Lemma 4.16 (Weak regularity lemma for ∥ · ∥□,F , simple formulation). For every signed
measure-valued kernel W ∈ W± and k ≥ 1, there exists a finite partition P of [0, 1] such that
|P| = k and:

∥W −WP∥□,F ≤
√

8√
log(k)

∥W∥2,F .

In particular, if W ∈ W1 is a probability-graphon, (as ∥W∥2,F ≤
√

2) we have:

∥W −WP∥□,F ≤ 4√
log(k)

·

It is possible in the weak regularity lemma to ask for extra requirements, for instance to
start from an already existing partition, or to ask the partition to be balanced, as stated in the
following lemma. The proof is a straightforward adaptation of the proof of [Lov12, Lemma 9.15].

Lemma 4.17 (Weak regularity lemma for ∥ · ∥□,F , with extra requirements). Let W ∈ W1 be a
probability-graphon, and let 1 ≤ m < k.

(i) For every partition Q of [0, 1] into m classes, there is a partition P with k classes refining
Q and such that:

∥W −WP∥□,F ≤ 4√
log(k/m)

·

(ii) For every partition Q of [0, 1] into m classes, there is an equipartition (i.e. a finite
partition into classes with the same measure) P of [0, 1] into k classes and such that:

∥W −WP∥□,F ≤ 2∥W −WQ∥□,F + 2m
k

·
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5. Compactness and completeness of W1

In Section 5.1, we link the tightness criterion for measure-valued kernels with the relative
compactness w.r.t. the cut distance δ□,m. In Section 5.2, we compare the topologies induced by
the cut distance δ□,m for different choice of the distance dm, and state that under some conditions
on dm, those topologies coincide. In Section 5.3, we investigate the completeness of W1 endowed
with the cut distance δ□,m and prove that the space of probability-graphons W̃1 is a Polish
space (Theorem 5.10), and that it is compact if and only if Z is compact (Corollary 5.13). The
technical proofs are postponed to Section 8.

5.1. Tightness criterion and compactness. Let M ⊂ M±(Z) be a subset of signed measures
on Z. Recall that WM ⊂ W± denote the subset of signed measure-valued kernels which are
M-valued. In this section, we shall denote by W̃M the quotient of WM identifying signed
measure-valued kernels that are weakly isomorphic.

Remind from Definition 3.15 and Theorem 3.17 that for an invariant, smooth and weakly
regular distance d on W1 (resp. W+,W±), δ□ is defined as δ□(U,W ) = infφ∈S[0,1] d(U,Wφ), and
is a distance on W̃1 (resp. W̃+, W̃±).

We are now ready to formulate the important following theorem, which relates tightness
with compactness and convergence for signed measure-valued kernels. We prove this theorem in
Section 8.

Theorem 5.1 (Compactness theorem for W̃1). Let d be an invariant, smooth and weakly regular
distance on W1 (resp. W±).

(i) If a sequence of elements of W1 or W̃1 (resp. W± or W̃±) is tight (resp. tight and
uniformly bounded), then it has a subsequence converging for δ□.

(ii) If M ⊂ M1(Z) (resp. M ⊂ M±(Z)) is convex and compact (resp. sequentially compact)
for the weak topology, then the space (W̃M, δ□) is convex and compact.

(iii) If Z is compact, then the space (W̃1, δ□) is compact.

We deduce from this theorem a characterization of relative compactness for subsets of probability-
graphons.

Proposition 5.2 (Characterization of relative compactness). Let dm be a distance on M≤1(Z)
(resp. M+(Z) or M±(Z)) that induces the weak topology on M≤1(Z) (resp. M+(Z)). Assume
that the distance d□,m on W1 (resp. W+ or W±) is (invariant) smooth and weakly regular.

(i) If a sequence of elements of W1 or W̃1 (resp. W+ or W̃+) is converging for δ□,m, then
it is tight.

(ii) Let K be a subset of W̃1 (resp. a uniformly bounded subset of W̃+). Then, the set K is
relatively compact for δ□,m if and only if it is tight.

(iii) Let M be a subset of M+(Z) which is bounded, convex and closed for the weak topology.
Then the set W̃M is convex and closed in W̃+.

Remark that convergence for δ□,m does not necessarily imply tightness on W± or on W̃±.

Proof. We consider the case where dm is a distance on M+(Z) or M±(Z), the case with M≤1(Z)
is similar.

We prove Point (i). Let (Wn)n∈N be a convergent sequence of W+ (and thus of W̃+) for
δ□,m. We deduce from the continuity of the map W 7→ MW , see Lemma 4.9, that the sequence
(MWn

)n∈N is converging for dm, and thus is tight as dm induces the weak topology on M+(Z).
Then, by definition the sequence (Wn)n∈N is tight.
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We prove Point (ii). If K ⊂ W̃+ is tight and uniformly bounded, then by Theorem 5.1 (i)
every sequence in K has a subsequence converging for δ□,m, which implies that K is relatively
compact in the metric space (W̃+, δ□,m) (see Remark 2.1).

Conversely, assume that K ⊂ W̃+ is uniformly bounded and relatively compact for δ□,m.
Define M = {MW : W ∈ K} ⊂ M+(Z). By Lemma 4.9, the mapping W 7→ MW is continuous
from (W̃1, δ□,m) to (M+(Z), dm). Hence, as dm induces the weak topology on M+(Z), the set
M is also relatively compact in M+(Z) for the weak topology. As the space Z is Polish, applying
Lemma 2.8, we get that M ⊂ M+(Z) is tight, and by Definition 4.7, the set K ⊂ W̃+ is tight.

We postpone the proof of Point (iii) to Section 8 on page 54. □

5.2. Equivalence of topologies induced by δ□,m. The following lemma allows to show a first
result on equivalence of the topologies induced by the cut distance δ□,m for different distances
dm, where the sub-script m is used to distinguish different distances. Its proof is given below.
Remind from Theorem 3.17 that d□,m must be smooth for δ□,m to be a distance.

Lemma 5.3 (Comparison of topologies induced by d□,m and δ□,m). Let dm and dm′ be two
distances on M≤1(Z) such that dm′ is uniformly continuous w.r.t. dm (in particular, dm induces
a finer topology than dm′ on M≤1(Z)). Then, we have the following properties.

(i) The distance d□,m′ is uniformly continuous w.r.t. d□,m on W1. In particular d□,m induces
a finer topology than d□,m′ on W1.

(ii) If the distance d□,m on W1 is smooth, then the distance d□,m′ is also smooth and δ□,m′

is uniformly continuous w.r.t. δ□,m. In particular, δ□,m induces a finer topology than
δ□,m′ on W̃1.

(iii) If the distance d□,m on W1 is weakly regular, then the distance d□,m′ is also weakly
regular.

(iv) Assume that the distance dm′ induces the weak topology on M≤1(Z), and that the distance
d□,m is smooth and weakly regular. In particular, the distance dm also induces the weak
topology on M≤1(Z). Then, the distances δ□,m and δ□,m′ induce the same topology on
W̃1.

We will see some application of Lemma 5.3 in Corollary 5.6 below.

Remark 5.4 (Extension to W± for topology comparisons). In Lemma 5.3 (i)-(iii), one can
replace W1 and W̃1 by W+ and W̃+ or by W± and W̃± as soon as the distances dm and dm′ are
defined on M+(Z) or M±(Z); in this case comparisons of topologies only apply on uniformly
bounded subsets. In Lemma 5.3 (iv), one can replace W̃1 by W̃M with a bounded subset
M ⊂ M+(Z) as soon as the distances dm and dm′ are defined on M+(Z).

Proof of Lemma 5.3. We prove Point (i). Let ε > 0. As dm′ is uniformly continuous w.r.t. dm,
there exists η > 0 such that for every µ, ν ∈ M≤1(Z), if dm(µ, ν) < η, then dm′(µ, ν) < ε. Let
U,W ∈ W1 such that d□,m(U,W ) < η. Then, for every subsets S, T ⊂ [0, 1], we have:

dm′ (U(S × T ; ·),W (S × T ; ·)) < ε.

Thus, d□,m′(U,W ) ≤ ε. Hence, d□,m′ is uniformly continuous w.r.t. d□,m.
We prove Point (ii). Assume that d□,m is smooth. Let (Wn)n∈N and W be probability-

graphons such that Wn(x, y; ·) weakly converges to W (x, y; ·) for almost every x, y ∈ [0, 1]. Since
the cut distance d□,m is smooth, we get that d□,m(Wn,W ) → 0. As d□,m′ is uniformly continuous
(and thus also continuous) w.r.t. d□,m, we have that d□,m′(Wn,W ) → 0. Hence, d□,m′ is smooth.

Furthermore, let ε > 0. Let η > 0 be such that for every µ, ν ∈ M≤1(Z), dm(µ, ν) < η
implies dm′(µ, ν) < ε. For every U,W ∈ W1 such that δ□,m(U,W ) < η, there exists φ ∈ S[0,1]
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such that d□,m(U,Wφ) < η, which implies that d□,m′(U,Wφ) < ε, which then implies that
δ□,m′(U,W ) < ε. That is, δ□,m′ is uniformly continuous w.r.t. δ□,m.

We prove Point (iii). Assume that d□,m is weakly regular. Let K ⊂ W1 be tight. Let ε > 0.
As d□,m′ is uniformly continuous w.r.t. d□,m, there exists η > 0 such that for every U,W ∈ W1, if
d□,m(U,W ) < η, then d□,m′(U,W ) < ε. Since d□,m is weakly regular, there exists m ∈ N∗, such
that for every probability-graphon W ∈ K, and for every finite partition Q of [0, 1], there exists
a finite partition P of [0, 1] that refines Q and such that |P| ≤ m|Q| and d□,m(W,WP) < η; and
thus we also have d□,m′(W,WP) < ε. Hence, d□,m′ is weakly regular.

We prove Point (iv). Assume that dm′ induces the weak topology on M≤1(Z) and that d□,m is
smooth and weakly regular. In particular, the topology induced by dm if finer than the topology
induced by dm′ , i.e. finer than the weak topology. As d□,m is smooth, by Lemma 3.12, dm is
continuous w.r.t. the weak topology (i.e. the weak topology if finer than the topology induced
by dm), and thus dm induces the weak topology on M≤1(Z). By Points (ii) and (iii), we get
that d□,m′ is also smooth and weakly regular. By Point (ii), the distance δ□,m induces a finer
topology than δ□,m′ on W̃1.

We now prove that the topology of δ□,m′ is finer than the topology of δ□,m. Let (Wn)n∈N and
W be probability-graphons in W̃1, such that Wn converges to W for δ□,m′ . By Proposition 5.2 (i),
we deduce that the sequence (Wn)n∈N is tight. As d□,m is smooth and weakly regular, Theorem 5.1
gives that every subsequence (Wnk

)k∈N of the sequence (Wn)n∈N has a further subsequence
(Wn′

k
)k∈N that converges for δ□,m to a limit, say U ∈ W̃1. Since δ□,m is finer than δ□,m′ , we

deduce that (Wn′
k
)k∈N converges also to U for δ□,m′ ; but, as a subsequence, it also converges to

W for δ□,m′ . As δ□,m′ is a distance on W1 thanks to Theorem 3.17, we get U = W . Hence, every
subsequence of (Wn)n∈N has a further subsequence that converges to W for δ□,m, therefore the
whole sequence itself converges to W for δ□,m. Consequently, δ□,m′ is finer than δ□,m, and thus
those two distances induce the same topology on W̃1. □

The following theorem states that the topology induced by δ□,m does not depend on dm under
some hypothesis. We prove this theorem in Section 8. Recall that under suitable conditions
satisfied in the next theorem, the quotient space W̃1 does not depend on the choice of the
distance dm, see Theorem 3.17.

Theorem 5.5 (Equivalence of topologies induced by δ□,m on W̃1). The topology on the space
probability-graphon W̃1 induced by the distance δ□,m does not depend on the choice of the distance
dm on M≤1(Z), as long as dm induces the weak topology on M≤1(Z) and the cut distance d□,m
on W1 is (invariant) smooth, weakly regular and regular w.r.t. the stepping operator.

Remind from Proposition 4.13 that when the distance dm is quasi-convex and continuous
w.r.t. the weak topology on M+(Z) or M±(Z), then the cut distance d□,m is invariant, smooth,
weakly regular and regular w.r.t. the stepping operator. This is in particular the case of dP ,
∥ · ∥F , ∥ · ∥KR and ∥ · ∥FM.

The next corollary is an immediate consequence of Lemma 3.22, Corollary 4.14, Lemma 5.3 and
Theorem 5.5. This corollary gathers results comparing the topology induced by the cut distances
associated with the distances introduced in Section 3.8. It is yet unclear if the distances d□,F
induces the same topology on the space of labeled probability-graphons W1 as the one induced
by d□,P , d□,FM or d□,KR.
Corollary 5.6 (Topological equivalence of the cut distances associated to dP , ∥ · ∥FM, ∥ · ∥KR
and ∥ · ∥F ). The cut distances d□,P on W+ and d□,KR, d□,FM and d□,F on W± are invariant,
smooth, weakly regular and regular w.r.t. the stepping operator. Moreover, we have the following
comparison between the distances introduced in Section 3.8.
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(i) The cut norms ∥ · ∥□,FM and ∥ · ∥□,KR (resp. the cut distances δ□,FM and δ□,KR) are
metrically equivalent on W± (resp. W̃±).

(ii) The cut distances δ□,FM, δ□,KR and δ□,P (resp. d□,FM, d□,KR and d□,P) are uniformly
continuous w.r.t. one another, and thus induce the same topology on W̃1 (resp. W1) and
on every uniformly bounded subset of W̃+ (resp. W+).

