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Abstract. We consider a super-Brownian motion X. Its canonical measures
can be studied through the path-valued process called the Brownian snake.
We obtain the limiting behavior of the volume of the e-neighborhood for the
range of the Brownian snake, and as a consequence we derive the analogous
result for the range of super-Brownian motion and for the support of the
integrated super-Brownian excursion. Then we prove the support of X; is
capacity-equivalent to [0, 1] inR?,d > 3, and the range of X, as well as the
support of the integrated super-Brownian excursion are capacity-equivalent
to [0, 11*in R?, d > 5.
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Introduction

Super-Brownian motion, denoted here by X = (X,,¢ > 0), is a measure-
valued process in IR?. It can be obtained as a limit of branching Brownian
particle systems. We refer to Dynkin [8] for such an approximation in a
more general setting. Another way to study super-Brownian motion, is to use
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the path-valued process, called the Brownian snake, which was introduced
by Le Gall [9, 12]. Furthermore this approach allows us to study also the
integrated super-Brownian excursion (ISE). This process appears naturally
when one consider the limit of rescaled lattice trees in high dimension (see
Derbez and Slade [4, 3]). For every bounded Borel set A C RY, we denote
by A® = {x e R% d(x, A) < 8} and by |A| the Lebesgue measure of the
set A. Recently Tribe [19] (see also Perkins [16]) proved a convergence
result for the volume of the e-neighborhood of the support at time ¢ > 0,
supp X, of super-Brownian motion in dimension d > 3. More precisely,
Tribe showed that the quantity >~ |(supp X,)® N A| converges a.s. to a
deterministic constant times f 14(x)X,(dx). Using results of Le Gall [11]
on hitting probabilities for the Brownian snake, we give a similar result
for the range of the Brownian snake. We then derive an analogous result
(theorem 2.1) for the range of super-Brownian motion after time ¢t > 0,
2R,;(X) defined as the closure of U, supp X;. More precisely, we show that
there exists a positive constant Cy depending only on d such that for every
Borel set A C IR?, d > 4, for every ¢ > 0, we have a.s.

lim ga(e) 1,0 141 =Co [ ds [ 1a@x.@a) |
E—> t

where @4(¢) = log(1/¢) and ¢, (e) = e 4if d > 5. We also give a similar
result for the support of ISE (corollary 2.4).

Pemantle and Peres [14] defined the notion of capacity-equivalence for
two random Borel sets, and later Pemantle and al. [ 15] showed that the range
of Brownian motion in R?, d > 3, is capacity-equivalent to [0, 11%. As an
application of the previous results, we show (proposition 4.3) that a.s. on
{X; # 0}, the set supp X; C RY, d > 3, is capacity-equivalent to [0, 1%,
and that a.s. the range %;(X) C R? and the support of ISE for d > 5 are
capacity-equivalent to [0, 1]*.

Let us now describe more precisely the contents of the following sec-
tions. In section 1, we recall the definition of the path-valued process
W = (W, s > 0) called the Brownian snake. We denote by ¢; the lifetime
of the path W,. We recall the links between the Brownian snake, super-
Brownian motion and ISE.

In section 1.3, we introduce the main tools concerning the Brownian
snake. In particular, we consider T, . the hitting time for the Brownian
snake of B(x, €), the closed ball with center x and radius &:

Ty = inf {s > 0; 3t € [0, &1, W, (1) € B(x, &)} .

The function 1, (x) = Ny [T(M) < oo], where IN is the excursion measure
of the Brownian snake away from the trivial path 0, is the maximal nonneg-
ative solution of Au = 4u® on IRd\B (0, &) (see also Dynkin [7]). The study
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of | Z(W)P NA| = fA dx 1{T(X)g)<oo}, where (W) is the range of the Brow-
nian snake, relies on the explicit law of the first hitting path (Wy, . ¢7,,.))
under the excursion measure. This law has been computed by Le Gall
[11, 13]. It is closely related to the law of the process (x;,0 < ¢ < 1°),
defined as the unique strong solution of

Vug(x; — x)

- dt, for 0<t<7t®,
Ms(xt —X)

dxt = dp, +

where 8 is a Brownian motion in IR? started at 8y = 0 and t¢ = inf {t > 0;
|xf - x‘ =¢}.

In section 2, we state the main result on the convergence of the volume
of the e-neighborhood of %;(X). The method of the proof is completely
different from the one used by Tribe in [19]. It is derived from the conver-
gence of the volume of the e-neighborhood of the range of the Brownian
snake in L2(INy) (proposition 2.3).

Section 3 is devoted to the proof of the latter convergence. The proof of
the L2(INy) convergence is somewhat technical because we need a precise
rate of convergence. The derivation of this estimate relies heavily on the
explicit law of (Wr, ,, ¢7,.,) under Ny. It also depends on precise infor-
mation on the behavior of the function u; at infinity. In particular we give
the asymptotic expansion of u; at infinity in section 5.

In section 4 we prove the results on capacity-equivalence for the support
and the range of super-Brownian motion and for the support of ISE. Let
f :[0,00) — [0, 00] be a decreasing function. We define the energy
of a Radon measure v on IRY with respect to the kernel f by: .7 r(v) =
[ f(x — yDv(dx)v(dy), and the capacity of aset A C IR¢ by cap (A) =
[inf vn)=1J f (v)]_l. Following the terminology introduced in [14], we say
that two sets A and A, are capacity-equivalent if there exist two positive
constants ¢ and C such that for every kernel f, we have

ccapf(Al) < capf(Az) < Ccapf(Al) .

Proposition 4.3 states that a.s. the set supp X, C IR?, d > 3, is capacity-
equivalent to [0, 1]*, and that a.s. the range #,(X) C R?, as well as the
support of ISE for d > 5 are capacity-equivalent to [0, 1]*. The proof
follows the method of [15].

1. Preliminaries on the Brownian snake and super-Brownian motion

WEe first introduce some notation. We denote by (M, .# ¢) the space of all
finite measures on IR?, endowed with the topology of weak convergence.
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We denote by %, (IR”), respectively %, (R* x IR?), the set of all real
bounded nonnegative measurable functions defined on IR”, respectively
on RT x IR”. We also denote by #(IR”) the Borel o-field on R”. For
A € #(IR”),let ¥l(A) = A be the closure of A. For every measure v € My,
and f € %, (RY), we shall write [ F()v(dy) = (v, f). We also denote
by supp v the closed support of the measure v. If S is a Polish space, we
denote by C(/, S) the set of all continuous functions from / C R into S.

1.1. The Brownian snake

We recall some facts about the Brownian snake, a path-valued Markov pro-
cess introduced by Le Gall [9, 12]. A stopped path is a continuous function
w:[0,¢] — IRd, where ¢ = {(w) is called the lifetime of the path. We shall
denote by W the end point w(¢). Let %" be the space of all stopped paths in
IR?. When equipped with the metric

d(w, W) = |Cw) — L | +5up [W(s A L) — W (s A S|
5>0
the space 7" is a Polish space.
Letw € # and a, b > 0, such that a < b A (). There exists a unique
probability measure on %" denoted by QY , (dw’) such that:
@) ¢w) = b, O ,(dW)-as.
(ii) w'(¢) = w(t) forevery 0 <t < a, Q) ,(dwW')-as.
(iii) The law of (W'(t +4a),0 <t < b —a) under Q¥ ,(dw’) is the law
of Brownian motion in R¢ started at w(a) and stopped at time b — a.

We shall also consider QL‘;V’ ,(dW’) as a probability on the space C ([0, b], RY).
We set 7, = {w e #;w() = x} forx € R%. Let w € % ,. We restate
theorem 1.1 from [9]:

Theorem 1.1 (Le Gall). There exists a continuous strong Markov process
with values in",, W = (Wy, s > 0), whose law is characterized by the
following two properties.
(i) Thelifetime process = (¢, = ¢w,), s > 0) isareflecting Brownian
motion inIR*.
(i) Conditionally given(¢,, s > 0), the procesgW,, s > 0) is a time-
inhomogeneous continuous Markov procesghose transition
kernel between timesands’ > s is

PY,S’(WS dw/) = Qy\;vzl(_y,s’),é‘s/ (dw/) )

wherem (s, s') := inf, ¢4 &
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From now on we shall consider the canonical realization of the process
W defined on the space C(R™, #,). The law of W started at w is denoted by
&w. We will use the following consequence of (ii): outside a &y-negligible
set, for every s’ > s, one has W (¢t) = Wy (¢) forevery ¢t € [0, m(s, s")]. We
shall write &7, for the law of the process W killed when its lifetime reaches
zero. The distribution of W under &7, can be characterized as in theorem 1.1,
except that its lifetime process is distributed as a linear Brownian motion
killed at its first hitting time of {0}. The state space for (W, &7,) is the
space #; = W ' U d, where 9 is a cemetery point. The trivial path X such
that {xy = 0, X(0) = x is clearly a regular point for the process (W, &y,).
Following [2] chapter 3, we can consider the excursion measure, N, outside
{x}. The distribution of W under IN, can be characterized as in theorem 1.1,
except that now the lifetime process ¢ is distributed according to [t6 measure
of positive excursions of linear Brownian motion. We normalize N, so that,
for every € > 0,

N, |:supg. > 8] = i
s>0 2e

The Brownian snake enjoys a scaling property: if A > 0, the law of the

process W (1) = A7 Wy (%) under N, is AN, -1,

We recall the strong Markov property for the snake under IN,
(see [12]). Let T be a stopping time of the natural filtration # " of the
process W. Assume 7 > 0 N,-a.e., and let ', H nonnegative measur-
able functionals on C(IR™, »~ ) such that F is 7 ;V measurable. Then if 6
denotes the usual shift operator, we have

N, [T <o00; F - HobOr] =N, [T <o0; F - &, [H]]

Let o = inf {s > 0; {; = 0} denote the duration of the excursion of ¢ under
N,. The range # = #(W) of W is defined under IN, by

R={Ws();0<t<¢,0<s<o} .

