
Asymptotics for the small fragments of the

fragmentation at nodes

RO M A I N A B R A H A M 1 and JEAN-FRANÇOIS DELMAS2
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We consider the fragmentation at nodes of the Lévy continuous random tree introduced in a previous

paper. In this framework we compute the asymptotic behaviour of the number of small fragments at

time Ł. This limit is increasing in Ł and discontinuous. In the Æ-stable case the fragmentation is self-

similar with index 1=Æ, with Æ 2 (1, 2), and the results are close to those Bertoin obtained for general

self-similar fragmentations but with an additional assumption which is not fulfilled here.
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1. Introduction

A fragmentation process is a Markov process which describes how an object with given

total mass evolves as it breaks into several fragments randomly as time passes. Notice there

may be loss of mass but no gain. Such processes have been widely studied in recent years;

see Bertoin (2006) and references therein. To be more precise, the state space of a

fragmentation process is the set of non-increasing sequences of masses with finite total

mass:

S# ¼ s ¼ (s1, s2, . . .); s1 > s2 > . . . > 0 and �(s) ¼
Xþ1

k¼1

sk , þ1
( )

:

If we denote by Ps the law of an S#-valued process ¸ ¼ (¸(Ł), Ł > 0) starting at

s ¼ (s1, s2, . . .) 2 S#, we say that ¸ is a fragmentation process if it is a Markov process such

that Ł 7! �(¸(Ł)) is non-increasing and if it satisfies the fragmentation property: the law of

(¸(Ł), Ł > 0) under Ps is the non-increasing reordering of the fragments of independent

processes of the respective laws P(s1,0,...), P(s2,0,...), . . . . In other words, each fragment after

dislocation behaves independently of the others, and its evolution depends only on its initial

mass. As a consequence, to describe the law of the fragmentation process with any initial

condition, it suffices to study the laws Pr :¼ P(r,0,...) for any r 2 (0, þ1), that is, the law of

the fragmentation process starting with a single mass r.

A fragmentation process is said to be self-similar of index Æ9 if, for any r . 0, the

process ¸ under Pr is distributed as the process (r¸(rÆ9Ł), Ł > 0) under P1. Bertoin
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(2000b) proved that the law of a self-similar fragmentation is characterized by the index of

self-similarity Æ9, an erosion coefficient c which corresponds to a rate of mass loss, and a

dislocation measure � on S# which describes sudden dislocations of a fragment of mass 1.

The dislocation measure of a fragment of size r, �r is given by
Ð
F(s)�r(ds) ¼ rÆ9Ð

F(rs)�(ds).

When there is no loss of mass (which implies that c ¼ 0 and Æ9 . 0), under some

additional assumptions, the number of fragments at a fixed time is infinite. A natural

question is therefore to study the asymptotic behaviour when � goes down to 0 of

N �(Ł) ¼ Card fi, ¸i(Ł) . �g, where ¸(Ł) ¼ (¸1(Ł), ¸2(Ł), . . .) is the state of the

fragmentation at time Ł; see Bertoin (2004) and also Haas (2004) when Æ9 is negative.

The goal of this paper is to study the same problem for the fragmentation at nodes of the

Lévy continuous random tree constructed by Abraham and Delmas (2005).

Le Gall and Le Jan (1998a, 1998b) associated with a Lévy process with no negative

jumps that does not drift to infinity, X ¼ (X s, s > 0) with Laplace exponent ł, a

continuous state branching process (CSBP) and a Lévy continuous random tree (CRT)

which keeps track of the genealogy of the CSBP. The Lévy CRT can be coded by the so-

called height process H ¼ (Hs, s > 0). Informally, Hs gives the distance (which can be

understood as the number of generations) between the individual labelled s and the root, 0,

of the CRT. The precise definition of ł we consider is given at the beginning of Section

2.1.

In order to construct a fragmentation process from this CRT, Abraham and Delmas

marked nodes, and the ‘sizes’ of the resulting subtrees give the state of the fragmentation at

some time. As time Ł increases, the parameter of the Poisson processes used to mark the

nodes increases as well as the set of the marked nodes. This gives a fragmentation process

with no loss of mass. When the initial Lévy process is stable – that is, when ł(º) ¼ ºÆ,

Æ 2 (1, 2] – the fragmentation is self-similar with index 1=Æ and with a zero erosion

coefficient; see also Aldous and Pitman (1998) and Bertoin (2000a) for Æ ¼ 2, and

Miermont (2005) for Æ 2 (1, 2). For a general subcritical or critical CRT, there is no more

scaling property, and the dislocation measure, which describes how a fragment of size r . 0

is cut into smaller pieces, cannot be expressed as a nice function of the dislocation measure

of a fragment of size 1. Abraham and Delmas (2005) give the family of dislocation

measures (�r, r . 0) for the fragmentation at nodes of a general subcritical or critical CRT.

Intuitively �r describes the way a mass r breaks into smaller pieces.