(iii) The cut distances δ□,FM, δ□,KR, δ□,P and δ□,F , for every choice of the convergence
determining sequence F , induce the same topology on W̃1.

Proof. The first part of the corollary is a re-statement of Corollary 4.14. Point (i) is an immediate
consequence of (9).

We now prove Point (ii). Thanks to (9) and Point (i), it is enough to consider only the
Prohorov and the Kantorovitch-Rubinshtein distances. As dP is uniformly continuous w.r.t.
dKR (see Lemma 3.22), applying Lemma 5.3 (remind Corollary 4.14) with Remark 5.4 in mind,
we get that δ□,P (resp. d□,P) is uniformly continuous w.r.t. δ□,KR (resp. d□,KR) on every
uniformly bounded subset of W̃+ (resp. W+) As dKR is also uniformly continuous w.r.t. dP
(see Lemma 3.22), applying again Lemma 5.3, we have that δ□,KR (resp. d□,KR) is uniformly
continuous w.r.t. δ□,P (resp. d□,P) on every uniformly bounded subset of W̃+ (resp. W+).

Point (iii) is an immediate consequence of Corollary 4.14 and Theorem 5.5, together with
Point (ii). □

Remark 5.7 (Extension to uniformly bounded subsets of W̃+). In Theorem 5.5 and also in
Corollary 5.6 (iii), one can replace W̃1 by W̃M with a bounded subset M ⊂ M+(Z) as soon as
the distance dm is defined on M+(Z). (One has in mind the case M = M≤1(Z).) This can be
seen by an easy modification in the proof of Theorem 5.5. Alternatively, this can be seen using
scaling to reduce the case of general M to the case of M≤1(Z), and then adding a cemetery
point (for missing mass of measures) to Z to further reduce to the case of M1(Z).

5.3. Completeness. Let dm be a distance on M≤1(Z) or M+(Z). We shall consider a slight
modification of the cut distances d□,m and δ□,m to achieve completeness. Recall the measure
MW ∈ M+(Z) defined by (16) associated to W ∈ W+.

Definition 5.8 (The cut distances dc
□,m and δc

□,m). Let dm and dc be two distances on Mϵ(Z)
with ϵ ∈ {≤ 1,+}. We define the cut distance dc

□,m on the space of Mϵ(Z)-valued kernels Wϵ as:

dc
□,m(U,W ) = d□,m(U,W ) + dc(MU ,MW ),

and the cut (pseudo-)distance δc
□,m on the space of unlabeled Mϵ(Z)-valued kernels W̃ϵ as:

δc
□,m(U,W ) = inf

φ∈S[0,1]
dc
□,m(U,Wφ) = δ□,m(U,W ) + dc(MU ,MW ).

Notice that by Lemma 3.11 and the definition of MW , the distance dc
□,m is invariant.

Lemma 5.9 (Topological equivalence of δ□,m and δc
□,m). Let dm and dc be two distances on

Mϵ(Z), with ϵ ∈ {≤ 1,+}, such that dc is continuous w.r.t. dm and that d□,m is (invariant and)
smooth on Wϵ. Then, the cut distance dc

□,m is invariant and smooth and δc
□,m is a distance on

W̃ϵ. Moreover, the distances d□,m and dc
□,m (resp. δ□,m and δc

□,m) induce the same topology on
the space Wϵ (resp. W̃ϵ).

Proof. Let (Wn)n∈N and W be elements of W≤1 such that (Wn(x, y; ·))n∈N weakly converges
to W (x, y; ·) for almost every x, y ∈ [0, 1]. Since the distance d□,m is smooth, we have that
limn→∞ d□,m(Wn,W ) = 0. Using Lemma 4.9 on the continuity of the map W 7→ MW and
that dc is continuous w.r.t. dm, we obtain that limn→∞ dc

□,m(Wn,W ) = 0. This gives that the
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distance dc
□,m is smooth. Since we have already seen that dc

□,m is invariant, we deduce from
Theorem 3.17 that δc

□,m is a distance on W̃1.

We now prove that the two distances d□,m and δc
□,m induce the same topology (which implies

that this is also true for δ□,m and δc
□,m). As d□,m ≤ dc

□,m, convergence for dc
□,m implies

convergence for d□,m. Conversely, let (Wn)n∈N be a sequence in Wϵ that converges for d□,m
to a limit, say W ∈ Wϵ. Using again Lemma 4.9 and the continuity of dc w.r.t. dm, we obtain
that limn→∞ dc(MWn

,MW ) = 0. This clearly implies that the sequence (Wn)n∈N converges to
W for dc

□,m. Then, the two distances have the same convergent sequences and thus induce the
same topology (see Remark 2.1). □

Recall Z is a Polish space. We already proved in Proposition 4.6 that the space (W̃1, δ□,m) is
separable; and we now investigate completeness of this space.

Theorem 5.10 (W̃1 is a Polish space). Let dm and dc be two distances on M≤1(Z) such that
dc induces the weak topology on M≤1(Z), dc is complete and continuous w.r.t. dm, and d□,m is
(invariant) smooth and weakly regular on W1. Then, the space (W̃1, δ

c
□,m) is a Polish metric

space.

Note that the assumptions in Theorem 5.10 imply that dm also induces the weak topology
on M≤1(Z). Indeed, as dc is continuous w.r.t. dm, the topology induced by dm if finer than the
topology induced by dc, i.e. finer than the weak topology. As d□,m is smooth, by Lemma 3.12, dm
is continuous w.r.t. the weak topology (i.e. the weak topology if finer than the topology induced
by dm), and thus dm induces the weak topology on M≤1(Z).

Also note that Theorem 5.10 can easily be extended to W≤1 or the space of unlabeled M-
valued kernels W̃M when M is a bounded convex closed subset of M+(Z).

Proof. From Lemma 5.9, we have that δc
□,m is a distance on W̃1 which induces the same topology

as δ□,m, and from Proposition 4.6, we have that (W̃1, δ□,m), and thus (W̃1, δ
c
□,m), is separable.

To get that this latter space is Polish, we are left to prove that the distance δc
□,m is complete.

Let (Wn)n∈N be a sequence of probability-graphons that is Cauchy for δc
□,m. By definition of

the cut distance δc
□,m, the sequence of probability measures (MWn

)n∈N is Cauchy in M1(Z) for
the complete distance dc. Thus, the sequence (MWn

)n∈N is weakly convergent as dc induces the
weak topology, which implies that it is tight (see Lemma 2.8). Hence, by definition, the sequence
of probability-graphons (Wn)n∈N is tight. By Theorem 5.1 (i), there exists a subsequence
(Wnk

)k∈N that converges for δ□,m to a limit, say W ∈ W̃1. This subsequence also converges for
δc
□,m to W as δ□,m and δc

□,m induce the same topology. Finally, because the sequence (Wn)n∈N
is Cauchy for δc

□,m and has a subsequence converging to W for δc
□,m, the whole sequence must

also converge to W for δc
□,m. Consequently, the distance δc

□,m is complete. □

The following lemma shows that every probability measure can be represented as a constant
probability-graphon.

Lemma 5.11 (M1(Z) seen as a closed subset of W1). Let dm be a distance on M≤1(Z) such
that d□,m is (invariant and) smooth on W1. Then, the map µ 7→ Wµ ≡ µ is an injection from
(M1(Z), dm) to (W̃1, δ□,m) with a closed range and continuous inverse.

Proof. For any µ ∈ M1(Z) consider the constant probability-graphon Wµ ≡ µ, and notice that
MWµ = µ, that Wµ(S × T ; ·) = λ(S)λ(T )µ for all measurable S, T ⊂ [0, 1], and that Wφ

µ = Wµ
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for any measure-preserving map φ. This readily implies that for µ ∈ M1(Z) and W ∈ W1:
(20) δ□,m(Wµ,W ) = d□,m(Wµ,W ) = sup

S,T⊂[0,1]
dm(λ(S)λ(T )µ,W (S × T ; ·)) ≥ dm(µ,MW ).

In particular, taking W = Wν for ν ∈ M1(Z) we get that δ□,m(Wµ,Wν) ≥ dm(µ, ν). This
implies that the map I : µ 7→ Wµ ≡ µ is an injection, and its inverse, given by the map Wµ 7→ µ,
is 1-Lipschitz.

Let (µn)n∈N be a sequence in M1(Z) such that the sequence (Wµn
)n∈N converges for δ□,m to

a limit, say W . We deduce from (20) that (µn)n∈N converges for dm to µ = MW and that for all
measurable S, T ⊂ [0, 1], (λ(S)λ(T )µn)n∈N converges for dm to W (S × T ; ·). This implies that
W (S × T ; ·) = λ(S)λ(T )µ(·) for all measurable S, T ⊂ [0, 1], that is, W = Wµ. This implies that
the image by I of any closed subset of M1(Z) is a closed subset of W1, and thus the range of I
is closed. □

Remark 5.12 (Extension to isometric representation of M1(Z)). If the distance dm, in addition
to the hypothesis of Lemma 5.11, is sub-homogeneous, that is, for all µ, ν ∈ M1(Z) we have
dm(µ, ν) = supr∈[0,1] dm(rµ, rν) (which is the case if dm is quasi-convex), then we deduce
from (20) that the map µ 7→ Wµ ≡ µ is isometric from (M1(Z), dm) to (W̃1, δ□,m).

We now state characterization of compactness and completeness for the space of probability-
graphons. Recall Z is a Polish space.

Corollary 5.13 (Characterization of compactness and completeness for W̃1). Let dm be a
distance on M≤1(Z), which induces the weak topology on M≤1(Z), and such that d□,m is
(invariant) smooth and weakly regular on W1. We have the following properties.

(i) Z is compact ⇐⇒ (M≤1(Z), dm) is compact ⇐⇒ (W̃1, δ□,m) is compact.
(ii) If (M≤1(Z), dm) is complete then (W̃1, δ□,m) is complete.

(iii) Assume furthermore that dm is sub-homogeneous (see Remark 5.12). If (W̃1, δ□,m) is
complete, then (M1(Z), dm) is complete.

Proof. We prove Point (i). rom Remark 2.7, we already know that Z is compact if and only if
M≤1(Z) is weakly compact, i.e. compact for dm as dm induces the weak topology on M≤1(Z).

Now, assume that (M≤1(Z), dm) is compact. Applying Theorem 5.1 (iii), we get that the
space (W̃1, δ□,m) is also compact.

Conversely, assume that (W̃1, δ□,m) is compact. By Lemma 4.9, the mapping W 7→ MW is
continuous from (W̃1, δ□,m) to (M1(Z), dm), and as (W̃1, δ□,m) is compact its image through
this mapping is also compact. To conclude, it is enough to check that this mapping is surjective.
But this is clear as the image of the constant probability-graphon Wµ ≡ µ is MWµ

= µ. Hence,
(M1(Z), dm) (and thus (M≤1(Z), dm)) is compact.

We prove Point (ii). Assume that (M≤1(Z), dm) is complete. Thus, we can choose dc = dm

in Definition 5.8, and apply Theorem 5.10 to get that (W̃1, δ
c
□,m) is complete. As dc = dm, we

have δ□,m ≤ δc
□,m ≤ 2δ□,m. Hence, (W̃1, δ□,m) is also complete.

We prove Point (iii). Assume that (W̃1, δ□,m) is complete. Let (µn)n∈N be a Cauchy sequence
of probability measures in (M1(Z), dm). By Remark 5.12, the sequence of constant probability-
graphons (Wµn

)n∈N is also Cauchy for δ□,m. As (W̃1, δ□,m) is complete, there exists a probability-
graphon W ∈ W̃1 such that (Wµn

)n∈N converges to W for the cut distance δ□,m. Thanks to
Lemma 5.11, W is constant equal to some µ ∈ M1(Z), and (µn)n∈N converges to µ for dm.
Hence, (M1(Z), dm) is complete. □
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6. Sampling from probability-graphons

Measured-valued graphons allow to define models for generating random weighted graphs that
are more general than the models based on real-valued graphons. We prove that the weighted
graphs sampled from probability-graphons are close to their original model for the cut distance
δ□,F , where F = (fk)k∈N (with f0 = 1) is a convergence determining sequence.

It would have been more natural to work in Sections 6 and 7 with the Kantorovitch-Rubinshtein
norm or the Fortet-Mourier norm that both treats all test functions in a uniform manner.
Unfortunately, the supremum in the definition of both of this norms does not behave well
regarding the probabilities and expectations of graphs sampled from probability-graphons. We
need in our proofs (and in particular that of the First Sampling Lemma 6.7 below) to consider
simultaneously only a finite number of test functions in order to control the probability of failure
for our stochastic bounds.

6.1. M1(Z)-Graphs and weighted graphs. A graph G = (V,E) is composed of a finite set
of vertices V (G) = V , and a set of edges E(G) = E which is a subset of V × V avoiding the
diagonal. When its set of edges E(G) is symmetric, we say that G is symmetric or non-oriented.
We denote by v(G) = |V (G)| the number of vertices of this graph, and by e(G) = |E(G)| its
number of edges.

Definition 6.1 (X -graphs). Let X be a non-empty set. A X -graph is a triplet G = (V,E,Φ)
where (V,E) is a graph and Φ : E → X is a map that associates a decoration x = Φ(e) ∈ X to
each edge e ∈ E. When X = Z, we say that G is a weighted graph.

Furthermore, the graph G is said to be symmetric if (V,E) is a symmetric graph and if Φ is
a symmetric function, i.e. for every edge (x, y) ∈ E, we have (y, x) ∈ E and Φ(x, y) = Φ(y, x).

