# LOCAL LIMITS OF GALTON-WATSON TREES CONDITIONED ON THE NUMBER OF PROTECTED NODES

ROMAIN ABRAHAM,\* *Université d'Orléans* AYMEN BOUAZIZ,\*\* *Université de Tunis El Manar* JEAN-FRANÇOIS DELMAS,\*\*\* *Ecole des Ponts* 

#### Abstract

We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton–Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton–Watson tree conditioned on having a large number of protected nodes.

Keywords: Galton–Watson tree; random tree; local limit; protected node 2010 Mathematics Subject Classification: Primary 60J80; 60B10 Secondary 05C05

### 1. Introduction

In [6] Kesten proved that a critical or subcritical Galton-Watson (GW) tree conditioned on reaching at least height h converges in distribution (for the local topology on trees) as h goes to  $\infty$  toward the so-called sized-biased tree (that we call here Kesten's tree and whose distribution is described in Section 3.2). Since then, other conditionings have been considered, see [1], [2], [4], and the references therein for recent developments on the subject.

A protected node is a node that is not a leaf and none of its offspring is a leaf. Precise asymptotics for the number of protected nodes in a conditioned GW tree have already been obtained in [3], [5], for instance. Let A(t) be the number of protected nodes in the tree t. We remark that this functional A is clearly monotone in the sense of [4] (using, for instance, (5.1)); therefore, using Theorem 2.1 of [4], we immediately find that a critical GW tree  $\tau$  conditioned on  $\{A(\tau) > n\}$  converges in distribution toward Kesten's tree as n goes to  $\infty$ . Conditioning on  $\{A(\tau) = n\}$  needs extra work and is the main objective of this paper. Using the general result of [1], if we have the following limit

$$\lim_{n \to +\infty} \frac{\mathbb{P}(A(\tau) = n + 1)}{\mathbb{P}(A(\tau) = n)} = 1,$$
(1.1)

then the critical GW tree  $\tau$  conditioned on  $\{A(\tau) = n\}$  converges in distribution also toward Kesten's tree; see Theorem 5.1.

Received 10 September 2015; revision received 22 June 2016.

<sup>\*</sup> Postal address: Laboratoire MAPMO, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France. Email address: romain.abraham@univ-orleans.fr

<sup>\*\*</sup> Postal address: Institut préparatoire aux études scientifiques et techniques, Université de Tunis El Manar, 2070 La Marsa, Tunis, Tunisie.

<sup>\*\*\*</sup> Postal address: CERMICS, Ecole des Ponts, Université Paris-Est, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2, France.

In fact, the limit (1.1) can be seen as a special case of a more general problem: conditionally given the tree, we mark the nodes of the tree independently of the rest of the tree with a probability that depends only on the number of offspring of the nodes. Then we prove that a critical GW tree conditioned on the total number of marked nodes being large converges in distribution toward Kesten's tree; see Theorem 3.1.

The paper is then organised as follows. We first recall briefly the framework of discrete trees, then we consider in Section 3 the problem of a marked GW tree and the proofs of the results are given in Section 4. In particular, in Lemma 4.1 we prove the limit (1.1) when A is the number of marked nodes, and we deduce the convergence of a critical GW tree conditioned on the number of marked nodes toward Kesten's tree in Theorem 3.1. Finally, in Section 5 we explain how the problem of protected nodes can be viewed as a problem on marked nodes. and deduce the convergence in distribution of a critical GW tree conditioned on the number of protected nodes toward Kesten's tree in Theorem 5.1.

## 2. Technical background on GW trees

#### 2.1. The set of discrete trees

We denote by  $\mathbb{N} = \{0, 1, 2, ...\}$  the set of nonnegative integers and by  $\mathbb{N}^* = \{1, 2, ...\}$  the set of positive integers.

If *E* is a subset of  $\mathbb{N}^*$ , we call the span of *E* the greatest common divisor of *E*. If *X* is an integer-valued random variable, we call the span of *X* the span of  $\{n > 0; \mathbb{P}(X = n) > 0\}$ .

We recall Neveu's formalism [7] for ordered rooted trees. Let  $\mathcal{U} = \bigcup_{n \geq 0} (\mathbb{N}^*)^n$  be the set of finite sequences of positive integers with the convention  $(\mathbb{N}^*)^0 = \{\emptyset\}$ . For  $u \in \mathcal{U}$ , its length or generation  $|u| \in \mathbb{N}$  is defined by  $u \in (\mathbb{N}^*)^{|u|}$ . If u and v are two sequences of  $\mathcal{U}$ , we denote by uv the concatenation of the two sequences, with the convention that uv = u if  $v = \emptyset$  and uv = v if  $u = \emptyset$ . The set of ancestors of u is the set

$$An(u) = \{v \in \mathcal{U}; \text{ there exists } w \in \mathcal{U} \text{ such that } u = vw\}.$$

Note that u belongs to  $\operatorname{An}(u)$ . For two distinct elements u and v of  $\mathcal{U}$ , we denote by u < v the lexicographic order on  $\mathcal{U}$ , i.e. u < v if  $u \in \operatorname{An}(v)$  and  $u \neq v$  or if u = wiu' and v = wjv' for some  $i, j \in \mathbb{N}^*$  with i < j. We write  $u \leq v$  if u = v or u < v.

