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Abstract

Given a general critical or sub-critical branching mechanism, we define a pruning procedure

of the associated Lévy continuum random tree. This pruning procedure is defined by adding

some marks on the tree, using Lévy snake techniques. We then prove that the resulting sub-

tree after pruning is still a Lévy continuum random tree. This last result is proved using the

exploration process that codes the CRT, a special Markov property and martingale problems for

exploration processes. We finally give the joint law under the excursion measure of the lengths

of the excursions of the initial exploration process and the pruned one.
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Continuous state branching processes (CSBP) were first introduced by Jirina [25] and it is known

since Lamperti [27] that these processes are the scaling limits of Galton-Watson processes. They

hence model the evolution of a large population on a long time interval. The law of such a process

is characterized by the so-called branching mechanism function ψ. We will be interested mainly in

critical or sub-critical CSBP. In those cases, the branching mechanism ψ is given by

ψ(λ) = αλ+ βλ2+

∫

(0,+∞)

π(dℓ)
�

e−λℓ−1+λℓ
�

, λ ≥ 0, (1)

with α ≥ 0, β ≥ 0 and the Lévy measure π is a positive σ-finite measure on (0,+∞) such that∫
(0,+∞)

(ℓ ∧ ℓ2)π(dℓ) <∞. We shall say that the branching mechanism ψ has parameter (α,β ,π).

Let us recall that α represents a drift term, β is a diffusion coefficient and π describes the jumps of

the CSBP.

As for discrete Galton-Watson processes, we can associate with a CSBP a genealogical tree, see [30]

or [22]. These trees can be considered as continuum random trees (CRT) in the sense that the

branching points along a branch form a dense subset. We call the genealogical tree associated with

a branching mechanism ψ the ψ-Lévy CRT (the term “Lévy” will be explained later). The prototype

of such a tree is the Brownian CRT introduced by Aldous [9].

In a discrete setting, it is easy to consider and study a percolation on the tree (for instance, see

[11] for percolation on the branches of a Galton-Watson tree, or [6] for percolation on the nodes

of a Galton-Watson tree). The goal of this paper is to introduce a general pruning procedure of a

genealogical tree associated with a branching mechanismψ of the form (1), which is the continuous

analogue of the previous percolation (although no link is actually made between both). We first add

some marks on the skeleton of the tree according to a Poisson measure with intensity α1λ where λ is

the length measure on the tree (see the definition of that measure further) and α1 is a non-negative

parameter. We next add some marks on the nodes of infinite index of the tree: with such a node s
is associated a “weight” say ∆s (see later for a formal definition), each infinite node is then marked

with probability p(∆s) where p is a non-negative measurable function satisfying the integrability

condition ∫

(0,+∞)

ℓ p(ℓ)π(dℓ)<+∞. (2)

We then prune the tree according to these marks and consider the law of the pruned subtree con-

taining the root. The main result of the paper is the following theorem:

Theorem 0.1. Let ψ be a (sub)-critical branching mechanism of the form (1). We define

dπ0(x) :=
�
1− p(x)

�
dπ(x) (3)

α0 := α+α1+

∫

(,+∞)

ℓp(ℓ)π(dℓ) (4)

and set

ψ0(λ) = α0λ+ βλ+

∫

(0,+∞)

π0(dℓ)
�

e−λℓ−1+λℓ
�

(5)

which is again a branching mechanism of a critical or subcritical CSBP.

Then, the pruned subtree is a Lévy-CRT with branching mechanism ψ0.
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In order to make the previous statement more rigorous, we must first describe more precisely the

geometric structure of a continuum random tree and define the so-called exploration process that

codes the CRT in the next subsection. In a second subsection, we describe the pruning procedure

and state rigorously the main results of the paper. Eventually, we give some biological motivations

for studying the pruning procedure and other applications of this work.

0.1 The Lévy CRT and its coding by the exploration process

We first give the definition of a real tree, see e.g. [24] or [28].

Definition 0.2. A metric space (T , d) is a real tree if the following two properties hold for every
v1, v2 ∈ T .

(i) There is a unique isometric map fv1,v2
from [0, d(v1, v2)] into T such that

fv1,v2
(0) = v1 and fv1,v2

(d(v1, v2)) = v2.

(ii) If q is a continuous injective map from [0,1] into T such that q(0) = v1 and q(1) = v2, then we
have

q([0,1]) = fv1,v2
([0, d(v1, v2)]).

A rooted real tree is a real tree (T , d) with a distinguished vertex v; called the root.

Let (T , d) be a rooted real tree. The range of the mapping fv1,v2
is denoted by [[v1, v2, ]] (this is

the line between v1 and v2 in the tree). In particular, for every vertex v ∈ T , [[v;, v]] is the path

going from the root to v which we call the ancestral line of vertex v. More generally, we say that a

vertex v is an ancestor of a vertex v′ if v ∈ [[v;, v′]]. If v, v′ ∈ T , there is a unique a ∈ T such that

[[v;, v]]∩[[v;, v′]] = [[v;, a]]. We call a the most recent common ancestor of v and v′. By definition,

the degree of a vertex v ∈ T is the number of connected components of T \{v}. A vertex v is called

a leaf if it has degree 1. Finally, we set λ the one-dimensional Hausdorff measure on T .

The coding of a compact real tree by a continuous function is now well known and is a key tool

for defining random real trees. We consider a continuous function g : [0,+∞) −→ [0,+∞) with

compact support and such that g(0) = 0. We also assume that g is not identically 0. For every

0≤ s ≤ t, we set

mg(s, t) = inf
u∈[s,t]

g(u),

and

dg(s, t) = g(s) + g(t)− 2mg(s, t).

We then introduce the equivalence relation s ∼ t if and only if dg(s, t) = 0. Let Tg be the quotient

space [0,+∞)/ ∼. It is easy to check that dg induces a distance on Tg . Moreover, (Tg , dg) is a

compact real tree (see [21], Theorem 2.1). The function g is the so-called height process of the tree

Tg . This construction can be extended to more general measurable functions.

In order to define a random tree, instead of taking a tree-valued random variable, it suffices to take

a stochastic process for g. For instance, when g is a normalized Brownian excursion, the associated

real tree is Aldous’ CRT [10].
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The construction of a height process that codes a tree associated with a general branching mecha-

nism is due to Le Gall and Le Jan [30]. Let ψ be a branching mechanism given by (1) and let X be

a Lévy process with Laplace exponent ψ: E[e−λX t ] = etψ(λ) for all λ ≥ 0. Following [30], we also

assume that X is of infinite variation a.s. which implies that β > 0 or
∫
(0,1)

ℓπ(dℓ) =∞. Notice that

these conditions are satisfied in the stable case: ψ(λ) = λc , c ∈ (1,2] (the quadratic case ψ(λ) = λ2

corresponds to the Brownian case).

We then set

Ht = lim inf
ǫ→0

1

ǫ

∫ t

0

1{Xs<I s
t+ǫ}

ds (6)

where for 0≤ s ≤ t, I s
t = infs≤r≤t X r . If the additional assumption

∫ +∞

1

du

ψ(u)
<∞ (7)

holds, then the process H admits a continuous version. In this case, we can consider the real

tree associated with an excursion of the process H and we say that this real tree is the Lévy CRT

associated with ψ. If we set La
t (H) the local time time of the process H at level a and time t and

Tx = inf{t ≥ 0, L0
t (H) = x}, then the process (La

Tx
(H), a ≥ 0) is a CSBP starting from x with

branching mechanism ψ and the tree with height process H can be viewed as the genealogical tree

of this CSBP. Let us remark that the latter property also holds for a discontinuous H (i.e. if (7)

doesn’t hold) and we still say that H describes the genealogy of the CSBP associated with ψ.

In general, the process H is not a Markov process. So, we introduce the so-called exploration process

ρ = (ρt , t ≥ 0) which is a measure-valued process defined by

ρt(dr) = β1[0,Ht]
(r) dr +

∑

0<s≤t
Xs−<I s

t

(I s
t − Xs−)δHs

(dr). (8)

The height process can easily be recovered from the exploration process as Ht = H(ρt), where H(µ)
denotes the supremum of the closed support of the measure µ (with the convention that H(0) = 0).

If we endow the set M f (R+) of finite measures on R+ with the topology of weak convergence,

then the exploration process ρ is a càd-làg strong Markov process inM f (R+) (see [22], Proposition

1.2.3).

To understand the meaning of the exploration process, let us use the queuing system representation

of [30] when β = 0. We consider a preemptive LIFO (Last In, First Out) queue with one server.

A jump of X at time s corresponds to the arrival of a new customer requiring a service equal to

∆s := Xs − Xs−. The server interrupts his current job and starts immediately the service of this new

customer (preemptive LIFO procedure). When this new service is finished, the server will resume

the previous job. When π is infinite, all services will suffer interruptions. The customer (arrived at

time) s will still be in the system at time t > s if and only if Xs− < inf
s≤r≤t

X r and, in this case, the

quantity ρt({Hs}) represents the remaining service required by the customer s at time t. Observe

that ρt([0, Ht]) corresponds to the load of the server at time t and is equal to X t − It where

It = inf{Xu, 0≤ u≤ t}.

In view of the Markov property of ρ and the Poisson representation of Lemma 1.6, we can view ρt

as a measure placed on the ancestral line of the individual labeled by t which gives the intensity
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of the sub-trees that are grafted “on the right” of this ancestral line. The continuous part of the

measure ρt gives binary branching points (i.e. vertex in the tree of degree 3) which are dense along

that ancestral line since the excursion measure N that appears in Lemma 1.6 is an infinite measure,

whereas the atomic part of the measure ρt gives nodes of infinite degree for the same reason.

Consequently, the nodes of the tree coded by H are of two types : nodes of degree 3 and nodes of

infinite degree. Moreover, we see that each node of infinite degree corresponds to a jump of the Lévy

process X and so we associate to such a node a “weight” given by the height of the corresponding

jump of X (this will be formally stated in Section 1.4). From now-on, we will only handle the

exploration process although we will often use vocabulary taken from the real tree (coded by this

exploration process). In particular, the theorems will be stated in terms of the exploration process

and also hold when H is not continuous.

0.2 The pruned exploration process

We now consider the Lévy CRT associated with a general critical or sub-critical branching mechanism

ψ (or rather the exploration process that codes that tree) and we add marks on the tree. There will

be two kinds of marks: some marks will be set only on nodes of infinite degrees whereas the others

will be ’uniformly distributed’ on the skeleton on the tree.

0.2.1 Marks on the nodes

Let p : [0,+∞) −→ [0,1] be a measurable function satisfying condition (2). Recall that each node

of infinite degree of the tree is associated with a jump ∆s of the process X . Conditionally on X , we

mark such a node with probability p(∆s), independently of the other nodes.

0.2.2 Marks on the skeleton

Let α1 be a non-negative constant. The marks associated with these parameters will be distributed

on the skeleton of the tree according to a Poisson point measure with intensity α1λ(dr) (recall that

λ denotes the one-dimensional Hausdorff measure on the tree).

0.2.3 The marked exploration process

As we don’t use the real trees framework but only the exploration processes that codes the Lévy

CRTs, we must describe all these marks in term of exploration processes. Therefore, we define a

measure-valued process

S := ((ρt , mnod
t , mske

t ), t ≥ 0)

called the marked exploration process where the process ρ is the usual exploration process whereas

the processes mnod and mske keep track of the marks, respectively on the nodes and on the skeleton

of the tree.

The measure mnod
t is just the sum of the Dirac measure of the marked nodes (up to some weights

for technical reasons) which are the ancestors of t.

To define the measure mske
t , we first consider a Lévy snake (ρt ,Wt)t≥0 with spatial motion W a

Poisson process of parameter α1 (see [22], Chapter 4 for the definition of a Lévy snake). We then
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define the measure mske
t as the derivative of the function Wt . Let us remark that in [22], the height

process is supposed to be continuous for the construction of Lévy snakes. We explain in the appendix

how to remove this technical assumption.

0.2.4 Main result

We denote by At the Lebesgue measure of the set of the individuals prior to t whose lineage does

not contain any mark i.e.

At =

∫ t

0

1{mnod
s =0,mske

s =0}ds.

We consider its right-continuous inverse Ct := inf{r ≥ 0, Ar > t} and we define the pruned explo-

ration process ρ̃ by

∀t ≥ 0, ρ̃t = ρCt
.

In other words, we remove from the CRT all the individuals who have a marked ancestor, and the

exploration process ρ̃ codes the remaining tree.

We can now restate Theorem 0.1 rigorously in terms of exploration processes.

Theorem 0.3. The pruned exploration process ρ̃ is distributed as the exploration process associated
with a Lévy process with Laplace exponent ψ0.

The proof relies on a martingale problem for ρ̃ and a special Markov property, Theorem 3.2. Roughly

speaking, the special Markov property gives the conditional distribution of the individuals with

marked ancestors with respect to the tree of individuals with no marked ancestors. This result is

of independent interest. Notice the proof of this result in the general setting is surprisingly much

more involved than the previous two particular cases: the quadratic case (see Proposition 6 in [7]

or Proposition 7 in [16]) and the case without quadratic term (see Theorem 3.12 in [2]).

Finally, we give the joint law of the length of the excursion of the exploration process and the length

of the excursion of the pruned exploration process, see Proposition 5.1.

0.3 Motivations and applications

A first approach for this construction is to consider the CSBP Y 0 associated with the pruned explo-

ration process ρ̃ as an initial Eve-population which undergoes some neutral mutations (the marks on

the genealogical tree) and the CSBP Y denotes the total population (the Eve-one and the mutants)

associated with the exploration process ρ. We see that, from our construction, we have

Y 0
0 = Y0, and ∀t ≥ 0, Y 0

t ≤ Yt .

The condition

dπ0(x) = (1− p(x))dπ(x)

means that, when the population Y 0 jumps, so does the population Y . By these remarks, we can see

that our pruning procedure is quite general. Let us however remark that the coefficient diffusion

β is the same for ψ and ψ0 which might imply that more general prunings exist (in particular, we

would like to remove some of the vertices of index 3).
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As we consider general critical or sub-critical branching mechanism, this work extends previous

work from Abraham and Serlet [7] on Brownian CRT (π= 0) and Abraham and Delmas [2] on CRT

without Brownian part (β = 0). See also Bertoin [14] for an approach using Galton-Watson trees

and p = 0, or [4] for an approach using CSBP with immigration. Let us remark that this paper goes

along the same general ideas as [2] (the theorems and the intermediate lemmas are the same) but

the proofs of each of them are more involved and use quite different techniques based on martingale

problem.