We also have N,-ae., 2= 1W;;0<s <o}{.
For every nonnegative measurable function F on %7, we have

N, [/0. F(Ws,§s)ds:| =/(; E, [F(Bo.. D] dt

where B, is under P, the restriction to [0, #] of a Brownian motion in
RY started at Bo = x. Now consider under N, the continuous version
(I, > 0,5 > 0) of the local time of ¢ at level ¢ and time s. We define
a measure valued process ¥ on IR? by setting for every r > 0, for every
¢ € B+ (RY),
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(Y, 9) = fo dl' o(W,) .

‘We shall sometimes write Y; (W) to recall that Y; is a function of the Brow-
nian snake. From the joint continuity of the local time and the continuity
of the map s +— W, we get that N, -a.e., the process Y is continuous on
(0, 00) for the Prohorov distance on M. Let ¢ € ,%’H(IR‘J). We define
on R™ x IR the function v(t,x) = N, [1 —exp—(¥;, )], if t > 0, and
v(0, x) = p(x). We will write v(¢) for the function v(t, -). We recall that
the function v is the unique nonnegative measurable solution of the integral
functional equation

v(t)+2/ ds P[vt —9)?]=J(@) >0, (1)
0

where J (¢, x) = P[¢](x), and (P;, t > 0) is the Brownian semi-group in
R?. A few other remarks on the solution of (1) are presented in section 6.1
below.

1.2. Super-Brownian motion and ISE

Letus now recall the definition of super-Brownian motion and its connection
with the Brownian snake. The second part of the next theorem is lemma 4.1
from [6]. Letv € M.

Theorem 1.2. There exists a continuous strong Markov process
= (X, s > 0) defined on the canonical spacgR™, M), whose law is
characterized by the two following properties undy.

(i) Xo=v, PX-as.

(i) Foreveryp € %M(]Rd),t > s > 0, we have

E) [exp[—(X:, @) | 0(X,, 0 <u < 8)] =exp[—(X;, v(t —5)] ,
where the functiom is the unique nonnegative solution(@} with
J () = Pilol.

Furthermore for every integetn > 1,¢, > - >t > 0,¢1,...,0n €
B, (R?), we have

ES fexp|— Y (X0 | | =expl—(v, 0D, ()

{ist<t}

wherev is the unique nonnegative solution to the integral equationvith
right-hand sideJ (1) = 3., -y Pi—[i].
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Theorem 1.3 (Le Gall [9, 12]). Let ) ,_, 8w+ be a Poisson measure on
C(R*, »") with intensity [ v(dx)N,[-], then the proces& defined by
Zo=vandZ =), Y,(Wi) if t > 0, is distributed according thf.

We deduce from the normalization of IN, thatIN, [Y; £ 0] = 1/2t < oo.
This implies that for every ¢+ > 0, there is only a finite number of indices
i € I such that the process (Y;(W'), s > t) is nonzero.

We now recall the connection between ISE and Brownian snake. There
exists a unique collection (IN (()r), r > 0) of probability measure on

C(R*, w o) such that:

1. Forevery r > 0, ]N(()r)[a =r]=1.
2. For every A > 0, r > 0, F, nonnegative measurable functional on
C(R*, #7),

NO[FW®)] =N (Fw)]

3. For every nonnegative measurable functional F on C(IR™", #" o)

No[F] = dr r3PNF] 3)

l oo
V2w /0
The measurability of the mapping r — N(()r)[F ] follows from the scaling
property 2. Under lN(()l), the distribution of W is characterized as in the-
orem 1.1, except that the lifetime process is distributed according to the
normalized Itd measure. The law of the ISE is the law of the continuous
tree associated to ~/2W, under ]N(()l) (see corollary 4 in [10] and [1] ). In

particular the law of the support of ISE is the law of +/22 under N él), where
weset LA = {x; A7 lx € A).

1.3. Hitting probabilities for the Brownian snake
We now recall a few results from [11] . Let w € # U C(R™, IRd), we
introduce the first hitting time of A € %(]Rd):

Ta(w) =inf {r > 0; w(t) € A} ,

with the usual convention inf ¥ = oco. We omit w when there is no risk of
confusion. Consider the Brownian snake W, and set

Ty = inf {s = 0;3r € [0, &1, W) € B(y, o)}
where B(y, ¢) is the open ball in IR? centered at y with radius ¢ > 0,

and l:?( y, &) its closure. We know from [12] that the function defined on
RN\B(0, ¢),
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ue(y) :=No [Tiy,e) < 00] =No[2N B(y,¢) # 0]

=N_,[2NB(0,¢) #9] ,

is the maximal nonnegative solution on IRd\B(O, g) of
Au = 4u?® .

This result was first proved in a more general setting by Dynkin [7] in terms

of superprocesses. The function u, is strictly positive on R\ B(0, ¢). For
every yo € dB(0, €), we have

_ lim U (y) =00 .
yeB(0,8)¢;y—>yo

Scaling and symmetry arguments show that for every y € R*\ B(0, ¢),
_ |yl
u(y) = e uy (? : “

where the function u(r), r € (1, 0o) is the maximal nonnegative solution
on (1, 00) of

uy(r) + wy(r) = dui(r) .

r

It is easy to see that the function u; is decreasing. In section 5 we give the
asymptotic expansion of u; at infinity.

We give the following result on the probability of the event { The < oo}
(see lemma 2.1 of [11]). Assume xy & B(y, ¢). Then N, -a.e. for every
T > 0, we have

ST ATB(y.e)(WT) ‘
Sy [Tivr < 00]=2 / dt (W (1)~ yy el 2 rr o]
0
ST ATB(y.e) (W)
=1—exp [—2/ u,(Wr(s) —y) ds] . (5
0

Let x, x € R?. We will now describe the law of the path Wr,., under
Ny, [+ | Tixey < oc]. First of all we denote by 8 a Brownian motion in
RY started at x, under IP,,. Assume xy & B(x, ¢). Corollary 2.3 from [11]
ensures that there exists IP, -a.s. a unique continuous process x* = (x;, 0 <
t < t°) taking values in R? such that for every n € (0, |[x — x| —¢), for
every t < Tf =inf {s > 0; [x{ — x| <e+1n},
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tv & __
xf:ﬂ,-{-/ Mds,
0

ug(xt —x)

furthermore, Py -a.s. 7% = lim,¢ 7, < oo and |x¢. — x| = &. We also
recall that thanks to Girsanov’s theorem, we have for every nonnegative
measurable function F on C ([0, t], IRd)

E,, [‘ES >t F (x[so,t])]

=I,, |:TB(x,s)(ﬁ) > 1; F (Bjo.) delpy — x) exp [—2/0 ue(Bs — x) dSi|i| ,

ug(xg — x)
where xfo,t] and B are the restriction of x® and g to [0, ¢]. The law of x*
under IP,, can be interpreted as a probability measure on %7 . Consider the
closed set

X

A={w e W7 T (W) < oo}

It has been proved in [11] (corollary 2.3) that its capacitary measure with
respect to the Brownian snake with initial point xg is exactly u.(xo — x)
times the law of x® under IP,,. This capacitary measure w4 can also be
interpreted as the hitting distribution under IN,, . This result was proved by
Le Gall [13], and we shortly reproduce a proof in the appendix.

Proposition 1.4 (Le Gall). For every nonnegative measurable functibn
on "f//‘jo, we have:

Ny [Tix,e) < 005 F(Wr, s 1)1 = /JTA(dW)F(W, Cw)) -

Thus we have
Ny, [Tix.e) < 003 F(Wr,, ..., C1.) ] = ue(xo — ) Ey [F(x°, 9] .

Hence, we deduce from the above equations that for every nonnegative
measurable function F on C ([0, t], IRd), we have

Ny, [Ti,e) < 003 Lry > 15 F (Wr, (5), s € [0,1]))]
= E,, [TB(x,s) > 1; F (Bjo.) us(Br — x) exp [—2/ ue(Bs — x) ds]]
0
(6)

Finally we shall use the following inequality, that can be derived from the
Feynman-Kac formula (use the fact that u, solves Au = 4u.u)

ue(x) > 2 [ / "t w(B— ) exp [—4 / tue(ﬂs—x)dSH G
0 0

There is in fact equality in [7] (see the remark on page 293 of [11]).
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2. A property of the range of super-Brownian motion

For A € 3(R%), ¢ > 0, we set A° := {x € R d(x, A) < ¢}, with
d(x, A) =inf {|x — y|; y € A}. We will write | A| for the Lebesgue measure
of A. We also set

Co = a27¥*T'([d — 21/2)"

where the constant a is defined in lemma 5.1 (see also the remark below the
lemma). We set Z,(X) = %I (U, supp X;). Let p4(e) = ¢* ¢ ifd > 5
and @4(¢) = log(1/¢) for e > 0.

Theorem 2.1. Letv € M. For every Borel sefA C RY, d > 4, for every
t >0,PXas.

lim ¢4 (e) 1,(X)* N Al = Co / ds (X,, 1a) - @®)
E—> t

If there existso < 4 such thaflim,_,o £”~¢ |(supp v)¢| = 0 then(8) holds
witht = 0.

Let K a compact subset of R¢. We consider the measure ¢ (K) defined
by ¢(K)(A) = |K N Al. Since the set #,(X) is compact for t > 0, the
theorem implies that a.s. the sequence of measures (¢, (€)@ (%,(X)?), & >
0) converges weakly to Co [ ds (X, 14).

Let us recall the main theorem of [19] (see also [16]).

Theorem 2.2 (Tribe). Let A a bounded Borel set ilR?, d > 3. Fixt > 0
andv € M. Then there exists a positive constaptdepending only o
such that

lim &2~ |(supp X)* N Al = a0 (X1, 1)
£e—
where the convergence hol®-a.s. and inZ2(IPX).

We shall deduce theorem 2.1 from the next proposition on the range
of the Brownian snake, whose proof will be given in the next section. For
0 € (0,1/d), we set hyg(e) = &'=%if d > 5 and hy4(e) = log(1/e)~1/?
for ¢ € (0, 1). For short we will write h; for hy .