Remark 6.2 (M1(Z)-Graphs as probability-graphons). Any labeled M1(Z)-graph G can be
naturally represented as an M1(Z)-valued graphon, which we denote by WG, in the following
way. LetG = (V,E,M) be a M1(Z)-graph, with v(G) = n ∈ N∗. Denote by V = [n] = {1, . . . , n}
the vertices of G. Consider intervals of length 1/n: for 1 ≤ i ≤ n, let Ji = ((i − 1)/n, i/n].
We then define the M1(Z)-valued graphon stepfunction WG associated with the M1(Z)-graph
G by:

∀(i, j) ∈ E, ∀(x, y) ∈ Ji × Jj , WG(x, y; dz) = Φ(i, j)(dz);
and WG(x, y; dz) equals the Dirac mass at ∂ otherwise, where ∂ is an element of Z used as a
cemetery point for missing edges in graphs.

In this section, we investigate weighted graphs sampled from probability-graphons. Hence,
using the cemetery point argument in the remark above, we only consider complete graphs for
the rest of this section.

Let dm be a distance on M≤1(Z). If G and H have the same vertex-set, the cut distance
between them is defined as the cut distance between their associated graphons:

d□,m(G,H) = d□,m(WG,WH).

WhenG andH does not have the same vertex-sets, as the numbering of the vertices in Remark 6.2
is arbitrary, we must consider the unlabeled cut distance between them defined as the cut distance
between their associated graphons:

δ□,m(G,H) = δ□,m(WG,WH).

Remind that when the distance dm derives from a norm Nm on M±(Z), Lemma 3.19 applies,
and the cut distance d□,m(G,H) can be rewritten as a combinatorial optimization over whole
steps.
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Remark 6.3 (Weighted graphs as M1(Z)-graphs). We will sometimes need to interpret a
weighted graph G as a M1(Z)-graph where a weight x on an edge is replaced by δx the Dirac
mass laocated at x.

Notation 6.4 (The real-weighted graph G[f ]). For a M1(Z)-graph (resp. weighted graph) G
and a function f ∈ Cb(Z), we denote byG[f ] the real-weighted graph with the same vertex set and
edge set as G, and where the edge (i, j) has weight ΦG[f ](i, j) = ΦG(i, j; f) =

∫
Z f(z)ΦG(i, j; dz)

(resp. ΦG[f ](i, j) = f(ΦG(i, j))), where ΦG is the decoration of the M1(Z)-graph G.

6.2. W -random graphs. Let W be a probability-graphon, and x = (x1, . . . , xn), n ∈ N∗, be a
sequence of points from [0, 1]. We define the M1(Z)-graph H(x,W ) as the complete graph whose
vertex set is [n] = {1, . . . , n}, and with each edge (i, j) decorated by the probability measure
W (xi, xj ; dz).

Let H be any M1(Z)-graph. We can define from H a random weighted (directed) graph
G(H) whose vertex set V (H) and edge set E(H) are the same as H, and with each edge (i, j)
having a random weight βi,j distributed according to the probability distribution decorating the
edge (i, j) in H, all the weights being independent from each other. For the special case where
H = H(x,W ), we simply note G(x,W ) = G(H(x,W )).

An important special case is when the sequence X is chosen at random: X = (Xi)1≤i≤n where
the Xi are independent and uniformly distributed on [0, 1]. For this special case, we simply note
H(n,W ) = H(X,W ) and G(n,W ) = G(X,W ), that are conditionally on X = x, distributed
respectively as H(x,W ) and G(x,W ). The random graphs H(n,W ) and G(n,W ) are called
W -random graphs.

Remark 6.5 (The case of symmetric graphons). In the special case where W is a symmetric
probability-graphon, the M1(Z)-graph H(x,W ) is also symmetric. From a symmetric M1(Z)-
graph H, the random weighted graph G(H) is not necessarily symmetric, but we can define a
random symmetric weighted graph Gsym(H) whose vertex set V (H) and E(H) are the same as
H, and with independent weights βi,j = βj,i on each edge (i, j) = (j, i) distributed according to
ΦH(i, j; ·). For H = H(x,W ) we simply note Gsym(x,W ) and Gsym(n,W ).

For a weighted graph G, and for 1 ≤ k ≤ v(G), we can define the random weighted graph
G(k,G) as being the sub-graph of G induced by a uniform random subset of k distinct vertices
from G. Then, upper bounding by the probability that a uniformly-chosen map [k] → V (G)
is non-injective, we get the following bound on the total variation distance between the graphs
obtained from G and its associated graphon WG:

dvar(G(k,G),G(k,WG)) ≤
(
k

2

)
1

v(G) ,

where dvar is the total variation distance between probability measures.

6.3. Estimation of the distance by sampling.

6.3.1. The first sampling lemma. In this subsection, we link sampling from graphons with the
cut distance. This result is the equivalent of Lemma 10.6 in [Lov12]. The main consequence
of the following lemma is that the cut distance d□,F between two probability-graphons can be
estimated by sampling.

Notation 6.6 (The random stepfunction WX). For a measure-valued kernel W (resp. a real-
valued kernel w) and a vector X = (Xi)1≤i≤k composed of k independent random variables
uniformly distributed over [0, 1], we denote by WX = WH(k,W ) (resp. wX) the random measure-
valued (resp. real-valued) stepfunction with k steps of size 1/k, and where the step (i, j) has
value W (Xi, Xj ; ·) (resp. w(Xi, Xj)).
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Lemma 6.7 (First Sampling Lemma). Let F be a convergence determining sequence. Let k ∈ N∗,
and U,W ∈ W1 be two probability-graphons, and let X be a random vector uniformly distributed
over [0, 1]k. Then with probability at least 1 − 4k1/4 e−

√
k/10, we have:

− 2
k1/4 ≤ ∥UX −WX∥□,F − ∥U −W∥□,F ≤ 9

k1/4 ·

An immediate consequence of Lemma 6.7 is that the decorated graphs with probability
measures on their edges H(k, U) and H(k,W ) can be coupled in order that d□,F (H(k, U),H(k,W ))
is close to d□,F (U,W ) with high probability.

To prove the first sampling lemma, we first need to prove the following lemma which states
that the cut norm ∥·∥□,F can be approximated by the maximum of the one-sided cut norm using
a finite number of function. Remind from Remark 3.24 the definition of the one-sided version of
the cut norm ∥ · ∥+

□,R.

Lemma 6.8 (Approximation bound with ∥ · ∥□,F and ∥ · ∥+
□,R). Let U,W ∈ W1 and let N ∈ N.

For every ε = (εn)1≤n≤N ∈ {±1}N , define gN,ε =
∑N
n=1 2−nεnfn. Then, we have:

∥U −W∥□,F − 2−N ≤ max
ε∈{±1}N

∥(U −W ) [gN,ε]∥+
□,R ≤ ∥U −W∥□,F .

Proof. First remark that for n ∈ N, fn takes values in [0, 1], and thus U [fn] −W [fn] takes values
in [−1, 1]. Remind that f0 = 1, and thus U [f0] −W [f0] ≡ 0. Upper bounding integrals by 1 for
indices n > N , we get:

∥U −W∥□,F ≤ sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣+ 2−N .

And adding the non-negative terms for n > N , we get:

sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣ ≤ ∥U −W∥□,F .

Using the same idea as in (13) and (14), we get:

sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣ = max

ε∈{±1}N
∥(U −W ) [gN,ε]∥+

□,R ,

which concludes the proof. □

Proof of Lemma 6.7. Remark that for f ∈ Cb(Z) and W ∈ W±, we have (WX)[f ] = (W [f ])X ,
and we thus write W [f ]X without any ambiguity.

Assume that k ≥ 24 (otherwise the lower bound in the lemma is trivial). Set N = ⌈log2(k1/4)⌉,
so that 2−1k−1/4 < 2−N ≤ k−1/4. Let ε ∈ {±1}N . Remark that as the fn take values in
[0, 1], the real-valued kernels (U −W )[fn] take values in [−1, 1], and thus the real-valued kernel
(U − W )[gN,ε] also take values in [−1, 1]. Applying Lemma 10.7 in [Lov12] to the real-valued
kernel (U −W ) [gN,ε], we get with probability at least 1 − 2 e−

√
k/10 that:

(21) − 3
k

≤ ∥(U −W )[gN,ε]X∥+
□,R − ∥(U −W )[gN,ε]∥+

□,R ≤ 8
k1/4 ,

where remind that ∥ ·∥+
□,R is the one-sided version of the cut norm for real-valued kernels defined

in (12). Hence, with probability at least 1 − 2N+1 e−
√
k/10 ≥ 1 − 4k1/4 e−

√
k/10, we have that the
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bounds in (21) holds for every ε ∈ {±1}N simultaneously; and when all of this holds, applying
Lemma 6.8 to U,W and to UX ,WX , we get:

∥UX −WX∥□,F ≤ max
ε∈{±1}N

∥(U −W )[gN,ε]X∥+
□,R + 2−N

≤ max
ε∈{±1}N

∥(U −W )[gN,ε]∥+
□,R + 9

k1/4

≤ ∥U −W∥□,F + 9
k1/4 ,

and similarly:

∥U −W∥□,F ≤ max
ε∈{±1}N

∥(U −W )[gN,ε]∥+
□,R + 2−N

≤ max
ε∈{±1}N

∥(U −W )[gN,ε]X∥+
□,R + 1

k1/4 + 3
k

≤ ∥UX −WX∥□,F + 2
k1/4 ·

This concludes the proof. □

6.3.2. Approximation with random weighted graphs. As a consequence of the First Sampling
Lemma 6.7, we get that the cut distance between the sampled graphs H(k, U) and H(k,W )
(with the proper coupling) is close to the cut distance between the probability-graphons U and
W . The following lemma states that if k is large enough, then G(k,W ) is close to H(k,W ) in
the cut distance d□,F , and thus the cut distance between the random weighted graphs G(k, U)
and G(k,W ) is also close to d□,F (U,W ).

Recall from Section 6.2 the definition of the random weighted graph G(H) when H is a M1(Z)-
graph. Following Remarks 6.3 and 6.2, we shall see the weighted graph G(H) as a M1(Z)-graph
or even as a probability-graphon.

Lemma 6.9 (Bound in probability for d□,F (G(H), H)). For every M1(Z)-graph H with k

vertices, and for every ε ≥ 10/
√
k, we have:

P
(
d□,F (G(H), H) > 2ε

)
≤ e−ε2k2

.

Remark 6.10 (Bound in expectation for d□,F (G(H), H)). Remind that d□,F (G(H), H) ≤ 1.
Applying Lemma 6.9 with ε = 10/

√
k, we get the following bound on the expectation of

d□,F (G(H), H):

E[d□,F (G(H), H)] ≤ 20√
k

+ e−100k <
21√
k

·

Proof of Lemma 6.9. Let H and ε be as in the lemma. Assume that ε ≤ 1/2 (otherwise the
probability to bound in the lemma is null). To simplify the notations, denote by G = G(H)
through this proof. Define N = ⌈log2(ε−1)⌉, so that

∑∞
n=N+1 2−n ≤ ε. Upper bounding by 1

the terms for n > N in (15), we get for U,W ∈ W1:

d□,F (U,W ) ≤
N∑
n=1

2−n∥U [fn] −W [fn]∥□,R + ε,
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where remind that ∥ · ∥□,R is the cut norm for real-valued kernels defined in (12). Using this
equation with the graphs G and H, we get:

P(d□,F (G,H) > 2ε) ≤ P

(
N∑
n=1

2−nd□,R(G[fn], H[fn]) > ε

)

≤
N∑
n=1

P
(
d□,R(G[fn], H[fn]) > ε

)
,(22)

where d□,R denotes the cut distance associated to the cut norm ∥ · ∥□,R for real-valued graphons
and kernels. Remark that for every n ∈ N, H[fn] and G[fn] are real-weighted graphs with weights
in [0, 1]. Thus, by a straightforward adaptation of the proof of [Lov12, Lemma 10.11], we get:

(23) ∀n ∈ [N ], P(d□(G[fn], H[fn]) > ε) ≤ 2 · 4k e−2ε2k2
.

Combining (22) and (23), we get for ε > 10/
√
k:

P(d□,F (G,H) > 2ε) ≤ 2N4ke−2ε2k2
≤ e−ε2k2

,

where the last bound derives from simple calculus. This concludes the proof. □

We can apply the First Sampling Lemma 6.7 along with Lemma 6.9 to get the following
lemma, equivalent of the first sampling lemma for the random weighted graph G(k,W ):

Corollary 6.11 (First Sampling Lemma for G(k,W )). Let U,W ∈ W1 be two probability-
graphons, and k ∈ N∗. Then, we can couple the random weighted graphs G(k, U) and G(k,W )
such that with probability at least 1 − (4k1/4 + 1) e−

√
k/10, we have:∣∣d□,F (G(k, U),G(k,W )) − d□,F (U,W )

∣∣ ≤ 13
k1/4 ·

Proof. Assume that k ≥ 134 (otherwise the bound in the corollary is trivial). Then, we have
with probability at least 1 − 4k1/4 e−

√
k/10 −2 e−100k > 1 − (4k1/4 + 1) e−

√
k/10:∣∣d□,F (G(k, U),G(k,W )) − d□,F (U,W )

∣∣ ≤
∣∣d□,F (G(k, U),G(k,W )) − d□,F (H(k, U),H(k,W ))

∣∣
+
∣∣d□,F (H(k, U),H(k,W )) − d□,F (U,W )

∣∣
≤ d□,F (G(k, U),H(k, U))

+ d□,F (G(k,W ),H(k,W )) + 9
k1/4

≤ 40√
k

+ 9
k1/4

≤ 13
k1/4 ,

where we used the upper bound from the First Sampling Lemma 6.7 (which gives the coupling
with the same random vector X to define both graphs UX = H(k, U) and WX = H(k,W )) for
the second inequality, the upper bound from Lemma 6.9 with ε = 10/

√
k with both U and W

for the third inequality, and that 1√
k

≤ 1
13k1/4 for the last inequality. □

6.4. The distance between a probability-graphon and its sample. In this section, we
present the Second Sampling Lemma, that shows that a sampled M1(Z)-graph is close to its
original probability-graphon with high probability. Note that we use the unlabeled cut distance
δ□,F rather than d□,F as the sample points are unordered. The bound on the distance is much
weaker than the one in the First Sampling Lemma 6.7, but nevertheless goes to 0 as the sample
size increases.
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The proof is a straightforward adaptation of the proof of [Lov12, Lemma 10.16] (replacing
the weak regularity lemma and the first sampling lemma by their counterparts for probability-
graphons, that is Lemmas 4.17 and 6.7; the sample concentration theorem for real-valued graphons
can easily be adapted to probability-graphons).