This work has also others applications. Our method separates in fact the genealogical tree associated

with Y into several components. For some values of the parameters of the pruning procedure, we

can construct via our pruning procedure, a fragmentation process as defined by Bertoin [13] but

which is not self-similar, see for instance [7; 2; 31]. On the other hand, we can view our method

as a manner to increase the size of a tree, starting from the CRT associated with ψ0 to get the CRT

associated with ψ. We can even construct a tree-valued process which makes the tree grow, starting

from a trivial tree containing only the root up to infinite super-critical trees, see [5].

0.4 Organization of the paper

We first recall in the next Section the construction of the exploration process, how it codes a CRT

and its main properties we shall use. We also define the marked exploration process that is used for

pruning the tree. In Section 2, we define rigorously the pruned exploration process ρ̃ and restate

precisely Theorem 0.3. The rest of the paper is devoted to the proof of that theorem. In Section

3, we state and prove a special Markov property of the marked exploration process, that gives the

law of the exploration process “above” the marks, conditionally on ρ̃. We use this special property

in Section 4 to derive from the martingale problem satisfied by ρ, introduced in [1] when β = 0,

a martingale problem for ρ̃ which allows us to obtain the law of ρ̃. Finally, we compute in the last

section, under the excursion measure, the joint law of the lengths of the excursions of ρ and ρ̃. The

Appendix is devoted to some extension of the Lévy snake when the height process is not continuous.

1 The exploration process: notations and properties

We recall here the construction of the height process and the exploration process that codes a Lévy

continuum random tree. These objects have been introduced in [30; 29] and developed later in

[22]. The results of this section are mainly extracted from [22], but for Section 1.4.

We denote by R+ the set of non-negative real numbers. LetM (R+) (resp.M f (R+)) be the set of σ-

finite (resp. finite) measures on R+, endowed with the topology of vague (resp. weak) convergence.

If E is a Polish space, let B(E) (resp. B+(E)) be the set of real-valued measurable (resp. and non-

negative) functions defined on E endowed with its Borel σ-field. For any measure µ ∈M (R+) and

f ∈B+(R+), we write

〈µ, f 〉=

∫
f (x)µ(d x).
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1.1 The underlying Lévy process

We consider a R-valued Lévy process X = (X t , t ≥ 0) starting from 0. We assume that X is the

canonical process on the Skorohod space D(R+,R) of càd-làg real-valued paths, endowed with

the canonical filtration. The law of the process X starting from 0 will be denoted by P and the

corresponding expectation by E. Most of the following facts on Lévy processes can be found in [12].

In this paper, we assume that X

• has no negative jumps,

• has first moments,

• is of infinite variation,

• does not drift to +∞.

The law of X is characterized by its Laplace transform:

∀λ ≥ 0, E
�

e−λX t
�
= etψ(λ)

where, as X does not drift to +∞, its Laplace exponent ψ can then be written as (1), where the

Lévy measure π is a Radon measure on R+ (positive jumps) that satisfies the integrability condition

∫

(0,+∞)

(ℓ∧ ℓ2)π(dℓ)< +∞

(X has first moments), the drift coefficient α is non negative (X does not drift to +∞) and β ≥ 0. As

we ask for X to be of infinite variation, we must additionally suppose that β > 0 or
∫
(0,1)

ℓπ(dℓ) =
+∞.

As X is of infinite variation, we have, see Corollary VII.5 in [12],

lim
λ→∞

λ

ψ(λ)
= 0. (9)

Let I = (It , t ≥ 0) be the infimum process of X , It = inf0≤s≤t Xs, and let S = (St , t ≥ 0) be the

supremum process, St = sup0≤s≤t Xs. We will also consider for every 0 ≤ s ≤ t the infimum of X
over [s, t]:

I s
t = inf

s≤r≤t
X r .

We denote by J the set of jumping times of X :

J = {t ≥ 0, X t > X t−} (10)

and for t ≥ 0 we set ∆t := X t − X t− the height of the jump of X at time t. Of course, ∆t > 0 ⇐⇒
t ∈ J .

The point 0 is regular for the Markov process X − I , and −I is the local time of X − I at 0 (see [12],

chap. VII). Let N be the associated excursion measure of the process X − I away from 0, and let
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σ = inf{t > 0; X t − It = 0} be the length of the excursion of X − I under N. We will assume that

under N, X0 = I0 = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S − X . The local time

L = (Lt , t ≥ 0) of S − X at 0 will be normalized so that

E[e
−λS

L−1
t ] = e−tψ(λ)/λ,

where L−1
t = inf{s ≥ 0; Ls ≥ t} (see also [12] Theorem VII.4 (ii)).

1.2 The height process

We now define the height process H associated with the Lévy process X . Following [22], we give an

alternative definition of H instead of those in the introduction, formula (6).

For each t ≥ 0, we consider the reversed process at time t, X̂ (t) = (X̂ (t)s , 0≤ s ≤ t) by:

X̂ (t)s = X t − X(t−s)− if 0≤ s < t,

with the convention X0− = X0. The two processes (X̂ (t)s , 0≤ s ≤ t) and (Xs, 0≤ s ≤ t) have the same

law. Let Ŝ(t) be the supremum process of X̂ (t) and L̂(t) be the local time at 0 of Ŝ(t) − X̂ (t) with the

same normalization as L.

Definition 1.1. ([22], Definition 1.2.1)
There exists a lower semi-continuous modification of the process ( L̂(t), t ≥ 0). We denote by (Ht , t ≥ 0)

this modification.

This definition gives also a modification of the process defined by (6) (see [22], Lemma 1.1.3). In

general, H takes its values in [0,+∞], but we have, a.s. for every t ≥ 0, Hs < ∞ for every s < t
such that Xs− ≤ I s

t , and Ht <+∞ if ∆t > 0 (see [22], Lemma 1.2.1). The process H does not admit

a continuous version (or even càd-làg) in general but it has continuous sample paths P-a.s. iff (7) is

satisfied, see [22], Theorem 1.4.3.

To end this section, let us remark that the height process is also well-defined under the excursion

process N and all the previous results remain valid under N.

1.3 The exploration process

The height process is not Markov in general. But it is a very simple function of a measure-valued

Markov process, the so-called exploration process.

The exploration process ρ = (ρt , t ≥ 0) is aM f (R+)-valued process defined as follows: for every

f ∈B+(R+), 〈ρt , f 〉=
∫
[0,t]

ds I
s
t f (Hs), or equivalently

ρt(dr) = β1[0,Ht]
(r) dr +

∑

0<s≤t
Xs−<I s

t

(I s
t − Xs−)δHs

(dr). (11)

In particular, the total mass of ρt is 〈ρt , 1〉= X t − It .

For µ ∈M (R+), we set

H(µ) = sup Supp µ, (12)

where Supp µ is the closed support of µ, with the convention H(0) = 0. We have
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Proposition 1.2. ([22], Lemma 1.2.2 and Formula (1.12))
Almost surely, for every t > 0,

• H(ρt) = Ht ,

• ρt = 0 if and only if Ht = 0,

• if ρt 6= 0, then Supp ρt = [0, Ht].

• ρt = ρt− +∆tδHt
, where ∆t = 0 if t 6∈ J .

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0 a.s. To state the

Markov property of ρ, we must first define the process ρ started at any initial measure µ ∈M f (R+).

For a ∈ [0, 〈µ, 1〉], we define the erased measure kaµ by

kaµ([0, r]) = µ([0, r])∧ (〈µ, 1〉 − a), for r ≥ 0. (13)

If a > 〈µ, 1〉, we set kaµ = 0. In other words, the measure kaµ is the measure µ erased by a mass a
backward from H(µ).

For ν ,µ ∈M f (R+), and µ with compact support, we define the concatenation [µ,ν] ∈M f (R+) of

the two measures by:



[µ,ν], f

�
=


µ, f

�
+


ν , f (H(µ) + ·)

�
, f ∈B+(R+).

Finally, we set for every µ ∈M f (R+) and every t > 0,

ρ
µ
t =

�
k−It

µ,ρt]. (14)

We say that (ρ
µ
t , t ≥ 0) is the process ρ started at ρ

µ
0 = µ, and write Pµ for its law. Unless there is

an ambiguity, we shall write ρt for ρ
µ
t .

Proposition 1.3. ([22], Proposition 1.2.3)
For any initial finite measure µ ∈M f (R+), the process (ρµt , t ≥ 0) is a càd-làg strong Markov process
inM f (R+).

Remark 1.4. From the construction of ρ, we get that a.s. ρt = 0 if and only if −It ≥ 〈ρ0, 1〉 and

X t − It = 0. This implies that 0 is also a regular point for ρ. Notice that N is also the excursion

measure of the process ρ away from 0, and that σ, the length of the excursion, is N-a.e. equal to

inf{t > 0;ρt = 0}.

Exponential formula for the Poisson point process of jumps of the inverse subordinator of −I gives

(see also the beginning of Section 3.2.2. [22]) that for λ > 0

N
�

1− e−λσ
�
=ψ−1(λ). (15)

1.4 The marked exploration process

As presented in the introduction, we add random marks on the Lévy CRT coded by ρ. There will be

two kinds of marks: marks on the nodes of infinite degree and marks on the skeleton.
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1.4.1 Marks on the skeleton

Let α1 ≥ 0. We want to construct a “Lévy Poisson snake” (i.e. a Lévy snake with spatial motion a

Poisson process), whose jumps give the marks on the branches of the CRT. More precisely, we set W
the space of killed càd-làg paths w : [0,ζ)→ R where ζ ∈ (0,+∞) is called the lifetime of the path

w. We equipW with a distance d (defined in [22] Chapter 4 and whose expression is not important

for our purpose) such that (W , d) is a Polish space.

By Proposition 4.4.1 of [22] when H is continuous, or the results of the appendix in the general

case, there exists a probability measure P̃ on Ω̃ = D(R+,M f (R+)×W ) under which the canonical

process (ρs,Ws) satisfies

1. The process ρ is the exploration process starting at 0 associated with a branching mechanism

ψ,

2. For every s ≥ 0, the path Ws is distributed as a Poisson process with intensity α1 stopped at

time Hs := H(ρs),

3. The process (ρ,W ) satisfies the so-called snake property: for every s < s′, conditionally given

ρ, the paths Ws(·) and Ws′(·) coincide up to time Hs,s′ := inf{Hu, s ≤ u ≤ s′} and then are

independent.

So, for every t ≥ 0, the path Wt is a.s. càd-làg with jumps equal to one. Its derivative mske
t is an

atomic measure on [0, Ht); it gives the marks (on the skeleton) on the ancestral line of the individual

labeled t.

We shall denote by Ñ the corresponding excursion measure out of (0,0).

1.4.2 Marks on the nodes

Let p be a measurable function defined on R+ taking values in [0,1] such that

∫

(0,+∞)

ℓp(ℓ) π(dℓ)<∞. (16)

We define the measures π1 and π0 by their density:

dπ1(x) = p(x)dπ(x) and dπ0(x) = (1− p(x))dπ(x).

Let (Ω′,A ′, P′) be a probability space with no atom. Recall that J , defined by (10), denotes the

jumping times of the Lévy process X and that ∆s represents the height of the jump of X at time

s ∈ J . AsJ is countable, we can construct on the product space Ω̃×Ω′ (with the product probability

measure P̃⊗P′) a family (Us, s ∈ J ) of random variables which are, conditionally on X , independent,

uniformly distributed over [0,1] and independent of (∆s, s ∈ J ) and (Ws, s ≥ 0). We set, for every

s ∈ J :

Vs = 1{Us≤p(∆s)}
,

so that, conditionally on X , the family (Vs, s ∈ J ) are independent Bernoulli random variables with

respective parameters p(∆s).
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We set J 1 = {s ∈ J , Vs = 1} the set of the marked jumps and J 0 = J \J 1 = {s ∈ J , Vs = 0} the

set of the non-marked jumps. For t ≥ 0, we consider the measure on R+,

mnod
t (dr) =

∑

0<s≤t, s∈J 1

Xs−<I s
t

�
I s
t − Xs−

�
δHs
(dr). (17)

The atoms of mnod
t give the marked nodes of the exploration process at time t.

The definition of the measure-valued process mnod also holds under Ñ⊗ P′. For convenience, we

shall write P for P̃⊗ P′ and N for Ñ⊗ P′.

1.4.3 Decomposition of X

At this stage, we can introduce a decomposition of the process X . Thanks to the integrability condi-

tion (16) on p, we can define the process X (1) by, for every t ≥ 0,

X (1)t = α1 t +
∑

0<s≤t; s∈J 1

∆s.

The process X (1) is a subordinator with Laplace exponent φ1 given by:

φ1(λ) = α1λ+

∫

(0,+∞)

π1(dℓ)
�

1− e−λℓ
�

, (18)

with π1(d x) = p(x)π(d x). We then set X (0) = X − X (1) which is a Lévy process with Laplace

exponent ψ0, independent of the process X (1) by standard properties of Poisson point processes.

We assume that φ1 6= 0 so that α0 defined by (4) is such that:

α0 > 0. (19)

It is easy to check, using
∫
(0,∞)

π1(dℓ)ℓ <∞, that

lim
λ→∞

φ1(λ)

λ
= α1. (20)

1.4.4 The marked exploration process

We consider the process

S = ((ρt , mnod
t , mske

t ), t ≥ 0)

on the product probability space Ω̃×Ω′ under the probability P and call it the marked exploration

process. Let us remark that, as the process is defined under the probability P, we have ρ0 = 0,

mnod
0 = 0 and mske

0 = 0 a.s.

Let us first define the state-space of the marked exploration process. We consider the set S of triplet

(µ,Π1,Π2) where

• µ is a finite measure on R+,
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• Π1 is a finite measure on R+ absolutely continuous with respect to µ,

• Π2 is a σ-finite measure on R+ such that

– Supp(Π2)⊂ Supp(µ),

– for every x < H(µ), Π2([0, x])< +∞,

– if µ({H(µ)})> 0, Π2(R+)<+∞.