A tree t is a subset of  $\mathcal{U}$  that satisfies the following.

- $\varnothing \in t$ .
- If  $u \in t$  then  $An(u) \subset t$ .
- For every  $u \in t$ , there exists  $k_u(t) \in \mathbb{N}$  such that, for every  $i \in \mathbb{N}^*$ ,  $ui \in t$  if and only if  $1 < i < k_u(t)$ .

The vertex  $\varnothing$  is called the root of t. The integer  $k_u(t)$  represents the number of offspring of the vertex  $u \in t$ . The set of children of a vertex  $u \in t$  is given by

$$C_u(t) = \{ui; 1 \le i \le k_u(t)\}.$$

By convention, we set  $k_u(t) = -1$  if  $u \notin t$ .

A vertex  $u \in t$  is called a leaf if  $k_u(t) = 0$ . We denote by  $\mathcal{L}_0(t)$  the set of leaves of t. A vertex  $u \in t$  is called a *protected node* if  $C_u(t) \neq \emptyset$  and  $C_u(t) \cap \mathcal{L}_0(t) = \emptyset$ , that is, u is not

a leaf and none of its children is a leaf. For  $u \in t$ , we define  $F_u(t)$ , the fringe subtree of t above u, as

$$F_u(t) = \{v \in t; u \in An(v)\} = \{uv; v \in S_u(t)\}\$$

with  $S_u(t) = \{v \in \mathcal{U}; uv \in t\}.$ 

Note that  $S_u(t)$  is a tree. We denote by  $\mathbb{T}$  the set of trees and by  $\mathbb{T}_0 = \{t \in \mathbb{T}; \operatorname{card}(t) < +\infty\}$  the subset of finite trees.

We say that a sequence of trees  $(t_n, n \in \mathbb{N})$  converges locally to a tree t if and only if  $\lim_{n\to\infty} k_u(t_n) = k_u(t)$  for all  $u \in \mathcal{U}$ . Let  $(T_n, n \in \mathbb{N})$  and T be  $\mathbb{T}$ -valued random variables. We denote by  $\operatorname{dist}(T)$  the distribution of the random variable T and write

$$\lim_{n\to+\infty}\operatorname{dist}(T_n)=\operatorname{dist}(T)$$

for the convergence in distribution of the sequence  $(T_n, n \in \mathbb{N})$  to T with respect to the local topology.

If  $t, t' \in \mathbb{T}$  and  $x \in \mathcal{L}_0(t)$ , we denote by

$$\boldsymbol{t} \circledast_{\boldsymbol{x}} \boldsymbol{t}' = \{ u \in \boldsymbol{t} \} \cup \{ \boldsymbol{x} \boldsymbol{v}; \ \boldsymbol{v} \in \boldsymbol{t}' \}$$

the tree obtained by grafting the tree t' on the leaf x of the tree t. For every  $t \in \mathbb{T}$  and every  $x \in \mathcal{L}_0(t)$ , we shall consider the set of trees obtained by grafting a tree on the leaf x of t, i.e.

$$\mathbb{T}(t,x) = \{t \circledast_x t'; t' \in \mathbb{T}\}.$$

### 2.2. GW trees

Let  $p = (p(n), n \in \mathbb{N})$  be a probability distribution on  $\mathbb{N}$ . We assume that

$$p(0) > 0,$$
  $p(0) + p(1) < 1,$  and  $\mu := \sum_{n=0}^{+\infty} np(n) < +\infty.$  (2.1)

A  $\mathbb{T}$ -valued random variable  $\tau$  is a GW tree with offspring distribution p if the distribution of  $k_{\varnothing}(\tau)$  is p and it enjoys the branching property: for  $n \in \mathbb{N}^*$ , conditionally on  $\{k_{\varnothing}(\tau) = n\}$ , the subtrees  $(S_1(\tau), \ldots, S_n(\tau))$  are independent and distributed as the original tree  $\tau$ .

The GW tree and the offspring distribution are called critical (respectively subcritical, supercritical) if  $\mu = 1$  (respectively  $\mu < 1$ ,  $\mu > 1$ ).

## 3. Conditioning on the number of marked vertices

### 3.1. Definition of the marking procedure

We begin with a fixed tree t. We add marks on the vertices of t in an independent way such that the probability of adding a mark on a node u depends only on the number of children of u. More precisely, we consider a mark function  $q: \mathbb{N} \to [0, 1]$  and a family of independent Bernoulli random variables  $(Z_u(t), u \in t)$  such that, for all  $u \in t$ ,

$$\mathbb{P}(Z_u(t) = 1) = 1 - \mathbb{P}(Z_u(t) = 0) = q(k_u(t)).$$

The vertex u is said to have a mark if  $Z_u(t) = 1$ . We denote by  $\mathcal{M}(t) = \{u \in t; Z_u(t) = 1\}$  the set of marked vertices and by M(t) its cardinal. We call  $(t, \mathcal{M}(t))$  a marked tree.

A marked GW tree with offspring distribution p and mark function q is a couple  $(\tau, \mathcal{M}(\tau))$ , with  $\tau$  a GW tree with offspring distribution p and conditionally on  $\{\tau = t\}$  the set of marked vertices  $\mathcal{M}(\tau)$  is distributed as  $\mathcal{M}(t)$ .