Lemma 6.12 (Second Sampling Lemma). Let F be a convergence determining sequence. Let
W ∈ W̃1 be a probability-graphon and k ∈ N∗. Then, with probability at least 1−exp(−k/(2 ln(k)))
we have:

δ□,F (H(k,W ),W ) ≤ 21√
ln(k)

and δ□,F (G(k,W ),W ) ≤ 22√
ln(k)

·

In the above lemma, the asymmetric random graph G(k,W ) can be replaced by the symmetric
random graph Gsym(k,W ) without changing the proof. Similarly, the results in Section 6.3.2 can
be reformulated with symmetric random graphs Gsym(k,W ) and Gsym(H) (but with a slight
modification of the proof for Lemma 6.9 to symmetrize the random variable Xi,j and with the
upper bound e−ε2k2/2, see also [Lov12, Lemma 10.11]).

As an immediate consequence of Lemma 6.12 and of the Borel-Cantelli lemma, we get the
convergence of the sampled subgraphs for the cut distance δ□,F .

Theorem 6.13 (Convergence of sampled subgraphs). Let F be a convergence determining
sequence. Let W ∈ W̃1 be a probability-graphon. Then, a.s. the sequence of sampled subgraphs
(G(k,W ))k∈N∗ converges to W for the cut distance δ□,F , and thus for any cut distance δ□,m
from Theorem 5.5.

7. The Counting Lemmas and the topology of probability-graphons

In this section, we introduce the homomorphism densities for probability-graphons, and then
we link those to the cut distance δ□,F through the Counting Lemma and the Inverse Counting
Lemma. Those results are analogous to the case of real-valued graphons, see [Lov12, Chapter 7]
for the definition of homomorphism densities and [Lov12, Chapter 10] for the Counting Lemma
and Inverse Counting Lemma. The main differences with [Lov12] are: the decoration of the edges
of the graphs with functions from Cb(Z); the Counting Lemma for the decorations belonging only
in the convergence determining sequence F ; the more technical proof of the Inverse Counting
Lemma. Note that we need to work with δ□,F here as the proof of the Inverse Counting Lemma
relies on the second sampling Lemma 6.12.

7.1. The homomorphism densities. In the case of non-weighted graphs, the homomorphism
densities t(F,G) allow to characterize a graph (up to twin-vertices expansion), and also allow
to define a topology for real-valued graphons. In the case of weighted graphs and probability-
graphons, we need to replace the absence/presence of edges (which is 0-1 valued) by test functions
from Cb(Z) decorating each edge.

In this section, we often need to fix the underlying (directed) graph structure F = (V,E)
(which may be incomplete) of a Cb(Z)-graph and to vary only the Cb(Z)-decorating functions
g = (ge)e∈E , thus we will write F g = (V,E, g) for a Cb(Z)-graph. Moreover, when there exists a
convergence determining sequence F such that ge ∈ F for every edge e ∈ E, we say that F g is a
F-graph and use the same notation conventions.

Definition 7.1 (Homomorphism density). We define the homomorphism density of a Cb(Z)-
graph F g in a signed measure-valued kernel W ∈ W± as:

(24) t(F g,W ) = MF
W (g) =

∫
[0,1]V (F )

∏
(i,j)∈E(F )

W (xi, xj ; gi,j)
∏

i∈V (F )

dxi.
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Moreover, MF
W defines a measure on ZE (which we still denote by MF

W ) which is characterized
by MF

W (⊗e∈Ege) = MF
W (g) for g = (ge)e∈E.

Remark 7.2 (Invariance under relabeling of homomorphism densities). Let φ : [0, 1] → [0, 1] be
a measure-preserving map. As φ⊗k : (x1, . . . , xk) 7→ (φ(x1), . . . , φ(xk)) is a measure-preserving
map on [0, 1]k, applying the transfer formula (see (1)), we get that for every Cb(Z)-graph F g and
every signed measure-valued kernel W ∈ W±, we have t(F g,Wφ) = t(F g,W ). Thus t(F g, ·) can
be extending to W̃±.

Remark 7.3. When W ∈ W+ is a measure-valued kernel, and F is the graph with two vertices
and one edge, we get that MF

W = MW the measure defined in (16).

Remark 7.4 (Adding missing edges to F ). When we work with probability-graphons, we can
always assume the graph F to be complete, by adding the missing edges (i, j) and decorating
them with the constant function g(i,j) = 1.

For a finite weighted graph G, we define the homomorphism density of the Cb(Z)-graph F g

in G as t(F g, G) = t(F g,WG) (remind from Remark 6.2 the definition of WG), that is:

t(F g, G) = 1
v(G)k

∑
(x1,··· ,xk)∈V (G)k

∏
(i,j)∈E(F )

g(i,j)(ΦG(xi, xj)),

where k = v(F ) and ΦG(xi, xj) is the weight of the directed edge from xi to xj .

7.2. The Counting Lemma. The following lemma links the homomorphism densities with the
cut distance δ□,F for some convergence determining sequence F = (fn)n∈N (with f0 = 1 and fn
takes values in [0, 1]). This lemma is a generalization to probability-graphons of the Counting
Lemma for real-valued graphons (see Lemmas 10.22 and 10.23 from [Lov12]). Recall that by
Remark 7.2, t(F g, ·) is defined on W̃±.

Lemma 7.5 (Counting Lemma). Let F = (fn)n∈N be a convergence determining sequence (with
f0 = 1 and fn takes values in [0, 1]). Let F g be a F-graph, and for every edge e ∈ E(F ), let
ne ∈ N be such that ge = fne . Then, for every probability-graphons W,W ′ ∈ W̃1, we have:

|t(F g,W ) − t(F g,W ′)| ≤

 ∑
e∈E(F )

2ne

 δ□,F (W,W ′).

Remark 7.6 (W 7→ t(F g,W ) is Lipschitz). The Lipschitz constant given by the lemma is
too large to be useful in practical cases. Nevertheless, the homomorphism density function
W 7→ t(F g,W ) is Lipschitz on the space of unlabeled probability-graphons W̃1 equipped with
the cut distance δ□,F .

Proof of Lemma 7.5. To do this proof, we will apply Lemma 10.24 from [Lov12], which applies
to graphs F whose edges are decorated with (possibly different) real-valued graphons w = (we :
e ∈ E(F )), and the associated homomorphism density is defined as

(25) t(F,w) =
∫

[0,1]V (F )

∏
(i,j)∈E(F )

we(xi, xj)
∏

i∈V (F )

dxi.

Remind from (11) that for a probability-graphon W ∈ W1 and a function f ∈ F (which is
[0, 1]-valued by our definition of convergence determining sequences), we have that W [f ] is a
real-valued graphon. Define the collections of real-valued graphons w = (W [ge] : e ∈ E(F )) and
w′ = (W ′[ge] : e ∈ E(F )). Notice from (24) and (25) that we have t(F,w) = t(F g,W ) and
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t(F,w′) = t(F g,W ′). Applying [Lov12, Lemma 10.24] to the graph F and edge-decorations w
and w′, we get:

|t(F g,W ) − t(F g,W ′)| = |t(F,w) − t(F,w′)| ≤
∑

e∈E(F )

∥W [ge] −W ′[ge]∥□,R,

where the norm ∥ ·∥□,R in the upper bound is the cut norm for real-valued graphons (see (12) for
definition of this object). For e ∈ E(F ), by definition of the cut distance d□,F and using (10),
we have:

∥W [ge] −W ′[ge]∥□,R ≤ 2ne d□,F (W,W ′).
Hence, combining all those upper bounds, we get the bound in the lemma but with d□,F instead
of δ□,F . Since t(F g, ·) is invariant under relabeling by Remark 7.2, taking the infimum other all
relabelings allows to replace d□,F by δ□,F and to get the bound in the lemma. □

We have just seen that homomorphism densities defined using only functions from F are
Lipschitz. We are going to see that the other homomorphism densities are nevertheless continuous.

Lemma 7.7 (Weak Counting Lemma). Let F be a convergence determining sequence (with
f0 = 1). Let (Wn)n∈N and W be probability-graphons such that limn→∞ t(F g,Wn) = t(F g,W )
for all F-graph F g (which in particular the case if limn→∞ δ□,F (Wn,W ) = 0 by the Counting
Lemma 7.5). Then, for every Cb(Z)-graph F g we have:

t(F g,Wn) −→
n→∞

t(F g,W ).

Proof. Let F = (V,E) be some fixed (directed) graph. By assumption, we have for all edge-
decorations g = (ge)e∈E in F that limn→∞ MF

Wn
(⊗e∈Ege) = MF

W (⊗e∈Ege) (see Definition 7.1).
By [EK09, Chapter 3, Proposition 4.6], F⊗E is a (countable) convergence determining family on
M+(ZE). Thus, the sequence of measures (MF

Wn
)n∈N converges to MF

W for the weak topology
on M+(ZE). And in particular, for every edge-decoration function g = (ge)e∈E (here for every
e ∈ E, ge ∈ Cb(Z) is arbitrary) we have MF

Wn
(⊗e∈Ege) = t(F g,Wn) → t(F g,W ) = MF

W (⊗e∈Ege)
as n → ∞. This being true for all choices of the graph F , it concludes the proof. □

7.3. The Inverse Counting Lemma. The goal of this subsection is to establish a converse to
the Counting Lemma: if two probability-graphons are close in terms of homomorphism densities,
then they are close w.r.t. the cut distance δ□,F .

Lemma 7.8 (Inverse Counting Lemma). Let F = (fn)n∈N be a convergence determining sequence
(with f0 = 1 and fn takes values in [0, 1]). Let U,W ∈ W̃1 be two probability-graphons, and let
k, n0 ∈ N∗. Assume that we have |t(F g, U) − t(F g,W )| ≤ 2−k−n0k

2 for every (complete) Cb(Z)-
graph F g with k vertices and such that the edge-decoration functions g = (ge)e∈E(F ) are products
(without repetition) of the functions (fn)1≤n≤n0 and (1 − fn)1≤n≤n0 . Then, we have:

δ□,F (U,W ) ≤ 44√
log(k)

+ 2−n0 .

To prove Lemma 7.8, we first need to prove the special case where the space Z is finite.

Lemma 7.9 (Inverse Counting Lemma, case with finite space Z). Assume that the space Z
is finite with cardinality n1, for simplicity say Z = [n1]. Define the indicator functions fn :
z 7→ 1{z=n} for n ∈ [n1], in particular H = (fn)1≤n≤n1 is a finite convergence determining
sequence. Let U,W ∈ W̃1 be two probability-graphons, and let k ∈ N∗. Assume that we have
|t(F g, U) − t(F g,W )| < 2−k−log2(n1)k2 for every (complete) H-graph F g with k vertices.
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Then, for any (possibly finite) convergence determining sequence F , we have:

δ□,F (U,W ) ≤ 44√
log(k)

·

Abusing notations, we can identify a weight-value n ∈ Z with its indicator functions fn, and
doing this identification for edge-decoration functions, we can identify a F-graph F g with its
corresponding weighted graph. In particular, doing so we get t(F g,W ) = P(G(k,W ) = F g) for
every F-graph F g with k vertices. The proof of Lemma 7.9 is then a straightforward adaptation
of the proof of [Lov12, Lemma 10.31 and Lemma 10.32].

Proof of Lemma 7.8. As the functions (fn)n∈N take value in [0, 1], for all φ measure-preserving
map, for all S, T ⊂ [0, 1] measurable sets and for all n ∈ N, we have:∣∣∣U(S × T ; fn) −Wφ(S × T ; fn)

∣∣∣ ≤ 1.

Using this bound, we get the following bound (remind that f0 = 1):

(26) δ□,F (U,W ) ≤ inf
φ∈S[0,1]

sup
S,T⊂[0,1]

n0∑
n=1

2−n
∣∣∣U(S × T ; fn) −Wφ(S × T ; fn)

∣∣∣+ 2−n0 .

Hence, for a point z ∈ Z, the upper bound in (26) uses only the information given by
(fn(z))n∈[n0]. In order to discretize the space [0, 1]n0 , we replace a point p = (p1, . . . , pn0) ∈
[0, 1]n0 by a random point (Y1, . . . , Yn0) ∈ {0, 1}n0 where the Yi are independent random variables
with Bernoulli distribution of parameter pi. This leads us to replace a M1(Z)-valued kernel W
by the M1({0, 1}n0)-valued kernel W̃ defined for all (x, y) ∈ [0, 1]2, and for all s = (s1, . . . , sn0) ∈
{0, 1}n0 as:

W̃ (x, y; {s}) = W (x, y; fs) where fs =
n0∏
n=1

fsn
n (1 − fn)1−sn .