We endow S with the following distance: If (µ,Π1,Π2) ∈ S, we set

w(t) =

∫
1[0,t)(ℓ)Π2(dℓ)

and

w̃(t) = w
�

H(k(〈µ,1〉−t)µ)
�

for t ∈ [0, 〈µ, 1〉).

We then define

d ′((µ,Π1,Π2), (µ
′,Π′1,Π′2)) = d((µ, w̃), (µ′, w̃′)) + D(Π1,Π′1)

where d is the distance defined by (62) and D is a distance that defines the topology of weak

convergence and such that the metric space (M f (R+), D) is complete.

To get the Markov property of the marked exploration process, we must define the process S started

at any initial value of S. For (µ,Πnod,Πske) ∈ S, we set Π = (Πnod,Πske) and Hµt = H(k−It
µ). We

define

(mnod)
(µ,Π)
t =


Πnod1[0,Hµt )

+ 1{µ({Hµt })>0}

k−It
µ({Hµt })Π

nod({Hµt })

µ({Hµt })
δHµt

, mnod
t




and

(mske)
(µ,Π)
t = [Πske1[0,Hµt )

, mske
t ].

Notice the definition of (mske)
(µ,Π)
t is coherent with the construction of the Lévy snake, with W0

being the cumulative function of Πske over [0, H0].

We shall write mnod for (mnod)(µ,Π) and similarly for mske. Finally, we write m = (mnod, mske).

By construction and since ρ is an homogeneous Markov process, the marked exploration process

S = (ρ, m) is an homogeneous Markov process.

From now-on, we suppose that the marked exploration process is defined on the canonical

space (S,F ′) where F ′ is the Borel σ-field associated with the metric d ′. We denote by S =
(ρ, mnod, mske) the canonical process and we denote by Pµ,Π the probability measure under which

the canonical process is distributed as the marked exploration process starting at time 0 from (µ,Π),

and by P∗µ,Π the probability measure under which the canonical process is distributed as the marked

exploration process killed when ρ reaches 0. For convenience we shall write Pµ if Π = 0 and P

if (µ,Π) = 0 and similarly for P∗. Finally, we still denote by N the distribution of S when ρ is

distributed under the excursion measure N.

Let F = (Ft , t ≥ 0) be the canonical filtration. Using the strong Markov property of (X , X (1)) and

Proposition 6.2 or Theorem 4.1.2 in [22] if H is continuous, we get the following result.

Proposition 1.5. The marked exploration process S is a càd-làg S-valued strong Markov process.

Let us remark that the marked exploration process satisfies the following snake property:

P− a.s. (or N− a.e.), (ρt , mt)(· ∩ [0, s]) = (ρt ′ , mt ′)(· ∩ [0, s]) for every 0≤ s < Ht,t ′ . (21)
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1.5 Poisson representation

We decompose the path of S under P∗µ,Π according to excursions of the total mass of ρ above its

past minimum, see Section 4.2.3 in [22]. More precisely, let (ai, bi), i ∈K be the excursion intervals

of X− I above 0 under P∗µ,Π. For every i ∈K , we define hi = Hai
and S̄ i = (ρ̄i, m̄i) by the formulas:

for t ≥ 0 and f ∈B+(R+),

〈ρ̄i
t , f 〉=

∫

(hi ,+∞)

f (x − hi)ρ(ai+t)∧bi
(d x) (22)

〈(m̄a
t )

i, f 〉=

∫

(hi ,+∞)

f (x − hi)m
a
(ai+t)∧bi

(d x), a ∈ {nod, ske}, (23)

with m̄i = ((m̄nod)i, (m̄ske)i). We set σ̄i = inf{s > 0; 〈ρi
s, 1〉 = 0}. It is easy to adapt Lemma 4.2.4. of

[22] to get the following Lemma.

Lemma 1.6. Let (µ,Π) ∈ S. The point measure
∑

i∈K

δ(hi ,S̄
i) is under P∗µ,Π a Poisson point measure with

intensity µ(dr)N[dS ].

1.6 The dual process and representation formula

We shall need theM f (R+)-valued process η = (ηt , t ≥ 0) defined by

ηt(dr) = β1[0,Ht]
(r) dr +

∑

0<s≤t
Xs−<I s

t

(Xs − I s
t )δHs

(dr).

The process η is the dual process of ρ under N (see Corollary 3.1.6 in [22]).

The next Lemma on time reversibility can easily be deduced from Corollary 3.1.6 of [22] and the

construction of m.

Lemma 1.7. Under N, the processes ((ρs,ηs,1{ms=0}), s ∈ [0,σ]) and ((η(σ−s)−,ρ(σ−s)−,

1{m(σ−s)−=0}), s ∈ [0,σ]) have the same distribution.

We present a Poisson representation of (ρ,η, m) under N. Let N0(d x dℓ du), N1(d x dℓ du) and

N2(d x) be independent Poisson point measures respectively on [0,+∞)3, [0,+∞)3 and [0,+∞)
with respective intensity

d x ℓπ0(dℓ)1[0,1](u)du, d x ℓπ1(dℓ)1[0,1](u)du and α1d x .

For every a > 0, let us denote by Ma the law of the pair (µ,ν , mnod, mske) of measures on R+ with

finite mass defined by: for any f ∈B+(R+)

〈µ, f 〉=

∫
�
N0(d x dℓ du) +N1(d x dℓ du)

�
1[0,a](x)uℓ f (x) + β

∫ a

0

f (r) dr, (24)

〈ν , f 〉=

∫
�
N0(d x dℓ du) +N1(d x dℓ du)

�
1[0,a](x)(1− u)ℓ f (x) + β

∫ a

0

f (r) dr, (25)

〈mnod, f 〉=

∫
N1(d x dℓ du)1[0,a](x)uℓ f (x) and 〈mske, f 〉=

∫
N2(d x)1[0,a](x) f (x). (26)
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Remark 1.8. In particular µ(dr) + ν(dr) is defined as 1[0,a](r)dξr , where ξ is a subordinator with

Laplace exponent ψ′−α.

We finally set M =
∫ +∞

0
da e−αaMa. Using the construction of the snake, it is easy to deduce from

Proposition 3.1.3 in [22], the following Poisson representation.

Proposition 1.9. For every non-negative measurable function F onM f (R+)
4,

N

�∫ σ

0

F(ρt ,ηt , mt) d t

�
=

∫
M(dµ dν dm)F(µ,ν , m),

where m= (mnod, mske) and σ = inf{s > 0;ρs = 0} denotes the length of the excursion.

2 The pruned exploration process

We define the following continuous additive functional of the process ((ρt , mt), t ≥ 0):

At =

∫ t

0

1{ms=0} ds for t ≥ 0. (27)

Lemma 2.1. We have the following properties.

(i) For λ > 0, N[1− e−λAσ] =ψ0
−1(λ).

(ii) N-a.e. 0 and σ are points of increase for A. More precisely, N-a.e. for all ǫ > 0, we have Aǫ > 0

and Aσ − A(σ−ǫ)∨0 > 0.

(iii) If limλ→∞φ1(λ) = +∞, then N-a.e. the set {s; ms 6= 0} is dense in [0,σ].

Proof. We first prove (i). Let λ > 0. Before computing v = N[1− exp−λAσ], notice that Aσ ≤ σ
implies, thanks to (15), that v ≤ N[1− exp−λσ] =ψ−1(λ)<+∞. We have

v = λN

�∫ σ

0

dAt e−λ
∫ σ

t
dAu

�
= λN

�∫ σ

0

dAt E
∗
ρt ,0
[e−λAσ]

�
,

where we replaced e−λ
∫ σ

t
dAu in the last equality by E∗ρt ,mt

[e−λAσ], its optional projection, and used

that dAt -a.e. mt = 0. In order to compute this last expression, we use the decomposition of S
under P∗µ according to excursions of the total mass of ρ above its minimum, see Lemma 1.6. Using

the same notations as in this lemma, notice that under P∗µ, we have Aσ = A∞ =
∑

i∈K Āi
∞, where

for every T ≥ 0,

Āi
T =

∫ T

0

1{m̄i
t=0}d t. (28)

By Lemma 1.6, we get

E∗µ[e
−λAσ] = e−〈µ,1〉N[1−exp−λAσ] = e−v〈µ,1〉 .
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We have

v = λN
h∫ σ

0

dAt e−v〈ρt ,1〉
i
= λN

h∫ σ

0

d t 1{mt=0} e
−v〈ρt ,1〉

i
(29)

= λ

∫ +∞

0

da e−αaMa[1{m=0} e
−v〈µ,1〉]

= λ

∫ +∞

0

da e−αa exp

(
−α1a−

∫ a

0

d x

∫ 1

0

du

∫

(0,∞)

ℓ1π1(dℓ1)

)

exp
n
− β va−

∫ a

0

d x

∫ 1

0

du

∫

(0,∞)

ℓ0π0(dℓ0)
�

1− e−vuℓ0

�o

= λ

∫ +∞

0

da exp

(
−a

∫ 1

0

duψ′0(uv)

)
(30)

= λ
v

ψ0(v)
, (31)

where we used Proposition 1.9 for the third and fourth equalities, and for the last equality that

α0 = α+α1+
∫
(0,∞)

ℓ1π1(dℓ1) as well as

ψ′0(λ) = α0+

∫

(0,∞)

π0(dℓ0) ℓ0(1− e−λℓ0). (32)

Notice that if v = 0, then (30) implies v = λ/ψ′0(0), which is absurd since ψ′0(0) = α0 > 0 thanks to

(19). Therefore we have v ∈ (0,∞), and we can divide (31) by v to get ψ0(v) = λ. This proves (i).

Now, we prove (ii). If we let λ goes to infinity in (i) and use that limr→∞ψ0(r) = +∞, then we

get that N[Aσ > 0] = +∞. Notice that for (µ,Π) ∈ S, we have under P∗µ,Π, A∞ ≥
∑

i∈K Āi
∞, with

Āi defined by (28). Thus Lemma 1.6 implies that if µ 6= 0, then P∗µ,Π-a.s. K is infinite and A∞ > 0.

Using the Markov property at time t of the snake under N, we get that for any t > 0, N-a.e. on

{σ > t}, we have Aσ − At > 0. This implies that σ is N-a.e. a point of increase of A. By time

reversibility, see Lemma 1.7, we also get that N-a.e. 0 is a point of increase of A. This gives (ii).

If α1 > 0 then the snake ((ρs,Ws), s ≥ 0) is non trivial. It is well known that, since the Lévy process

X is of infinite variation, the set {s;∃t ∈ [0, Hs), Ws(t) 6= 0} is N-a.e. dense in [0,σ]. This implies

that {s; ms 6= 0} is N-a.e. dense in [0,σ].

If α1 = 0 and π1((0,∞)) =∞, then the set J 1 of jumping time of X is N-a.e. dense in [0,σ]. This

also implies that {s; ms 6= 0} is N-a.e. dense in [0,σ].

If α1 = 0 and π1((0,∞)) <∞, then the set J 1 of jumping time of X is N-a.e. finite. This implies

that {s; ms 6= 0} ∩ [0,σ] is N-a.e. a finite union of intervals, which, thanks to (i), is not dense in

[0,σ].

To get (iii), notice that limλ→∞φ1(λ) =∞ if and only if α1 > 0 or π1((0,∞)) =∞.

We set Ct = inf{r > 0; Ar > t} the right continuous inverse of A, with the convention that inf;=∞.

From excursion decomposition, see Lemma 1.6, (ii) of Lemma 2.1 implies the following Corollary.

Corollary 2.2. For any initial measures (µ,Π) ∈ S, Pµ,Π-a.s. the process (Ct , t ≥ 0) is finite. If m0 = 0,
then Pµ,Π-a.s. C0 = 0.
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We define the pruned exploration process ρ̃ = (ρ̃t = ρCt
, t ≥ 0) and the pruned marked exploration

process S̃ = (ρ̃, m̃), where m̃ = (mCt
, t ≥ 0) = 0. Notice Ct is a F -stopping time for any t ≥ 0 and

is finite a.s. from Corollary 2.2. Notice the process ρ̃, and thus the process S̃ , is càd-làg. We also

set H̃t = HCt
and σ̃ = inf{t > 0; ρ̃t = 0}.

Let F̃ = (F̃t , t ≥ 0) be the filtration generated by the pruned marked exploration process S̃ com-

pleted the usual way. In particular F̃t ⊂ FCt
, where if τ is an F -stopping time, then Fτ is the

σ-field associated with τ.

We are now able to restate precisely Theorem 0.3. Let ρ(0) be the exploration process of a Lévy

process with Laplace exponent ψ0.

Theorem 2.3. For every finite measure µ, the law of the pruned process ρ̃ under Pµ,0 is the law of the

exploration process ρ(0) associated with a Lévy process with Laplace exponent ψ0 under Pµ.

The proof of this Theorem is given at the end of Section 4.

3 A special Markov property

In order to define the excursions of the marked exploration process away from {s ≥ 0; ms = 0}, we

define O as the interior of {s ≥ 0, ms 6= 0}. We shall see that the complementary of O has positive

Lebesgue measure.

Lemma 3.1. (i) If the set {s ≥ 0, ms 6= 0} is non empty then, N-a.e. O is non empty.

(ii) If we have lim
λ→∞

φ1(λ) =∞, then N-a.e. the open set O is dense in [0,σ].

Proof. For any element s′ in {s ≥ 0, ms 6= 0}, there exists u ≤ Hs′ such that ms′([0,u]) 6= 0 and

ρs′([u,∞)) > 0. Then we consider τs′ = inf{t > s′,ρt([u,∞)) = 0}. By the right continuity of ρ,

we have τs′ > s′ and the snake property (21) implies that N-a.e. (s′,τs′)⊂ O.

Use (iii) of Lemma 2.1 to get the last part.