**Remark 3.1.** Note that, for  $A \subseteq \mathbb{N}$ , if we set  $q(k) = \mathbf{1}_{\{k \in A\}}$  then the set  $\mathcal{M}(t)$  is just the set of vertices with out-degree (i.e. number of offspring) in A considered in [1], [8]. Hence, the above construction can be seen as an extension of this case.

#### 3.2. Kesten's tree

Let p be an offspring distribution satisfying assumption (2.1) with  $\mu \le 1$  (i.e. the associated GW process is critical or subcritical). We denote by  $p^* = (p^*(n) = np(n)/\mu, n \in \mathbb{N})$  the corresponding size-biased distribution.

We define an infinite random tree  $\tau^*$  (the size-biased tree that we call Kesten's tree in this paper) whose distribution is described as follows.

There exists a unique infinite sequence  $(v_k, k \in \mathbb{N}^*)$  of positive integers such that, for every  $h \in \mathbb{N}$ ,  $v_1 \cdots v_h \in \tau^*$ , with the convention that  $v_1 \cdots v_h = \emptyset$  if h = 0. The joint distribution of  $(v_k, k \in \mathbb{N}^*)$  and  $\tau^*$  is determined recursively as follows. For each  $h \in \mathbb{N}$ , conditionally given  $(v_1, \ldots, v_h)$  and  $\{u \in \tau^*; |u| \le h\}$  the tree  $\tau^*$  up to level h, we have the following.

- The number of children  $(k_u(\tau^*), u \in \tau^*, |u| = h)$  are independent and distributed according to p if  $u \neq v_1 \cdots v_h$  and according to  $p^*$  if  $u = v_1 \dots v_h$ .
- Given  $\{u \in \tau^*; |u| \le h+1\}$  and  $(v_1, \ldots, v_h)$ , the integer  $v_{h+1}$  is uniformly distributed on the set of integers  $\{1, \ldots, k_{v_1 \cdots v_h}(\tau^*)\}$ .

**Remark 3.2.** Note that by construction, almost surely  $\tau^*$  has a unique infinite spine. And following Kesten [6], the random tree  $\tau^*$  can be viewed as the tree  $\tau$  conditioned on non-extinction.

For  $t \in \mathbb{T}_0$  and  $x \in \mathcal{L}_0(t)$ , we have

$$\mathbb{P}(\tau^* \in \mathbb{T}(t, x)) = \frac{\mathbb{P}(\tau = t)}{\mu^{|x|} p(0)}.$$

#### 3.3. Main theorem

**Theorem 3.1.** Let p be a critical offspring distribution that satisfies assumption (2.1). Let  $(\tau, \mathcal{M}(\tau))$  be a marked GW tree with offspring distribution p and mark function q such that p(k)q(k) > 0 for some  $k \in \mathbb{N}$ . For every  $n \in \mathbb{N}^*$ , let  $\tau_n$  be a tree whose distribution is the conditional distribution of  $\tau$  given  $\{M(\tau) = n\}$ . Let  $\tau^*$  be a Kesten's tree associated with p. Then we have

$$\lim_{n\to+\infty}\operatorname{dist}(\tau_n)=\operatorname{dist}(\tau^*),$$

where the limit has to be understood along a subsequence for which  $\mathbb{P}(M(\tau) = n) > 0$ .

**Remark 3.3.** If, for every  $k \in \mathbb{N}$ , 0 < q(k) < 1 then  $\mathbb{P}(M(\tau)) = n) > 0$  for every  $n \in \mathbb{N}$ , hence, the above conditioning is always valid.

### 4. Proof of Theorem 3.1

Set  $\gamma = \mathbb{P}(M(\tau) > 0)$ . Since there exists  $k \in \mathbb{N}$  with p(k)q(k) > 0, we have  $\gamma > 0$ . A sufficient condition (but not necessary) to have  $\mathbb{P}(M(\tau) = n) > 0$  for every large enough n is to assume that  $\gamma < 1$  (see Lemma 4.2 and Section 4.4). Taking  $q = \mathbf{1}_A$ , see Remark 3.1 for  $0 \in A \subset \mathbb{N}$  implies that  $\gamma = 1$  and some periodicity may occur.

The following result is the analogue in the random case of Theorem 3.1 in [1] and its proof is in fact a straightforward adaptation of the proof in [1] by using the following.

- (i)  $M(t) \leq \operatorname{card}(t)$ .
- (ii) For every  $t \in \mathbb{T}_0$ ,  $x \in \mathcal{L}_0(t)$ , and  $t' \in \mathbb{T}$ , it follows that  $M(t \circledast_x t')$  is distributed as  $\hat{M}(t') + M(t) \mathbf{1}_{\{Z_x(t)=1\}}$ , where  $\hat{M}(t')$  is distributed as M(t') and is independent of M(t).