Fix some enumeration (sm)m∈[2n0 ] of the points in {0, 1}n0 , and define the indicator functions
h̃m : s 7→ 1{s=sm} for m ∈ [2n0 ], in particular H̃ = (h̃m)1≤m≤2n0 is a finite convergence
determining sequence on M+({0, 1}n0). Let F g̃ be a H̃-graph with vertex set V (F ) = [k],
and for every edge e ∈ E(F ), let me ∈ [2n0 ] be such that g̃e = h̃me . Define the edge-decoration
functions g = (ge)e∈E(F ) for every edge e ∈ E(F ) as ge = fs

me , then we get:

t(F g̃, W̃ ) =
∫

[0,1]k

∏
(i,j)∈E(F )

W̃ (xi, xj ; {sme})
k∏
i=1

dxi = t(F g,W ).

Thus, the M1({0, 1}n0)-valued graphons Ũ and W̃ inherit the bounds on the homomorphism
densities: for every H̃-graph F g̃, we have |t(F g̃, Ũ) − t(F g̃, W̃ )| ≤ 2−k−n0k

2 .
Define for all n ∈ [n0] the function f̃n : s 7→ 1{sn=1}, and let F̃ be the concatenation of

(f̃n)n∈[n0] and H̃, in particular F̃ is a finite convergence determining sequence on M+({0, 1}n0).
Finally, as δ□,F̃ (Ũ , W̃ ) upper bounds the first term in the upper bound of (26), applying
Lemma 7.9 with the finite space Z = {0, 1}n0 and n1 = 2n0 , the finite convergence determining
sequences F̃ and H̃, and the M1({0, 1}n0)-valued graphons Ũ and W̃ , we get:

δ□,F (U,W ) ≤ 44√
ln(k)

+ 2−n0 ,

which concludes the proof. □
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7.4. Subgraph sampling and the topology of probability-graphons. Thanks to the Weak
Counting Lemma 7.7 and the Inverse Counting Lemma 7.8, we can formulate a new informative
characterization of weak isomorphism, i.e. equality in the space of unlabeled probability-graphons
W̃1.
Proposition 7.10 (Characterization of equality for δ□,m). Let U,W ∈ W1 be two probability-
graphons. The following properties are equivalent:

(i) δ□,m(U,W ) = 0 for some (and hence for every) choice of the distance dm on M≤1(Z)
such that the cut distance d□,m on W1 is (invariant) smooth.

(ii) There exist φ,ψ ∈ S̄[0,1] such that Uφ = Wψ almost everywhere on [0, 1]2.
(iii) t(F g, U) = t(F g,W ) for all Cb(Z)-graph F g.
(iv) t(F g, U) = t(F g,W ) for all F-graph F g.

Proof. The equivalence between Properties (i) and (ii) is a consequence of Proposition 3.18 on
the cut distance. Remark 7.2 gives that Property (ii) implies Property (iii). It is clear that
Property (iii) implies Property (iv). The Inverse Counting Lemma 7.8 with the Weak Counting
Lemma 7.7 give that Property (iv) implies Property (i) (with dm = dF ). Hence, we have the
desired equivalence. □

Thanks to the Weak Counting Lemma 7.7 and the Inverse Counting Lemma 7.8, we get the
following characterization of the topology induced by the cut distance δ□,m on the space of
unlabeled probability-graphons W̃1 in terms of homomorphism densities
Theorem 7.11 (Characterization of the topology induced by δ□,m). Let (Wn)n∈N and W be
unlabeled probability-graphons from W̃1. The following properties are equivalent:

(i) limn→∞ δ□,m(Wn,W ) = 0 for some (and hence for every) choice of the distance dm on
M≤1(Z) such that dm induces the weak topology on M≤1(Z) and the cut distance d□,m
on W1 is (invariant) smooth, weakly regular and regular w.r.t. the stepping operator.

(ii) limn→∞ t(F g,Wn) = t(F g,W ) for all Cb(Z)-graph F g.
(iii) limn→∞ t(F g,Wn) = t(F g,W ) for all F-graph F g.
(iv) For all k ≥ 2, the sequence of sampled subgraphs (G(k,Wn))n∈N converges in distribution

to G(k,W ).
In particular, the topology induced by the cut distance δ□,F on the space of unlabeled

probability-graphons W̃1 coincides with the topology generated by the homomorphism densities
functions W 7→ t(F g,W ) for all Cb(Z)-graph F g.

Proof. By Theorem 5.5, convergence for δ□,F is equivalent to convergence for δ□,m for every
choice of the distance dm on M≤1(Z) such that dm induces the weak topology on M≤1(Z)
and the cut distance d□,m on W1 is (invariant) smooth, weakly regular and regular w.r.t. the
stepping operator. Taking dm = dP , the Weak Counting Lemma 7.7 gives that Property (i)
implies Property (ii). It is clear that Property (ii) implies Property (iii). The Inverse Counting
Lemma 7.8 with the Weak Counting Lemma 7.7 give that Property (iii) implies Property (i) (with
dm = dF ). Notice that when F is the complete graph with k vertices, MF

W is the joint measure of
all the edge-weights of the random graph G(k,W ), and thus characterizes the distribution random
graph G(k,W ). Thus (remind Definition 7.1), Property (ii) and Property (iv) are equivalent.
Hence, we have the desired equivalence. □

Question 7.12 (Do the distances d□,F all induce the same topology?). Even though every
distance δ□,F generates the same topology on the space of unlabeled probability-graphons W̃1, it
is an open question whether or not this is also the case that every distance d□,F induces the same
topology on the space of labeled probability-graphons W1.
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The following proposition states that to prove existence of a limit unlabeled probability-
graphon it is enough to prove that there exists a convergence determining sequence F such that
for every F-graph F g the homomorphism densities t(F g, ·) converge.

Proposition 7.13 (Existence of a limit unlabeled probability-graphon). Let dm be a distance
on M≤1(Z) such that dm induces the weak topology on M≤1(Z) and the cut distance d□,m on
W1 is (invariant) smooth, weakly regular and regular w.r.t. the stepping operator.

Let (Wn)n∈N be sequence of unlabeled probability-graphons in W̃1 that is tight. Let F be a
convergence determining sequence such that for every F-graph F g the sequence (t(F g,Wn))n∈N
converges. Then, there exists an unlabeled probability-graphon W ∈ W̃1 such that the sequence
(Wn)n∈N converges to W for δ□,m.

Proof. Since the sequence (Wn)n∈N is tight, by Theorem 5.1, there exists a subsequence (Wnk
)k∈N

of the sequence (Wn)n∈N that converges to some W for δ□,m. By Theorem 7.11, we have for every
F-graph F g that limk→∞ t(F g,Wnk

) = t(F g,W ); and as we already know that the sequence
(t(F g,Wn))n∈N converges, we have that limn→∞ t(F g,Wn) = t(F g,W ). Hence, by Theorem 7.11,
we get that the sequence (Wn)n∈N converges to W for δ□,m. □

Remark 7.14. For the special case Z = {0, 1}, which is compact, we find back that convergence
for real-valued graphons is characterized by the convergence of the homomorphism densities.
Notice the tightness condition of Proposition 7.13 is automatically satisfied as Z is compact.

8. Proofs of Theorem 5.1 and Theorem 5.5

We start by proving a lemma that allows to construct a convergent subsequence and its limit
kernel for a tight sequence of measure-valued kernels. This lemma is useful for the proofs of both
Theorem 5.1 and Theorem 5.5. For the proof of Theorem 5.5, we will also need the convergence
to hold simultaneously for two distances δ□ and δ′

□. Remind from Definition 4.1 the definition
of the stepfunction WP for a signed measure-valued kernel W and a finite partition P of [0, 1].
For a finite partition P of [0, 1], define its diameter as the smallest diameter of its sets, i.e.
diam(P) = minS∈P diam(S) = minS∈P supx,y∈S |x− y|.

Lemma 8.1 (Convergence using given approximation partitions). Let d be an invariant smooth
distance on W1 (resp. W+ or W±). Let (Wn)n∈N be a sequence in W1 (resp. W+ or W±)
which is tight (resp. uniformly bounded and tight). Further assume that we are given, for every
n, k ∈ N, partitions Pn,k of [0, 1], such that these partitions and the corresponding stepfunctions
Wn,k = (Wn)Pn,k

satisfy the following conditions:
(i) the partition Pn,k+1 is a refinement of Pn,k,

(ii) diam(Pn,k) ≤ 2−k and |Pn,k| = mk depends only on k (and not on n),
(iii) d(Wn,Wn,k) ≤ 1/(k + 1).

Then, there exists a subsequence (Wnℓ
)ℓ∈N of the sequence (Wn)n∈N and a measure-valued kernel

W ∈ W1 (resp. W ∈ W+ or W ∈ W±) such that (Wnℓ
)ℓ∈N converges to W for δ□.

Moreover, assume that d′ is another invariant smooth distance on W1 (resp. W+ or W±)
such that for every n ∈ N and k ∈ N, Wn,k also satisfies:

(iv) d′(Wn,Wn,k) ≤ 1/(k + 1).
Then, there exists a subsequence (Wnℓ

)ℓ∈N of the sequence (Wn)n∈N and a measure-valued kernel
W ∈ W1 (resp. W ∈ W+ or W ∈ W±) such that (Wnℓ

)ℓ∈N converges to the same measure-valued
kernel W simultaneously both for δ□ and for δ′

□, the cut distance associated with d′.
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Proof. We adapt here the general scheme from the proof of Theorem 9.23 in [Lov12], but the
argument for the convergence of the Uk, defined below, takes into account that measure-valued
kernels are infinite-dimensional valued. We set (remind from (2) the definition of ∥ · ∥∞):

C = sup
n∈N

∥Wn∥∞ < +∞.

The proof is divided into four steps.
Step 1: Without loss of generality, the partitions Pn,k are made of intervals. For

every n ∈ N, we can rearrange the points of [0, 1] by a measure-preserving map so that the
partitions Pn,k are made of intervals, and we replace Wn by its rearranged version.

An argument similar to the next lemma is used in the proof in [Lov12, Proof of Theorem
9.23] without any reference. So, we provide a proof and stress that diameters of the partitions
shrinking to zero is an important assumption (see Remark 8.3 below).

Lemma 8.2 (Kernel rearrangement with interval partitions). Let (Pk)k∈N be a refining sequence
of finite partitions of [0, 1] whose diameter converges to zero. Then, there exist a measure-
preserving map φ ∈ S̄[0,1] and a refining sequence of partitions made of intervals (Qk)k∈N such
that for all k ∈ N, and all set S ∈ Pk there exists a set R ∈ Qk such that a.e. 1R = 1φ−1(S).

In particular, if W is a signed measure-valued kernel, then for U = Wφ, we have that a.e.
UQk

= (Wφ)Qk
= (WPk

)φ for all k ∈ N.
Notice that, according to Remark 4.4, the sequence of refining partition (Pk)k∈N, with a

partition diameter converging to 0, separates points and thus generates the Borel σ-field of [0, 1].

Proof. Consider the infinite Ulam-Harris tree T ∞ = {u1 · · ·uk : k ∈ N, u1, . . . , uk ∈ N∗}, where
for k = 0 the empty word u = ∂ is called the root node of the tree; for a node u = u1 · · ·uk ∈ T ∞

, we define its height as h(u) = k, and if k > 0 we define its parent node as p(u) = u1 · · ·uk−1 and
we say that u is a child node of p(u). We order vertices on the tree T ∞ with the lexicographical
(total) order <lex. As a first step, we construct a subtree T ⊂ T ∞ that indexes the sets in the
partitions (Pk)k∈N, such that for every k ∈ N, Pk = {Su : u ∈ T , h(u) = k}, and such that if
Sv ⊂ Su with Sv ∈ Pk and Su ∈ Pk−1, then p(v) = u.

Without loss of generality, we may assume that P0 = {[0, 1]}, and we label its only set by
the empty word ∂, and we set S∂ = [0, 1]. Then, suppose we have already labeled the sets
from P0, . . . ,Pk, and we proceed to label the sets from Pk+1. Because the partition Pk+1 is
a refinement of Pk, we can group the sets of Pk+1 by their unique parent set from Pk, i.e. for
every Su ∈ Pk, let Ou = {S ∈ Pk+1 : S ⊂ Su}, then Su = ∪S∈Ou

S. For Su ∈ Pk, we fix an
arbitrary enumeration of Ou = {S1, . . . , Sℓ} with ℓ = |Ou|, then label the set Sj by uj, and
set Sj = Suj ; remark that the parent node of w = uj is p(w) = u, and the height of node w is
h(w) = h(u)+1 = k+1. Hence, we have labeled every set from Pk+1. To finish the construction,
we set T = {u : ∃k ∈ N,∃S ∈ Pk, S has label u}.

We now proceed to construct a measure-preserving map ψ such that the image of every set
Su is a.e. equal to an interval, and such that those intervals are ordered w.r.t. to the order of
their labels in T .

Define the map σ : [0, 1] → T N by σ(x) = (uk(x))k∈N ∈ T N where uk(x) is the only node
of T with height k such that x ∈ Suk(x) (and thus uk+1(x) is a child node of uk(x)). Remark
that if uk0(x) <lex u

k0(y) for some k0 ∈ N, then uk(x) <lex u
k(y) for every k ≥ k0. We extend

naturally the total order <lex from T to a the total order on T N: for (uk)k∈N, (vk)k∈N ∈ T N,
(uk)k∈N <lex (vk)k∈N if uk0 <lex v

k0 where k0 is the smallest k such that uk ̸= vk.
For every u ∈ T , define:

A−(u) =
⋃

v<lexu :h(v)=h(u)

Sv and A+(u) = A−(u) ∪ Su,
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and then define C−(u) = λ(A−(u)) and C+(u) = λ(A+(u)). Now, define ψ as, for x ∈ [0, 1]:

ψ(x) = λ(A−(x)) where A−(x) = {y ∈ [0, 1] : σ(y) <lex σ(x)} = ∪k∈NA
−(uk(x)).