We write O =
⋃

i∈I (αi ,βi) and say that (αi ,βi)i∈I are the excursions intervals of the marked

exploration process S = (ρ, m) away from {s ≥ 0, ms = 0}. For every i ∈ I , let us define the

measure-valued process S i = (ρi, mi). For every f ∈B+(R+), t ≥ 0, we set

〈ρi
t , f 〉=

∫

[Hαi
,+∞)

f (x − Hαi
)ρ(αi+t)∧βi

(d x)

〈(ma)it , f 〉=

∫

(Hαi
,+∞)

f (x − Hαi
)ma
(αi+t)∧βi

(d x) with a∈ {nod, ske}

(33)

and mi
t = ((m

nod)it , (m
ske)it). Notice that the mass located at Hαi

is kept, if there is any, in the

definition of ρi whereas it is removed in the definition of mi . In particular, if ∆αi
> 0, then ρi

0 =

∆αi
δ0 and for every t < βi−αi, the measure ρi

t charges 0. On the contrary, as mi
0 = 0, we have, for

every t < βi −αi , mi
t({0}) = 0.
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Let F̃∞ be the σ-field generated by S̃ = ((ρCt
, mCt

), t ≥ 0). Recall that P∗µ,Π(dS ) denotes the

law of the marked exploration process S started at (µ,Π) ∈ S and stopped when ρ reaches 0. For

ℓ ∈ (0,+∞), we will write P∗
ℓ

for P∗
ℓδ0,0

.

If Q is a measure on S and ϕ is a non-negative measurable function defined on the measurable space

R+ × S× S, we denote by

Q[ϕ(u,ω, ·)] =

∫

S

ϕ(u,ω,S )Q(dS ).

In other words, the integration concerns only the third component of the function ϕ.

We can now state the Special Markov Property.

Theorem 3.2 (Special Markov property). Let ϕ be a non-negative measurable function defined on
R+ ×M f (R+)× S. Then, we have P-a.s.

E


exp

 
−
∑

i∈I

ϕ(Aαi
,ραi−

,S i)

! ���� F̃∞




= exp

�
−

∫ ∞

0

duα1N
�

1− e−ϕ(u,µ,·)
�
|µ=ρ̃u

�

exp

 
−

∫ ∞

0

du

∫

(0,∞)

π1(dℓ)
�

1−E∗ℓ[e
−ϕ(u,µ,·)]|µ=ρ̃u

�
!

. (34)

In other words, the law under P of the excursion process
∑

i∈I

δ(Aαi
,ραi−

,S i)(du dµ dS ), given F̃∞, is the

law of a Poisson point measure with intensity

1{u≥0}du δρ̃u
(dµ)

 
α1N(dS ) +

∫

(0,∞)

π1(dℓ)P
∗
ℓ(dS )

!
.

Informally speaking, this Theorem gives the distribution of the marked exploration process “above”

the pruned CRT. The end of this section is now devoted to its proof.

Let us first remark that, if limλ→+∞φ1(λ)<+∞, we have α1 = 0 and π1 is a finite measure. Hence,

there is no marks on the skeleton and the number of marks on the nodes is finite on every bounded

interval of time. The proof of Theorem 3.2 in that case is easy and left to the reader. For the rest of

this Section, we assume that limλ→+∞φ1(λ) = +∞.

3.1 Preliminaries

Fix t > 0 and η > 0. For S = (Ss = (ρs, ms), s ≥ 0), we set B = {σ(S ) = +∞} ∪ {Tη(S ) =
+∞} ∪ {Lη(S ) = −∞} where σ(S ) = inf{s > 0;ρs = 0}, Tη(S ) = inf{s ≥ η; 〈ρs, 1〉 ≥ η} and

Lη(S ) = sup{s ∈ [0,σ(S )]; 〈ηs, 1〉 ≥ η}, with the convention inf;=+∞ and sup;=−∞.

We consider non-negative bounded functions ϕ satisfying the assumptions of Theorem 3.2 and these

four conditions:

(h1) ϕ(u,µ,S ) = 0 for any u≥ t.

1446



(h2) u 7→ ϕ(u,µ,S ) is uniformly Lipschitz (with a constant that does not depend on µ and S ).

(h3) ϕ(u,µ,S ) = 0 on B; and if S ∈ Bc then ϕ(u,µ,S ) depends on S only through (Su,u ∈
[Tη, Lη]).

(h4) The function µ 7→ ϕ(u,µ,S ) is continuous with respect to the distance D(µ,µ′) + |〈µ, 1〉 −
〈µ′, 1〉| on M f (R+), where D is a distance on M f (R+) which defines the topology of weak

convergence.

Lemma 3.3. Let ϕ satisfies (h1− h3) and let w be defined on (0,∞)× [0,∞)×M f (R+) by

w(ℓ,u,µ) = E∗ℓ[e
−ϕ(u,µ,·)].

Then, for N− a.e. µ ∈M f (R+), the function (ℓ,u) 7→ w(ℓ,u,µ) is uniformly continuous on (0,∞)×
[0,∞).

Proof. Let u > 0 and ℓ′ > ℓ. If we set τℓ = inf{t ≥ 0, ρt({0}) = ℓ} we have, by the strong Markov

property at time τℓ and assumption (h3), that

E∗
ℓ′

�
e−ϕ(u,µ,·)

�
= E∗

ℓ′

h
1{Tη>τℓ}E

∗
ℓ

�
e−ϕ(u,µ,·)

�i
+E∗

ℓ′

h
e−ϕ(u,µ,·) 1{Tη≤τℓ}

i
.

Therefore,

��w(ℓ′,u,µ)− w(ℓ,u,µ)| ≤ E∗
ℓ′

h
1{Tη≤τℓ}E

∗
ℓ

�
e−ϕ(u,µ,·)

�i
+E∗

ℓ′

h
e−ϕ(u,µ,·) 1{Tη≤τℓ}

i

≤ 2P∗
ℓ′
(Tη ≤ τℓ)

= 2P∗
ℓ′−ℓ
(Tη <+∞).

Using Lemma 1.6, for ℓ′− ℓ < η, we get

|w(ℓ′,u,µ)−w(ℓ,u,µ)| ≤ 2
�

1− e−(ℓ
′−ℓ)N[Tη<∞]

�
.

Since N[Tη < ∞] < ∞, we then deduce there exists a finite constant cη s.t. for all function ϕ

satisfying (h3),

|w(ℓ′,u,µ)−w(ℓ,u,µ)| ≤ cη|ℓ
′− ℓ|. (35)

The absolute continuity with respect to u is a direct consequence of assumptions (h1− h2).

3.2 Stopping times

Let R(d t, du) be a Poisson point measure on R2
+ (defined on (S,F )) independent of F∞ with inten-

sity the Lebesgue measure. We denote by Gt the σ-field generated by R(· ∩ [0, t]×R+). For every

ǫ > 0, the process Rǫt := R([0, t]× [0,1/ǫ]) is a Poisson process with intensity 1/ǫ. We denote by

(eǫk, k ≥ 1) the time intervals between the jumps of (Rǫt , t ≥ 0). The random variables (eǫk, k ≥ 1) are

i.i.d. exponential random variables with mean ǫ, and are independent of F∞. They define a mesh

of R+ which is finer and finer as ǫ decreases to 0.
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For ǫ > 0, we consider T ǫ0 = 0, Mǫ
0 = 0 and for k ≥ 0,

Mǫ
k+1 = inf{i > Mǫ

k ; mT ǫk+
∑i

j=Mǫ
k
+1 eǫj
6= 0},

Sǫk+1 = T ǫk +

Mǫ
k+1∑

j=Mǫ
k+1

eǫj ,

T ǫk+1 = inf{s > Sǫk+1; ms = 0},

(36)

with the convention inf;=+∞. For every t ≥ 0, we set τǫt =

∫ t

0

ds 1⋃
k≥1[T

ǫ
k ,Sǫk+1

)(s) and

F e
t = σ(Ft ∪Gτǫt ). (37)

Notice that T ǫk and Sǫk are F e-stopping times.

Now we introduce a notation for the process defined above the marks on the intervals
�

Sǫk , T ǫk
�

. We

set, for a ≥ 0, H̄a the level of the first mark, ρ−a the restriction of ρa strictly below it and ρ+a the

restriction of ρa above it:

H̄a = sup{t > 0, ma([0, t]) = 0}, ρ−a = ρa(· ∩ [0, H̄a)) (38)

and ρ+a is defined by ρa = [ρ
−
a ,ρ+a ], that is for any f ∈B+(R+),

〈ρ+a , f 〉=

∫

[H̄a ,∞)

f (r − H̄a) ρa(dr). (39)

For k ≥ 1 and ǫ > 0 fixed, we define S k,ǫ =
�
ρk,ǫ, mk,ǫ

�
in the following way: for s > 0 and

f ∈B+(R+)

ρk,ǫ
s = ρ+

(Sǫk+s)∧T ǫk
,

〈(ma)k,ǫ
s , f 〉=

∫

(H̄Sǫ
k
,+∞)

f (r − H̄Sǫk
)ma
(Sǫk+s)∧T ǫk

(dr), with a∈ {nod, ske},

and mk,ǫ
s = ((mnod)k,ǫ

s , (mske)k,ǫ
s ). Notice that ρk,ǫ

s ({0}) = ρSǫk
({H̄Sǫk
}). For k ≥ 1, we consider the

σ-field F (ǫ),k generated by the family of processes
�
S(T ǫ

ℓ
+s)∧Sǫ

ℓ+1
−, s > 0

�
ℓ∈{0,...,k−1}

.

Notice that for k ∈ N∗

F (ǫ),k ⊂F e
Sǫk

. (40)

3.3 Approximation of the functional

Let S be a marked exploration process and g be a function defined on S. We decompose the

path of ρ according to the excursions of the total mass of ρ above its minimum as in Section 1.5,

with a slight difference if the initial measure µ charges {0}. More precisely, we perform the same

decomposition as in Section1.5 until the height process reaches 0. If µ({0}) = 0, then Ht = 0 ⇐⇒
ρt = 0 and the decompositions are the same. If not, there remains a part of the process which
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is not decomposed and is gathered in a single excursion (defined as (ai0 , bi0) in Figure 1). We set

Yt = 〈ρt , 1〉 and Jt = inf0≤u≤t Yt . Recall that (Yt , t ≥ 0) is distributed under P∗µ as a Lévy process

with Laplace exponent ψ started at 〈µ, 1〉 and killed when it reaches 0. Let (ai, bi), i ∈ K , be

the intervals excursion of Y − J away from 0. For every i ∈ K , we define hi = Hai
= Hbi

. We

set K̃ = {i ∈ K ; hi > 0} and for i ∈ K̃ let S̄ i = (ρ̄i, m̄i) be defined by (22) and (23). If the

initial measure µ does not charge 0, we have K̃ = K and we set K ∗ = K̃ = K . If the initial

measure µ charges 0, we consider i0 6∈ K̃ and set K ∗ = K̃ ∪ {i0}, ai0 = inf{ai; i ∈ K ,hi = 0},

bi0 = sup{bi; i ∈K ,hi = 0} and S̄ i0 = (ρ̄i0 , m̄i0) with

〈ρ̄
i0
t , f 〉=

∫

[0,+∞)

f (x)ρ(ai0
+t)∧ b̃i0

(d x)

〈(m̄a)
i0
t , f 〉=

∫

(0,+∞)

f (x)ma
(ai0
+t)∧bi0

(d x) with a∈ {nod, ske},

and m̄i0
t = ((m̄

nod)
i0
t , (m̄ske)

i0
t ). See Figure 1 to get the picture of the different excursions.

ai bi ai0 bi0

Ht

Figure 1: Definition of the different excursions

We define

g∗(S ) =
∑

i∈K ∗
g(S̄ i). (41)

Lemma 3.4. P-a.s., we have, for ǫ > 0 small enough,

∑

i∈I

ϕ(Aαi
,ραi−

,S i) =

∞∑

k=1

ϕ(ASǫk
,ρ−Sǫk

,S k,ǫ) =

∞∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ), (42)

where the sums have a finite number of non zero terms.
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Proof. First equality. By assumptions (h1) and (h3), as N[Tη <+∞]< +∞, the set

I ′ = {i ∈ I ,ϕ(Aαi
,ραi−

,S i) 6= 0}

is finite. Therefore, for ǫ small enough, for every j ∈ I ′, the mesh defined by (36) intersects the

interval (α j ,β j): in other words, there exists an integer k j such that Sǫk j
∈ (α j ,β j) (and that integer

is unique).

Moreover, for every j ∈ I ′, we can choose ǫ small enough so that Sǫk j
< Tη(ρ

j), which gives that,

for ǫ small enough,

ϕ(Aα j
,ρα j−

,S j) = ϕ(Aα j
,ρα j−

,S k j ,ǫ).

Finally, as the mark at α j is still present at time Sǫk j
, the additive functional A is constant on that time

interval and ρα j−
= ρ−Sǫk j

. Therefore, we get

ϕ(Aα j
,ρα j−

,S j) = ϕ(ASǫk j
,ρ−Sǫk j

,S k j ,ǫ).

Second equality. Let j ∈ I ′. We consider the decomposition of S k j ,ǫ according to ρk j ,ǫ above its

minimum described at the beginning of this Subsection. We must consider two cases :

First case : The mass at α j is on a node. Then, for ǫ > 0 small enough, we have Tη > ai0 and

ϕ(ASǫk j
,ρ−Sǫk j

,S k j ,ǫ) = ϕ(ASǫk j
,ρ−Sǫk j

,S i0) = ϕ∗(ASǫk j
,ρ−Sǫk j

,S k j ,ǫ)

as all the terms in the sum that defines ϕ∗ are zero but for i = i0.

Second case : The mass at α j is on the skeleton. In that case, we again can choose ǫ small enough so

that the interval [Tη, Lη] is included in one excursion interval above the minimum of the exploration

total mass process of Sk j ,ǫ. We then conclude as in the previous case.

3.4 Computation of the conditional expectation of the approximation

Lemma 3.5. For every F̃∞-measurable non-negative random variable Z, we have

E


Z exp

 
−
∞∑

k=1

ϕ∗
�

ASǫk
,ρ−Sǫk

,S k,ǫ
�!
 = E


Z

∞∏

k=1

Kǫ(ASǫk
,ρ−Sǫk
)


 ,

where γ=ψ−1 (1/ǫ) and

Kǫ(r,µ) =
ψ(γ)

φ1(γ)

γ− v(r,µ)

ψ(γ)−ψ(v(r,µ))

 
α1+

∫ 1

0

du

∫

(0,∞)

ℓ1π1(dℓ1) w(uℓ1, r,µ)e−γ(1−u)ℓ1

!
. (43)

where
w(ℓ, r,µ) = E∗ℓ

�
e−ϕ(r,µ,·)

�
and v(r,µ) = N

�
1− e−ϕ(r,µ,·)

�
. (44)
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Proof. This proof is rather long and technical. We decompose it in several steps.