**Proposition 4.1.** Let  $n_0 \in \mathbb{N} \cup \{\infty\}$ . Assume that  $\mathbb{P}(M(\tau) \in [n, n + n_0)) > 0$  for large enough n. Then, if

$$\lim_{n \to +\infty} \frac{\mathbb{P}(M(\tau) \in [n+1, n+1+n_0)}{\mathbb{P}(M(\tau) \in [n, n+n_0))} = 1,$$
(4.1)

we have

$$\lim_{n \to +\infty} \operatorname{dist}(\tau \mid M(\tau) \in [n, n + n_0)) = \operatorname{dist}(\tau^*).$$

*Proof.* According to Lemma 2.1 in [1], a sequence  $(T_n, n \in \mathbb{N})$  of finite random trees converges in distribution (with respect to the local topology) to some Kesten's tree  $\tau^*$  if and only if, for every finite tree  $t \in \mathbb{T}_0$  and every leaf  $x \in \mathcal{L}_0(t)$ ,

$$\lim_{n \to +\infty} \mathbb{P}((T_n \in \mathbb{T}(t, x))) = \mathbb{P}(\tau^* \in \mathbb{T}(t, x)) \quad \text{and} \quad \lim_{n \to +\infty} \mathbb{P}(T_n = t) = 0. \tag{4.2}$$

Let  $t \in \mathbb{T}_0$  and  $x \in \mathcal{L}_0(t)$ . We set  $D(t, x) = M(t) - \mathbf{1}_{\{Z_x(t)=1\}}$ . Note that  $D(t, x) \le \operatorname{card}(t) - 1$ . Elementary computations yield, for every  $t' \in \mathbb{T}_0$ ,

$$\mathbb{P}(\tau = t \circledast_x t') = \frac{1}{p(0)} \mathbb{P}(\tau = t) \mathbb{P}(\tau = t') \quad \text{and} \quad \mathbb{P}(\tau^* \in \mathbb{T}(t, x)) = \frac{1}{p(0)} \mathbb{P}(\tau = t).$$

As  $\tau$  is almost surely finite, we have

$$\begin{split} \mathbb{P}(\tau \in \mathbb{T}(t,x), M(\tau) \in [n,n+n_0)) \\ &= \sum_{t' \in \mathbb{T}_0} \mathbb{P}(\tau = t \circledast_x t', M(\tau) \in [n,n+n_0)) \\ &= \sum_{t' \in \mathbb{T}_0} \mathbb{P}(\tau = t \circledast_x t') \mathbb{P}(M(t \circledast_x t') \in [n,n+n_0)) \\ &= \sum_{t' \in \mathbb{T}_0} \frac{\mathbb{P}(\tau = t) \mathbb{P}(\tau = t')}{p(0)} \mathbb{P}(\hat{M}(t') + D(t,x) \in [n,n+n_0)) \\ &= \mathbb{P}(\tau^* \in \mathbb{T}(t,x)) \mathbb{P}(\hat{M}(\tau) + D(t,x) \in [n,n+n_0)). \end{split}$$

Note that

$$\begin{split} \mathbb{P}(\hat{M}(\tau) + D(t, x) &\in [n, n + n_0)) \\ &= \sum_{k=0}^{\operatorname{card}(t) - 1} \mathbb{P}(\hat{M}(\tau) + D(t, x) \in [n, n + n_0) \mid D(t, x) = k) \mathbb{P}(D(t, x) = k) \\ &= \sum_{k=0}^{\operatorname{card}(t) - 1} \mathbb{P}(M(\tau) \in [n - k, n + n_0 - k)) \mathbb{P}(D(t, x) = k). \end{split}$$

Then, using assumption (4.1), we obtain

$$\lim_{n \to +\infty} \frac{\mathbb{P}(\hat{M}(\tau) + D(t, x) \in [n, n + n_0))}{\mathbb{P}(M(\tau) \in [n, n + n_0))} = 1,$$

that is,

$$\lim_{n \to +\infty} \mathbb{P}(\tau \in \mathbb{T}(t, x) \mid M(\tau) \in [n, n + n_0)) = \mathbb{P}(\tau^* \in \mathbb{T}(t, x)).$$

This proves the first limit of (4.2).

The second limit is immediate since, for every  $n \ge \operatorname{card}(t)$ ,

$$\mathbb{P}(\tau = t \mid M(\tau) \in [n, n + n_0)) = 0.$$

The main ingredient for the proof of Theorem 3.1 is the following lemma.

**Lemma 4.1.** Let d be the span of the random variable  $M(\tau) - 1$ . We have

$$\lim_{n \to +\infty} \frac{\mathbb{P}(M(\tau) \in [n+1, n+1+d))}{\mathbb{P}(M(\tau) \in [n, n+d))} = 1. \tag{4.3}$$

The end of this section is devoted to the proof of Lemma 4.1, see Section 4.4, which follows the ideas of the proof of Theorem 5.1 of [1].

#### 4.1. Transformation of a subset of a tree onto a tree

We recall Rizzolo's map [8] which, from  $t \in \mathbb{T}_0$  and a nonempty subset A of t, builds a tree  $t_A$  such that  $\operatorname{card}(A) = \operatorname{card}(t_A)$ . We will give a recursive construction of this map  $\phi \colon (t, A) \mapsto t_A = \phi(t, A)$ . We will check in the next section that this map is such that if  $\tau$  is a GW tree then  $\tau_A$  will also be a GW tree for a well chosen subset A of  $\tau$ . In Figure 1 we show an example of a tree t, a set t, and the associated tree t which helps to understand the construction.