Proposition 2.3. Letd > 4. For everyd < (0, 1/d) and everyR, > 0,
there exists a constamt = «(0) > 0 andgy > 0 such that for every
e € (0, g1, for everyx, with [xo| < Ry, and every Borel set C B(0, Ry),
we have

‘Nxo [wd(e) |2(W)* N AN B(xo, ha(e))"] —Co/ ds (Ys, 1A)”
0

< ha(e)*
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and

00 2
N, [sod(s) |2(W)* 0 AN B(xo, ha(e))*| —Co /0 ds (Y, m} ]

Remark We have trivially B(xp, &) C #2(W)?, N, -a.e. Since N, is an
infinite measure, N, [|Z(W)® N B(xy, 6)|] = oo forevery ¢, § > 0. This is
the reason why we consider A N B (x0, hy(£))¢ rather than A in the previous
proposition.

We first give a consequence of this proposition.

Corollary 2.4. Letd > 4. For every Borel se# ¢ R?, N, -a.e., we have
o
lim g (2) V) 1 A1 = o [ ds (1)
E—> 0

The results hold&_"-a.s. if[dA| = 0.

Proof of Corollary 2.4 Since N, -a.e. the range (W) is bounded, we only
need to consider a bounded Borel set A. Choose Ry so that A C B(0, Ry)
and fix 0 € (0,1/d). Let « > 0 be fixed as in proposition 2.3. Let ¢,
such that hy(e,) = n~2/* for n > 1. Using the Borel-Cantelli lemma
and the second upper bound of proposition 2.3, we get that the sequence
(pa(en) |Z(W)* N Al,n > 1) converges N, -a.e. to Cp fooo ds (Y, 14).
But for ¢’ < ¢, since Z(W)¢ C #(W)¢, we have

@a(e)

AW 0V A| = 0u(e) |2W) 0 Al gae)/pue) -

A monotonicity argument using the fact that ¢ (e,11)/@4(€,) converges to
1, completes the proof of the first part.

The above result implies that INy-a.e. the sequence of measures (¢, (€)@
(2(W)®),e > 0) converges weakly to Cy fooo ds Y. Using (3) we see
this convergence also holds dr-a.e. ]Ng) -a.s. By the scaling property of the
Brownian snake and the family (]Ng), r > 0), we get this convergence holds
]N(()l)—a.s. Thus we have for every Borel set A C IRY, ]N(()l)—a.s.

o0
Co / ds (Y5, Iins) < liminf gy(e) [2(W)" N A]
0 E—>

o

<limsupgq(e) |Z(W)* N A| < Co/ ds (Y5, 1)
e—0 0

where Int(A) denotes the interior of A. To prove the second part of the

corollary we just need to check that if |J A| = O then [;* ds (Y, Intay) =
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fooo ds (Y5, 1;).Itisenoughto prove that |A| = Oimpliesfooo ds (Yy,14) =
0 ]N(()l)—a.s. Conditioning on the lifetime process, we get

00 1
NV UO ds (Ys,lA)i|:1N(()l) UO dr 1A(Wt)]

1
- / dt N§" [P, [1410)] .

0

This is equal to zero if |A| = 0. This ends the proof of the second part of
the corollary. |

Remark As a byproduct of the proof we get that N, -a.e. and ]N(()l) -a.s.
the sequence of measures (¢;(e)¢p (Z(W)?), e > 0) converges weakly to
C() fooo ds YS.

We first state some straightforward consequences of [4] and lemma 5.1.
We say that &9 > 0 satisfies the condition (C) if &, ¢ > 4/3ifd > 5
or log(1/e9) > 4log(2/0)/6 if d = 4. For d = 4 this implies that for
e € (0, &), ha(e)/e = 4/3 and

log(log(1/e))/[0 log(1/e)] < 1/2 . €))

Ford > 4,6 € (0, 1/d), there exists a constant b; such that for every ¢
satisfying (C), x € B(0, h,(g)) we have

ue (x) < boga(e)™ x|, (10)
e (x) < @a(e)”" x>~ [ag + biha(e)"?] . (11)
For |x| > &, we have
ue(x) > agpa(e) M x|*7? ifd > 5, (12)
ue(x) = apps(e) ! x| 72 [1 + log(2 |x|)/10g(1/8)]_1 ifd=4. (13)

We will also often use that for ¢ satisfying (C): ¢ (e)hy(e)? < hy(e).

Proof of Theorem 2.1Recall that for every ¢t > 0, IPf a.s. the set %,(X)
is bounded. Thus we only need to consider a bounded Borel set A. Thanks
to the Markov property of X at time ¢ and theorem 2.2 it is clearly enough
to prove the second part of theorem 2.1. Let v € My and p < 4 such that
lim,_,¢&”~¢ |(supp v)?| = 0. For short we write a.s. for ]Pf—a.s.
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First step Recall we can write for every 1 > 0, X, = >, Y/(W'),
where Y., 8w is a Poisson measure on C (IR, ) with intensity measure
f v(dx)IN,[-]. We let xé denote the starting point of the Brownian snake
Wi (i.e. x) = W[(0)). Notice that a.s. for every i € I, x}, € supp v, which
is bounded thanks to the hypothesis on supp v. Fix 6 € (0, 1/d) such that
d—p>Wd-4)/1—-06)(and 8 < 4 — p if d = 4). Fix Ry such that
supp v C B(0, Ry). Let k¥ and gy < 1 be chosen as in proposition 2.3. We
notice that for every bounded Borel set A C B(0, Ry),

0a(e) |20 (X)* N A < D Ve(W') + pa(e) |A N (supp v)"“©]
iel
where

V(W) = @a(e) [2(W)* N AN B(xg, ha(e))|

We set Vo(W') = Co [;° ds (Y,(W'), 1,). We use the second moment
formula for a Poisson measure to get:

2
m{ZmW%Z%Wﬁ

iel iel
2
= /V(dx)Nx [[Ve(W)—Vo(W)IP ]+ [/v(dx)]Nx [Ve(W)— Vo(W)]} -

We deduce from proposition 2.3 that for every ¢ € (0, &,

2
M[ZwWwZ%WﬁzwuHmwmw.

iel iel

Notice the hypothesis on supp v and 6 imply thatlim,_, o ¢4 (¢) |(supp v)"® |
= 0. Arguments similar to those used in the first part of the proof of corollary
2.4 show then a.s.

gg;mm=2www
S S

Notice we have ), Vo(WH) = Cy fooo ds (Xg, 14). Using the above re-
mark on supp v, we deduce that a.s.

o
lim sup g, (¢) [%0(X)* N A| < Co/ ds (X5, 1a) .
0

e—0

Second steffo get alower bound, consider an increasing sequence (E,, p >

1) of measurable subsets of E = C(R™, %) such that U . E, = E and
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f v(dx)N;[E,] = a), < oo. (Forinstance we can take E,, = {W; sup;. ¢s
> 1/p}.) Then a.s. the set I, = {i el; We Ep} is finite. We have

0a(e) |Z(X) NAI = Y Ve(WH— Y~ U(W, W),

iely ()} i#]
where
Us(W', W)
= ga(e) |Z(W)* N 2(WI)* N AN B(x), ha(e))* N B(xg, ha(e))*
= @y(8) dy 1{T(),_E)(W,-)<oo}l{T(ylg)(Wj)Qo} .

ANB(x.ha(€))NB(x] ha(€)
Arguments similar to those of the first step show that a.s.

lim » V. (W) =) VoW = ZCO/OOO ds (Ys(W'). 14) .

iel, iel, iel,

Now conditionally on the cardinality of 1, the Brownian snakes (W', i €
I,,) are independent and have the same law: p), = a;l f v(dx)INL[-NE,].
For two independent Brownian snakes (W, W') under n, ® u,, we get
using (10), that for ¢ satisfying (C),

tp ® pplUs(W, WH]< o)) / / v(dxo)v(dxy) Ny, @ Ny [Uo(W, W]

<gatera;? [ [ v dy

ANB (x0,ha(€))*NB (x),ha(€))*

X [bo(pd(e)_l ly — x0|2_d] [bofﬂd(f?)_l y = x(/)|27d]

< ()", * (v, 1)°bG sup o7

xo€R? /é(o,Rm\B(xo,hd(s»

_ Jevae) " ha(e)* ifd =5
cps(e)~"log(log(1/e)) ifd =4

< chy(e)?? ifd >4,

dyly —x

where the constant ¢ is independent of & and A. Using the Borel-Cantelli
lemma for the sequence (hy(e,) = n~*? n > 1), and a monotonicity
argument, we get that 1, ® pp-a.s. lim,_.o U.(W, W) = 0. Then since the
cardinality of I, is a.s. finite, we get that for every integer p > 1, a.s.,
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li Us(W' W) =0 .
lim 0 U(W.W)=0

()l i#]
We deduce that for every integer p > 1, a.s.
o0
lim inf ¢, (&) |20(X)* N A] = Zco/ ds (Y;(W'). 14) .
e—0 Py 0

We get the lower bound by letting p — oo. This and the upper bound of
the first step ends the proof of the theorem. |

3. Proof of Proposition 2.3

We shall use many times in the sequel the fact that fooo ds (Yy,1y) =
foo ds 1A(Ws) IN,,-a.e. We assume d > 4. We recall easy equalities, which
canreadily be deduced from the results of section 6.1. Forevery A € B(RY),
we have

N, U ds 1A<Ws>] =/ dy G(x.y) , (14)
0 A

where G is the Green kernel in R?Y: G(x, y) = 2~ 'n~42I'([d — 2]/2) x
lx — y[*7, and

2

o 2
N, |:|:/ ds 1A(WS)i| :| = 4/ dy G(x,y) |:/ dz G(y,z)] . (15)
0 A

We can also compute the first moment under &7,. For every A € 2A(RY),
w € ", we have with £ = (),

o R ¢ o ~
é’;‘; |:/ ds 1A(Ws):| = 2[ dt Nw(t) |:/ ds 1A(Wg)i|
0 0

0
¢
:2/ dt/ dy Gw(t),y) . (16)
0 A

Thanks to the space invariance of the law of the Brownian snake, we shall
only consider the case xo = 0 and A C B(0, Ry), for R, fixed. We fix
0 € (0,1/d)and Ry > 1.Lete, > Osatisfying (C). We consider ¢ € (0, ().
In this section, we denote by c, ci, ¢z, . .. positive constants whose values
depend only on d, 8 and Ry. The value of ¢ may vary from line to line. For
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short we shall write A, = A N B(0, h,(¢))¢ (not to be confused with A®)
and # for 2(W).
‘We first consider the case d > 5. Notice that

No[lo# N1 4.1] = |

AS

dx Ny [T(M) < oo] = f dx ug(x) .