We denote by N the excursion measure of the Lévy process X (the fragmentation process

is then defined under this measure). We denote by � the length of the excursion. We have

(see Section 3.2.2 in Duquesne and Le Gall 2002) that

N[1 � e�º� ] ¼ ł�1(º), (1)

and ł�1 is the Laplace exponent of a subordinator (see Chapter VII in Bertoin 1996), whose

Lévy measure we denote by ��. The distribution of � under N is given by ��. As �� is a

Lévy measure, we have
Ð

(0,1)
(1 ^ r) ��(dr) , 1. For � . 0, we write

(2005) mark the nodes, of the tree in a Poissonian manner. They then cut the CRT at these
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��(�) ¼ ��((�, 1)) ¼ N[� . �] and j(�) ¼
ð

(0,�]

r��(dr) ¼ N[�1f�<�g]:

If ¸(Ł) ¼ (¸1(Ł), ¸2(Ł), . . .) is the state of the fragmentation at time Ł, we denote by

N �(Ł) the number of fragments of size greater than �, given by

N �(Ł) ¼
Xþ1

k¼1

1f¸ k (Ł).�g ¼ supfk > 1, ¸k(Ł) . �g,

with the convention sup˘ ¼ 0. And we denote by M�(Ł) the mass of the fragments of size

less than �,

M�(Ł) ¼
Xþ1

k¼1

¸k(Ł)1f¸ k (Ł)<�g ¼
Xþ1

k¼N �(Ł)þ1

¸k(Ł):

Let J ¼ fs > 0, X s . X s�g and let (˜s, s 2 J ) be the set of jumps of X . Conditionally

on (˜s, s 2 J ), let (Ts, s 2 J ) be a family of independant random variables such that Ts

has exponential distribution with mean 1=˜s. Ts is the time at which the node of the CRT

associated with the jump ˜s is marked in order to construct the fragmentation process.

Under N, we denote by R(Ł) the mass of the marked nodes of the Lévy CRT:

R(Ł) ¼
X

s2J\[0,� ]

˜s1fTs<Łg:

The main result of this paper is then the following theorem:

Theorem 1.1. We have

lim
�!0

N �(Ł)

��(�)
¼ lim

�!0

M �(Ł)

j(�)
¼ R(Ł)

in L2(N[e��� �]), for any � . 0.

We consider the stable case ł(º) ¼ ºÆ, where Æ 2 (1, 2). We have

��(dr) ¼ (Æˆ(1 � Æ�1))�1 r�1�1=Æ dr,

which gives

��(�) ¼ ˆ(1 � Æ�1)�1��1=Æ and j(�) ¼ (Æ� 1)ˆ(1 � Æ�1)
� ��1

�1�Æ�1

:

From the scaling property, there exists a version of (Nr, r . 0) such that, for all r . 0, we

have Nr[F((X s, s 2 [0, r]))] ¼ N1[F((r1=ÆX s=r, s 2 [0, r]))] for any non-negative measur-

able function F defined on the set of cadlag paths. The proof of the next proposition relies on

a second-moment computation (see (20)). It is similar to the proof of Corollary 4.3 in Delmas

(2006) and is not reproduced here.

Proposition 1.2. Let ł(º) ¼ ºÆ, for Æ 2 (1, 2). For all Ł . 0, we have N-almost everywhere

or N1-almost surely,
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lim
�!0

ˆ 1 � 1

Æ

� �
�1=ÆN �(Ł) ¼ lim

�!0
(Æ� 1)ˆ 1 � 1

Æ

� �
M�(Ł)

�1�1=Æ
¼ R(Ł): (2)

Remark 1.1. Notice the similarity with the results in Delmas (2006) on asymptotic behaviour

of the small fragments for the fragmentation at height of the CRT: the local time of the

height process is here replaced by the functional R.

Remark 1.2. Let us compare the result of Proposition 1.2 with the main theorem of Bertoin

(2004), which we now recall. Let ¸ be a self-similar fragmentation with index Æ . 0, erosion

coefficient c ¼ 0 and dislocation measure �. We set

jb(�) ¼
ð
S#

X1
i¼1

1fxi.�g � 1

 !
�1(dx),

f b(�) ¼
ð
S#

X1
i¼1

xi1fxi,�g�1(dx),

gb(�) ¼
ð
S#

X1
i¼1

xi1fxi,�g

 !2

�1(dx):

If there exists � 2 (0, 1) such that jb being regularly varying at 0 with index �� (which is

equivalent to f b being regularly varying at 0 with index 1 � �), and if there exist two positive

constants c, � such that

gb(�) < cf 2
b(�)(log 1=�)�(1þ�), (3)

then almost surely

lim
�!0

N �(Ł)

jb(�)
¼ lim

�!0

M �(Ł)

f b(�)
¼
ðŁ

0

X1
i¼1

¸i(u)Æþ� du:

In our case, we have j and �� equivalent to jb and f b (up to multiplicative constants;

see Lemmas 5.1 and 5.2). The normalizations are consequently the same. However, we have

here gb(�) ¼ O( f 2
b(�)) (see Lemma 5.3) and Bertoin’s assumption (3) is not fulfilled. When

this last assumption holds, remark that the limit process is an increasing continuous process

(as Ł varies). In our case this assumption does not hold and the limit process (R(Ł), Ł > 0)

is still increasing but discontinuous as R(Ł) is a pure jump process (this is an increasing

sum of marked masses).