Step 1. We introduce first a special form of the random variable Z .

Let p ≥ 1. Recall that Ht,t ′ denotes the minimum of H between t and t ′ and that H̄t defined by (38)

represents the height of the lowest mark. We set

ξ
p−1

d = sup
n

t > T ǫp−1; Ht = HT ǫp−1,Sǫp

o
,

ξp
g = inf

n
t > T ǫp−1; Ht = H̄Sǫp

and Ht,Sǫp
= Ht

o
.

ξ
p−1

d is the time at which the height process reaches its minimum over [T ǫp−1,Sǫp]. By definition of

T ǫp−1, mT ǫp−1
= 0 (there is no mark on the linage of the corresponding individual). On the contrary,

mSǫp
6= 0, mSǫp

({H̄Sǫp
}) 6= 0 but mSǫp

([0, H̄Sǫp
)) = 0. In other words, at time Sǫp, some mark exists and

the lowest mark is situated at height H̄Sǫp
. Roughly speaking, ξ

p
g is the time at which this lowest

mark appears, see figure 3.4 to help understanding. Let us recall that, by the snake property (21),

m
ξ

p−1

d
= 0 and consequently, ξ

p−1

d < ξ
p
g a.s.

T ǫp−1
Sǫpξ

p−1

d
ξ

p
g

H

t

H̄Sǫp

Figure 2: Position of various random times

We consider a bounded non-negative random variable Z of the form Z = Z0Z1Z2Z3, where Z0 ∈
F (ǫ),p−1, Z1 ∈ σ(Su, T ǫp−1 ≤ u < ξp−1

d ), Z2 ∈ σ(Su,ξ
p−1

d ≤ u < ξp
g) and Z3 ∈ σ(S(T ǫk+s)∧Sǫk+1

−, s ≥
0, k ≥ p) are bounded non-negative.

Step 2. We apply the strong Markov property to get rid of terms which involve Sǫp and T ǫp . We first

apply the strong Markov property at time T ǫp by conditioning with respect to F e
T ǫp

. We obtain

E


Z exp

 
−

p∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!


= E


Z0Z1Z2 exp

 
−

p∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
EρTǫp

,0

�
Z3

�

 .
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Recall notation (38) and (39). Notice that ρT ǫp
= ρ−Sǫp

, and consequently ρT ǫp
is measurable with

respect to F e
Sǫp

. So, when we use the strong Markov property at time Sǫp, we get thanks to (40)

E


Z exp

 
−

p∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!


= E


Z0Z1Z2 exp

 
−

p−1∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
E∗
ρ+

Sǫp

�
e
−ϕ∗(ASǫp

,ρ−
Sǫp

,·)
�
Eρ−

Sǫp

[Z3]


 .

Using the strong Markov property at time T ǫp−1, and the lack of memory for the exponential r.v., we

get

E


Z exp

 
−

p∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!


= E


Z0 exp

 
−

p−1∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
φ

�
ASǫp−1

,ρ−Sǫp−1
,ρT ǫp−1

�
 , (45)

with

φ(b,µ,ν) = E∗ν

�
Z1Z2E

∗
ρ−
τ′

�
e−ϕ

∗(b+Aτ′ ,µ,·)
�
E∗
ρ−
τ′
[Z3]

�
, (46)

where τ′ is distributed under P∗ν as Sǫ1.

Step 3. We compute the function φ given by (46). To simplify the formulas, we set

F(b′,µ′) = E∗
µ′

�
e−ϕ

∗(b+b′,µ,·)
�

, G(µ′) = E∗
µ′
[Z3]

(the dependence on b and µ of F is omitted) so that

φ(b,µ,ν) = E∗ν

�
Z1Z2F(Aτ′ ,ρ

+
τ′
)G(ρ−

τ′
)
�

. (47)

The proof of the following technical Lemma is postponed to the end of this Sub-section.

Lemma 3.6. We set q(du, dℓ1) = α1δ(0,0)(dudℓ1)+ du ℓ1π1(dℓ1) and by convention π({0}) = 0. We
have:

φ(b,µ,ν) = Eν

�
Z1Z2

ΓF (Aτ′)

Γ1

G(ρ−
τ′
)

�
, (48)

where for a non-negative function f defined on [0,∞)×M f (R+)

Γ f (a) =

∫

[0,1]×[0,∞)

q(du, dℓ1)

∫
M(dρ′, dη′, dm′) e−γ〈ρ

′,1〉−γuℓ1 f (a,η′+ (1− u)ℓ1δ0)

and for f = 1, Γ1 does not depend on a.
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We now use the particular form of F to compute ΓF . Using (41) and Lemma 1.6, we get

F(a,µ′) = E∗
µ′

�
e−ϕ

∗(b+a,µ,·)
�
= E∗

µ′({0})

�
e−ϕ(b+a,µ,·)

�
e−µ

′((0,∞))N[1−e−ϕ(b+a,µ,·)] .

Using w and v defined in (44), we get

Ms

�
e−γ〈ρ,1〉−γuℓ1 F(a,η+ (1− u)ℓ1δ0)

�

= w((1− u)ℓ1, b+ a,µ)e−γuℓ1Ms

�
e−γ〈ρ,1〉 e−v(b+a,µ)〈η,1〉

�

= w((1− u)ℓ1, b+ a,µ)e−γuℓ1 e
−s
�
ψ(γ)−ψ(v(b+a,µ))

γ−v(b+a,µ)
−α
�

.

We deduce that

ΓF (a) =
γ− v(b+ a,µ)

ψ(γ)−ψ(v(b+ a,µ))

 
α1+

∫ 1

0

du

∫

(0,∞)

ℓ1π1(dℓ1) w(uℓ1, b+ a,µ)e−γ(1−u)ℓ1

!
,

and with F = 1, Γ1 =
γ

ψ(γ)

φ1(γ)

γ
=
φ1(γ)

ψ(γ)
.

Finally, plugging this formula in (48) and using the function Kǫ introduced in (43), we have

φ(b,µ,ν) = Eν[Z1Z2Kǫ(b+ Aτ′ ,µ)G(ρ
−
τ′
)]. (49)

Step 4. Induction.

Plugging the expression (49) for φ in (45), and using the arguments backward from (45) we get

E


Z exp

 
−

p∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
 = E


Z exp

 
−

p−1∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
Kǫ(ASǫp

,ρ−Sǫp
)


 .

In particular, from monotone class Theorem, this equality holds for any non-negative Z measurable

w.r.t. the σ-field F̄ ǫ∞ = σ((SCt
, t ∈ [AT ǫk

,ASǫk+1
]), k ≥ 0). Notice that Kǫ(ASǫp

,ρ−Sǫp
) is measurable w.r.t.

F̄∞. So, we may iterate the previous argument and let p goes to infinity to finally get that for any

non-negative random variable Z ∈ F̄∞, we have

E


Z exp

 
−
∞∑

k=1

ϕ∗(ASǫk
,ρ−Sǫk

,S k,ǫ)

!
 = E


Z

∞∏

k=1

Kǫ(ASǫk
,ρ−Sǫk
)


 .

Intuitively, F̄ ǫ∞ is the σ-field generated by F̃∞ and the mesh ([AT ǫk
,ASǫk+1

], k ≥ 0). As F̄ ǫ∞ contains

F̃∞, the Lemma is proved.

Proof of Lemma 3.6. We consider the Poisson decomposition of S under P∗ν given in Lemma 1.6.

Notice there exists a unique excursion i1 ∈K s.t. ai1 < τ
′ < bi1 .

By hypothesis on Z1, under P∗ν , we can write Z1 =H1(ν ,
∑

i∈K ;ai<ai1
δhi ,S̄

i ) for a measurable func-

tion H1. We can also write Z2 =H2(ρu,ξ0
d ≤ u < ξ1

g) for a measurable function H2 as mu = 0 for
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u ∈ [ξ0
d ,ξ1

g). Then, using compensation formula in excursion theory, see Corollary IV.11 in [12], we

get

φ(b,µ,ν) = E




∫
ν(dv) 1

{τ′ >
∑

s<v

σ(S s)}
H1

 
ν ,
∑

s<v

δ(s,S s)

!
hνF

 
r,
∑

s<v

Aσ(S s)(S
s)

!
 , (50)

where
∑

s δs,S s is a Poisson point measure with intensity ν(ds)N[dS ], σ(S ) = inf{r > 0,Sr = 0},

At(S
s) =

∫ t

0
dv′ 1{mv′ (S

s)=0} and

hνF (r, a) = N
h

F(a+ Aτ′ ,ρ
+
τ′
)G([krν ,ρ−

τ′
])H2([krν ,ρt], 0≤ t < ξ1

g)1{τ′<σ}

i
.

Let (Rk, k ≥ 1) be the increasing sequence of the jumping times of a Poisson process of intensity 1/ǫ,

independent of S . Then, by time-reversal, we have

hνF (r, a) = N
h +∞∑

k=1

1{mRk
6=0}1{∀k′>k, mRk′

=0}F(a+ Aσ − ARk
,η+Rk

)

G([krν ,η−Rk
])H2([krν ,ηu],τk < u≤ σ)

i
,

where τk = inf{t > Rk; mt = 0}. We then apply the strong Markov property at time Rk and the

Poisson representation of the marked exploration process to get

hνF (r, a) = N
h +∞∑

k=1

1{mRk
6=0}G([krν ,η−Rk

])

E∗
(ρRk

,mRk
)

�
1{∀k′>0, mRk′

=0}F(a+ Aσ,η′)H2([krν ,ηu],τ0 < u≤ σ)
�

|η′=η+Rk

i
,

where τ0 = inf{t > 0; mt = 0}. Now, let us remark that, if m0 6= 0, then ms 6= 0 for s ∈ [0,τ0] and

Aτ0
= 0. Therefore, mR1

= 0 implies R1 > τ0. The strong Markov property at time τ0 gives, with

η′ = η+Rk
,

1{mRk
6=0}E

∗
(ρRk

,mRk
)

�
1{∀k′>0, mRk′

=0}F(a+ Aσ,η′)H2([krν ,ηu],τ0 < u≤ σ)
�

= 1{mRk
6=0}P

∗
ρ+Rk

(R1 > σ)E
∗
ρ−Rk

�
1{∀k′>0, mRk′

=0}F(a+ Aσ,η′)H2([krν ,ηu], 0< u≤ σ)
�

.

We have, using the Poisson representation of Lemma 1.6 and (15), that

P∗
ρ+Rk

(R1 > σ) = E
∗
ρ+Rk

�
e−σ/ǫ

�
= e
−γ〈ρ+Rk

,1〉
,

as γ=ψ−1(1/ǫ). We obtain

hνF (r, a) = N



+∞∑

k=1

1{mRk
6=0}
eG(ρ−Rk

,η−Rk
,ρ+Rk

,η+Rk
)


 ,
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where

eG(ρ,η,ρ′,η′) = G([krν ,η])e−γ〈ρ
′,1〉

E∗ρ

�
1{∀k′>0, mRk′

=0}F(a+ Aσ,η′)H2([krν ,η], 0< u≤ σ)
�

.

As
∑

k≥1δRk
is a Poisson point process with intensity 1/ǫ, we deduce that

hνF (r, a) =
1

ǫ
N

�∫ σ

0

d t 1{mt 6=0}
eG(ρ−t ,η−t ,ρ+t ,η+t )

�
.

Using Proposition 1.9, we get

hνF (r, a) =
1

ǫ

∫ ∞

0

da e−αaMa

�
1{m 6=0}

eG(µ−,ν−,µ+,ν+)
�

.

For r > 0 and µ a measure on R+, let us define the measures µ≥r and µ<r by

〈µ≥r , f 〉=

∫
f (x − r)1{x≥r}µ(d x) and 〈µ<r , f 〉=

∫
f (x)1{x<r}µ(d x).

Using Palm formula, we get

Ma

�
1{m 6=0}

eG(µ−,ν−,µ+,ν+)
�

=

∫ a

0

dr

∫

[0,1]×[0,∞)

q(du, dℓ1)

Ma

�
1{m([0,r))=0}

eG(µ<r ,ν<r ,µ≥r + uℓ1δ0,ν≥r + (1− u)ℓ1δ0)
�

.

Using the independence of the Poisson point measures, we get

Ma

�
1{m([0,r))=0}

eG(µ<r ,ν<r ,µ≥r + uℓ1δ0,ν≥r + (1− u)ℓ1δ0)
�

=

∫
Mr(dµ, dν , dm)

∫
Ma−r(dρ

′, dη′, dm′)1{m=0}
eG(µ,ν ,ρ′+ uℓ1δ0,η′+ (1− u)ℓ1δ0).

We deduce that

hνF (r, a) =
1

ǫ

∫

[0,1]×[0,∞)

q(du, dℓ1)

∫
M(dρ, dη, dm)

∫
M(dρ′, dη′, dm′)

1{m=0}
eG(ρ,η,ρ′+ uℓ1δ0,η′+ (1− u)ℓ1δ0).

Using this and (50) with similar arguments (in reverse order), we obtain (48).
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3.5 Computation of the limit

Recall notation of Section 3.2. Let Aǫs be the Lebesgue measure of [0, s]
⋂�⋃

k≥0[T
ǫ
k ,Sǫk+1

]
�

. The

process t 7→ sup{i ∈ N;
∑i

j=1 eǫj ≤ Aǫt} is a Poisson process with intensity 1/ǫ and the process

s 7→ Nǫ,t , where

Nǫ,t = sup{k ∈ N; AǫSǫk
≤ t}= sup{k ∈ N;

Mǫ
k∑

j=1

eǫj ≤ Aǫt},

is a marked Poisson process with intensity P(mτ 6= 0)/ǫ, where τ is an exponential random variable

with mean ǫ independent of S .

We first study the process t 7→ Nǫ,t .

Lemma 3.7. The process t 7→ Nǫ,t is a Poisson process with intensity
φ1(γ)

ǫψ0(γ)
, where γ=ψ−1(1/ǫ).

Proof. We have, by the similar computations as in the proof of Lemma 3.5,

P(mτ = 0) =
1

ǫ
E

�∫ ∞

0

d t e−t/ǫ 1{mt=0}

�

=
1

ǫ

∫ ∞

0

ds e−γsN

�∫ σ

0

d t e−t/ǫ 1{mt=0}

�

=
1

ǫγ
N

�∫ σ

0

d t e−t/ǫ 1{mt=0}

�
.