AE

Thus we deduce from (12) and (11), that for ¢ € (0, &),

aged™ / dx |x|7¢ —ape?™ / dx |x|*¢
A B(0,e!-9)

< No[1 N A]] < ~*[a0 + biha(e)"] / dx [xP
A
Therefore using also (14), we have
o
N, [e“"’ |2(W)* N Ae| —Co f ds (Y. m} ‘ < chy(e)"? .
0

Thus we get the first bound of proposition 2.3 (take k < 6/2 and ¢y small
enough). The proof is similar for d = 4 (use (13) instead of (12) and the
fact that | x| is bounded by Ry).

Now we will prove the second bound. To this end we have to find an upper

bound on I = N, [I%’e N Aglz] and a lower bound on J = ]No[ |22° N Ag|
Jy ds 140 .

3.1. An upper bound oh

The term I can also be written
I = // dx dy IN() [T(x,s) < 00O, T(y,s) < OO] .
Agx A,

Consider the above integral as the sum of the integral over |[x — y| < 2h,(¢)
(denoted by ;) and the one over |x — y| > 2h,(¢e) (denoted by I,). Using
(10) we easily obtain an upper bound on /;:

I < 1B, 2hy(e))] / dx No [Tr.e) < 00]
A
< chy(e)! f dx 9a(e) oo 1x 2 < c1ga(e)2ha(e)® .
AF

Notice the event {7,y < 00; T(y,.) < 00} is a equal to
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{T(x,g) < 00; T(y,e) 001, < oo} U {T(y’g) < 00; Tix ) © GT(M) < oo} ,

where 6; is the usual shift operator. By symmetry, we get

L = 2// dx dy Lyjs—yi>2n,)No [Tir.e) < 005 Ty 007, < 0]
AgxAg
A7)
Using the strong Markov property of the Brownian snake under Ny at the
stopping time 7, .y and (5), we see that the quantity Ng [T(x, g < 00; T(y. 0
0r,.., < o] is equal to

gT(x.e)ArB()’,E)(WT(x,ﬁ))
Ny [T(x,s) < 00; 2/ dt u, (WT<m> () — y)
0

< e|:—2 for Ue (WT(M) (s)—y> ds]:|

Finally the law of the stopped path W7, under Ny is given by (6). Thus
the previous expression is equal to

o0
2/ dt IE, |:TB(x,8) > 15 TBR(y,e) > 1 Ue(Br — X)ue (B — y)
0

« e[—zf(; ds [ug(,B.v_X)"F”E(ﬁs_y)]] } .

We substitute this last expression for No [T(x.¢) < 00; Tiy.¢) 0 07, < 0]
in (17), and then decompose the right-hand side of (17) in three terms by
considering the integral in dx dy on the sets |8, — x| A |B; — ¥| > hy(e)
(integral 1), |B; — x| < hg(e) (integral 1), and [B; — y| < ha(e) (inte-
gral I3) (recall |x — y| > 2h,4(¢e)).

An upper bound on I ;3. We shall need the following notation:

2
IO=4a(2)/ dz G(0, 2) [/ dx IZ—X|2_d] .
A

We use (11) to bound 7>, above by: for & € (0, &),
o0
4// dxdy l{lx—y|>2hd(8)}/ dt IEO[ 1B — x| > hqa(e);
Ag XA, 0

1B — ¥ > ha(e); ga(e) 218 — xI” 1B =y (a0 + blhd(e)“z)z]
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< 4py(e) 7 [ag + cha(e)??]

x// dx dy fdz G0,2) |z — x> |z — y|*¢
AxA
< 0a(e) Iy + crpa(e) Pha(e)?* .

An upper bound on |2, and | 3. By symmetry we have I, = I»3. Before
getting an upper bound on Iy, notice that |8, — x| < hy(e) and |x — y| >
2h4(e) imply |B; — y| > hg(e). Furthermore thanks to (10), we get

/ dy Lyip, -yl haente (B — y) e o teBemy)ds
A,
S/ dy [boga(e)™" 1B — yI"]
A

§b0§0d(5)_1/ dy |y|*™*
B(0,Ry)

= c30a(8)7" .

Thus the sum I, + I3 is bounded above by

o
863(pd(8)_]/ dx/ dt
A, 0

—2 M up(Bs—x) d:
x 1By [rmx,s) > 1 L1, sl <hy(epyie (B — x) e 2o e x)d‘]

Using the Cauchy-Schwarz inequality and formula (7), we get
In + I3

%) 1/2
< 8espa(e)”! U dx / dt1P0[|ﬁ,—x|shd<e>]]
Ag 0

N t 1/2
X [/ dx / dt E I:fB(x,g) >t u. (B — x)* =4 ”s(ﬂsx)ds]i|
A, 0

1/2 1/2
< 8C3(pd(8)_1 [/ dx/ dzG (0, z)l{z_x|<hd(8)}] [/ dx2_1u8(x)] .
A Ae

Then thanks to (10), we get
Iy + by < ca0a(e) " ha(e)? < capa(e) ™ x ha(e)*/?.

Conclusion on the upper bound on/. By combining the previous results,
we get ford > 4

I < c19a(e) *ha(e)*+@a(e) 2 lotcapa(e) *ha(e)"*+capa(e) *ha(e)*? .
Thus we get ;()*1 < Iy + cshy(e)?/?.
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3.2. Alower bound od

We shall need the last hitting time of B(x, &) under N for the Brownian
snake:

Lis = sup{s > 0; 3 € [0, &1, Wy (1) € B(x, )}

We then get

L R
J = / dx No [T(x’g) < OO;/ ds 1A(W5):|
Ae 0

o

+/ dx Ny | Tix.e) < 00; ds 14(Wy)
As T(Axs)

L(x,e) ~
—/ dx No |:T(x’5) < OQ; ds 1A(Ws)]
AE

T(x.s)

The time-reversal invariance property of the [t6 measure and the characteri-
zation of the excursion measure IN, readily imply that the latter itself enjoys
the same invariance property. Thus the first two terms of the right-hand side
are equal. We shall denote their sum by J;. Let J, denote the third term.

A lower bound on J;. Let us use the strong Markov property of the Brow-
nian snake at time 7, ., then (16) and (6), to get

ng,s
J1 = 2/ dx Ny |:T(m) < 00; 2/ ( )dt /dy G (WT(“,)(I), y):|
A, 0 A
o0 t
— /dx/dy/ dl]Eo[tB(x,g) >1;G (B, Y)ue (B —x) e 20 “E(ﬁfx)ds]
A Ja Jo
Fatou’s lemma gives that lim inf, ¢ ¢, (&) J; > Jy, where
Jo = 4a0// dxdy/dz G(0,2)G(z, ) 1z — x| .
AxA

Unfortunately, we need an estimate on the rate of convergence. This requires
some technical calculations. Notice that on {Tg(x n, () (B) > t}, inequalities
(12), (13) and (10) imply

a00a(8) " Fy (B — x) 1B — x17? < uo (B, — x) < bopa(e) 1B — x|,

where F;(z) = 1ifd > 5 and F4(z) = [1+1og(2|z|)/1og(1/s)]’1.
For short we write I'; = 2bggg(g)™! fol |Bs — xlz’d ds. Then ¢;(e)J; is
bounded below by
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J1—4aofdx/dy/ dt

XEo [T naen > 1 GBe ¥) 1B — x4 Fy(B —x)e "] .

, we have to find an upper

In order to obtain an upper bound on ‘Jl’ —
bound on

/f dxdy/ dt
AxA 0

Xy [G (B ) 1B — ¥~ [1 = 1,01y, oy FalB — 07|

Thus we shall decompose 1 — 1Af(x)1{7:B(x ha(e)) > t}Fd(,Bt —x)e " into
a sum of four terms:

[1= 10, 0] +24,) [1= Ly o0
+1As (x)l{fg(x_hd<5))>t} [1 - Fd(ﬁl - x)]

14, D1z, ooy FaB =) [1 7]

We denote by Ji1, J12, J13 and Jy4 the corresponding integrals. The integral

J“:/ dx/dy/ dt By [G(Br. v) 1B, — xP]
A\A, A 0

is easily bounded above by

/ dx / dy/dz G(0,2)G(z,y) |z — x4 < cohale)* .
B(0,hq4(e)) B(0,Ro)

We bound J;, by applying the strong Markov property of Brownian motion
at time TB(x,hy(e))>

Ji2 =/ dx/ dY/ dt o [Tgeenen <13 GBr y) 1B — xI77]
A, A 0

5/ dx/ dy
A, A
x IEg [rg<x,hd<g)) < 00; f dz G(Bey e DG (@ ¥) 12 — x|“’}

An easy calculation shows that there exists a constant ¢; such that for every
(x,x') € B(0,2Rg) x B(0,2Ry), |x —x'| < 1/2,
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/ dy / dz G(', )Gz, y) |z = x** < erpa(|x’ = x[)
B(0,Ry)

Furthermore we have for every r € (0, 1),

d-2
r
/ dx P, [tB(x,,) < oo] = / dx (—) Al <erd™? .
B(0.Ro) B(0.Ro) x|

(18)
We deduce from the previous remarks that if d > 5,

Jin < Chd(8)4_d/ dx Py [Ty < 0] < cha(e)™ 72 = chy(e)* |
Ae

andif d = 4, Jip < clog(l/hd(s))hd(s)z. Thus we get that for d > 4,
Ji2 < cshy(e)’/?. If d > 5 then Jj3 = 0. For d = 4 thanks to (9) we have
for |z] = h4(e), |1 — Fy(2)| < 2|log(2|z])| /log(1/e). We deduce that

o0
Ji3 flog(l/s)_I// dxdy/ dt
AXA 0

XIEq [Ta(naen > 1 G(Br, ¥)2 1og(218 — xDI 1B — x177]

§c10g(1/8)_1// dxdy
AxA

X /dz G(0,z2) |log2 |z — x| |z — x| 2 G(z, y)

< clog(1/e)™" < cohy(e)? .