The paper is organized as follows. In Section 2, we recall the definition and properties of

the height and exploration processes that code the Lévy CRT and we recall the construction

of the fragmentation process associated with the CRT. The proof of Theorem 1.1 is given in

Section 3. Notice that the computations given in the proof of Lemma 3.1 based on

Propositions 2.1 and 2.2 are enough to characterize the transition kernel of the

fragmentation ¸. We characterize the law of the scaling limit R(Ł) in Section 4. The

computations needed for Remark 1.2 are given in Section 5.
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2. Notation

2.1. The exploration process

Let ł denote the Laplace exponent of X : E[e�ºX t ] ¼ e tł(º), º . 0. We shall assume there

is no Brownian part, so that

ł(º) ¼ Æ0ºþ
ð

(0,þ1)

�(d‘) e�º‘ � 1 þ º‘
� �

,

where Æ0 > 0 and the Lévy measure � is a positive � -finite measure on (0, þ1) such thatÐ
(0,þ1)

(‘ ^ ‘2)�(d‘) , 1. Following Duquesne and Le Gall (2002), we shall also assume that

X is of infinite variation almost surely, which implies that
Ð

(0,1)
‘�(d‘) ¼ 1. Notice that these

hypotheses are fulfilled in the stable case: ł(º) ¼ ºÆ, Æ 2 (1, 2). For º > 1=� . 0, we have

e�º‘ � 1 þ º‘ > 1
2
º‘1f‘>2�g, which implies that º�1ł(º) > Æ0 þ

Ð
(2�,1)

‘ �(d‘). We deduce

that

lim
º!1

º

ł(º)
¼ 0: (4)

The so-called exploration process r ¼ (r t, t > 0) is a Markov process taking values in

M f , the set of positive measures on Rþ. The height process at time t is defined as the

supremum of the closed support of r t (with the convention that Ht ¼ 0 if r t ¼ 0).

Informally, Ht gives the distance (which can be understood as the number of generations)

between the individual labelled t and the root, 0, of the CRT. In some sense r t(dv) records

the ‘number’ of brothers, with labels larger than t, of the ancestor of t at generation v.

We recall the definition and properties of the exploration process which are given in Le

Gall and Le Jan (1998a, 1998b) and Duquesne and Le Gall (2002). The results of this

section are mainly extracted from Duquesne and Le Gall.

Let I ¼ (I t, t > 0) be the infimum process of X , I t ¼ inf 0<s< t X s. We will also consider,

for every 0 < s < t, the infimum of X over [s, t]:

I st ¼ inf
s<r< t

X r:

There exists a sequence (�n, n 2 N�) of positive real numbers decreasing to 0 such that

~HHt ¼ lim
k!1

1

�k

ð t
0

1fX s, I stþ� kg ds

exists and is finite almost surely for all t > 0.

The point 0 is regular for the Markov process X � I , �I is the local time of X � I at 0,

and the right-continuous inverse of �I is a subordinator with Laplace exponent ł�1 (see

Chapter VII in Bertoin 1996). Notice that this subordinator has no drift thanks to (4). Let

�� denote the corresponding Lévy measure. Let N be the associated excursion measure of

the process X � I out of 0, and � ¼ infft . 0; X t � I t ¼ 0g be the length of the excursion

of X � I under N. Under N, X0 ¼ I0 ¼ 0.

For � 2 M f , we define H � ¼ supfx 2 supp �g, where supp � is the closed support of
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the measure �. From Section 1.2 in Duquesne and Le Gall (2002), there exists an M f -

valued process r0 ¼ (r0
t , t > 0), called the exploration process, such that:

• almost surely, for every t > 0, we have hr0
t , 1i ¼ X t � I t, and the process r0 is

cadlag;

• the process (H0
s ¼ Hr0

s , s > 0) taking values in [0, 1] is lower semi-continuous;

• for each t > 0, almost surely H0
t ¼ ~HHt;

• for every measurable non-negative function f defined on Rþ,

hr0
t , f i ¼

ð
[0, t]

f (H0
s) ds I

s
t ,

or equivalently, with �x being the Dirac mass at x,

r0
t (dr) ¼

X
0,s< t
X s�, I st

(I st � X s�)�H0
s
(dr):

In the definition of the exploration process, as X starts from 0, we have r0 ¼ 0 almost

surely. To obtain the Markov property of r, we must define the process r starting at any

initial measure � 2 M f . For a 2 [0, h�, 1i], we define the erased measure ka� by

ka�([0, r]) ¼ �([0, r]) ^ (h�, 1i � a), for r > 0:

If a . h�, 1i, we set ka� ¼ 0. In other words, the measure ka� is the measure � erased by a

mass a backward from H �.

For �, � 2 M f , and � with compact support, we define the concatenation [�, �] 2 M f

of the two measures by

h[�, �], f i ¼ h�, f i þ h�, f (H � þ �)i,

for f non-negative measurable. Eventually, we set for every � 2 M f and every t . 0,

r t ¼ [k� I t�, r0
t ]:

We say that r ¼ (r t, t > 0) is the process r starting at r0 ¼ �, and write P� for its law. We

set Ht ¼ Hr t . The process r is cadlag (with respect to the weak convergence topology on

M f ) and strong Markov.