Moreover, as the sequence of partitions (Pk)k∈N has a diameter that converges to zero, and thus
separates points, the map σ is injective. Thus, we also have:

ψ(x) = λ(A+(x)) where A+(x) = {y ∈ [0, 1] : σ(y) ≤lex σ(x)} = A−(x) ∪ {x}.
Remark that both A−(x) and A+(x) are Borel measurable.

Remark that for every k ∈ N, we have A−(uk(x)) ⊂ A−(x) ⊂ A+(x) ⊂ A+(uk(x)). In
particular, for every u ∈ T , we have ψ(Su) ⊂ [C−(u), C+(u)]; however ψ(Su) is not necessarily
an interval, but we shall see that λ(ψ(Su)) = C+(u) − C−(u), i.e. ψ(Su) is a.e. equal to
[C−(u), C+(u)]. Remark that, as the sequence of partitions (Pk)k∈N is refining, we get that
[C−(u), C+(u)] = ∪v : p(v)=u[C−(v), C+(v)] for every u ∈ T \ {∂}.

As the diameter of the partitions (Pk)k∈N converges to zero, we have the following alternative
formula for ψ:

ψ(x) = lim
k→∞

C−(uk(x)) = lim
k→∞

C+(uk(x)).

For every k ∈ N, the map x 7→ C−(uk(x)) is a simple function (constant on each S ∈ Pk and
takes finitely-many values), and thus ψ is measurable as a limit of measurable maps.

We outline the rest of the proof. We first prove that ψ is measure-preserving. Secondly,
we prove that ψ is a.e. bijective and construct its a.e. inverse map φ. Thirdly, we prove
that (φ−1(Pk))k∈N is a refining sequence of partitions. And lastly, we approximate almost
everywhere the sequence of partitions (φ−1(Pk))k∈N by a sequence of refining partitions composed
of intervals.

We now prove that ψ is measure preserving. Remark that ψ(x) is a non-decreasing function
of σ(x) for the total relation order <lex, i.e. ψ(y) ≤ ψ(x) if and only if σ(y) ≤lex σ(x). Hence,
ψ−1([0, ψ(x)]) = {y ∈ [0, 1] : σ(y) ≤lex σ(x)}, and we have:

λ(ψ−1([0, ψ(x)])) = λ({y ∈ [0, 1] : σ(y) ≤lex σ(x)}) = ψ(x).
Thus, to show that ψ is measure preserving we just need to show that ψ([0, 1]) is dense in
[0, 1]. For every u ∈ T , as ψ(Su) ⊂ [C−(u), C+(u)], we know that the interval [C−(u), C+(u)]
contains at least one point of the form ψ(x). Remark that for all k ∈ N, we have [0, 1] =
∪u∈T :h(u)=k[C−(u), C+(u)]. Hence, as λ([C−(u), C+(u)]) = λ(Su) ≤ diam(Ph(u)) for every
u ∈ T , and as the diameter of the partitions (Pk)k∈N converges to zero, we know that each
interval of positive length contains a point of the form ψ(x) for some x ∈ [0, 1], which implies
that ψ([0, 1]) is indeed dense in [0, 1].

We now prove that ψ is a.e. bijective and construct its a.e. inverse map φ. Without loss of
generality, assume that there is no set Su with null measure. Consider two distinct elements
x, y ∈ [0, 1] such that σ(x) <lex σ(y). Assume that ψ(x) = ψ(y), and let N ∈ N be the last index
k such that uk(x) = uk(y). Then, for every k > N , we have uk(x) <lex uk(y), which implies
that ψ(x) ≤ C+(uk(x)) ≤ C−(uk(y)) ≤ ψ(y); and thus ψ(x) = ψ(y) = C+(uk(x)) = C−(uk(y)),
which in turn implies that there is no node of T between uk(x) and uk(y). Remark that this
situation is analogous to the terminating decimal versus repeating decimal situation. Hence, we
proved that there is no node between uN+1(x) and uN+1(y) and that for every k > N , uk+1(x)
is the right-most child of uk(x), and uk+1(y) is the left-most child of uk(y) (i.e. uk+1(x) =
uk(x)|Ouk(x)| and uk+1(y) = uk(y)1). Remind that the map σ is injective. Putting all of this
together, we get that the set {(x, y) ∈ [0, 1] : ψ(x) = ψ(y), x < y} can be indexed by the nodes
of T , and is thus at most countable. Hence, the map ψ is injective on a subset D ⊂ [0, 1] with
measure one (indeed [0, 1] \D is at most countable), and as ψ is measure preserving, we get that
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ψ(D) has measure one, and thus ψ is bijective from D to ψ(D), that is, ψ is a.e. bijective. We
construct the map φ as the inverse map of ψ for x ∈ ψ(D) and φ(x) = 0 for x ∈ [0, 1] \ ψ(D).
Without loss of generality, we assume that 0 ̸∈ D. Thus, φ is the a.e. inverse map of ψ, that is,
φ ◦ ψ(x) = ψ ◦ φ(x) = x for almost every x ∈ [0, 1].

We are left to prove that φ is measurable and measure preserving. As we saw that each
point z ∈ [0, 1] as a pre-image ψ−1(z) = {x ∈ [0, 1] : ψ(x) = z} at most countable (indeed of
cardinal at most 2), thus [Pur66] insures that ψ is bimeasurable (i.e. ψ is (Borel) measurable
and for all Borel set B ⊂ [0, 1], ψ(B) is also a Borel set). Let B ⊂]0, 1] be a Borel set. We
have that φ−1(B) = φ−1(B ∩ D) = ψ(B ∩ D) is a Borel set, where the first equality uses that
φ([0, 1]) = D ∪ {0}, the second equality uses that ψ is the inverse of φ on D, and lastly we used
that ψ is bimeasurable. We also have that φ−1(B ∪ {0}) = φ−1(B) ∪ ([0, 1] \ ψ(D)) is a Borel
set. Moreover, we have:

λ(φ−1(B)) = λ(ψ(B ∩D)) = λ(ψ−1(ψ(B ∩D))) = λ(B ∩D) = λ(B),

where we used that φ−1(B) = ψ(B ∩ D) for the first equality, that ψ is measure preserving for
the second equality, that ψ is bijective from D to ψ(D) for the third equality, and that D has
measure one for the last equality. We also have:

λ(φ−1(B ∪ {0})) = λ(φ−1(B)) + λ([0, 1] \ ψ(D)) = λ(B) = λ(B ∪ {0}),

where we used that φ−1(B) ⊂ ψ(D) and [0, 1] \ ψ(D) are disjoint sets for the first equality, that
λ(φ−1(B)) = λ(B) and that ψ(D) has measure one for the second equality. Hence, the map φ
is measurable and measure preserving.

We now prove that (φ−1(Pk))k∈N is a refining sequence of partitions. For k ∈ N, as Pk is
a finite partition of [0, 1], we have that φ−1(Pk) = {φ−1(Su) : u ∈ T , h(u) = k} is also a
finite partition of [0, 1]. Moreover, as (Pk)k∈N is a refining sequence of partitions, we get that
the sequence of partitions (φ−1(Pk))k∈N is also refining. Remark that the sets φ−1(Su) are not
necessarily intervals, they are intervals minus some at most countable sets (this is similar to the
unit line minus the Cantor set).

To finish the proof, we are left to construct a refining sequence of partitions made of intervals
(Qk)k∈N that agrees almost everywhere with the refining sequence of partitions (φ−1(Pk))k∈N.
For u ∈ T , define Ru = [C−(u), C+(u)[ (and Ru = [C−(u), C+(u)] if u is the unique node such
that v ≤lex u for every v ∈ T with h(v) = h(u)). As ψ is measure preserving, and as ψ(Su) ⊂
[C−(u), C+(u)] with λ(Su) = C+(u) − C−(u), we get that λ([C−(u), C+(u)] \ ψ(Su)) = 0. As
φ is the a.e. inverse map of ψ, we have that a.e. 1φ−1(Su) = 1ψ(Su) = 1[C−(u),C+(u)] = 1Ru , i.e.
Ru agrees almost everywhere with φ−1(Su). For k ∈ N, define the finite partition Qk = {Ru :
h(u) = k}. Then, by definition of the sets Ru, the sequence of partitions (Qk)k∈N is refining.
This concludes the proof. □

Remark 8.3 (The shrinking diameter assumption is important). Even if it is not stressed in
[Lov12, Proof of Theorem 9.23], the measure preserving map φ (a fortiori an a.e. inversible one)
in Lemma 8.2 cannot be obtained without any assumption on the refining sequence of partitions
(Pk)k∈N (in our case, we assumed that their diameter converges to zero). Indeed consider the
sequence of partitions where for every k ∈ N, Pk is composed of the sets:

Sk,j = [j2−k−1, (j + 1)2−k−1[ ∪ [1/2 + j2−k−1, 1/2 + (j + 1)2−k−1[, 0 ≤ j < 2k,

i.e. Sk,j is the union of two dyadic interval translated by 1/2, (also add 1 to the set Sk,0 to get
a complete partition). Then, for every x ∈ [0, 1/2[, x and x + 1/2 belong to the same set of
Pk for every k ∈ N; in particular the diameter of the partitions (Pk)k∈N does not converge to
zero. By contradiction, assume there exist a measure preserving map φ ∈ S̄[0,1] and a sequence
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of interval partitions (Qk)k∈N such that for all k ∈ N and all set Sk,j ∈ Pk with 0 ≤ j < 2k,
there exists a interval set Ik,j ∈ Qk such that a.e. 1Ik,j

= 1φ−1(Sk,j). In particular, the set
Ik,j must be an interval of length 2−k. Hence, Qk is a dyadic partition with stepsize 2−k,
and thus the diameter of the partitions (Qk)k∈N converges to zero. For every x ∈ [0, 1/2[,
we get that diam(φ−1({x, x + 1/2})) ≤ diam(Qk) = 2−k for all k ∈ N; this implies that
φ−1({x, x + 1/2}) is a singleton, i.e. either x ̸∈ φ([0, 1]) or x + 1/2 ̸∈ φ([0, 1]). Hence, we
have λ([0, 1/2[∩φ([0, 1])) = λ([1/2, 1[\φ([0, 1])) and λ([0, 1/2[\φ([0, 1])) = λ([1/2, 1[∩φ([0, 1])).
As λ([0, 1/2[) = λ([0, 1/2[∩φ([0, 1]))+λ([0, 1/2[\φ([0, 1])) = 1/2 because φ is measure preserving,
we get that λ(φ([0, 1])) = λ([0, 1/2[∩φ([0, 1])) + λ([1/2, 1[∩φ([0, 1])) = 1/2, which contradicts
the fact that φ is measure preserving.

Now, for every n ∈ N, applying Lemma 8.2 to (Pn,k)k∈N and Wn, we get a measure-preserving
map φn and a refining sequence of partitions (P ′

n,k)k∈N made of intervals such that for all k ∈ N,
and all set R ∈ P ′

n,k there exists a set S ∈ Pn,k such that a.e. 1R = 1φ−1
n (S). In particular, for all

k ∈ N, the sequence of partitions (Pn,k)k∈N still satisfy (i)–(ii). Set W ′
n = Wφn

n and W ′
n,k = Wφn

n,k

so that almost everywhere:

W ′
n,k =

(
(Wn)Pn,k

)φn = (Wφn
n )P′

n,k
= (W ′)P′

n,k
.

As d and d′ are invariant, we have for every n, k ∈ N that d(Wn,Wn,k) = d(W ′
n,W

′
n,k), and

similarly for d′. This insures that the signed measure-valued kernels (W ′
n)n∈N and (W ′

n,k)n∈N,
k ∈ N, still satisfy (iii)–(iv). Remind that for a measure-valued kernel W and a measure-
preserving map φ, δ□,m(W,Wφ) = 0. Hence, we can replace the signed measure-valued kernels
(Wn)n∈N and (Wn,k)n∈N, k ∈ N, by (W ′

n)n∈N and (W ′
n,k)n∈N, k ∈ N, and assume that the

partitions Pn,k are made of intervals.

Step 2: There exists a subsequence (Wnℓ
)ℓ∈N such that for every k ∈ N and ϵ ∈

{+,−}, the subsequence (W ϵ
nℓ,k

)ℓ∈N weakly converges, as ℓ → ∞, almost everywhere
to a limit, say U ϵk which is a stepfunction adapted to a partition with mk elements
(some elements might be empty sets).