Notice first that thanks to (9), F;(z) < 2 for |z| > hy(e). We have, using
the Markov property for Brownian motion at time s,

o
J1a §2f/ dxdy/ dt
AxA 0

t
o |}B(x’hd(£)) >1; G(By, y) 1B —xI*7* 2b0(ﬂd(8)_l/ 1By — x> d5:|
0

§c¢d(e)1// dxdyf dsf dt
AXA 0 0

xEo [18s — x> Eg, [I1B: — x| > hale); G(Br, ¥) 1B — xI77]]

< cpa(e)"'M(d, hy(e)) ,
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where
M, ¢e) = /f dx dy //dzdz/
B(0,Ry)?
xG(0,2) 1z = xP Gz )G Y | = x| Loy -

An easy computation shows there exists a constant c such that fore € (0, 1],

c ifd € {4, 5},
M(d,e) < c+clog(l/e) ifd =6, (19)
ceb ifd>17 .

Thus we easily deduce that Ji4 < cjohy(e)?.
We have ¢, (g)J) > Jo — 4ap(J11 + Ji2 + Ji3 + J14). Putting together
the previous results, we get for d > 4,

@a(e)J1 > Jo — 4aglcsha(e)? + csha(e)** + coha(e)” + croha(e)’]
> Jo — ciiha(e)? .

An upper bound on J,. We will first recall the decomposition of the Brow-
nian snake under &7, (see theorem 2.5 in [12]). We denote by («;, B;),i € 1,
the excursion intervals of ¢ above its minimum process (i.e. of the pro-
cess (¢ — infgepo,4) &) above 0) before o under &7,. For i € I the paths
Wi, s € la;, Bi] coincide over [0, &, ]. For every i € I, and s > 0 we set
Wi (1) = Wigtsynp (1480, 1 € [0, LI With §§ = o, 15)ap —Ca,- Then W is
astopped path (W € ") withinitial point Wy, 1 5)ng, ({e,) = We, = W(Ly,)-

Proposition 1 (Le Gall). The random measule,;, 8., .wi is unders;, a
Poisson point measure 00, {1 x C(R™, %) with intensity2 dt Ny,[-].

The process (Zie[ 1, =n0wi, t € [0, ¢w]) is a Poisson point process
withinhomogeneous intensity. We will now describe the law under 63, of

(x,€)

the first excursion (¢, , W) which hits the ball B(x, ¢), thatis, with evident
notation, the excursion characterized by T, o (W') = +o0if ¢, < {a;, and
T(x,g)(WiO) < 4-00. Notice first that under Ny[- | T(x ) < 00], @‘”";VT -a.s.

(x,€e)

there exist excursions W’ which hit the ball B(x, ¢). Indeed we have thanks
to lemma 2.1 of [11] that No[. | T« < 00]-a.s.
(T e

. L€)
@@t"m,ﬁ) [Fiel, Ty (W' <oo]l = 1—exp —2/ dtu,(Wr,, ()—x)=1 .

0

Since the integral for dt u.(Wr, () — x) is finite for r < ¢z, , we deduce
there exists a unique first excursion ({aio, Wio) which hits B(x, ¢). Classi-
cal arguments on Poisson point process implies that the law of (, Wio)
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is 21, ;T(m)(t) dt Ny, [Txe < 00, -]. We introduce the random time
M ) = inf {s > Tixe)s & = m(T(x ¢)s L(x,g))}. It is clear from the defini-
tion of the excursion iy that ot;; = M, ) under 5’;‘%.8) . We will now express
J> using the excursion iy. We have

L(x_s)

Jo = 2/ dx Ny | Tiy.ey < 00 ds 1A(Ws)]
Ae

M e

i Lxe ~
= 2/ dx No T(ng) < OQ; (o@tvr( ) |:/ ds 1A(Ws)i|i|
AE L e M(,\',s)

Ly (Wi0) o
= 2f dx No | Tix,e) < 00; @@’;VT( / ds 14(W)
Ae e Qi

= 4/ dx N() T(x,a) < 005 ' dt ]NWT< )(1)
AE X,€

We used the time reversal property of the Brownian snake for the first
equality, then the strong Markov property and at last the definition of the
excursion io and its law. We will distinguish according to {¢ > Tp(x n,ce) }
(integral J»;) and {t < TB(x.h d(g))} (integral J»;). Notice that since x € A,
we have Tpx 1) (Wr,.,,) < {1, No-ae.

We now bound J;; using (14).

$Tieey
by = 4/ dx Ny |:T(x,s) < oQ; dt Nw, o
A ,

TB(x.hg ()

Lo .
X |:T(x,8) < oo;f ds 1A(W3)i|:|
0

$Tc.e) e ~
< 4/ dx Ny T(x,g) < O0; dt NWT( NG |:/ ds 1A(W3):|
Ae TB(x,hy (e) " 0

LT
_4 / dx Ny |:T(m) < 00; di / dy G(Wr, (1), y)j|
A, TB(x,hg(e)) A

Now we use (6), the Cauchy-Schwarz inequality and (7) to get

o0
Jo < 4/ dx/ dt ]EO[TB(x,e) > 1> TB(xha(e))s
A, 0

/ dy G(B;, y)u:(B, — x) =2/ “s(ﬂr—x)dr]
A
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1/2 00
54[2—1/ dx ug(x):| [/ dx/ dt
A, Ag 0
271/2
X IE() |:t > TB(x,hq(e))s <f dy G(ﬁtv Y)> }i|
A

< coq(e) 12 [/ dx Py [TB(x,hd(E)) < 00]
A,

172
X sup /dz G(z, x") (/ dy G(z, y)) :|
x'€B(0.2Ry) A

< cga(e)”Pha(e) V"
We used the strong Markov property at time Tg(x, 4, (), and (18) for the last
two inequalities. This implies that Jo; < c1204() ' hy(e)/?.

Using the time reversal property of the Brownian snake, the strong
Markov property at time 7, ., and (16) we get

TB(x,hyg(e))
Jn = 4/ dx No| Tix,e) < 00; / dt NWT(‘, o
A, 0

X |:T(”> < 00; ds 1A(Ws)i|i|

Tix.e)

TB(x,hg(e))
= Sf dx Ny T(_X’s) < OO;/ dt
Ae 0

$Ti e
XNWT(;(Q(I) [T(x’g) < OO;/ dS/ dy G(WT(H) (S), y):|j| .
: 0 A
We will distinguish according to {s > TB(x,hd(e))} (integral J,3) and {s <

TB(x,h d(s))} (integral J>4). We now bound J,3. Let 8 and ,5 denote two Brow-
nian motions. We have

TB(x,hy(e))
Jrz = 8/ dx Ny T(_x,g) < OO;/ dt
A, 0

{T e
x Nw, o |:T(x,s) < 00; dS/ dy G(Wr,, (s), y)i| i|
. .

TB(x,hg(e))

oo
= 8/ dx/ dt Ey |:‘CB(x,h,,(g)) >t u (B — x) o2 Jo ue(By—x)dr
Ag 0

o0
/ dslEg, [me,a)(ﬁ) > 8 > TB(hy(e) (B) 5
0
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/ dy G(Es, y)lflt;;(l[:;v — X) efzfox ”s(ﬁux)dv] j|
A

o0
< Cf/’d(é?)_lf dx/ dt IE, |:TB(x,hd(£)) >t |8 — x>
A, 0

1/2

o ~
X |:/ ds IEﬂt I:TB(X,S)(B) > 5 ”e(,gs - X)2 €_4fd us(ﬁ”_x)d”]]
0

o ,771/2
X |:/0 ds IEg, |:s > TB(x,hd(g))(B); (/A dy G(Bs, y)) j|j| i|

o0
< Cfpd(b“)_l/ dx/ dt IEg |:T3(x,hd(e)) >t 18 — x>
A, 0

X [2_1u€(/3, — x)]]/2 |:1E5, [TB(x,hd(s))(/é) < 00;

. ) 2 1/2
- { /0 ds < /A dy G(ﬁs,y)) m }

o0
< cpa(e) f dx f dt Bo oy > 1
Ag 0

3 /2 1/2
1B, — x|©3D2 gy [tB e < 0] ]

172
X |: sup /dz/G(x/,Z/) (/ dy G(7', Y)) :|
'€B(0.2Ro) A

< C(pd(8)3/2f dx f dz G(0, 2)
Ag lz=x[=ha(e)
|Z _ x|(6—3d)/2 hd(s)(d—2)/2 |Z . xl(2—d)/2 .

We used (6) twice for the second equality, (10) and Cauchy-Schwarz in-
equality for the first inequality, (7) and the strong Markov property at
time Tg(x,n,()) for the second and (18) for the last. We easily deduce that
J23 < c139a(e) " ha(e).

For J,4 we have using (6) twice and (10) twice,

TB(x,hg(e)
Jyy = 8/ dx Ny T(x,s) < OO;f dt
Ae 0

TB(x,hq(e))
X ]NWT(, N0 [T(M) < oo;/ ds/ dy G(Wr, (s), y)}
‘ 0 A
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00 00
= 8/ dx / dt/ ds IE, TB(x,ha(e)) > 1;
A, 0 0

-2 N r 2 .
ug(ﬂt — x) e ./0 us(Br—x)dr ]Eﬁ, I:IB(x,hd(g))(,B) > s

f dy G(BS’ y)us(,éx —X) C_zf(; ME(Bv_x)dU] :|
A

o0 o0
< cu(e)” / dx / dr / ds IEo{rB@,h(,@)w; By — x|
A, 0 0

|

Using (19) we get Jo4 < c149q4(e) " 'ha(e)?. As a conclusion we get

x IEg, [TB(x,hd(s))(B) > ] / dy G(Bs, y)
A

< coa(e) M (d, ha(e)) .