For a vertex  $u \in t$ , recall that  $C_u(t)$  is the set of children of u in t. We define, for  $u \in t$ ,

$$R_u(t) = \bigcup_{w \in \operatorname{An}(u)} \{ v \in C_w(t); \ u < v \}$$

the vertices of t which are larger than u for the lexicographic order and are children of u or of one of its ancestors. For a vertex  $u \in t$ , we shall consider  $A_u$  the set of elements of A in the fringe subtree above u, i.e.



FIGURE 1: Left: a tree t and the set A. Centre: the fringe subtrees rooted at the vertices in  $R_{u_0}(t)$ . Right: the tree  $t_A$ . The labels have no signification, they only show which node of t corresponds to a node of  $t_A$ .

Let  $t \in \mathbb{T}_0$  and  $A \subset t$  such that  $A \neq \emptyset$ . We shall define  $t_A = \phi(t, A)$  recursively. Let  $u_0$  be the smallest (for the lexicographic order) element of A. Consider the fringe subtrees of t that are rooted at the vertices in  $R_{u_0}(t)$  and contain at least one vertex in A, that is  $(F_u(t); u \in R_{u_0}^A(t))$ , with

$$R_{u_0}^A(t) = \{u \in R_{u_0}(t); \ A_u \neq \varnothing\} = \{u \in R_{u_0}(t); \text{ there exists } v \in A \text{ such that } u \in \operatorname{An}(v)\}.$$

Define the number of children of the root of tree  $t_A$  as the number of those fringe subtrees

$$k_{\varnothing}(t_A) = \operatorname{card}(R_{u_0}^A(t)).$$

If  $k_{\varnothing}(t_A) = 0$  set  $t_A = \{\varnothing\}$ . Otherwise, let  $u_1 < \cdots < u_{k_{\varnothing}(t_A)}$  be the ordered elements of  $R_{u_0}^A(t)$  with respect to the lexicographic order on  $\mathscr{U}$ . And we define  $t_A = \phi(t, A)$  recursively by

$$F_i(t_A) = \phi(F_{u_i}(t), A_{u_i}) \quad \text{for } 1 \le i \le k_\varnothing(t_A). \tag{4.5}$$

Since  $\operatorname{card}(A_{u_i}) < \operatorname{card}(A)$ , we deduce that  $t_A = \phi(t, A)$  is well defined and is a tree by construction. Furthermore, we clearly have that A and  $t_A$  have the same cardinal, i.e.

$$\operatorname{card}(t_A) = \operatorname{card}(A). \tag{4.6}$$

### 4.2. Distribution of the number of marked nodes

Let  $(\tau, \mathcal{M}(\tau))$  be a marked GW tree with critical offspring distribution p satisfying (2.1) and mark function q. Recall that  $\gamma = \mathbb{P}(M(\tau) > 0) = \mathbb{P}(\mathcal{M}(\tau) \neq \emptyset)$ .

Let  $((X_i, Z_i), i \in \mathbb{N}^*)$  be independent and identically distributed random variables such that  $X_i$  is distributed according to p and  $Z_i$  is conditionally on  $X_i$  Bernoulli with parameter  $q(X_i)$ . We have the following definitions.

- $G = \inf\{k \in \mathbb{N}^*; \sum_{i=1}^k (X_i 1) = -1\}.$
- $N = \inf\{k \in \mathbb{N}^*; Z_k = 1\}.$
- $\tilde{X}$  a random variable distributed as  $1 + \sum_{i=1}^{N} (X_i 1)$  conditionally on  $\{N \leq G\}$ .
- Y a random variable which is conditionally on  $\tilde{X}$  binomial with parameter  $(\tilde{X}, \gamma)$ .

We say that a probability distribution on  $\mathbb{N}$  is aperiodic if the span of its support restricted to  $\mathbb{N}^*$  is 1. The following result is immediate as the distribution p of  $X_1$  satisfies (2.1).

**Lemma 4.2.** The distribution of Y satisfies (2.1) and if  $\gamma < 1$  then it is aperiodic.

Recall that for a tree  $t \in \mathbb{T}_0$ , we have

$$\sum_{u \in t} (k_u(t) - 1) = -1 \tag{4.7}$$

and  $\sum_{u \in t, u < v} (k_u(t) - 1) > -1$  for any  $v \in t$ . We deduce that G is distributed according to  $\operatorname{card}(\tau)$  and, thus, N is distributed like the index of the first marked vertex along the depth-first walk of  $\tau$ . Then, we have

$$\gamma = \mathbb{P}(N \le G). \tag{4.8}$$

We denote by  $(\tau^0, \mathcal{M}(\tau^0))$  a random marked tree distributed as  $(\tau, \mathcal{M}(\tau))$  conditioned on  $\{\mathcal{M}(\tau) \neq \varnothing\}$ . By construction,  $\operatorname{card}(\tau^0)$  is distributed as G conditioned on  $\{N \leq G\}$ .

**Lemma 4.3.** Under the hypothesis of this section, it holds that  $\tau^0_{\mathcal{M}(\tau^0)} = \phi(\tau^0, \mathcal{M}(\tau^0))$  is a critical GW tree with the law of Y as offspring distribution.

#### 4.3. Proof of Lemma 4.3

In order to simplify notation, we write  $\tilde{\tau}$  for  $\tau^0_{\mathcal{M}(\tau^0)} = \phi(\tau^0, \mathcal{M}(\tau^0))$  and, for  $u \in \tau^0$ , we set  $R_u$  for  $R_u(\tau^0)$ .