Fix some k ∈ N. The stepfunctions (Wn,k = (Wn)Pn,k
)n∈N all have the same number of steps

mk. For n ∈ N, denote by Pn,k = {Sn,k,i : 1 ≤ i ≤ mk} the interval partition adapted to Wn,k

where the intervals are order according to the natural order on [0, 1] (note that some intervals
might be empty, simply put them at the end). For n ∈ N and 1 ≤ i ≤ mk, let λ(Sn,k,i) denote
the length of the interval Sn,k,i ∈ Pn,k. As the lengths of steps take values in the compact
set [0, 1], there exists a subsequence of indices (nℓ)ℓ∈N such that for every 1 ≤ i ≤ mk, there
exists sk,i ∈ [0, 1] such that limℓ→∞ λ(Snℓ,k,i) = sk,i. Denote by Pk = {Sk,i : 1 ≤ i ≤ mk}
the interval partition composed of mk intervals where the i-th interval Sk,i has length sk,i (note
that some intervals might be empty). Up to a diagonal extraction, we can assume that the
convergence holds for every k ∈ N simultaneously. Remark that for all n, k ∈ N, the fact that
Pn,k+1 is a refinement of Pn,k can be simply restated as linear relations on the interval lengths
(λ(Sn,k,i))1≤i≤mk

and (λ(Sn,k+1,i))1≤i≤mk+1 . As linear relations are preserved when taking the
limit, we get that the partition Pk+1 is a refinement of Pk for all k ∈ N. We assume from now
on that (Wn)n∈N and (Wn,k)n∈N, k ∈ N, are the corresponding subsequences.

For every n ∈ N, we decompose Wn = W+
n −W−

n into its positive and negative kernel parts,
see Lemma 3.3. For n, k ∈ N and ϵ ∈ {+,−}, we define W ϵ

n,k = (W ϵ
n)Pn,k

. In particular, remark
that Wn,k = W+

n,k − W−
n,k and for all ℓ ≥ k, that W ϵ

n,k = (W ϵ
n,ℓ)Pn,k

. Let ϵ ∈ {+,−} and
1 ≤ i, j ≤ mk such that sk,isk,j > 0 be fixed. For every n ∈ N, we have on Sn,k,i × Sn,k,j that
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W ε
n,k = µi,j,ϵn,k ∈ M+(Z) with:

µi,j,ϵn,k (·) = 1
λ(Sn,k,i)λ(Sn,k,j)

W ϵ
n(Sn,k,i × Sn,k,j ; ·).

We have that:
∥µi,j,ϵn,k ∥∞ ≤ ∥Wn∥∞ ≤ C.

This gives that the sequence (µi,j,ϵn,k )n∈N in M±(Z) is bounded. We now prove it is tight. Let
ε > 0. As limn→∞ λ(Sn,k,ℓ) = sk,ℓ > 0 for ℓ = i, j, we deduce that there exists c > 0 such
that for every n ∈ N large enough and ℓ = i, j, we have λ(Sn,k,ℓ) > c. Set ε′ = c2ε. As the
sequence (Wn)n∈N in W̃± is tight, there exists a compact set K ⊂ Z such that for every n ∈ N,
MWn

(Kc) ≤ ε′. Hence, for every n ∈ N large enough, we have:

µi,j,ϵn,k (Kc) ≤ 1
λ(Sn,k,i)λ(Sn,k,j)

MWn
(Kc) ≤ ε.

This gives that the sequence (µi,j,ϵn,k )n∈N in M+(Z) is bounded and tight, and thus by Lemma 2.8,
it has a convergent subsequence. By diagonal extraction, we can assume there is a subsequence
(Wnℓ

)ℓ∈N such that for all k ∈ N, all 1 ≤ i, j ≤ mk such that sk,isk,j > 0, and all ϵ ∈ {+,−}, the
subsequence (µi,j,ϵnℓ,k

)ℓ∈N weakly converges to a limit say µi,j,ϵk . Define the stepfunction U ϵk ∈ W+

adapted to the partition Pk which is equal to µi,j,ϵk on Sk,i×Sk,j (if sk,isk,j = 0, set µi,j,ϵk = 0). We
have in particular obtained that, for every k ∈ N, the subsequence (W ϵ

nℓ,k
)ℓ∈N weakly converges

a.e. to U ϵk which is a stepfunction adapted to a partition with mk elements; this implies that
the subsequence (Wnℓ,k)ℓ∈N also weakly converges a.e. to Uk = U+

k − U−
k . We now assume that

(Wn)n∈N is such a subsequence. With this convention, notice that for all k, n ∈ N and ϵ ∈ {+,−}:
(27) ∥U ϵk∥∞ ≤ sup

n∈N
∥W ϵ

n,k∥∞ ≤ sup
n∈N

∥Wn∥∞ = C < +∞.

Step 3: There exists a subsequence of (Uk)k∈N which weakly converges to a limit
U ∈ W± almost everywhere on [0, 1]2. The proof of this step is postponed to the end.
Without loss of generality we still write (Uk)k∈N for this subsequence.

Step 4: We have limn→∞ δ□(U,Wn) = limn→∞ δ′
□(U,Wn) = 0. Let ε > 0. As the

cut distances d is smooth, we deduce from Step 3, that for k large enough d(U,Uk) ≤ ε. By
hypothesis (iii) on the sequence (Wn,k)n∈N, we also have that for k large enough d(Wn,Wn,k) ≤ ε.
For such large k, as by step 2 the sequence (Wn,k)n∈N weakly converges almost everywhere to
Uk, and again as the cut distances d is smooth, there is a n0 such that for every n ≥ n0,
d(Uk,Wn,k) ≤ ε. Then for all n ≥ n0, we have:

δ□(U,Wn) ≤ δ□(U,Uk) + δ□(Uk,Wn,k) + δ□(Wn,k,Wn)
≤ d(U,Uk) + d(Uk,Wn,k) + d(Wn,k,Wn)
≤ 3ε.

This gives that limn→∞ δ□(Wn, U) = 0.
If we consider a second distance d′ as in the lemma, then similarly limn→∞ δ′

□(Wn, U) = 0.
Proof of Step 3. Assume that the claim is true for measure-valued kernels. Then, if (Uk)k∈N

is a sequence of signed-measure valued kernels, applying the claim to (U ϵk)k∈N, for ϵ ∈ {+,−},
we get a measure-valued U ϵ ∈ W+ such that the sequence (U ϵk)k∈N weakly conveges a.e. to U ϵ.
Thus, the sequence (Uk)k∈N weakly conveges a.e. to U = U+ − U−.

Hence, we are left to prove the claim for measure-valued kernels. The proof is divided in four
steps. The first three steps also work for signed-measure valued kernels, but the last argument
of step 3.d. only works for measures.
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Step 3.a: The sequence (Uk)k∈N inherit the tightness property from the sequence
(Wn)n∈N. Let ε > 0. Since the sequence (Wn)n∈N is tight, there exists a compact set K ⊂ Z
such that for every n ∈ N, we have MWn

(Kc) ≤ ε. Remark that:

MWn,k
=

∑
1≤i,j≤mk

λ(Sn,k,i)λ(Sn,k,j)µi,jn,k = MWn and MUk
=

∑
1≤i,j≤mk

sk,isk,jµ
i,j
k .

For all k ∈ N and 1 ≤ i, j ≤ mk, as the sequence (µi,jn,k)n∈N weakly converges to µi,jk , using [Bog18,
Theorem 2.7.4] with the open subset Kc ⊂ Z, we get that µi,jk (Kc) ≤ lim infn→∞ µi,jn,k(Kc). As
limn→∞ λ(Sn,k,i) = sk,i for all 1 ≤ i ≤ mk, and summing those bounds, we get:

MUk
(Kc) ≤ lim inf

n→∞
MWn,k

(Kc) = lim inf
n→∞

MWn(Kc) ≤ ε.

Consequently, the sequence (Uk)k∈N is tight.

Step 3.b: Convergence of the measures Ûk in M+([0, 1]2 × Z) defined for k ∈ N as:

(28) Ûk(dx, dy,dz) = Uk(x, y; dz)λ2(dx, dy).
Since the sequence (MUk

)k∈N in M+(Z) is tight, for all ε > 0, there exists a compact set K ⊂ Z
such that for every k ∈ N, MUk

(Kc) ≤ ε; and thus Ûk(K̂c) = MUk
(Kc) ≤ ε where K̂ = [0, 1]2×K

is a compact subset of [0, 1]2 × Z, that is, the sequence (Ûk)k∈N in M+([0, 1]2 × Z) is tight. The
sequence (Ûk)k∈N is also bounded as ∥Ûk∥∞ ≤ ∥Uk∥∞ ≤ C thanks to (27). Hence, using
Lemma 2.8, there exists a subsequence (Ûkℓ

)ℓ∈N of the sequence (Ûk)k∈N that converges to some
measure, say Û , in M+([0, 1]2 × Z). Remark that, when considering the subsequence of indices
(kℓ)ℓ∈N, the subsequences (Wn,kℓ

)ℓ∈N, n ∈ N, still satisfy properties (i)-(iv) of Lemma 8.1, and
for all ℓ ∈ N, the sequence (Wn,kℓ

)n∈N still weakly converges to Ukℓ
. Without loss of generality,

we now work with this subsequence and thus write k instead of kℓ.

Step 3.c: The measure Û(dx, dy,dz) can be disintegrated w.r.t. λ2(dx, dy) giving us
an element of W+. To prove this, we need the following disintegration theorem for measures, see
[Kal17, Theorem 1.23] (stated in more the general framework of Borel spaces) which generalizes
the disintegration theorem for probability measures [Kal02, Theorem 6.3]. The notation µ ∼ ν
for two measures µ and ν means that µ ≪ ν and ν ≪ µ, where µ ≪ ν means that µ is absolutely
continuous w.r.t. ν.

Lemma 8.4 (Disintegration theorem for measures, [Kal17, Theorem 1.23]). Let ρ be a measure
on S × T , where S is a measurable space and T a Polish space. Then there exist a measure
ν ≡ ρ(· × T ) on S and a probability kernel µ : S → M1(T ) such that ρ = ν ⊗ µ (i.e. ρ(ds, dt) =
ν(ds)µ(s; dt)). Moreover, the measures µs = µ(s; ·) are unique for ν-a.e. s ∈ S.

Using Lemma 8.4 with S = [0, 1]2 and T = Z, we get that there exists a probability kernel U ′

in W1 such that:
Û(dx, dy,dz) = U ′(x, y; dz)π(dx, dy),

where π = Û(· × Z) is a measure on [0, 1]2.
We now need to prove that π ≪ λ2. By contradiction, assume this is false, then there

exists a measurable set A ∈ B([0, 1]2) such that λ2(A) = 0 and π(A) > 0. As the measure∫
A
U ′(x, y; ·)π(dx, dy) is not null, there exists f ∈ Cb(Z) such that

∫
A
U ′(x, y; f)π(dx,dy) ̸= 0.

As the sequence (Ûk)k∈N weakly converges to Û in M+([0, 1]2 × Z) by step 3.b, we have that
the sequence of measures Ûk(dx,dy; f) = Uk(x, y; f)λ2(dx, dy) weakly converges as k → ∞ to
Û(dx,dy; f) = U ′(x, y; f)π(dx, dy) in M+([0, 1]2). Moreover, as the maps x, y 7→ Uk(x, y; f)
are uniformly bounded (by ∥f∥∞∥Uk∥∞ ≤ C∥f∥∞, see (27)), they are also uniformly integrable
(w.r.t. λ2), and applying [Bog07a, Corollary 4.7.19] there exist a subsequence (Ukℓ

)ℓ∈N and a
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bounded function gf on [0, 1]2 such that for every bounded measurable function h ∈ L∞([0, 1]2),
we have:

lim
ℓ→∞

∫
Ukℓ

(x, y; f)h(x, y)λ2(dx, dy) =
∫
gf (x, y)h(x, y)λ2(dx, dy).

In particular, the sequence of measures (Ukℓ
(x, y; f)λ2(dx, dy))ℓ∈N weakly converges to the

measure gf (x, y)λ2(dx, dy), which imposes the equality between measures:

Û(dx, dy, f) = U ′(x, y; f)π(dx, dy) = gf (x, y)λ2(dx, dy).

Hence, taking h = 1A, we get:

Û(A, f) =
∫
A

U ′(x, y; f)π(dx, dy) =
∫
A

gf (x, y)λ2(dx,dy) = 0,

which yields a contradiction. Consequently, the measure π is absolutely continuous w.r.t. λ2,
with density still denoted by π, and we set λ2-a.e. on [0, 1]2:

(29) U(x, y; dz) = π(x, y)U ′(x, y; dz) and thus Û(dx, dy,dz) = U(x, y; dz)λ2(dx,dy).

Step 3.d: The sequence (Uk)k∈N weakly converges to U almost everywhere on [0, 1]2.
Recall that by construction, the stepfunction Uk is adapted to the partition Pk defined in Step
2, and that Pk+1 is a refinement of Pk. A closer look at Step 2 yields that for all ℓ ≥ k, since
Wn,k = (Wn,ℓ)Pn,k

, we also get:

(30) Uk = (Uℓ)Pk
.

We prove (30) for ℓ = k + 1, the other cases follow by induction. As Pn,k+1 is a refinement
of Pn,k, we already know that Uk and (Uk+1)Pk

are both stepfunctions adapted to the finite
partition Pk. Thus, we only need to verify that Uk and (Uk+1)Pk

take the same value on each
step. For every n ∈ N, the fact that Wn,k = (Wn,k+1)Pn,k

implies that for all 1 ≤ i, j ≤ mk such
that λ(Sn,k,i)λ(Sn,k,j) > 0, we have:

µn,ki,j =
∑

i′∈Ii,j′∈Ij

λ(Sn,k+1,i′)λ(Sn,k+1,j′)
λ(Sn,k,i)λ(Sn,k,j)

µn,k+1
i′,j′ ,

and this equation is preserved when taking the limit n → ∞, which gives us:

µki,j =
∑

i′∈Ii,j′∈Ij

sk+1,i′sk+1,j′

sk,isk,j
µk+1
i′,j′ , for all 1 ≤ i, j ≤ mk such that sk,isk,j > 0.

This proves that the stepfunctions Uk and (Uk+1)Pk
take the same value on each step Sk,i ×Sk,j

with positive size sk,isk,j > 0 (on a step with null size sk,isk,j = 0, Uk and (Uk+1)Pk
are both

equal to the null measure). This gives that Uk = (Uk+1)Pk
.