Jr < cnnga(e) " ha(e)'? + ci30a(8) " ha(e) + crapae) Thale)? .

Conclusion on the lower bound on/. By combining the previous results,
we get for d > 4,

@a(e)d > Jo — c11ha(e)’ — @a(e)J = Jo — cisha(e)? .

3.3. End of the proof of Proposition 2.3

We deduce from formula (15), that

o 2 o 2
J() = C()N() |:|:/ 1A(W5)dsi| i|, and I() = C02N0|:|:f 1A(Ws)dsi| ] .
0 0

Thus we get from section 3.1 and 3.2 that for ¢ small enough
o . 2
Ny |:|:(/’d(8) |2° N Al _CO/ ds 1A(Ws)i| :| < cshq(e)"*+2c15ha(e)” .
0

Take k¥ < 6/2 and gy small to get the second upper bound of proposition
2.3. O



Some properties of the range of super-Browninan motion 531
4. Capacity equivalence for the support and the range of X

Let f : (0,00) — [0,00) be a decreasing function. We put f(0) =
lim, o f(r) € [0, 00]. We define the energy of a Radon measure v on
R? with respect to the kernel f by: .# ;(v) = [ [ f(Ix — y)v(dx)v(dy),
and the capacity of a set A € Z(R9) by

—1
cap (A) = [U(iAn)f: 1 ff<v>]

Following [14], we say that two sets A; and A, are capacity-equivalent if
there exist two positive constants ¢ and C such that for every kernel f, we
have

ccap (A1) < cap,(A) < Ceapp(A)) .
The next lemma is an immediate consequence of the remarks in [15] p.385.

Lemma 4.1. Let A ¢ R¢ be a bounded Borel set. Suppose there exist two
positive constantg’ andy such that

lime" 4 |A%| = .
e—0
Then there exists a constafitsuch that for every kerngf, we have
1 -1
cap;(A) < C [/ f(r)ry_ldr]
0

For every measure 1 € M, we set

S.(w) = / / w(dxudy) pE.x - y) |

where p is the Brownian transition density in R?: p(r,x) = (2mwt)~/?

e K72 (¢, x) € (0,00) x RY. The next lemma is also an immediate
consequence of [15] (p.387).

Lemma 4.2. Let A ¢ R¢ be a bounded Borel set. Suppose there exist two
positive constants’ and y and a measure. € M, such thatu(A€) =0
and

lim &7 S, (n) = ¢ .
e—0

Then there exists a constansuch that for every kerngf, we have

1 -1
¢ |:/ f(r)ry_ldri| < cap,(A)
0
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For example, for every integer p < d, we can consider the cube [0, 1]7
as a subset of IR?, and then we obviously have

lim &7~ (10, 117)°| = 27"/ T((d = p)/2)

and if u is Lebesgue measure on [0, 1]7,

lim erS.(n) = Q) P=D2
£—

Thus we deduce from lemmas 4.1 and 4.2 that there exist two positive
constants c;,, C ;,, such that for every kernel f,

1
c;, [/ f(r)r”_ldr:|
’ (20)

We shall prove the following result on super-Brownian motion and ISE.

-1 -1

1
< cap, ([0, 11") < C), [ /O f(r)r”‘ldr]

Proposition 4.3. (i) Assumed > 3. Lett > 0, v € Mjy. IPf—a.s. on
{X, # 0}, the sebupp X, is capacity-equivalent tf0, 1]>.

(i) Assumel > 5. Letr > 0,v € My. IPf—a.s. on{X; # 0}, the setz,(X)
is capacity-equivalent tf0, 1]*. Furthermore, if there exists a positive
numberp < 4 such thaflim,_,¢ e”~¢ |(supp v)¢| = 0, thenIPf-a.s. the
set#(X) is capacity-equivalent tf0, 1]*.

(iii) Assumel > 5. The sew, (W) is capacity-equivalent tf0, 1]* N"-
a.s. on{y, # 0}.

Proof of Proposition 4.3 (i)Let d > 3. It is well-known that for r > 0,
IPf -a.s. the set supp X, is bounded. Thus, thanks to theorem 2.2, IPff -a.s.,
we have

lim e>|(supp X,)*| = ap(X,, 1) .
£—

Now apply lemma 4.1 to A = supp X;, with y = 2 and take p = 2 in (20).
We get that IPf -a.s., on {X, # 0}, there exists a (random) constant C; > 0,
such that for every kernel f,

cap ;(supp X;) < C; cap ([0, 11%) .

For the second part of (i), we use lemma 4.4 below. Recall notation Y; from
section 1.1.

Lemma 4.4. Fixt > 0 andx € R, d > 3. Then we have

o 4
lim £¥=2(2m)*/2 8, (¥;) = 70D

where the convergence holi¥g.-a.e. and inL>(N,).
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Let us explain how the proof is completed using lemma 4.4. Thanks to
lemma 4.2, the above lemma and (20) imply that N, -a.e. on {Y; # 0}, there
exists a positive constant c; such that for every kernel f,

cap (supp Y;) > ¢ cap,([0, 11°) .

Now remember that for ¢ > 0, under ]Pf, we canwrite X, = ) ,_, ¥, (WH),
where ) ., Sy is a Poisson measure on C(R™, #") with intensity f v(dx)
N, [-]. On {X, # 0}, there exists iy such that Y,(W) = 0. Then we have
supp Y; (W) C supp X;. Thus the previous lemma entails that there exists
a.s. a positive constant ¢ (W) such that for every kernel f,

cap (supp X,) > cap ;(supp Y,(W")) > c;(W") cap ([0, 1)

This completes the proof of (i). |

Proof of Proposition 4.3 (ii)Let d > 5. We argue as in the proof of (i)
using theorem 2.1 instead of theorem 2.2 and the following lemma instead
of lemma 4.4.

Lemma4.5.Fixt > 0 andx € RY, d > 5. Then we have for every
T >1t>0,

T 16 T
lim e?=*(2m)4/?8, / ds Y, ) = —f ds (Y, 1) ,
e—0 ; d—-2)d-4) J,

where the convergence holt¥g.-a.e. and inL>(N,). O

Proof of Proposition 4.3 (iii)Let d > 5. For the first part we argue as in the
proof of (i) using the second part of corollary 2.4 instead of theorem 2.2.
Notice that thanks to (3) and the scaling property of the family (]N(()r), r > 0),
the convergence in lemma 4.5 also holds ]N(()l)—a.s. The second part of (iii)
is then a direct consequence of lemma 4.2 (with © = fOT ds Yoandy = 4)
and (20) (with p = 4). |

The proofs of lemmas 4.4 and 4.5 are very similar. We shall only prove
the latter. The former uses the same techniques in a simpler way.

Proof of Lemma 4.5We first want to show the convergence in L?(N,.). Fix
T >t > 0. By standard monotone class arguments, we deduce from the
results of Section 6.1 an explicit expression for

T T
]Nx[/ / dsi - ds,
0 0

X/"‘/Ysl(dxl)'"Y€4(dx4)g(slv"'as47~x17"'9x4)] ’
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where g is any measurable positive function on (RYH* x (RY*. Spe-
cializing to the case g(sy, ..., 84, X1, ..., X4) = ]_[?:1 1[I,T](si)p(82, X1 —
x2) p(e%, x3 — x4), we get

s ([ )

1 T T—s
—54!23/ ds/dy pls,x —y) {4/ dSl/d)’1 p(st,y — y1)
0 (=)

T —s T—s—s2
X / dsz/ dy, p(s2,y — y2) dSs/d% p(s3,y2 —»3)
0

(1—s—s52)+

T*S*SZ T*S*S27S4
X f ds4f dys p(sa, y2 — ya) dss
0

(t—s—52—54)+
T—S—Sz—S4
X / dys p(ss, Y4 — Y5) dse

(t—s—82—54)+

X f dye p(ss, ya — yo)[p(e2, y1 — y3) (e, ¥5s — Vo)

+p(e%, y1 — y5)p(e%, y3 — yo) + p(% yi — vo) p(€%, y3 — ¥5)]

T—s T—s—s7
+/ dS7/ dy7 p(s7,y — y7) dSs/ dyg p(ss, y7 — ¥3)
0

(t—s—s7)+

T—s—s7 T—s
X f dS9fd)’9 p(S9, y7 — y9)f dSlof dyiop(s10, Y — ¥Y10)
¢ 0

t—s—s7)+

T—s—s10 T—s—s10
X/ dSu/ dyi p(sit, yio — Y1) dsi»
(

t—5—510)+ (t—s—s10)+

X / dy12p(si2, yio — y12)[p(e?, ys — o) p(e2, Y11 — Y12)

+p(e%, ys — i) p(e?, yo — yi2) + p(e?, ys — yi2) p(e?, yo — yi1)1}

We write Jy, J», J3, J4, Js, and Jg, respectively for the integrals correspond-
ing to the integrands p(e?, y1 — y3) p(¢*, ¥s — Yo), p(e*, y1 —y5)p(e*, y3 —
Y6), P(&%, y1 = Y6) (€%, ¥3 = y5), P(€7, ys — o) p(%, y11 = y12), p(&7, Y —
yi1)p(e2, yo — y12), and p(2, ys — y12) p(e2, yo — y11) respectively. As we
shall see the integral J4 gives the main contribution. Before proceeding to
the calculations, we give three useful bounds: for every positive real number

s, &2

< 24T~V AT), we have ford > 5

T
/0 (+s+r) " ar < % (&> +5) """, @1)
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T
_ 2 _
/ (&% +s+ r)] P ar < T (e* + s)2 v (22)
A _
T rap2 2d —6)'e"4 ifd =17,
f (e*+7r)" ""dr < Hr(e) :== { 4Ine"! ifd =6, (23)
0

vorT ifd =5.