**Lemma 4.4.** The random tree  $\tilde{\tau}$  is a GW tree with offspring distribution the law of Y.

*Proof.* Let  $u_0$  be the smallest (for the lexicographic order) element of  $\mathcal{M}(\tau^0)$ . The branching property of GW trees implies that, conditionally given  $u_0$  and  $R_{u_0}$ , the fringe subtrees of  $\tau^0$  rooted at the vertices in  $R_{u_0}$ ,  $(S_u(\tau^0), u \in R_{u_0})$  are independent and distributed as  $\tau$ . Recall notation (4.4) so that the set of marked vertices of the fringe subtree rooted at u is  $\mathcal{M}_u(\tau^0) = \mathcal{M}(\tau^0) \cap F_u(\tau^0)$ . Define  $\tilde{\mathcal{M}}_u(\tau^0) = \{v; uv \in \mathcal{M}_u(\tau^0)\}$  the corresponding marked vertices of  $S_u(t)$ . Then, the construction of the marks  $\mathcal{M}(\tau)$  implies that the corresponding marked trees  $((S_u(\tau^0), \tilde{\mathcal{M}}_u(\tau^0)), u \in R_{u_0})$  are independent and distributed as  $(\tau, \mathcal{M}(\tau))$ . Note that, for  $u \in R_{u_0}$ , the fringe subtree  $F_u(\tau^0)$  contains at least one mark if and only if u belongs to

$$R_{u_0}^{\mathcal{M}(\tau^0)} = \{ u \in R_{u_0}; \text{ there exists } v \in \mathcal{M}(\tau^0) \text{ such that } u \in \operatorname{An}(v) \}.$$

Then by considering only the fringe subtrees containing at least one mark, we find that, conditionally on  $R_{u_0}^{\mathcal{M}(\tau^0)}$ , the subtrees  $((S_u(\tau^0), \tilde{\mathcal{M}}_u(\tau^0)), u \in R_{u_0}^{\mathcal{M}(\tau^0)})$  are independent and distributed as  $(\tau^0, \mathcal{M}(\tau^0))$ . We deduce from the recursive construction of the map  $\phi$ , see (4.5), that  $\tilde{\tau}$  is a GW tree. Note that the offspring distribution of  $\tilde{\tau}$  is given by the distribution of the cardinal of  $R_{u_0}^{\mathcal{M}(\tau^0)}$ . We now compute the corresponding offspring distribution. We first give an elementary formula for the cardinal of  $R_u(t)$ . Let  $t \in \mathbb{T}_0$  and  $u \in t$ . Consider the tree  $t' = R_u(t) \cup \{v \in t; v \leq u\}$ . Using (4.7) for t', we obtain

$$-1 = \sum_{v \in t'} (k_v(t') - 1) = \sum_{v \in t; v \le u} (k_v(t') - 1) + \sum_{v \in R_u(t)} (-1).$$

From this we obtain  $\operatorname{card}(R_u(t)) = 1 + \sum_{v \in I; v \leq u} (k_v(t') - 1)$ . We deduce from the definition of  $\tilde{X}$  that  $\operatorname{card}(R_{u_0})$  is distributed as  $\tilde{X}$ . We deduce from the first part of the proof that conditionally on  $\operatorname{card}(R_{u_0})$ , the distribution of  $\operatorname{card}(R_{u_0}^{\mathcal{M}(\tau^0)})$  is binomial with parameter  $\operatorname{card}(R_{u_0}(\tau^0))$ ,  $\gamma$ ). It follows that the offspring distribution of  $\tilde{\tau}$  is given by the law of Y.  $\square$ 

## **Lemma 4.5.** The GW tree $\tilde{\tau}$ is critical.

*Proof.* Since the offspring distribution is the law of Y, we need to check that  $\mathbb{E}[Y] = 1$  is  $\gamma \mathbb{E}[\tilde{X}] = 1$  since Y is conditionally on  $\tilde{X}$  binomial with parameter  $(\tilde{X}, \gamma)$ .

Recall that N has finite expectation as  $\mathbb{P}(Z_1 = 1) > 0$ , is not independent of  $(X_i)_{i \in \mathbb{N}^*}$ , and is a stopping time with respect to the filtration generated by  $((X_i, Z_i), i \in \mathbb{N}^*)$ . Using Wald's equality and  $\mathbb{E}[X_i] = 1$ , we obtain  $\mathbb{E}[\sum_{i=1}^N (X_i - 1)] = 0$  and, thus, using the definition of  $\tilde{X}$  as well as (4.8),

$$\gamma \mathbb{E}[\tilde{X}] = \gamma + \mathbb{E}\left[\sum_{i=1}^{N} (X_i - 1) \mathbf{1}_{\{N \le G\}}\right] = \gamma - \mathbb{E}\left[\sum_{i=1}^{N} (X_i - 1) \mathbf{1}_{\{N > G\}}\right].$$

We have

$$\mathbb{E}\left[\sum_{i=1}^{N} (X_i - 1) \mathbf{1}_{\{N > G\}}\right] = \mathbb{E}\left[\sum_{i=1}^{G} (X_i - 1) \mathbf{1}_{\{N > G\}}\right] + \mathbb{P}(N > G) \mathbb{E}\left[\sum_{i=1}^{N} (X_i - 1)\right]$$

$$= -\mathbb{P}(N > G)$$

$$= \gamma - 1,$$

where we used the strong Markov property of  $((X_i, Z_i), i \in \mathbb{N}^*)$  at the stopping time G for the first equation, the definition of T and Wald's equality for the second, and (4.8) for the third. We deduce that  $\mathbb{E}[Y] = \gamma \mathbb{E}[\tilde{X}] = 1$ , which completes the proof.