By time reversibility and using optional projection and (15), we have

N

�∫ σ

0

d t e−t/ǫ 1{mt=0}

�
= N

�∫ σ

0

d t e−(σ−t)/ǫ 1{mt=0}

�

= N

�∫ σ

0

d t e−γ〈ρt ,1〉 1{mt=0}

�
.

The proof of Lemma 2.1, see (29) and (31), gives that P(mτ = 0) =
1

ǫψ0(γ)
. Since ǫ−1 = ψ(γ) =

ψ0(γ)−φ1(γ), we get
1

ǫ
P(mτ 6= 0) =

φ1(γ)

ǫψ0(γ)
.

We then get the following Corollary.

Corollary 3.8. There exists a sub-sequence (ǫ j , j ∈ N) decreasing to 0, s.t. P-a.s. for any t0 ≥ 0 and
any continuous function h defined on R+ ×M f (R+) such that h(u,µ) = 0 for u ≥ t0, we have, with
γ j =ψ

−1(1/ǫ j),

lim
j→∞

φ1(γ j)
−1
∞∑

k=1

h(A
S
ǫ j
k

,ρ−
S
ǫ j
k

) =

∫ ∞

0

h(u, ρ̃u) du.
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Proof. Notice that as a direct consequence of (9) and (20), we get

lim
ǫ→0

ǫψ0(γ) = 1.

Recall that (AǫSǫk
, k ≥ 1) are the jumping time of the Poisson process t 7→ Nǫ,t with parameter

φ1(γ)/ǫψ0(γ). Standard results on Poisson process implies the vague convergence in distribution

(see also Lemma XI.11.1 in [18]) of φ1(γ)
−1
∑∞

k=1δAǫ
Sǫ

k

(dr) towards the Lebesgue measure on R+

as ǫ goes down to 0. Since the limit is deterministic, the convergence holds in probability and a.s.

along a decreasing sub-sequence (ǫ j, j ∈ N). In particular, if g is a continuous function on R+ with

compact support (hence bounded), we have that a.s.

lim
j→∞

φ1(γ j)
−1
∞∑

k=1

g(A
ǫ j

S
ǫ j
k

) =

∫ ∞

0

g(u) du.

Notice that Aǫs ≥ As and that a.s. Aǫs → As as ǫ goes down to 0. This implies that a.s. (Aǫs , s ≥ 0)

converges uniformly on compacts to (As, s ≥ 0). Therefore, if g is continuous with compact support,

we have a.s.

lim
j→+∞

φ1(γ j)
−1
∞∑

k=1

��g(Aǫ j

S
ǫ j
k

)− g(A
S
ǫ j
k
)
��= 0.

So we have that

lim
j→∞

φ1(γ j)
−1
∞∑

k=1

g(A
S
ǫ j
k
) =

∫ ∞

0

g(u) du (51)

and this convergence also holds for a càd-làg function g with compact support as the Lebesgue

measure does not charge the point of discontinuity of g.

Let h be a continuous function defined on R+ ×M f (R+) such that h(u,µ) = 0 for u ≥ t0. First let

us remark that ρ−Sǫk
= ρT ǫk

and that mT ǫk
= 0. Using the strong Markov property at time T ǫk and the

second part of Corollary 2.2, we deduce that P-a.s. for all k ∈ N∗,

CATǫ
k
= T ǫk . (52)

Therefore, as ASǫk
= AT ǫk

, we have P-a.s.

ρ̃ASǫ
k
= ρ̃ATǫ

k
= ρT ǫk

= ρ−Sǫk
.

This gives

φ1(γ j)
−1
∞∑

k=1

h(A
S
ǫ j
k

,ρ−
S
ǫ j
k

) = φ1(γ j)
−1
∞∑

k=1

h(A
S
ǫ j
k

, ρ̃A
S
ǫ j
k

)

and applying the convergence (51) to the càd-làg function

g(u) = h(u, ρ̃u)

gives the result of the lemma.

We now study Kǫ given by (43). We keep the same notation as in Lemma 3.5.
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Lemma 3.9. There exists a deterministic function R s.t. lim
ǫ→0
R(ǫ) = 0 and for all ǫ > 0 and µ ∈

M f (R+), we have:

sup
r≥0

�����φ1(γ) log(Kǫ(r,µ))−α1v(r,µ)−

∫

(0,∞)

π1(dℓ1)
�
1−w(ℓ1, r,µ)

�
�����≤R(ǫ).

Proof. We have

Kǫ(r,µ) =
ψ(γ)

ψ(γ)−ψ(v(r,µ))

γ− v(r,µ)

γ

1

φ1(γ) 
α1γ+ γ

∫ 1

0

du

∫

(0,∞)

ℓ1π1(dℓ1) w(uℓ1, r,µ)e−γ(1−u)ℓ1

!

=
ψ(γ)

ψ(γ)−ψ(v(r,µ))

γ− v(r,µ)

γ

1

φ1(γ) 
α1γ+

∫

(0,∞)

π1(dℓ1)

∫ γℓ1

0

e−s ds w(ℓ1−
s

γ
, r,µ)

!

=
ψ(γ)

ψ(γ)−ψ(v(r,µ))

γ− v(r,µ)

γ

1

φ1(γ) 
φ1(γ)−

∫

(0,∞)

π1(dℓ1)

∫ γℓ1

0

e−s ds

�
1−w(ℓ1−

s

γ
, r,µ)

�!
.

In particular, we have φ1(γ) log(Kǫ(r,µ)) =−A1+ A2+ A3, where

A1(r) = φ1(γ) log
�

1−ψ(v(r,µ))/ψ(γ)
�

,

A2(r) = φ1(γ) log(1− v(r,µ)/γ),

A3(r) = φ1(γ) log

 
1−

∫

(0,∞)

π1(dℓ1)

∫ γℓ1

0

e−s ds

�
1− w(ℓ1−

s

γ
, r,µ)

�
/φ1(γ)

!
.

Thanks to (h3), there exists a finite constant a > 0 s.t. P-a.s. v(r,µ) < a for all r ≥ 0. We deduce

there exists ǫ0 > 0 and a finite constant c > 0 s.t. P-a.s for all ǫ ∈ (0,ǫ0],

sup
r≥0

|A1(r)| ≤ c
φ1(γ)

ψ(γ)
and sup

r≥0

|A2(r)−α1v(r,µ)| ≤
c

γ
+ c|

φ1(γ)

γ
−α1|. (53)

We have

∫

(0,∞)

π1(dℓ1)

∫ γℓ1

0

e−s ds

�
1− w(ℓ1−

s

γ
, r,µ)

�
−

∫

(0,∞)

π1(dℓ1)
�
1−w(ℓ1, r,µ)

�

=

∫

(0,∞)

π1(dℓ1) e−γℓ1(w(ℓ1, r,µ)− 1)

+

∫

(0,∞)

π1(dℓ1)

∫ ∞

0

e−s ds

�
w(ℓ1, r,µ)− w(ℓ1−

s

γ
, r,µ)

�
1{s≤γℓ1}

.
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It is then easy to get, using (h3) and (35), that P-a.s

φ2(γ) = sup
r≥0

�����

∫

(0,∞)

π1(dℓ1)

∫ γℓ1

0

e−s ds

�
1−w(ℓ1−

s

γ
, r,µ)

�
−

∫

(0,∞)

π1(dℓ1)
�
1− w(ℓ1, r,µ)

�
�����

converges to 0 as γ goes to infinity.

Recall that we assumed that lim
γ→∞

φ1(γ) = +∞. Thus, there exist ǫ0 > 0 and a finite constant c > 0

s.t. P-a.s for all ǫ ∈ (0,ǫ0],

sup
r≥0

�����A3(r)−

∫

(0,∞)

π1(dℓ1)
�
1−w(ℓ1, r,µ)

�
�����≤

c

φ1(γ)
+φ2(γ). (54)

Using (53) and (54), we get that there exists a deterministic function R s.t. P-a.s

sup
r≥0

�����φ1(γ) log(Kǫ(r,µ))−α1v(r,µ)−

∫

(0,∞)

π1(dℓ1)
�
1−w(ℓ1, r,µ)

�
�����≤R(ǫ),

where lim
ǫ→0
R(ǫ) = 0, thanks to (9) and (20).

The previous results allow us to compute the following limit. We keep the same notation as in

Lemma 3.5.

Lemma 3.10. Let ϕ satisfying condition (h1)–(h3). There exists a sub-sequence (ǫ j , j ∈ N) decreasing
to 0, s.t. P-a.s.

lim
j→∞

∞∏

k=1

Kǫ j
(A

S
ǫ j
k

,ρ−Sǫk
) = exp−

∫ ∞

0

du

 
α1v(u) +

∫

(0,∞)

π1(dℓ) (1−w(ℓ,u,µ))

!
.

Proof. Notice that thanks to (h1), the functions v and (u,µ) 7→ w(ℓ,u,µ) are continuous and that

for r ≥ t, v(r,µ) = 0 and w(ℓ, r,µ) = 1. The result is then a direct consequence of Corollary 3.8 and

Lemma 3.9.

3.6 Proof of Theorem 3.2

Now we can prove the special Markov property in the case limγ→∞φ1(γ) = +∞.

Let Z ∈ F̃∞ non-negative such that E[Z] <∞. Let ϕ satisfying hypothesis of Theorem 3.2, (h1)–

(h3). We have, using notation of the previous sections

E


Z exp

 
−
∑

i∈I

ϕ(Aαi
,ραi−

,S i)

!
 = lim

j→∞
E


Z exp

 
−
∞∑

k=1

ϕ∗
�

A
S
ǫ j
k

,ρ−
S
ǫ j
k

,S k,ǫ j

�!


= lim
j→∞
E


Z

∞∏

k=1

Kǫ j
(A

S
ǫ j
k

,ρ−
S
ǫ j
k

)




= E

�
Z e
−
∫∞

0
du
�
α1v(u,ρ̃u)+

∫
(0,∞)

π1(dℓ) (1−w(ℓ,u,ρ̃u))
��

,
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where we used Lemma 3.4 and dominated convergence for the first equality, Lemma 3.5 for the

second equality, Lemma 3.10 and dominated convergence for the last equality. By monotone class

Theorem and monotonicity, we can remove hypothesis (h1)– (h3). To ends the proof of the first

part, notice that
∫ t

0
du
�
α1v(u) +

∫
(0,∞)

π1(dℓ) (1−w(ℓ,u))
�

is F̃∞-measurable and so this is P-

a.e. equal to the conditional expectation (i.e. the left hand side term of (34)).

4 Law of the pruned exploration process

Let ρ(0) be the exploration process of a Lévy process with Laplace exponent ψ0. The aim of this

section is to prove Theorem 2.3.

4.1 A martingale problem for ρ̃

Let σ̃ = inf{t > 0, ρ̃t = 0}. In this section, we shall compute the law of the total mass process

(〈ρ̃t∧σ̃, 1〉, t ≥ 0) under Pµ = Pµ,0, using martingale problem characterization. We will first show

how a martingale problem for ρ can be translated into a martingale problem for ρ̃, see also [1].

Unfortunately, we were not able to use standard techniques of random time change, as developed in

Chapter 6 of [23] and used for Poisson snake in [7], mainly because t−1
�
Eµ[ f (ρt)1{mt=0}]− f (µ)

�

may not have a limit as t goes down to 0, even for exponential functionals.

Let F, K ∈ B(M f (R+)) be bounded. We suppose that N

�∫ σ

0

��K(ρs)
�� ds

�
< ∞, that for any µ ∈

M f (R+), E
∗
µ

�∫ σ

0

��K(ρs)
�� ds

�
<∞ and that Mt = F(ρt∧σ)−

∫ t∧σ

0
K(ρs) ds, for t ≥ 0, defines an

F -martingale. In other words, if F belongs to the domain of the infinitesimal generator L of ρ, we

have K = L F . We will see in the proof of Corollary 4.2 that these assumptions on F and K are in

particular fulfilled for

F(ν) = e−c〈ν ,1〉 K(ν) =ψ(c)F(ν).

Notice that we have

|Mt | ≤ ‖F‖∞ +

∫ σ

0

��K(ρs)
��ds

and thus E∗µ

�
supt≥0

��Mt

���<∞. Consequently, we can define for t ≥ 0,

Nt = E
∗
µ[MCt

|F̃t].

Proposition 4.1. The process N = (Nt , t ≥ 0) is an F̃ -martingale. And we have the representation
formula for Nt :

Nt = F(ρ̃t∧σ̃)−

∫ t∧σ̃

0

du K̃(ρ̃u), (55)

with

K̃(ν) = K(ν) +α1N

�∫ σ

0

K([ν ,ρs]) ds

�
+

∫

(0,∞)

π1(dℓ) E
∗
ℓ

�∫ σ

0

K([ν ,ρs]) ds

�
. (56)
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Proof. Notice that N = (Nt , t ≥ 0) is an F̃ -martingale. Indeed, we have for t, s ≥ 0,

Eµ[Nt+s|F̃t] = Eµ[Eµ[MCt+s
|F̃t+s]|F̃t]

= Eµ[MCt+s
|F̃t]

= Eµ[Eµ[MCt+s
|FCt

]|F̃t]

= Eµ[MCt
|F̃t],

where we used the optional stopping time Theorem for the last equality. To compute Eµ[MCt
|F̃t],

we set N ′t = MCt
+M ′Ct

, where for u≥ 0,

M ′u =

∫ u∧σ

0

K(ρs)1{ms 6=0} ds.

Recall that C0 = 0 Pµ-a.s. by Corollary 2.2. In particular, we get

N ′t = MCt
+M ′Ct

= F(ρCt∧σ
)−

∫ Ct∧σ

0

K(ρs)1{ms=0} ds

= F(ρ̃t∧σ̃)−

∫ Ct∧σ

0

K(ρs) dAs

= F(ρ̃t∧σ̃)−

∫ t∧σ̃

0

K(ρ̃u) du,

where we used the time change u = As for the last equality. In particular, as σ̃ is an F̃ -stopping

time, we get that the process (N ′t , t ≥ 0) is F̃ -adapted. Since Nt = N ′t − Eµ[M
′
Ct
|F̃t], we are left

with the computation of Eµ[M
′
Ct
|F̃t].