2.2. The fragmentation at nodes

We recall the construction of the fragmentation under N given in Abraham and Delmas

(2005) in an equivalent but easier way to understand. Recall that (˜s, s 2 J ) is the set of

jumps of X and Ts is the time at which the jump ˜s is marked. Conditionally on

(˜s, s 2 J ), (Ts, s 2 J ) is a family of independent random variables such that Ts has

exponential distribution with mean 1=˜s. We consider the family of measures (increasing in

Ł) defined for Ł > 0 and t > 0 by
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~mmŁ
t (dr) ¼

X
0,s< t
X s�, I st

1fTs<Łg �Hs
(dr):

Intuitively, ~mmŁ
t describes the marked masses of the measure r t, that is, the marked nodes of

the associated CRT.

Then we cut the CRT according to these marks to obtain the state of the fragmentation

process at time Ł. To construct the fragmentation, let us consider the following equivalence

relation RŁ on [0, � ], defined under N or N� by

sRŁ t , ~mmŁ
s ([Hs, t, Hs]) ¼ ~mmŁ

t ([Hs, t, Ht]) ¼ 0, (5)

where Hs, t ¼ inf u2[s, t] Hu. Intuitively, two points s and t belongs to the same equivalence

class (i.e. the same fragment) at time Ł if there is no cut on their lineage down to their most

recent common ancestor, that is, ~mmŁ
s puts no mass on [Hs, t, Hs] nor ~mmŁ

t on [Hs, t, Ht]. Notice

corresponds to a jump of the underlying Lévy process X . The fragmentation process at time

Ł is then the Lebesgue measures (ranked in non-increasing order) of the equivalence classes

of RŁ.

Remark 2.1. In definition (14) of Abraham and Delmas (2005: 12), we use another family of

measures m
(Ł)
t . From their construction, notice that ~mmŁ

t is absolutely continuous with respect

to m
(Ł)
t and m

(Ł)
t is absolutely continuous with respect to ~mmŁ

t , if we take Ts ¼
inffVs,u, u . 0g, where

P
u.0 �Vs,u

is a Poisson point measure on Rþ with intensity

˜s1fu.0g; see Section 3.1 in Abraham and Delmas (2005). In particular, ~mmŁ
t and m

(Ł)
t define

the same equivalence relation and therefore the same fragmentation.

In order to index the fragments, we define the ‘generation’ of a fragment. For any s < �,

let us define H0
s ¼ 0 and, recursively for k 2 N,

H kþ1
s ¼ inf u > 0, ~mmŁ

s ((Hk
s , u]) . 0

� �
,

with the usual convention that inf ˘ ¼ þ1. We set the ‘generation’ of s as

Ks ¼ supf j 2 N, H j
s , þ1g:

Remark 8.1 in Abraham and Delmas (2005) ensures that Ks is finite N-almost everywhere

and that the ‘generation’ is well defined. Notice that if sRŁ t, then Ks ¼ Kt. In particular, all

elements of a fragment have the same ‘generation’. We also call this ‘generation’ the

‘generation’ of the fragment. Let (� i,k(Ł), i 2 I k) be the family of lengths of fragments in

‘generation’ k. Notice that I0 is reduced to one point, say 0, and we write

~�� (Ł) ¼ � 0,0(Ł)

for the fragment which contains the root. The joint law of ( ~�� (Ł), � ) is given in Proposition

7.3 in Abraham and Delmas (2005).

Let (r j,kþ1(Ł), j 2 J kþ1) be the family of sizes of the marked nodes attached to the snake

of ‘generation’ k. More precisely,

that cutting occurs on branching points, that is, at nodes of the CRT. Each node of the CRT
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fr j,kþ1(Ł), j 2 J kþ1g ¼ f˜s, Ts < Ł and Ks ¼ k þ 1g:

We set, for k 2 N,

Lk(Ł) ¼
X
i2 I k

� i,k(Ł), N �
k(Ł) ¼

X
i2 I k

1f� i, k (Ł).�g, M �
k(Ł) ¼

X
i2 I k

� i,k(Ł)1f� i, k<�g,

and, for k 2 N�,

Rk(Ł) ¼
X
j2J k

r i,k(Ł):

We set R0 ¼ 0. Let us remark that we have � ¼
P

k>0 Lk(Ł), N �(Ł) ¼
P

k>0 N
�
k(Ł),

M �(Ł) ¼
P

k>0 M
�
k(Ł) and R(Ł) ¼ Rk(Ł).

Let F k be the � -field generated by ((� i, l(Ł), i 2 I l), Rl(Ł))0< l<k. As a consequence of

the special Markov property (Theorem 5.2 of Abraham and Delmas 2005) and using the

recursive construction of Lemma 8.6 of Abraham and Delmas (2005), we have the

following propositions:

Proposition 2.1. Under N, conditionally on F k�1 and Rk(Ł),
P

i2 I k �� i, k (Ł) is distributed as a

Poisson point process with intensity Rk(Ł)N[d ~�� (Ł)].

Proposition 2.2. Under N, conditionally on F k�1,
P

j2J k
�r j, k (Ł) is distributed as a Poisson

point process with intensity Lk�1(Ł)(1 � e�Łr) �(dr).

Remark 2.2. These propositions allow the law of the fragmentation ¸(Ł) to be computed for

a given Ł (see the Laplace transform computations in the proof of Lemma 3.1).