### 4.4. Proof of (4.3)

According to Lemma 4.3 and (4.6), it follows that  $M(\tau^0)$  is distributed as the total size of a critical GW whose offspring distribution satisfies (2.1). The proof of Proposition 4.3 of [1] (see Equation (4.15) in [1]) entails that if  $\tau'$  is a critical GW tree, then, if d denotes the span of the random variable  $\operatorname{card}(\tau') - 1$ , we have

$$\lim_{n \to \infty} \frac{\mathbb{P}(\operatorname{card}(\tau') \in [n+1, n+1+d))}{\mathbb{P}(\operatorname{card}(\tau') \in [n, n+d))} = 1.$$

#### 5. Protected nodes

Recall that a node of a tree t is protected if it is not a leaf and none of its offspring is a leaf. We denote by A(t) the number of protected nodes of the tree t.

**Theorem 5.1.** Let  $\tau$  be a critical GW tree with offspring distribution p satisfying (2.1) and let  $\tau^*$  be the associated Kesten's tree. Let  $\tau_n$  be a random tree distributed as  $\tau$  conditionally given  $\{A(\tau) = n\}$ . Then

$$\lim_{n\to+\infty}\operatorname{dist}(\tau_n)=\operatorname{dist}(\tau^*).$$

*Proof.* Note that  $\mathbb{P}(A(\tau) = n) > 0$  for all  $n \in \mathbb{N}$ . Note that the functional A satisfies the additive property of [1], namely, for every  $t \in \mathbb{T}$ , every  $x \in \mathcal{L}_0(t)$ , and every  $t' \in \mathbb{T}$  that is not reduced to the root, we have

$$A(t \circledast_{x} t') = A(t) + A(t') + D(t, x),$$
 (5.1)

where D(t, x) = 1 if x is the only child of its first ancestor which is a leaf (therefore, this ancestor becomes a protected node in  $t \circledast_x t'$ ) and D(t, x) = 0 otherwise. According to Theorem 3.1 of [1], to complete the proof it is enough to check that

$$\lim_{n \to +\infty} \frac{\mathbb{P}(A(\tau) = n + 1)}{\mathbb{P}(A(\tau) = n)} = 1.$$
 (5.2)

For a tree  $t \neq \{\emptyset\}$ , let  $t_{\mathbb{N}^*} = \phi(t, t \setminus \mathcal{L}_0(t))$  be the tree obtained from t by removing the leaves. Let  $\tau^0$  be a random tree distributed as  $\tau$  conditioned to  $\{k_{\varnothing}(\tau) > 0\}$ . Using Theorem 6 and Corollary 2 of [8] with  $A = \mathbb{N}^*$  (or Lemma 4.3 with  $q(k) = \mathbf{1}_{\{k>0\}}$ ), it follows that  $\tau_{\mathbb{N}^*}^0$  is a critical GW tree with offspring distribution

$$p_{\mathbb{N}^*}(k) = \sum_{n=\max(k,1)}^{+\infty} p(n) \binom{n}{k} (p(0))^{n-k} (1-p(0))^{k-1}, \qquad k \in \mathbb{N}.$$



FIGURE 2: The trees  $\tau^0$ ,  $\tau^0_{\mathbb{N}^*}$ , and  $\hat{\tau}$ .

Conditionally given  $\{\tau_{\mathbb{N}^*}^0 = t\}$ , we consider independent random variables  $(W(u), u \in t)$  taking values in  $\mathbb{N}^*$  whose distributions are given, for all  $u \in t$ , by  $\mathbb{P}(W(u) = 0) = 0$  for  $k_u(t) = 0$  and otherwise, for  $k_u(t) + n > 0$  (remark that  $p_{\mathbb{N}^*}(k_u(t)) > 0$ ), by

$$\mathbb{P}(W(u) = n) = \frac{p(k_u(t) + n)}{p_{\mathbb{N}^*}(k_u(t))} \binom{k_u(t) + n}{n} p(0)^n (1 - p(0))^{k_u(t) - 1}.$$

In particular, for  $k_u(t) > 0$ , we have

$$\mathbb{P}(W(u) = 0) = \frac{p(k_u(t))}{p_{\mathbb{N}^*}(k_u(t))} (1 - p(0))^{k_u(t) - 1}.$$
 (5.3)

Then, we define a new tree  $\hat{\tau}$  by grafting, on every vertex u of  $\tau_{\mathbb{N}^*}^0$ , W(u) leaves in a uniform manner; see Figure 2.