We keep the notations of Section 3. We consider (ρi, mi), i ∈ I the excursions of the process (ρ, m)
outside {s, ms = 0} before σ and let (αi,βi), i ∈ I be the corresponding interval excursions. In

particular we can write

∫ Ct∧σ

0

��K(ρs)
��1{ms 6=0} ds =

∑

i∈I

Φ(Aαi
,ραi−

,ρi),

with

Φ(u,µ,ρ) = 1{u<t}

∫ σ(ρ)

0

��K([µ,ρs])
�� ds,

where σ(ρ) = inf{v > 0;ρv = 0}. We deduce from the second part of Theorem 3.2, that Pµ-a.s.

Eµ



∫ Ct∧σ

0

��K(ρs)
��1{ms 6=0} ds|F̃∞


 =

∫ σ̃

0

1{u<t}K̂(ρ̃u) du, (57)

with, K̂ defined for ν ∈M f (R+) by

K̂(ν) = α1N

�∫ σ

0

��K([ν ,ρs])
�� ds

�
+

∫

(0,∞)

π1(dℓ) E
∗
ℓ

�∫ σ

0

��K([ν ,ρs])
�� ds

�
.

1461



Since Eµ

h∫ Ct∧σ

0

��K(ρs)
��1{ms 6=0} ds

i
≤ Eµ

h∫ σ
0

��K(ρs)
�� ds

i
<∞, we deduce from (57) that Pµ-a.s.

du-a.e. 1{u<σ̃}K̂(ρ̃u) is finite.

We define K̄ ∈B(M f (R+)) for ν ∈M f (R+) by

K̄(ν) = α1N

�∫ σ

0

K([ν ,ρs]) ds

�
+

∫

(0,∞)

π1(dℓ) E
∗
ℓ

�∫ σ

0

K([ν ,ρs]) ds

�
(58)

if K̂(ν) < ∞, or by K̄(ν) = 0 if K̂(ν) = +∞. In particular, we have |K̄(ν)| ≤ K̂(ν) and Pµ-a.s.∫ σ̃
0
|K̄(ρ̃u)| du is finite. Using the special Markov property once again (see (57)), we get that Pµ-

a.s.,

Eµ

h
M ′Ct
|F̃∞

i
= Eµ



∫ Ct∧σ

0

K(ρs)1{ms 6=0} ds|F̃∞


=

∫ t∧σ̃

0

K̄(ρ̃u) du.

Finally, as Nt = N ′t −Eµ
h

M ′Ct
|F̃∞

i
, this gives (55).

Corollary 4.2. Let µ ∈ M f (R+). The law of the total mass process (〈ρ̃t , 1〉, t ≥ 0) under P∗µ,0 is the

law of the total mass process of ρ(0) under P∗µ.

Proof. Let X = (X t , t ≥ 0) be under P∗x a Lévy process with Laplace transformψ started at x > 0 and

stopped when it reached 0. Under Pµ, the total mass process (〈ρt∧σ, 1〉, t ≥ 0) is distributed as X un-

der P∗
〈µ,1〉

. Let c > 0. From Lévy processes theory, we know that the process e−cX t −ψ(c)
∫ t

0
e−cXs ds,

for t ≥ 0 is a martingale. We deduce from the stopping time Theorem that M = (Mt , t ≥ 0) is an

F -martingale under Pµ, where Mt = F(ρt∧σ)−
∫ t∧σ

0
K(ρs) ds, with F, K ∈B(M f (R+)) defined by

F(ν) = e−c〈ν ,1〉 for ν ∈M f (R+) and K =ψ(c)F . Notice K ≥ 0. We have by dominated convergence

and monotone convergence.

e−c〈µ,1〉 = lim
t→∞
Eµ[Mt] = Eµ[e

−c〈ρσ,1〉]−ψ(c)Eµ

�∫ σ

0

e−c〈ρs ,1〉 ds

�
.

This implies that, for any µ ∈M f (R+), Eµ

�∫ σ

0

��K(ρs)
�� ds

�
is finite. Using the Poisson representa-

tion, see Proposition 1.9, it is easy to get that

N

�∫ σ

0

d t e−c〈ρt ,1〉

�
=

c

ψ(c)
. (59)

In particular, it is also finite.

From Proposition 4.1, we get that N = (Nt , t ≥ 0) is under Pµ an F̃ -martingale, where: for t ≥ 0,

Nt = e−c〈ρ̃t∧σ̃,1〉−

∫ t∧σ̃

0

K̃(ρ̃u) du
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and K̃ given by (56). We can compute K̃:

K̃(ν) =ψ(c)e−c〈ν ,1〉

 
1+α1N

�∫ σ

0

e−c〈ρs ,1〉 ds

�
+

∫

(0,∞)

π1(dℓ) E
∗
ℓ

�∫ σ

0

e−c〈ρs,1〉 ds

�!

=ψ(c)e−c〈ν ,1〉

 
1+α1

c

ψ(c)
+

∫

(0,∞)

π1(dℓ)

∫ ℓ

0

dr e−cr N

�∫ σ

0

e−c〈ρs,1〉 ds

�!

= e−c〈ν ,1〉

 
ψ(c) +α1c +

∫

(0,∞)

π1(dℓ)(1− e−cℓ)

!

=ψ0(c)e
−c〈ν ,1〉,

where we used (59) and the excursion decomposition for the second equality, and ψ0 =ψ+φ1 for

the last one.

Thus, the process (Nt , t ≥ 0) with for t ≥ 0

Nt = e−c〈ρ̃t∧σ̃,1〉−ψ0(c)

∫ t∧σ̃

0

e−c〈ρ̃u,1〉 du

is under Pµ an F̃ -martingale.

Notice that σ̃ = inf{s ≥ 0; 〈ρ̃s, 1〉 = 0}. Let X (0) = (X (0)t , t ≥ 0) be under P∗x a Lévy process with

Laplace transform ψ0 started at x > 0 and stopped when it reached 0. The two non-negative càd-

làg processes (〈ρ̃t∧σ̃, 1〉, t ≥ 0) and X (0) solves the martingale problem: for any c ≥ 0, the process

defined for t ≥ 0 by

e−cYt∧σ′ −ψ0(c)

∫ t∧σ′

0

e−cYs ds,

where σ′ = inf{s ≥ 0; Ys ≤ 0}, is a martingale. From Corollary 4.4.4 in [23], we deduce that those

two processes have the same distribution. To finish the proof, notice that the total mass process of

ρ(0) under P∗µ is distributed as X (0) under P∗
〈µ,1〉

.

4.2 Identification of the law of ρ̃

To begin with, let us mention some useful properties of the process ρ̃.

Lemma 4.3. We have the following properties for the process ρ̃.

(i) ρ̃ is a càd-làg Markov process.

(ii) The sojourn time at 0 of ρ̃ is 0.

(iii) 0 is recurrent for ρ̃.

Proof. (i) This is a direct consequence of the strong Markov property of the process (ρ, m).

(ii) We have for r > 0, with the change of variable t = As, a.s.

∫ r

0

1{ρ̃t=0} d t =

∫ r

0

1{ρCt=0} d t =

∫ Cr

0

1{ρs=0} dAs =

∫ Cr

0

1{ρs=0} ds = 0,
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as the sojourn time of ρ at 0 is 0 a.s.

(iii) Since σ̃ = Aσ and σ < +∞ a.s., we deduce that 0 is recurrent for ρ̃ a.s.

Since the processes ρ̃ and ρ(0) are both Markov processes, to show that they have the same law, it

is enough to show that they have the same one-dimensional marginals. We first prove that result

under the excursion measure.

Proposition 4.4. For every λ > 0 and every non-negative bounded measurable function f ,

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


 = N



∫ σ(0)

0

e−λt−〈ρ(0)t , f 〉 d t


 .

Proof. On one hand, we compute, using the definition of the pruned process ρ̃,

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


 = N



∫ Aσ

0

e−λt−〈ρCt , f 〉 d t


 .

We now make the change of variable t = Au to get

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


= N

�∫ σ

0

e−λAu e−〈ρu, f 〉 dAu

�

= N

�∫ σ

0

e−λAu e−〈ρu, f 〉 1{mu=0}du

�
.

By a time reversibility argument, see Lemma 1.7, we obtain

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


 = N

�∫ σ

0

1{mu=0} e
−〈ηu, f 〉 e−λ(Aσ−Au) du

�

= N

�∫ σ

0

1{mu=0} e
−〈ηu, f 〉E∗ρu,0

�
e−λAσ

�
du

�

= N

�∫ σ

0

1{mu=0} e
−〈ηu, f 〉−ψ−1

0 (λ)〈ρu,1〉 du

�
,

where we applied Lemma 2.1 (i) for the last equality. Now, using Proposition 1.9, we have

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


=

∫ ∞

0

da e−αaMa

h
1{m=0} e

−〈ν , f 〉−ψ−1
0 (λ)〈µ,1〉

i
.

Using usual properties of point Poisson measures, we have, with c = α1+
∫
(0,∞)

ℓ π1(dℓ),

Ma

�
1{m=0}F(µ,ν)

�
= e−caMa

�
F(µ0,ν0)

�
,
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where with the notations of Proposition 1.9, for any f ∈B+(R+)

〈µ0, f 〉=

∫
N0(d x dℓ du)1[0,a](x)uℓ f (x) + β

∫ a

0

f (r) dr,

〈ν0, f 〉=

∫
N0(d x dℓ du)1[0,a](x)(1− u)ℓ f (x) + β

∫ a

0

f (r) dr.

As α0 = α+ c, we have

N



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


 =

∫ ∞

0

da e−α0aMa

h
e−〈ν

0, f 〉−ψ−1
0 (λ)〈µ

0,1〉
i

.

Proposition 3.1.3 in [22] directly implies that the left-hand side of the previous equality is equal to

N



∫ σ(0)

0

e−〈η
(0)
t , f 〉−ψ−1

0 (λ)〈ρ
(0)
t ,1〉 d t


. On the other hand, similar computations as above yields that

this quantity is equal to N



∫ σ(0)

0

e−λt−〈ρ(0)t , f 〉 d t


. This ends the proof.

Now, we prove the same result under P∗µ,0, that is:

Proposition 4.5. For every λ > 0, f ∈B+(R+) bounded and every finite measure µ,

E∗µ,0



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


= E∗µ



∫ σ(0)

0

e−λt−〈ρ(0)t , f 〉 d t


 .

Proof. From the Poisson representation, see Lemma 1.6, and using notations of this Lemma and of

(28) we have

E∗µ,0



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


 = E∗µ,0

�∫ σ

0

e−λAu−〈ρu, f 〉 dAu

�

= E∗µ,0



∑

i∈J

e
−λAαi

−〈k−Iαi
, f 〉
∫ σi

0

e
−〈ρi

s , f−Iαi
〉−λAi

s dAi
s


 ,

where the function fr is defined by fr(x) = f (H(µ)r + x) and H(µ)r = H(krµ) is the maximal element

of the closed support of krµ (see (12)). We recall that −I is the local time at 0 of the reflected

process X − I , and that τr = inf{s;−Is > r} is the right continuous inverse of −I . From excursion

formula, and using the time change −Is = r (or equivalently τr = s), we get

E∗µ,0



∫ σ̃

0

e−λt−〈ρ̃t , f 〉 d t


= E∗µ,0

�∫ τ〈µ,1〉

0

d(−Is)e
−〈k−Isµ, f 〉−λAs G(−Is)

�

= E∗µ,0



∫ 〈µ,1〉

0

dr e−〈krµ, f 〉−λAτr G(r)


 , (60)
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where the function G(r) is given by

G(r) = N

�∫ σ

0

e−〈ρs , fr 〉−λAs dAs

�
= N



∫ σ̃

0

e−λt−〈ρ̃t , fr 〉 d t


 .

The same kind of computation gives

E∗µ



∫ σ(0)

0

e−λt−〈ρ(0)t , f 〉 d t


 = E



∫ 〈µ,1〉

0

dr e−〈krµ, f 〉−λτ(0)r G(0)(r)


 (61)

where the function G(0) is defined by

G(0)(r) = N



∫ σ(0)

0

e−λs−〈ρ(0)s , fr 〉 ds




and τ(0) is the right-continuous inverse of the infimum process−I (0) of the Lévy process with Laplace

exponent ψ0.

Proposition 4.4 says that the functions G and G(0) are equal. Moreover, as the total mass processes

have the same law (see Corollary 4.2), we know that the proposition is true for f constant. And, for

f constant, the functions G and G(0) are also constant. Therefore, we have for f constant equal to

c ≥ 0,

E∗µ,0



∫ 〈µ,1〉

0

dr e−c(〈µ,1〉−r) e−λAτr


= E



∫ 〈µ,1〉

0

dr e−c(〈µ,1〉−r) e−λτ
(0)
r


 .

As this is true for any c ≥ 0, uniqueness of the Laplace transform gives the equality

E∗µ,0

�
e−λAτr

�
= E

h
e−λτ

(0)
r

i
dr − a.e.

In fact this equality holds for every r by right-continuity.

Finally as G = G(0), we have thanks to (60) and (61), that, for every bounded non-negative measur-

able function f ,

∫ 〈µ,1〉

0

dr e−〈krµ, f 〉E∗µ,0

�
e−λAτr

�
G(r) =

∫ 〈µ,1〉

0

dr e−〈krµ, f 〉E
h

e−λτ
(0)
r

i
G(0)(r)

which ends the proof.

Corollary 4.6. The process ρ̃ under P∗µ,0 is distributed as ρ(0) under P∗µ.

Proof. Let f ∈B+(R+) bounded. Proposition 4.5 can be re-written as

∫ +∞

0

e−λt E∗µ,0

�
e−〈ρ̃t , f 〉 1{t≤σ̃}

�
d t =

∫ +∞

0

e−λt E∗µ

h
e−〈ρ

(0)
t , f 〉 1{t≤σ(0)}

i
d t.

By uniqueness of the Laplace transform, we deduce that, for almost every t > 0,

E∗µ,0

�
e−〈ρ̃t , f 〉 1{t≤σ̃}

�
= E∗µ

h
e−〈ρ

(0)
t , f 〉 1{t≤σ(0)}

i
.
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In fact this equality holds for every t by right-continuity. As the Laplace functionals characterize the

law of a random measure, we deduce that, for fixed t > 0, the law of ρ̃t under P∗µ,0 is the same as

the law of ρ
(0)
t under P∗µ.