Let us recall that the key object in Abraham and Delmas (2005) is the tagged fragment

which contains the root. Recall that its size is denoted by ~�� (Ł). This fragment corresponds

to the subtree of the initial CRT (after pruning) that contains the root. This subtree is a

Lévy CRT and the Laplace exponent of the associated Lévy process is

łŁ(º) :¼ ł(ºþ Ł) � ł(Ł), º > 0:

This implies ł�1
Ł (v) ¼ ł�1(vþ ł(Ł)) � Ł, and we deduce from (4) that

lim
º!1

ł�1
Ł (º)=º ¼ 0: (6)

We also have

N 1 � e�� ~�� (Ł)
� �

¼ ł�1
Ł (�) and N ~�� (Ł)e�� ~�� (Ł)

� �
¼ 1

ł9Ł(ł�1
Ł (�))

(7)

(see (1) for the first equality with ł instead of łŁ).
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3. Proofs

We fix Ł . 0. As Ł is fixed, we will omit to mention the dependence with respect to Ł of

the different quantities in this section: for example, we write ~�� and N � for ~�� (Ł) and N �(Ł).

We set

N � ¼ N � � 1f ~��.�g and M� ¼ M � � ~��1f ~��<�g:

3.1. Proof of Theorem 1.1

The poof is in four steps. In the first step we compute the Laplace transform of

(N �, M�, R, � ). From there we could prove the convergence of Theorem 1.1 in probability

instead of in L2. However, we need a convergence speed to get the almost sure convergence

in the Æ-stable case of Proposition 1.2. In the second step, we check that the computed

Laplace transform has the necessary regularity in order to derive, in the third step, the

second moment of (N �, M�, R) under N[e���

statement of the second moment.

Step 1. We give the joint law under N of (N �, M�, R, � ) by computing for x . 0,

y . 0, � . 0, ª . 0,

N[e�(xN �þ yM�þªRþ�� )j ~�� ]:

By monotone convergence, we have

N[e�(xN �þ yM�þªRþ�� )j ~�� ] ¼ lim
n!1

N[e� � ~��þ
Pn

l¼1
(xN �

l
þ yM�

l
þªR lþ�Ll)ð Þj ~�� ]: (8)

We define the function H(x, y,ª) by

H(x, y,ª)(c) ¼ G ªþN 1 � e�(x1f ~��.�gþ y ~�� 1f ~��<�gþc ~�� )
� �� �

,

where, for a > 0,

G(a) ¼
ð
�(dr) 1 � e�Łr

� �
1 � e�arð Þ ¼ ł(Łþ a) � ł(a) � ł(Ł) ¼ łŁ(a) � ł(a): (9)

Recall that F k is the � -field generated by ((� i, l, i 2 I l), Rl)0< l<k. We then have the

following lemma.

Lemma 3.1. For x, y, ª 2 Rþ, � . 0, we have, for k 2 N�,

N[e�(xN �
k
þ yM�

k
þcLkþªRk )jF k�1] ¼ e�H(x, y,ª)(c)Lk�1 :

Proof. As a consequence of Proposition 2.1, we have

N[e�(xN �
k
þ yM�

k
þcLkþªRk )jF k�1, Rk] ¼ e�Rk (ªþN[1�exp(�(x1f ~��.�gþ y ~�� 1f ~��<�gþc ~�� ))]):

As a consequence of Proposition 2.2, we have

.]. In the last step we check the convergence
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N[e�Rk (ªþN[1�exp(�(x1f ~��.�gþ y ~�� 1f ~��<�gþc ~�� ))])jF k�1] ¼ e�H(x, y,ª)(c)Lk�1 :

h

We define the constants c(k) by induction:

c(0) ¼ 0, c(kþ1) ¼ H(x, y,ª)(c(k) þ �):

An immediate backward induction yields (recall L0 ¼ ~�� ) that, for every integer n > 1, we

have

N[e
�
Pn

l¼1
(xN �

l
þ yM�

l
þªRlþ�Ll)ð Þj ~�� ] ¼ e�c(n) ~�� :

Notice that the function G is of class C1 on (0, 1) and is concave increasing, and that the

function

c 7! N 1 � e�(x1f ~��.�gþ y ~�� 1f ~��<�gþ(�þc) ~�� )
� �

is of class C1 on [0, 1) and is concave increasing. This implies that H(x, y,ª) is concave

increasing and of class C1. Notice that

x1f ~��.�g þ y ~��1f ~��<�g þ c ~�� <
x

�
þ yþ c

	 

~�� :

In particular, we have H(x, y,ª)(c) < G(ªþ ł�1
Ł (x=�þ yþ c)). As lima!1G9(a) ¼ 0, this

implies that lima!1G(a)=a ¼ 0. Since limº!1ł�1
Ł (º) ¼ 1, we deduce, thanks to (6), that

lim
c!1

H(x, y,ª)(c)

c
¼ 0: (10)

For ª . 0, notice H(x, y,ª)(0) . 0. As the function H(x, y,ª) is increasing and continuous, we

deduce that the sequence (c(n), n > 0) is increasing and converges to the unique root, say c9,

of c ¼ H(x, y,ª)(cþ �). And we deduce from (8) that

N[e�(xN �þ yM�þªRþ�� )j ~�� ] ¼ e�(�þc9) ~�� : (11)

Step 2. We look at the dependency of the root of c ¼ H(x, y,ª)(cþ �) in (x, y, ª).