From now on, we assume that 2 < 2~ /(T"' A T) and also e’ Ine™! < T

if d = 6. Let us derive an upper bound on J;. By repeated applications of
the Chapman-Kolmogorov identities, we get

T T
J1§28/ / ds...dsﬁfdyp(s,x—y)/dYIP(Sls)’_YI)
0 0

X / dy, p(s2,y — )’2)/dy3 p(s3, y2 — ys)/dy4 p(S4, Y2 — ya)

X /d)’5 p(Ss, ya — ys)/dysp(s6, ya — y6) p(e%, y1 — y3) p(e2, ys — Yo)

T T
:28/ / dS---dS()p(82+S1+S2+S3,0)p(82—|—S5+S6,0).
0 0

We can apply (21), (22) and (23) to get:

8 4

Jp < —T/Tds1;(82 +S1)2—d/2 —  Te¢
@)y (d—=2)d—-4) (d—2)d—-4)
< T?*Hr(e) ,

where the constant ¢; depends only on d. We can use the same method for
J2:

T T
h 528/ / ds---dssfdyms,x—y)/dyl pls1, Y — ¥1)
0 0

X de2 p(s2,y — yz)/dy3 p(s3, y2 — ys)/dy4 p(S4, y2 — Yya)
X /dYS p(ss, y4 — yS)/dyﬁ p(S6, Y4 — Vo)

xp (&2, y1 — ys)p(e2, ¥3 — Y6)

T T
:28/ / dS"‘dS6dep(S4,Z)p(82+S1+S2+S5,Z)
0 0

xp(e*+ 53+ 56, 2)
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where we made the change of variables z = y,—y4. Since p(e2453+56,7) <
p(e? + 53+ 56, 0) and p(e? + 51 + 55 + 55,2) < p(e2 + 51 + 52 + 55, 0),
we can argue as for J; to get:

T T
12528/ / ds--- dsg p(e* + 51 4 53 + 55, 0) p(e? + 53 + 56, 0).
0 0

< T?*Hy(e) .

By symmetry, we get J, = J3. We want now to find an upper bound on Jy.
Using (21), (22) and (23) we get:

T T—s T—s5—s7 T—s—s7
Jy = 26/ ds/dy ps,x —y) / dS7/ ng/ dso
0 0 (t—s—s7)+ (t—s—s57)+

X /dyv p(s7,y — yv)/dys p(sg, y7 — ¥8)

2
X /dyg p(s9, y7 — yo) p(&?, yg — yg)}

T [ AT—s T—s—s7 T—s—s7 2
=26/ ds f dS7/ ng/ dsop(e® + s3 + 59, 0)
o [Jo (t=s=s7)¢ (t=s=57)+

<202m)™

2
T T—s 4 5 2—d2
X [) ds fo dS7m [8 + 2(t il S7)+]

) T
x/ ds|:e4_d[(T—s)—(t—s)+]
0

210
T @r)ild-2)d - P

2
(t—5)+ _
+f dsy [e*+2(t — 5 — 57)4] ‘”2}
0

210
= Qi ld-2)d-HP

2
T
X / ds |:84_d[(T —S)ANT -]+ 2_]H2T(8):|
0

e [ r]
T Q2m)d | d-2)d -4 3

+er T2 Hy (o)
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where the constant ¢, depends only on d. We now compute an upper bound
on Js:

T T
J5§26/ / a’s-~-dslzfdyp(s,x—y)/dwp(S7,y—y7)
0 0

X /dys p(sg, y71 — ys)/dy9 (89, y7 — Yo) / dyio p(s10, Y — Yi0)
X /dyll p(s11, Y10 — Y11)

X /dY12 p(s12, yio — Y12) p(e2, ys — y11) p(e%, Yo — y12)

T T
:26/ / ds - ds
0 0

X /dZ p(s7+ 510, 2) p(e® + 58 + 511, 2) p(* + 59 + 512, 2)

where we made the change of variables z = y;y — y;. Since p(e? 4 59 +
512, 2) < p(e* + 5o + 512, 0), and p(e* + 57+ s5 + 510 + 511, 0) < p(e? +
57 + sg + s10, 0), we can argue as for Ji, and get:

Js <1 T?e* % Hy(e) .

By symmetry we get Jo = Js. Combining the previous bounds leads to

N, [sg ([ ”

210 84_d
famd&d—mm—Q

2 3
]FT3”+G—Nﬂ+Qﬂ&ﬁm@m

where the constant c¢; depends only on d.
We shall now find a lower bound for N, [S,s (ftT ds Yy) ftT ds (Y, 1)].
Using similar arguments as in the beginning of the proof, we get

T T
I :=N, [Sg </ ds YS)/ ds (Y, 1)]

1 T T—s
= 33!23/ dS/dy p(s,x —y) ds /dy1 p(si,y —y1)
0 (t—$)+

T— T—s—s;
X/ dsZ/dyz p(s2,y — ) ds;
0

(t—s—s2)+
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T—s—s2

X /d)’3 p(s3,y2 —»3) dsy

(t—s—s52)+

x /dy4 p(ss, y2 — ya)[p(e*, y1 — y3) + p(e*, y1 — ya)
+p(e®, y3 —yp)] -

Since we are looking for a lower bound, we restrict our attention to the term
p(e?, y3 — y4). We get

T T—s T—s T—s—s)
1> 24/ ds/ dslf a’sz/ ds;
0 (t—9)+ 0 (t—s—s2)+

T—S—Sz
/ dss p(e® + 53+ 54, 0)
(

t—5—52)¢
B 24 4
T 2n)2(d —2)(d — 4)

T—s
X / ds» [(82 4 2(t—s—s2)+)2_d/2 24 (T —5 — s2))2—d/2]
0

2 1
~ Qr)2(d—-2)(d—4)
x [T —s — (t — 5)4) — 2Hr(8)]

T
/ ds [(T —s) AN (T —1)]
0

T
/ ds [(T —s)AN(T —1)]
0

26 84_d |:(T _ l)3

— %l = 2
= 2m)d2 (d —2)(d — 4) 3 + (T =1 t] c4T"Hr(e)

where ¢4 depends only on d. Finally we deduce from section 6.1, with
@(s) = Ljo,r—n(s), that

T 2 3
N, Hf ds (YS,1>] } 24[%+(T —z>2z]

Combining the previous results, we get for ¢ small enough

T 4 T 2
N, Hsd—“(zn)dﬂss (/ ds Y3> — 2—/ ds (Y, 1)} }
¢ d—-2)d—-4) J,

< C5T28d_4HT g) <c T?¢ ,
6

where ¢ depends only on d. This gives the convergence in L?(IN,). Now
Se ( ftT ds Ys> is monotone decreasing in € (cf lemma 5.3 in [15]). The IN,.-

a.e. convergence then follows from the previous estimate by an application
of the Borel-Cantelli lemma and monotonicity arguments. m|
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5. Some properties of the function y

We consider the function u;, which is the maximal solution on (1, c0) of
the non linear differential equation
d—1

r

u"(r) + u'(r) = 4u@r)® .

Lemma 5.1. There exist positive constantg by andb’,, depending only
ond, such that

lim r972u,(r) = a9 ifd =5, lim r?log(r) u,(r) = a9 = 1/2 ifd = 4;

r—00

furthermore for every > 1,

ui(r) > agr™4 ifd =5, u(r)=apr>log2r)”" ifd=4; (24)

and for every > 4/3,
ui(r) <bgr’ ifd>5, ui(r) <bg[2r’log(r)]™! ifd=4; (25)

ui(r) < apr> 4 +v,r%72 ifd > 3, (26)

ui(r) < agr 2log(r)~'+b'1r2log(r) 2 log(log(r)) ifd =4 . (27)

For d > 5, we will see the constant ay can be expressed as the radius of
convergence of a series. We will prove this lemma by giving the asymptotic
expansion of u; at co.

Lemmab.2. If d > 5, we have

o
uy(r) = r*= Zanr_"(d_4), r>1,
n=0
wherea, is as in the above lemma and the seque@g@ is given by the
recurrence:

4 n
= —(d —2)"? i1, for n>1
a n6(n8+1)( ) ;aka k—1 n>

d—4
andsé = L
For d = 4, we have
1 1 log(1
0y(r) = — i og(log(r))
2log(r)  4log(r)?

> + 0 (1og(r)2)] at +oo .
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We introduce the auxiliary function

t 1/(d-2)
2(t) = 4(d — 2)2@=D/@=2p <ﬁ) , fort>d—2 .

This function is a positive solution on (d — 2, oo) of

Y'(t) =172y, (28)

Letn > Obe fixed. Sets =t —d+2—n, z2(s) = z(t) and ¢(s) =
(s +d —2+n)"°2. Then 7 solves y"(s) = ¢(s)y(s)?, s > 0. We deduce
from [18] p.132 case I (take 0 = —§ — 2, A = 2) that the function Z is
decreasing for s > 0. Since n > 0 is arbitrary, we get that z itself (i.e.
ri=2u,(r)) is decreasing.

Proof of Lemma 5.2 in the case > 5. We deduce from theorems 1.1
and 2.4 of [18] (see also p.132 case 3, where a > 0 is implicit) that the
limit ¢ = limy_, o, Z(s) = lim,_, o z(¢) exists and is positive. Hence by
integrating (28) twice from ¢ to oo, we getforr > d — 2,

0
2(t)—q = / r—Or " 2z(r)?dr . (29)
t
Now consider the sequence (¢g,,, n > 0) defined by go = 1 and the recurrence

1 n—1

- el £ >1 .
na(n5+1)k§q"q k-t dor T

4n
Clearly we have for every n > 0, g, < 2[4/51" y4+1, where the sequence
(vn,n > 1) is introduced in the appendix. Thus the radius of convergence
R of the series Y _ ¢,s" is bounded from below by /4. The power series
z0(t) = Zq,,q”“t“s” is convergent and even C* as a function of ¢ for
t>1H = [q/R]l/‘S. This power series also solves (29) for t > ¢. The same
arguments as in the proof of the Gronwall lemma show that equation (29)
possesses a unique solution bounded in a neighborhood of infinity. Thus the
functions z and zg agree for ¢t > t; VvV (d — 2).