The Markov property then gives the equality in law for the càd-làg processes ρ̃ and ρ(0).

Proof of Theorem 2.3. 0 is recurrent for the Markov càd-làg processes ρ̃ and ρ(0). These two pro-

cesses have no sojourn time at 0, and when killed on the first hitting time of 0, they have the same

law, thanks to Lemma 4.6. From Theorem 4.2 of [17], Section 5, we deduce that ρ̃ under Pµ,0 is

distributed as ρ(0) under Pµ.

5 Law of the excursion lengths

Recall σ̃ =
∫ σ

0
1{ms=0} ds denotes the length of the excursion of the pruned exploration process. We

can compute the joint law of (σ̃,σ). This will determine uniquely the law of σ̃ conditionally on

σ = r.

Proposition 5.1. For all non-negative γ,κ, the value v defined by v = N
�

1− e−ψ(γ)σ−κσ̃
�

is the
unique non-negative solution of the equation

ψ0(v) = κ+ψ0(γ).

Proof. Excursion theory implies that the special Markov property, Theorem 3.2, also holds under N,

with the integration of u over [0, σ̃ = Aσ] instead of [0,∞). Taking φ(S ) =ψ(γ)σ, we have

v = N
�

1− e−κσ̃−ψ(γ)σ
�
= N

h
1− e−(κ+ψ(γ))σ̃−ψ(γ)

∫ σ
0

1{ms 6=0} ds
i

= N

�
1− e

−(κ+ψ(γ))σ̃−σ̃
�
α1N[1−e−ψ(γ)σ]+

∫
(0,+∞)

π1(dℓ)(1−E
∗
ℓ
[e(−ψ(γ)σ)]

��
.

Notice that σ under P∗
ℓ

is distributed as τℓ, the first time for which the infimum of X , started at 0,

reaches −ℓ. Since τℓ is distributed as a subordinator with Laplace exponent ψ−1 at time ℓ, we have

E∗ℓ[e
−ψ(γ)σ] = E

�
e−ψ(γ)τℓ

�
= e−ℓγ .

Thanks to (15), we get N[1− e−ψ(γ)σ] = γ. We deduce that

v = N

�
1− e

−(κ+ψ(γ))σ̃−σ̃
�
α1γ+

∫
(0,+∞)

π1(dℓ)(1−e−γℓ)
��

= N
�

1− e−(κ+ψ0(γ))σ̃
�

=ψ0
−1(κ+ψ0(γ)).

Since ψ0 is increasing and continuous, we get the result.

1467



6 Appendix

We shall present in a first subsection, how one can extend the construction of the Lévy snake from

[22] to a weighted Lévy snake, when the height process may not be continuous and the lifetime

process is given by the total mass of the exploration process (instead of the height of the exploration

process in [22]). Then, using this construction, we can define in a second subsection a general Lévy

snake when the height process is not continuous.

6.1 Weighted Lévy snake

Let D be a distance onM f (R+) which defines the topology of weak convergence. Let us recall that

(M f (R+), D) is a Polish space, see [19], section 3.1.

Let E be a Polish space, whose topology is defined by a metric δ, and ∂ be a cemetery point added to

E. LetWx be the space of all E-valued weighted killed paths started at x ∈ E. An element w̄ = (µ, w)
of Wx is a mass measure µ ∈M f (R+) and a càd-làg mapping w : [0, 〈µ, 1〉)→ E s.t. w(0) = x . By

convention the point x is also considered as a weighted killed path with mass measure µ = 0. We

set W =
⋃

x∈EWx and equip W with the distance

d((µ, w), (µ′, w′)) = δ(w(0), w′(0)) + D(µ,µ′)

+

∫ 〈µ,1〉∧〈µ′,1〉

0

d t
�

dt(w≤t , w′≤t)∧ 1
�
+
��〈µ, 1〉 − 〈µ′, 1〉

��, (62)

where dt is the Skorohod metric on the space D([0, t], E) and w≤t denote the restriction of w to the

interval [0, t]. Notice d is a distance on W . Indeed, we have that:

• d is symmetric.

• d((µ, w), (µ′, w′)) = 0 implies D(µ,µ′) = 0, that is µ= µ′, and then w = w′ a.e. on [0, 〈µ, 1〉).

• d satisfies the triangular inequality. We have for (µ, w), (µ′, w′) and (µ′′, w′′) ∈ W :

d((µ, w), (µ′, w′))≤ δ(w(0), w′′(0)) +δ(w′′(0), w′(0)) + D(µ,µ′′) + D(µ′′,µ′)

+

∫ 〈µ,1〉∧〈µ′,1〉

0

d t
�

dt(w≤t , w′′≤t)∧ 1
�

+

∫ 〈µ,1〉∧〈µ′,1〉

0

d t
�

dt(w
′′
≤t , w′≤t)∧ 1

�
+
��〈µ, 1〉 − 〈µ′, 1〉

��

≤ d((µ, w), (µ′′, w′′)) + d((µ′′, w′′), (µ′, w′))

+
�
〈µ, 1〉 ∧ 〈µ′, 1〉 − 〈µ, 1〉 ∧ 〈µ′′, 1〉

�
+

+
�
〈µ, 1〉 ∧ 〈µ′, 1〉 − 〈µ′′, 1〉 ∧ 〈µ′, 1〉

�
+

+
��〈µ, 1〉 − 〈µ′, 1〉

��
≤ d((µ, w), (µ′′, w′′)) + d((µ′′, w′′), (µ′, w′)),
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since

(a ∧ b− a ∧ c)+ + (a ∧ b− c ∧ b)++ |a− b| ≤ |a− c|+ |b− c|,

where (x)+ =max(x , 0).

We check that (W , d) is complete. Consider ((µn, wn), n ∈ N) a Cauchy sequence in (W , d). Since

(M f (R+), D) is complete, we get that µn converges to a limit say µ. If µ = 0, the result is clear. If

not, for any ǫ > 0 small enough, for n and n′ large enough so that 〈µn, 1〉 ∧ 〈µn′ , 1〉 ≥ 〈µ, 1〉 − ǫ we

deduce from (62) that, for tǫ = 〈µ, 1〉−2ǫ and nǫ large enough, (wn≤tǫ
, n≥ nǫ) is a Cauchy sequence

in D([0, tǫ), E) and hence converge to a limit w≤tǫ . Since this holds for any ǫ > 0 small enough,

we deduce that w is well defined on [0, 〈µ, 1〉) and that wn converges to w on any D([0, t), E) for

t < 〈µ, 1〉. We deduce again from (62) that ((µn, wn), n ∈ N) converges to (µ, w).

We check that (W , d) is separable. Let (µn, n ∈ N) a dense subset of (M f (R+), D), and for each

n, let (wn,m, m ∈ N) a dense subset of (D([0, 〈µn, 1〉), E), d〈µn,1〉). Then, it is easy to check that

((µn, wn,m); n, m ∈ N) is a dense subset of (W , d).

Thus the space (W , d) is a Polish space.

We shall write µw̄ instead of µ when w̄ = (µ, w). Recall (12). We consider a family of probability

measures Π̄x ,µ, for x ∈ E and the mass measure µ ∈M f (R+) on Wx , s.t.

a) µw̄ = µ, Π̄x ,µ(dw̄)-a.s.;

b) w(0) = x , Π̄x ,µ(dw̄)-a.s.;

c) w has no fixed discontinuity: for all s ∈ [0, 〈µ, 1〉), Π̄x ,µ(w(s−) = w(s)) = 1;

d) If H(µ)<∞, then w(〈µ, 1〉−) exists Π̄x ,µ(dw̄)-a.s.;

e) If H(µ) < ∞ and ν ∈ M f (R+), then under Π̄x ,[µ,ν], (w(r), r ∈ [0, 〈µ, 1〉) is distributed as

(w(r), r ∈ [0, 〈µ, 1〉) under Π̄x ,µ and, conditionally on (w(r), r ∈ [0, 〈µ, 1〉), (w(r + 〈µ, 1〉), r ∈
[0, 〈ν , 1〉) is distributed as (w(r), r ∈ [0, 〈ν , 1〉)) under Π̄w(〈µ,1〉−),ν .

The last property corresponds to the Markov property conditionally on the mass measure. We shall

assume that the mapping (x ,µ) 7→ Π̄x ,µ is measurable.

Let ρ be an exploration process starting at µ. We set Yt = 〈ρt , 1〉. Recall that (Yt , t ≥ 0) is distributed

as a Lévy process with Laplace exponent ψ started at 〈µ, 1〉. For 0 ≤ s < t, we set Js,t = infs≤u≤t Yt

and ρs,t = k(Ys−Js,t )
ρs = k(Yt−Js,t )

ρt , the last equality being a consequence of the construction of the

exploration process. We also define ρ̄
(s)
t as the unique measure ν s.t. [ρs,t ,ν] = ρt .

Conditionally on ρ, we define a probability transition semi-group Rρs,t onWx as follows: for 0≤ s < t
s.t. Js,t < Ys or w(〈ρs, 1〉−) exists and µw̄ = ρs, under Rρs,t(w̄, dw̄′) we have

i) µw̄′ = ρt ,

ii) (w′(r), r ∈ [0, 〈ρs,t , 1〉)) = (w(r), r ∈ [0, 〈ρs,t , 1〉)),

iii) (w′(r), r ∈ [〈ρs,t , 1〉, 〈ρt , 1〉)) is distributed according to Π̄
w(〈ρs,t ,1〉−),ρ̄

(s)
t

.
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In (iii), by convention, if ρs,t = 0, then w(〈ρs,t , 1〉−) = x . Notice that for fixed s < t, a.s. Js,t < Ys

so that, with the previous convention w(〈ρs,t , 1〉−) is a.s. well defined. Notice that if (ρs, w) is

distributed as Π̄x ,ρs
, then (ρt , w′) is distributed as Π̄x ,ρt

thanks to condition e) on Π̄. Thus we can

use the Kolmogorov extension theorem to get that there exists a unique probability measure P(µ,w)

on (Wx)
R+ s.t. for 0= s0 < s1 < · · ·< sn,

P(µ,w)(W
′
s0
∈ A0,ρs0

∈ B0, . . . ,W ′sn
∈ An,ρsn

∈ Bn)

= Eµ


1{ρs0

∈B0,...,ρsn∈Bn}
1{w∈A0}

∫

A1×···×An

Rρs0,s1
(w, dws1

) · · ·Rρsn−1,sn
(wsn−1

, dwsn
)


 .

We set W̄s = (ρs,W
′
s ). Notice that W ′s (r) =W ′t (r) for r ∈ [0, 〈ρs,t , 1〉) and thus that

d(W̄s, W̄t)≤ D(ρs,ρt) + |Ys ∧ Yt − Js,t |.

Since ρ and Y are Pµ-a.s. càd-làg, this implies that the mapping s 7→ W̄s is P(µ,w)-a.s. càd-làg

on [0,∞)
⋂
Q. Hence there is a unique càd-làg extension to the positive real line, we shall still

denote by P(µ,w). The process (W̄s, s ≥ 0) is under P(µ,w) a time-homogeneous Markov process

living in D(R+,M f (R+)×W ). We call this distribution the distribution of the weighted Lévy snake

associated with Π̄.

We set M 0
f (R+) the set of µ ∈ M f (R+) such that supp (µ) = [0, H(µ)] if H(µ) < +∞ and

supp (µ) = [0, H(µ)) if H(µ) = +∞. We the define Θx as the set of all pairs (µ, w) ∈ W such

that µ ∈M 0
f (R+), w(0) = x and at least one of the following three properties hold:

(i) µ(H(µ)) = 0;

(ii) w(〈µ, 1〉−) exists;

(iii) H(µ) = +∞.

We denote by (Fs, s ≥ 0) the canonical filtration on D(R+,M f (R+)×W ). One can readily adapt

the proofs of Propositions 4.1.1 and 4.1.2 of [22] to get the following result.

Theorem 6.1. The process (W̄s, s ≥ 0;P(µ,w), (µ, w) ∈ Θx) is a càd-làg Markov process in Θx and is
strong Markov with respect to the filtration (Fs+, s ≥ 0).

Let us remark that, when the family of probability measures Π̄x ,µ is just the law of a homogeneous

Markov process ξ starting at x and stopped at time 〈µ, 1〉, the previous construction gives a snake

with spatial motion ξ and lifetime process X − I , which is the total mass of the exploration process.

Notice that in [22] the lifetime process is given by the height of the exploration process.

6.2 The general Lévy snake

However, we need some dependency between the spatial motion and the exploration process ρ in

order to recover the usual Lévy snake from the weighted Lévy snake. Informally, we keep the spatial

motion from moving when time t is “on a mass” of ρs. This idea can be compared to a subordination

and has already been used in the snake framework by Bertoin, Le Gall and Le Jan in [16] in order

to construct a kind of Lévy snake from the usual Brownian snake.
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Let Πx be the distribution of ξ a càd-làg Markov process taking values in E with no fixed discon-

tinuities and starting at x , such that the mapping x 7→ Πx is measurable. Recall (13) and set

µ̂r = k〈µ,1〉−rµ for r ∈ [0, 〈µ, 1〉). We define Π̄x ,µ as the distribution of (µ, w) with w = (ξH(µ̂r )
, r ∈

[0, 〈µ, 1〉)) under Πx . Notice that ξr ′ = w(〈µ,1[0,r ′]〉) for r ′ ∈ [0, H(µ)). In particular, w is on

constant on intervals
�
µ([0, r)),µ([0, r])

i
which corresponds to the atoms of µ.

We have that Π̄ satisfies condition a)-e).

Let ((ρs,W
′
s ), s ≥ 0) be the corresponding weighted Lévy snake. For s ≥ 0, r ≥ 0, we set Ws(r) =

W ′s (〈ρs,1[0,r]〉). When H is continuous, the process ((ρs,Ws), s ≥ 0) is the Lévy snake defined in

Section 4 of [22] with underlying motion ξ. As a consequence of Theorem 6.1, we get that the

(general) Lévy snake is strong Markov.

Proposition 6.2. The process ((ρs,Ws), s ≥ 0;P(µ,w), (µ, w) ∈ Θx) is a càd-làg Markov process in Θx

and is strong Markov with respect to the filtration (Fs+, s ≥ 0).
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