Let �, x, y, �, ª 2 (0, 1) be fixed. There exists a . 0 small enough such that for all

z 2 (�a, a), we have zªþN[1 � e�� ~�� =2] . 0 and, for all ~�� > 0,

z(x1f ~��.�g þ y ~��1f ~��<�g) þ � ~�� > � ~��=2:

We consider the function J defined on (��=2, 1) 3 (�a, a) by

J (c, z) ¼ Hzx,zy,zª(cþ �) � c:

From the regularity of G, we deduce that the function J is of class C1 on

(��=2, 1) 3 (�a, a) and that the function c 7! J (c, z) is concave. Notice that J (0, z) . 0

for all z 2 (�a, a). Together with (10), this implies that there exists a unique solution c(z) to

the equation J (c, z) ¼ 0 and that @J (c(z), z)=@c , 0 for all z 2 (�a, a). The implicit

function theorem implies that the function z 7! c(z) is of class C1 on (�a, a). In particular,

we have c(z) ¼ c0 þ zc1 þ z2c2=2 þ o(z2). We deduce from (11) that, for all z 2 [0, a),
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N[e�z(xN �þ yM�þªR)��� j ~�� ] ¼ e�(�þc(z)) ~�� ¼ e�(�þc0þzc1þz2c2=2þo(z2)) ~�� :

Step 3. We investigate the second moment N[(xN � þ yM� þ ªR)2e��� ]. Standard results

on Laplace transforms imply that the second moment is finite and

N[(xN � þ yM� þ ªR)2e��� j ~�� ] ¼ e�(�þc0) ~�� (c2
1
~�� � c2) ~�� : (12)

Next, we compute c0, c1 and c2. By the definition of c(z), we have

c0 þ zc1 þ
z2

2
c2 þ o(z2) ¼ G zªþN 1 � e�z(x1f ~��.�gþ y ~�� 1f ~��<�g)�(�þc0þzc1þz2c2=2þo(z2)) ~��

h i	 

:

We compute the expansion in z of the right-hand-side term of this equality. We set

a0 ¼ N 1 � e�(�þc0) ~�� )
� �

¼ ł�1
Ł (�þ c0),

a1 ¼ ªþN e�(�þc0) ~�� (x1f ~��.�g þ y ~��1f ~��<�g þ c1 ~�� )
� �

,

a2 ¼ N e�(�þc0) ~�� (c2 ~�� � (x1f ~��.�g þ y ~��1f ~��<�g þ c1 ~�� )2)
� �

,

so that standard results on Laplace transform yield

c0 þ zc1 þ
z2

2
c2 þ o(z2) ¼ G a0 þ za1 þ

z2

2
a2 þ o(z2)

� �
:

We deduce that

c0 ¼ G(a0) ¼ G N 1 � e�(�þc0) ~��
� �� �

,

c1 ¼ a1G9(a0), (13)

c2 ¼ a2G9(a0) þ a2
1G 0(a0) ¼ a2G9(a0) þ c2

1G 0(a0)

G9(a0)2
: (14)

Using (9) and (7), we have c0 ¼ G(ł�1
Ł (�þ c0)) ¼ �þ c0 � ł(ł�1

Ł (�þ c0)), that is

h� :¼ �þ c0 ¼ łŁ(ł�1(�)) and a0 ¼ ł�1
Ł (�þ c0) ¼ ł�1(�):

Notice that h� . 0. And we have, thanks to the second equality of (7),

G9(ł�1(�))N e�h� ~�� ~��
� �

¼ ł9Ł(ł�1(�)) � ł9(ł�1(�))

ł9Ł(ł�1(�))
, 1:

(This last inequality is equivalent to saying that @J (c(z), z)=@c , 0 at z ¼ 0.) From (13), we

obtain

c1 ¼ G9(ł�1(�))
ªþN[e�h� ~�� (x1f ~��.�g þ y ~��1f ~��<�g)]

1 � G9(ł�1(�))N e�h� ~�� ~��
� � , (15)

and from (14),
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c2 ¼
�G9(ł�1(�))N[e�h� ~�� (x1f ~��.�g þ y ~��1f ~��<�g þ c1 ~�� )2] þ c2

1G 0(ł�1(�))=G9(ł�1(�))2

1 � G9(ł�1(�))N e�h� ~�� ~��
� � :

(16)

We obtain

N (xN � þ yM� þ ªR)2e���
� �

¼ c2
1N e�h� ~�� ~�� 2
� �

� c2N e�h� ~�� ~��
� �

, (17)

where c1 and c2 defined by (15) and (16) are polynomials of respective degree 1 and 2 in x, y

and ª. In particular, (17) also holds for x, y, ª 2 R.

Step 4. We look at asymptotics as � decreases to 0. Let º1, º2 2 Rþ and ª ¼ �(º1 þ º2).