More precisely, given  $\tau_{\mathbb{N}^*}^0$  and  $(W(u), u \in \tau_{\mathbb{N}^*}^0)$ , we define a tree  $\hat{\tau}$  and a random map  $\psi: \tau_{\mathbb{N}^*}^0 \longmapsto \hat{\tau}$  recursively in the following way. We set  $\psi(\varnothing) = \varnothing$ . Then, given  $k_\varnothing(\tau_{\mathbb{N}^*}^0) = k$ , we set  $k_\varnothing(\hat{\tau}) = k + W(\varnothing)$ . We also consider a family  $(i_1, \ldots, i_k)$  of integer-valued random variables such that  $(i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, W(u) + k + 1 - i_k)$  is a uniform positive partition of W(u) + k + 1. Then, for every  $j \le k$  such that  $j \notin \{i_1, \ldots, i_k\}$ , we set  $k_j(\hat{\tau}) = 0$ , i.e. these are leaves of  $\hat{\tau}$ . For every  $1 \le j \le k$ , we set  $\psi(j) = i_j$  and apply to them the same construction as for the root and so on.

**Lemma 5.1.** The new tree  $\hat{\tau}$  is distributed as the original tree  $\tau^0$ .

*Proof.* Let  $t \in \mathbb{T}_0$ . As  $\mathbb{P}(\hat{\tau} = \{\emptyset\}) = 0$ , we assume that  $k_{\emptyset}(t) > 0$ . Let  $t_{\mathbb{N}^*}$  be the tree obtained from t by removing the leaves. Using (4.7), we have

$$\mathbb{P}(\hat{\tau} = t) = \prod_{u \in t_{\mathbb{N}^*}} p_{\mathbb{N}^*}(k_u(t_{\mathbb{N}^*})) \mathbb{P}(W(u) = k_u(t) - k_u(t_{\mathbb{N}^*})) \binom{k_u(t)}{k_u(t) - k_u(t_{\mathbb{N}^*})}^{-1}$$

$$= \frac{\mathbb{P}(\tau = t)}{1 - p(0)}$$

$$= \mathbb{P}(\tau^0 = t).$$

Note that the protected nodes of  $\hat{\tau}$  are exactly the nodes of  $\tau_{\mathbb{N}^*}^0$  on which we did not add leaves, i.e. for which W(u) = 0. If we set  $\mathcal{M}(\tau_{\mathbb{N}^*}^0) = \{u \in \tau_{\mathbb{N}^*}^0, \ W(u) = 0\}$ , we have  $M(\tau_{\mathbb{N}^*}^0) = A(\hat{\tau})$ . Using (5.3), we find that the corresponding mark function q is given by

$$q(k) = \frac{p(k)(1 - p(0))^{k-1}}{p_{\mathbb{N}^*}(k)} \mathbf{1}_{\{k \ge 1\}}.$$

As  $\hat{\tau}$  is distributed as  $\tau^0$ , we have

$$\lim_{n\to+\infty}\frac{\mathbb{P}(A(\tau^0)=n+1)}{\mathbb{P}(A(\tau^0)=n)}=\lim_{n\to+\infty}\frac{\mathbb{P}(A(\hat{\tau})=n+1)}{\mathbb{P}(A(\hat{\tau})=n)}=\lim_{n\to+\infty}\frac{\mathbb{P}(M(\tau^0_{\mathbb{N}^*})=n+1)}{\mathbb{P}(M(\tau^0_{\mathbb{N}^*})=n)}.$$

As  $\tau_{\mathbb{N}^*}^0$  is a critical GW tree, from Lemma 4.1 we deduce that

$$\lim_{n\to+\infty}\frac{\mathbb{P}(M(\tau_{\mathbb{N}^*}^0)=n+1)}{\mathbb{P}(M(\tau_{\mathbb{N}^*}^0)=n)}=1.$$

As 
$$\mathbb{P}(A(\tau) = n) = \mathbb{P}(A(\tau) = n \mid k_{\varnothing}(\tau) > 0)\mathbb{P}(k_{\varnothing}(\tau) > 0)$$
 and  $\mathbb{P}(A(\tau) = n \mid k_{\varnothing}(\tau) > 0) = \mathbb{P}(A(\tau^0) = n)$  for  $n \ge 2$ , we obtain (5.2) and, hence, complete the proof.

## Acknowledgement

We would like to thank the anonymous referee for his/her useful comments which helped to improve the paper.

#### References

- [1] ABRAHAM, R. AND DELMAS, J.-F. (2014). Local limits of conditioned Galton–Watson trees: the infinite spine case. *Electron. J. Prob.* **19**, 19 pp.
- [2] ABRAHAM, R. AND DELMAS, J.-F. (2015). An introduction to Galton-Watson trees and their local limits. Lecture given in Hammamet, December 2014. Available at https://arxiv.org/abs/1506.05571.
- [3] DEVROYE, L. AND JANSON, S. (2014). Protected nodes and fringe subtrees in some random trees. *Electron. Commun. Prob.* 19, 10 pp.
- [4] HE, X. (2015). Local convergence of critical random trees and continuous-state branching processes. Preprint Available at https://arxiv.org/abs/1503.00951.
- [5] JANSON, S. (2016). Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees. Random Structures Algorithms 48, 57–101.
- [6] KESTEN, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Prob. Statist. 22, 425–487.
- [7] NEVEU, J. (1986). Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Prob. Statist. 22, 199-207.
- [8] RIZZOLO, D. (2015). Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set. Ann. Inst. H. Poincaré Prob. Statist. 51, 512–532.