Let f ∈ Cb(Z) be a bounded continuous function, and X,Y be independent uniform random
variables on [0, 1]. Then (30) and (27) imply that the sequence Nf = (Nf

k = Uk(X,Y ; f))k∈N is
a martingale bounded by C∥f∥∞ for the filtration (Fk)k∈N, where the σ-field Fk is generated by
the events {X ∈ Sk,i} ∩ {Y ∈ Sk,j} for 1 ≤ i, j ≤ mk and Sk,ℓ ∈ Pk. By the martingale
convergence theorem, the martingale Nf is almost surely convergent, that is, the sequence
(Uk[f ])k∈N converges λ2-a.e. to a bounded measurable function uf . Let g : [0, 1]2 → R be a
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bounded measurable function. We get:∫
[0,1]2

g(x, y)U(x, y; f)λ2(dxdy) =
∫

[0,1]2×Z
g(x, y) f(z) Û(dx,dy,dz)

= lim
k→∞

∫
[0,1]2×Z

g(x, y) f(z) Ûk(dx, dy,dz)

= lim
k→∞

E [g(X,Y )Uk(X,Y ; f)]

=
∫

[0,1]2
g(x, y)uf (x, y)λ2(dxdy),

where we used the definition (29) of U for the first equality, that (Ûk)k∈N weakly converges to Û
for the second, the definition (28) of Ûk for the third, and the convergence of the martingale Nf

for the last. Since g is arbitrary, we deduce that λ2-a.e. U(·, ·; f) = uf and thus that the sequence
(Uk[f ])k∈N converges λ2-a.e. to U [f ]. Applying this result for all f ∈ F = (fm)m∈N a convergence
determining sequence (with the convention f0 = 1), we deduce that the sequence (Uk)k∈N weakly
converges to U almost everywhere on [0, 1]2. Remind from Section 2 that convergence determining
sequences exist only for measures and not for signed measures in general, this is why we worked
with measures in Step 3. This ends the proof of Step 3, and thus ends the proof of the lemma. □

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. We first prove Point (i) on W± (the proof on W1 is similar). Since the
distance d is weakly regular and the sequence (Wn)n∈N is uniformly bounded and tight in W±,
we can construct inductively for every n ∈ N a sequence (Pn,k)k∈N of partitions of [0, 1] such
that hypothesis (i)-(iii) of Lemma 8.1 are satisfied: Pn,k+1 being obtained by applying the weak
regularity property (see Definition 4.10-(i)) with starting partition Qn,k = Pn,k ∧ Dk, where Dk

is the dyadic partition with stepsize 2−(k+1). (We may assume that the partitions Pn,k for all
n ∈ N have the same size mk by adding empty sets.) Then as d is also invariant and smooth on
W±, the first part of Lemma 8.1 directly gives Point (i).

Before proving Point (ii), we first need to prove the following lemma.

Lemma 8.5 (Compactness theorem for WM). Let d be an invariant, smooth and weakly regular
distance on W1 (resp. W+ or W±). Let M be a convex and weakly closed subset of M1(Z)
(resp. M+(Z) or M±(Z)). Let (Wn)n∈N be a sequence of M-valued kernels which is tight and
uniformly bounded. Then, (Wn)n∈N has a subsequence that converges for δ□ to some M-valued
kernel.

Proof. First remark that, as M is convex, the image of WM by the stepping operator W 7→ WP ,
where P is a finite partition of [0, 1], is a subset of WM. Hence, a close look at the proof of
Lemma 8.1 (the partitions are constructed as in the proof of Point (i) from Theorem 5.1), and
using the notation therein, shows that, up to taking subsequences, one can take the stepping
kernels Wn,k and Uk in WM, such that (Uk)k∈N weakly converges to U a.e. and the subsequence
(Wnℓ

)ℓ∈N converges to U w.r.t. δ□. Since Uk(x, y; ·) ∈ M weakly converges to U(x, y; ·) for
almost every x, y ∈ [0, 1] and since M is weakly closed (and thus sequentially weakly closed), we
deduce that U(x, y; ·) belongs to M for almost every x, y ∈ [0, 1]. This means that U ∈ WM. □

We prove Point (ii) for M ⊂ M±(Z) (the proof for M ⊂ M1(Z) is identical). The fact that
WM and W̃M are convex is clear as M is convex. Let (Wn)n∈N be a sequence of elements of
W̃M. Since M is convex, we deduce that (MWn

)n∈N is a sequence in M. As M is sequentially
compact for the weak topology, M is tight and bounded by Lemma 2.8, and thus the sequence
(Wn)n∈N is tight and uniformly bounded (remind Definition 4.7). Hence, using Lemma 8.5, we
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get that from any sequence in W̃M, we can extract a subsequence which converges for δ□ to an
element in W̃M. This implies that (W̃M, δ□) is compact.

Point (iii) is a direct consequence of Point (ii) as if Z is compact, so is M1(Z). □

Proof of Point (iii) from Proposition 5.2. We prove Point (iii). The fact that WM and W̃M are
convex is clear as M is convex. To prove that W̃M is closed, we consider a sequence (Wn)n∈N
in W̃M that converges for δ□,m to some W ∈ W̃±. As (Wn)n∈N is a Cauchy sequence for δ□,m,
by Lemma 4.9, (MWn

)n∈N is a Cauchy sequence for dm and thus is tight. Hence, (Wn)n∈N is
uniformly bounded and tight. Applying Lemma 8.5, there exists a subsequence (Wnk

)k∈N of
the sequence (Wn)n∈N which converges for δ□,m to some M-valued kernel U ∈ W̃M. But as
a subsequence, (Wnk

)k∈N must also converge for δ□,m to W . This implies that W = U is a
M-valued kernel. □

In order to prove Theorem 5.5, we first prove a lemma that allows to construct the partitions
needed to use Lemma 8.1.

Lemma 8.6 (Construction of partitions for two distances). Let d and d′ be two distances on W1
(resp. W+ or W±) which are invariant, smooth, weakly regular and regular w.r.t. the stepping
operator (see Definitions 3.10 and 4.10). Let (Wn)n∈N be a sequence in W1 (resp. W+ or W±)
which is tight (resp. uniformly bounded and tight). Then, there exists sequences (Pn,k)k∈N,
n ∈ N, of partitions of [0, 1] such that hypothesis (i)–(iv) of Lemma 8.1 are satisfied.

Proof. We prove the result on W± (the proof on W1 and W+ is similar). To simplify notations,
write d1 = d and d2 = d′. We proceed by induction on k ∈ N ∪ {−1}. For every n ∈ N, set
Pn,−1 = {[0, 1]} the trivial partition with size 1. Let k ∈ N and assume that we have already
constructed partitions (Pn,k−1)n∈N that have the same size mk−1. Now we proceed to construct
partitions (Pn,k)n∈N that satisfy hypothesis (i)-(iv).

Set C = supn∈N ∥Wn∥∞, which is finite as the sequence (Wn)n∈N is uniformly bounded. As
di, with i = 1, 2, are regular w.r.t. the stepping operator, there exists a finite constant C0 > 0
such that for every W,U ∈ W±, with ∥W∥∞ ≤ C and ∥U∥∞ ≤ C, and U a stepfunction adapted
to a finite partition Q:
(31) di(W,WQ) ≤ C0 d

i(W,U).
Set ε = 1/C0(k + 1). Since di, with i = 1, 2, are weakly regular and the sequence (Wn)n∈N

is tight and uniformly bounded, there exists rk ∈ N∗, such that for every n ∈ N, there exists a
partition Ri

n,k of [0, 1] that refines Qn,k = Pn,k−1 ∧ Dk, where Dk is the dyadic partition with
stepsize 2−k, such that:

(32) |Ri
n,k| ≤ rk|Qn,k| ≤ 2krk|Pn,k−1| and di

(
Wn, (Wn)Ri

n,k

)
≤ ε.

(Indeed, a close look at the proof shows that Pn,k−1 refines Dk−1 by construction, thus Qn,k

cuts each set of Pn,k−1 in at most 2 sets, and we get |Qn,k| ≤ 2|Pn,k−1|.) Now, let Pn,k be the
common refinement of R1

n,k and R2
n,k; it is a refinement of Pn,k−1, has diameter at most 2−k

and size:
|Pn,k| ≤ 22kr2

k|Pn,k−1|2 = 22kr2
km

2
k−1.

If necessary, by completing Pn,k with null sets, we may assume that |Pn,k| = mk, where mk =
22kr2

km
2
k−1. As (Wn)Ri

n,k
is a stepfunction adapted to the partition Pn,k, we deduce from (31)

and (32) that for i = 1, 2 and n ∈ N:

di(Wn, (Wn)Pn,k
) ≤ C0 d

i
(
Wn, (Wn)Ri

n,k

)
≤ C0 ε = 1

k + 1 ·
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Hence, for every n ∈ N, the partition Pn,k satisfies the hypothesis (i)-(iv) of Lemma 8.1. Thus,
the induction is complete. □

Proof of Theorem 5.5. Let dm and dm′ be as in Theorem 5.5.
Let (Wn)n∈N be a sequence of probability-graphons that converges to some W ∈ W̃1 for δ□,m.

By Lemma 4.9, the sequence of probability measure (MWn)n∈N converges to MW for the distance
dm. As dm induces the weak topology on M≤1(Z), we have that the sequence (MWn)n∈N is tight,
and thus the sequence (Wn)n∈N is also tight (remind Definition 4.7). The sequence (Wn)n∈N is
also uniformly bounded as a sequence in W̃1. Applying Lemma 8.6 with the distances d = d□,m
and d′ = d□,m′ , which are invariant, smooth, weakly regular and regular w.r.t. the stepping
operator, we get sequences of partitions (Pn,k)k∈N, n ∈ N, that satisfy hypothesis (i)-(iv) of
Lemma 8.1. We then deduce from the last part of Lemma 8.1 that any subsequence of (Wn)n∈N
has a further subsequence which converges to the same limit for both δ□,m and δ□,m′ , this limit
must then be W . This implies that the sequence (Wn)n∈N converges to W for δ□,m′ .

The role of dm and dm′ being symmetric, we conclude that the distances δ□,m and δ□,m′ induce
the same topology on W̃1. □
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Index of notation

Measures

- (Z,OZ) a topological Polish space
- B(Z) the Borel σ-field induced by OZ

- Cb(Z) the set of continuous bounded real-
valued functions on Z

- measure = positive measure
- M±(Z) the set of signed measures on Z
- M+(Z) the set of measures on Z
- M1(Z) the set of probability measures on Z
- M≤1(Z) the set of sub-probability measures

on Z, i.e. measures with total mass at most 1
- µ+, µ− the positive and negative parts of µ

from its Hahn-Jordan decomposition
- |µ| = µ+ + µ− the total variation measure of
µ

- ∥µ∥∞ = |µ|(Z) the total mass of µ
- dm a distance on either M≤1(Z), M+(Z) or

M±(Z)

- Nm a norm on M±(Z)
- dP the Prohorov distance
- ∥ · ∥KR the Kantorovitch-Rubinstein norm
- ∥ · ∥FM the Fortet-Mourier norm
- ∥ · ∥F the norm based on a convergence

determining sequence F

Relabelings and partitions

- S[0,1] the set of bijective measure-preserving
maps from ([0, 1], λ) to itself

- S̄[0,1] the set of measure-preserving maps
from ([0, 1], λ) to itself

- |P| the number of sets in the finite partition
P

Kernels and graphons spaces

- W1 the set of probability-graphons
- W+ the set of measure-valued kernels
- W± the set of signed measure-valued kernels
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- WM the set of M-valued kernels with M ⊂
M±(Z)

- W̃1 the set of unlabeled probability-graphons

- W̃+ the set of unlabeled measure-valued
kernels

- W̃± the set of unlabeled signed measure-
valued kernels

- W̃M the set of unlabeled M-valued kernels

Kernels and graphons

- W+ and W− the positive and negative part
of W ∈ W±

- |W | = W+ +W−

- W (A; ·) =
∫
A
W (x, y; ·) dxdy for A ⊂ [0, 1]2

- W [f ](x, y) = W (x, y; f) for f ∈ Cb(Z)
- WP the stepping of W w.r.t. a partition P
- ∥W∥∞ := supx,y∈[0,1] ∥W (x, y; ·)∥∞

- MW (dz) = |W |([0, 1]2; dz)
- WG the probability-graphon associated to a

M1(Z)-graph or a weighted graph G

- H(k,W ) the M1(Z)-graph with k vertices
sampled from W ∈ W1

- G(k,W ) the M1(Z)-graph with k vertices
sampled from W ∈ W1

- F g a finite graph whose edges are decorated
with functions in Cb(Z)

- t(F g,W ) = MF
W (g) the homomorphism

density of F g in W

Distances/norms on graphon spaces
- d□,m the cut distance associated to dm

- N□,m the cut norm associated to Nm

- δ□ the unlabeled distance associated to an
arbitrary distance d

- δ□,m the unlabeled cut distance associated to
d□,m or N□,m

- ∥ · ∥□,R the cut norm for real-valued kernels

- ∥ · ∥+
□,R the positive part of the cut norm for

real-valued kernels

Definitions
- weak isomorphism of kernels and graphons in

Definition 3.16 on page 16
- tightness for sets of kernels or graphons in

Definition 4.7 on page 23
- invariant and smooth for a distance d on

graphon spaces in Definition 3.10 on page 14
- weakly regular and regular w.r.t. the stepping

operator for a distance d on graphon spaces
in Definition 4.10 on page 24
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