We set

x� ¼ º1=��(�) and y� ¼ º2=j(�):

We recall from Lemma 4.1 in Delmas (2006) that

lim
�!0

1

��(�)
¼ 0 and lim

�!0

�

j(�)
¼ 0: (18)

Lemma 7.2 in Abraham and Delmas (2005) tells that for any non-negative measurable

function F, we have N[F( ~�� )] ¼ N[e�Ł� F(� )]. We define

˜� :¼ ªþN[e�h� ~�� (x�1f ~��.�g þ y� ~��1f ~��<�g)]

¼ �x�N[(1 � e�(h�þŁ)� )1f�.�g] � �y�N[(1 � e�(h�þŁ)� )
�

�
1f�<�g)]:

In particular, we have ˜� ¼ O(1=��(�) þ �=j(�)) and, from (18), lim�!0˜� ¼ 0. From (15),

we obtain c1 ¼ O(˜�) ¼ O(1=��(�) þ �=j(�)). From (16), we also have, for some finite

constant C independent of �,

jc2j < 2
G9(ł�1(�))N[e�h� ~�� (x�1f ~��.�g þ y� ~��1f ~��<�g)2]

1 � G9(ł�1(�))N[e�h� ~�� ~�� ]
þ Cc2

1:

Notice that

N[e�h� ~�� (x�1f ~��.�g þ y� ~��1f ~��<�g)2] ¼ N[e�h� ~�� (x2
�1f ~��.�g þ y2

� ~��
21f ~��<�g)]

<
º1

��(�)
x�N[e�h� ~�� 1f ~��.�g] þ º2�

j(�)
y�N[e�h� ~�� ~��1f ~��<�g]

¼ O
1

��(�)
þ �

j(�)

� �
: (19)

We deduce that c2 ¼ O(1=��(�) þ �=j(�)). Equation (17) implies that

N º1

N �

��(�)
þ º2

M�

j(�)
� (º1 þ º2)R

� �2

e���

" #
¼ O

1

��(�)
þ �

j(�)

� �
:

As � > ~�� , we have that
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N
1

��(�)2
1f ~��.�g þ

1

j(�)2
~�� 21f ~��<�g

� �
e���

� �
< N

1

��(�)2
1f ~��.�g þ

1

j(�)2
~�� 21f ~��<�g

� �
e�� ~��

� �

¼ O
1

��(�)
þ �

j(�)

� �
,

where we used (19) for the last equation (with � instead of h�). Recall that N �(Ł)

¼ N � þ 1f ~��.�g and M �(Ł) ¼ M� þ ~��1f ~��<�g and thus

N º1

N �

��(�)
þ º2

M �

j(�)
� (º1 þ º2)R

� �2

e���

" #

< 2N º1

N �

��(�)
þ º2

M�

j(�)
� (º1 þ º2)R

� �2

e���

" #

þ 2(º2
1 þ º2

2)N
1

��(�)2
1f ~��.�g þ

1

j(�)2
~�� 21f ~��<�g

� �
e���

� �
:

We deduce that

N º1

N �

��(�)
þ º2

M �

j(�)
� (º1 þ º2)R

� �2

e���

" #
¼ O

1

��(�)
þ �

j(�)

� �
: (20)

which, thanks to (18), says precisely that lim�!0 (N �(Ł)=��(�)) ¼ lim�!0 (M �(Ł)=j(�)) ¼ R

in L2(N[e��� �]). h

4. Law of R(Ł)

Lemma 4.1. Let � > 0, ª < 0. We have

N 1 � e����ªR(Ł)
� �

¼ v,

where v is the unique non-negative root of

�þ ł(ªþ Łþ v) ¼ ł(vþ Ł) þ ł(vþ ª): (21)

Remark 4.1. For the limit case ł(º) ¼ º2 (which is excluded here), we obtain that the unique

non-negative root of (21) is v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ºþ 2ªŁ

p
. This would imply R(Ł) ¼ 2Ł� N-almost

everywhere and R(Ł) ¼ 2Ł N1-almost surely. This agrees with the result in Bertoin (2004),

where the limit which appears for (2) is almost surely equal to 2Ł.

Proof. Take x ¼ y ¼ 0 in (11), integrate with respect to N and use (7) to obtain

N 1 � e�ªR(Ł)���
� �

¼ N 1 � e�(�þc) ~�� (Ł)
� �

¼ ł�1
Ł (�þ c),

where c is the unique root of c ¼ H(0,0,ª)(c), that is, of c ¼ G(ªþ ł�1
Ł (�þ c)). If we set
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v ¼ ł�1
Ł (�þ c), we have that v is the unique non-negative root of the equation

G(ªþ v) ¼ łŁ(v) � �, that is, (21). h

5. Computations for Remark 1.2

Let Æ 2 (1, 2). Recall from Abraham and Delmas (2005: Corollary 9.3) or Miermont (2005)

that the fragmentation is self-similar with index 1=Æ and dislocation measure given by

ð
S#

F(x)�1(dx) ¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E S1 F

˜St

S1

, t < 1

� �� �� �
,

where F is any non-negative measurable function on S#, and (˜St, t > 0) are the jumps of a

stable subordinator S ¼ (St, t > 0) of Laplace exponent ł�1(º) ¼ º1=Æ, ranked by decreasing

size.

In this section we shall compute the functions f b, jb and gb defined in Bertoin (2004)

and recalled in Remark 1.2 for the self-similar fragmentation at nodes.

Lemma 5.1. We have

f b(�) ¼ 1

ˆ(1 þ 1=Æ)

�

1 � �

	 
1�1=Æ
:

Proof. The Lévy measure of S is given by

��(dr) ¼ 1

Æˆ(1 � 1=Æ)

dr

r1þ1=Æ
dr:

For � 2 (0, 1), we have

ð
(0,1)

dy

y1þ�
(1 � e� yº) ¼ º�

ˆ(1 � �)

�
:

We deduce that

E[S
�
1] ¼ �

ˆ(1 � �)
E

ð1
0

dy

y1þ�
(1 � e� yS1 )

� �
¼ �

ˆ(1 � �)

ð1
0

dy

y1þ�
(1 � e� y1=Æ

) ¼ ˆ(1 � Æ�)

ˆ(1 � �)
:

Standard computations for Poisson measure yield
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f b(�) ¼
ð
S#

X1
i¼1

xi1fxi,�g�1(dx)

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E S1

X
t<1

˜St

S1

1f˜St,�S1g

" #

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E
X
t<1

˜St1f˜St,�(S1�˜St)=(1��)g

" #

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E

ð
��(dr)r1fr,�S1=(1��)g

� �

¼ Æ

ˆ(2 � Æ)
E[S

1�1=Æ
1 ]

�

1 � �

	 
1�1=Æ

¼ 1

ˆ(1 þ 1=Æ)

�

1 � �

	 
1�1=Æ
:

h

Lemma 5.2. We have

lim
�!0

�1=Æjb(�) ¼ Æ� 1

ˆ(1 þ 1=Æ)
:

Proof. We have

jb(�) ¼
ð
S#

X1
i¼1

1fxi.�g � 1

 !
�1(dx)

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E S1

X
t<1

1f˜St.�S1g � S1

" #

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E
X
t<1

(S1 � ˜St)1f˜St.�(S1�˜St)=(1��)g � ˜St1f˜S t<�(S1�˜St)=(1��)g

" #

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E S1

ð
��(dr)1fr.�S1=(1��)g

� �
� f b(�)

¼ Æ(Æ� 1)

ˆ(2 � Æ)
E S

1�1=Æ
1

h i �

1 � �

	 
�1=Æ
� f b(�)

¼ Æ� 1

ˆ(1 þ 1=Æ)

�

1 � �

	 
�1=Æ
� f b(�):

h
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Lemma 5.3. The limit lim�!0 (gb(�)= f b(�)2) exists and belongs to (0, 1).

Proof. We have

gb(�) ¼
ð
S#

X1
i¼1

xi1fxi,�g

 !2

�1(dx)

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E S1

X
t<1

˜St

S1

1f˜St,�S1g

 !2
2
4

3
5

¼ Æ(Æ� 1)ˆ(1 � 1=Æ)

ˆ(2 � Æ)
E
X
t<1

(˜St)
2

S1

1f˜St,�S1g

" # 

þ E
X

t<1,s<1,s6¼ t

˜St˜Ss

S1

1f˜S t,�S1,˜Ss,�S1g

" #!
:

For the first term, we obtain

E
X
t<1

(˜St)
2

S1

1f˜St,�S1g

" #
< E

X
t<1

(˜St)
2

S1 � ˜St

1f˜St,�(S1�˜S t)=(1��)g

" #

¼ E
1

S1

ð
��(dr)r21fr,�S1=(1��)g

� �

¼ 1

(2Æ� 1)ˆ(1 � 1=Æ)
E S

1�1=Æ
1

h i �

1 � �

	 
2�1=Æ

¼ o(�2�2=Æ):

For the second term we notice that, for r, s, S 2 Rþ,

fr < �S=(1 � �), v < �S=(1 � �)g � fr < �(S þ r þ v), v < �(S þ r þ v)g

� fr < �S=(1 � 2�), v < �S=(1 � 2�)g,

and we obtain
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E
X

t<1,s<1,s 6¼ t

˜St˜Ss

S1

1f˜St,�S1,˜Ss,�S1g

" #

< E
X

t<1,s<1,s 6¼ t

˜St˜Ss

S1 � ˜St � ˜Ss
1f˜St,�(S1�˜S t�˜Ss)=(1�2�),˜Ss,�(S1�˜S t�˜Ss)=(1�2�)g

" #

¼ E
1

S1

ð
��(dr)r1fr,�S1=(1�2�)g

� �2
" #

¼ cÆ
�

1 � 2�

	 
2�2=Æ
,

with

cÆ ¼ ˆ(3 � Æ)

(Æ� 1)2ˆ(2=Æ)ˆ(1 � 1=Æ)2
,

as well as

E
X

t<1,s<1,s 6¼ t

˜St˜Ss

S1

1f˜St,�S1,˜Ss,�S1g

" #

> E
X

t<1,s<1,s 6¼ t

˜St˜Ss

(S1 � ˜St � ˜Ss)(1 þ 2�)=(1 � �)
1f˜St,�(S1�˜St�˜Ss)=(1��),˜Ss,�(S1�˜S t�˜Ss)=(1��)g

" #

¼ 1 � �

1 þ 2�
E

1

S1

ð
��(dr)r1r,�S1=(1��)g

� �2
" #

¼ cÆ
1 � �

1 þ 2�

�

1 � �

	 
2�2=Æ
:

In particular, we have that gb(�) ¼ cÆ�2�2=Æ(1 þ o(1)). We deduce that lim�!0 (gb(�)=
f b(�)2) 2 (0, 1). h
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