Since lim, 4> z(t) = 400, we get t; < d — 2. Let us now prove that
t1 > d — 2. Since g and the coefficients g, are positive, it is enough to
prove that for any integer p, z(t) > v,(t) for t € (d — 2, +00), where
V(1) = Y7 gaq" 't and then let p goes to infinity to get t; > d — 2.
We consider the function f = z — v, defined on (d — 2, +00). We have
f > Oatleastover I = (d—2,d—24+n)U(n~", +00), for n small. Itis easy
to check, using the definition of g, that f”(¢) > t~572[z(¢) + v,(O]f(@).
Hence f is convex when f is positive. If there exists ¢ such that f(¢) <0,
then since f is positive on /, there exists a last zero #y of f thatis f(#) =0
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and f > Oon J = (f, +00). Now f is convex and positive on J, and
f(to) = lim; 1o f(#) = 0. This is absurd. Thus we deduce that f is
positive over (d —2, +00). As we noticed this in turn implies that#; = d —2.
The radius of convergence of the series Y g,s" is ¢(d — 2)~° and we have
fort >d—2

oo
20) =) qug"'t

n=0

Thus we get with obvious notation for r > 1,

00
u (i‘) — 471(d o 2)d/(d72)r27d anqn+l(d _ 2)7n(d74)/(d72)r7n(d74)

n=0
00

— rZ—d E :anr—n(d—él) )

n=0

The recurrence formula for (a,) is a consequence of the recurrence formula
for (g,). ]

Proof of Lemma 5.14 > 5). From the above expression we easily deduce
(25) and (26). Since the real numbers (a,, n > 0) are positive, (24) follows
easily. Notice that 4(d — 2)2ay is the radius of convergence of the series

> qus". 0

Proof of Lemma 5.2 in the cagke= 4. We write f(¢) ~ g(¢) at 0+ when
the real function f and g are positive or negative on I = (0,0 + ¢) for
some ¢ > 0 and lim;¢; ;0 f(¢)/g(t) = 1. We also write f(t) ~ g(t) at
oo when f(1/t) ~ g(1/t) at O+. Since z > 0, we know from [18] p.133
case 4, that z(¢) ~ log(t)~! at co. We deduce from (28) that z is convex
positive and lim;_, ;1 z(#) = 0. This implies z'(¢) is negative on (2, 00).
From (28), we also have z/(¢) ~ [t log(t)]_2 at co. By integration, we get
Z/(t) ~ t~'log(t)~% at co. We now consider the function w(s) = z(e*)
which solves w” — w’ = w? on (log 2, 00). Notice that the function w is
positive decreasing and w’ is negative. We also have w(s) ~ s~!, w'(s) ~
—s~2 and w”(s) = o(s~2) at co. Thus the function defined on (0, c0) by

p(w(s)) =w'(s), for s e (log2,00) ,
is well defined and even of class C!, and p/'(w(s)) = w”(s)/w’(s). Thus the
function p can be extended as a C' function on [0, c0) by setting p(0) = 0

and p’(0) = 0. Furthermore it solves

pw)p'(w) — p(w) =w> on [0,00) .
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We also have p(w) ~ —w? at 04. We consider the sequence (p,,n > 2)
defined by p, = 1 and the recurrence

n—1
Pn = kakpn—k+1a for n>3.
k=2

The radius of convergence of the series Z(—l)”“pn w" is 0, nevertheless
we will prove this is the asymptotic expansion of p at 0+. We set H, (w) =
Zzzz(—l)k“pkwk for n > 2. We now prove by induction that p(w) =
H,(w)+ h,(w), where h,(w) = o(w") at 04. This is true forn = 2. Let us
assume it is true at stage n. Let g, o (w) = (1 —a)(—=1)" py41 w't — b, (w).
We easily have

8n.e (W) P(W) + gno (WIH, (w) — 1]

_ a(—=1)"ppqw" ™ + o(w™ ),
(=" o w2 4 o(w"?), ifa =0.

Let us assume n is even. For ¢ = 0, the above right hand side is negative
on (0, €], for & small enough. Since p is negative and [H, (w) — 1] < 0
on [0, €], for & small, we see that g, o(w) < O implies g;’o(w) > 0. As
gn.0(0) = 0, we get by contradiction that g, o > 0 on [0, &]. This implies
hy(w) < pupqwt!. Similar arguments for & > 0 implies that 8na <0
on [0, &4] for ¢, > 0 small enough. Since this holds for any « > 0 and
since 1, (w) < pppw"*! for w small enough, we deduce that 4, (w) =
hy(w) — pppiw™ = o(w"*). If n is odd the proof is similar.

From the definition of p, we then have w’(s) = H, (w(s))+ O (w(s)"*1)
at co. For n = 3 this gives w'(s) = —w(s)? + 2w(s)> + O(w(s)*) at co.
Since w(s) ~ s~! at +00, we deduce by integration that

1
—— —2logw(s) + O(1) = s at infinity .
w(s)

Standard arguments yields w(s) = s~! + 2572 log(s) + O(s~?) at infinity.
Thus we have

1 |: 1 log(log(r))

=5 Z10g) T aloger? T 0<log(r)_2)} A Foo

2
Notice the previous calculation can be continued to give an asymptotic
expansion of u;. |

Proof of Lemma 5.1 (d = 4)The inequalities (25) and (27) follow easily
from the above equality. We will now prove that for every r > 1, u;(r) >
[2r21og(2r)]~!. We consider the function f(r) = u;(r) — [2r* log(2r)]~".
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The function f is positive at least over (1, 1+1)N(n~!, oo) for  small. Let
us assume that f achieves its minimum at ry and that f(ry) < 0. Then we
have ro € [1 + 1,771, f'(ro) = 0 and f”(ry) > 0. An easy computation
gives

1

f(")=4f(”)|:’41(”)+ m

3 /
2r210g(2r)i| A
Evaluation at » = ry implies that f”(rg) < 0. This contradicts the assump-

tion. Hence f is positive, that is we get (24) for d = 4. |

6. Appendix

6.1. Formula for moments of the Brownian snake

For the reader’s convenience, we recall some explicit formulas for moments
of the Brownian snake. These formulas are well-known, at least in the con-
text of superprocesses (see e.g. Dynkin [5]). We can compute the Laplace
functional of fot ds(Ys, ¢(s)) forg € %, (R* xR?). To this end start from
the finite dimensional Laplace functional (2) with¢; = i/m, ¢; = % o(i/m)
for a nonnegative continuous function ¢ with compact support on R x IR,
Thanks to the continuity of the process X, by a suitable passage to the limit,
we getforv € My

E} [GXP [—/0 (X, w(S))dS]] =exp[=(v, v())] ,

where v is a nonnegative solution of (1) with right-hand side J (¢, x) =
fot ds P;_s[¢(s)](x). This can be extended by monotone class arguments to
any ¢ € %, (RT xR?). The uniqueness of the solution is easily established
using arguments similar to the classical Gronwall lemma. Then we get
v(t, x) = IN,[1 — exp[— fot ds (Y,_s, ¢(s))]], thanks to theorem 1.3.

Now we introduce an auxiliary power series. Let us consider the analytic
function f(A) = 1 —+/1 — Afor |A| < 1.Itis easy to check that for |A| < 1,
we have

x
fO) =Dy,
n=1
where the sequence (y,, n > 1) is defined by y; = 1/2 and the recurrence

n—1
1
Vn = EkX_;VkVnk for n>2
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(use the fact that f solves 2 f(A) = f(1)>+A).Nowlet T > 0and J anon-
negative measurable function on R x R% such that My = supy. 71xre (5 X)
< 00. We define the family of measurable functions (4,,n > 1) on R x
RY, by the initial condition

hi(t) =J(@) ,

and the recurrence

n—1 t
B (1) :22/0 ds Py [hi(t — $)hoi(t —s)] for n>2. (30)
k=1

We clearly have for every n > 1,

sup |h,| < [ATT"'[2M7 1"y, -
[0,T1xR?

Thus the power series w(A, 1) = ) (— 1)"*!'A"h,, (1) is normally convergent
on [0, T] x R? for A < [8TM;]~'. And it clearly solves the integral
equation on [0, T'] x R¢

w(t) +2/ ds Py [w(t —s5)*] =2J () . (31)
0

To get the uniqueness of the solution to the previous integral equation, use ar-
guments similar to Gronwall’s lemma. Finally we can compute the moments
for the process Y under N, . Indeed, let g € %, (R" x RY). We have shown

that for A > 0, the function v, (¢, x) = IN, [1 —exp—A fol(Y,_s, ©(s)) ds]

is the unique solution to (31) on R x R? with J(,x) = fot ds Plo(t —
§)](x). Thus for A > 0 small enough, we have v, (f) = w(X, t). Then from
the series expansion for w(, ), we get for every integer n > 1

N, [(/ ds (st,go(S))) ] =nlh,(t, x) ,
0

where the functions £, are defined by h(¢) = fot ds P[e(t — s)], and
the recurrence (30). In the same way it can be shown that for every ¢ €
%bJr(le), foreveryt > 0,n > 1,

N, [(Y:, 9)"] = nlh, (1, x) |

where the functions are defined by /() = P,[¢], and the recurrence (30).
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6.2. Proof of Proposition 1.4

We use the notations of the first section. Let L the last exit time of A =
{w €N Thx.e)(W) < oo}:

L = sup {s > 0; 3t € [0, &), Wi(2) € B(x, 8)} ,

with the convention sup # = 0. It is enough to prove the proposition with
T(x.¢) replaced by L, since Wy and Wy, are identically distributed under
N, thanks to the invariance of IN,, under time reversal. We now compute
forA >0, >0,

N)C() [e_)LLoet F(WI’ ;t)1L>t] )

where F is a bounded nonnegative continuous function on %" which van-

ished on a neighborhood of Xy. We refer to [11] for the new notations and
the properties of the Brownian snake used here. We often write ¢ for ().
Using the Markov property at time ¢, we deduce from the characterization
of IN,, that

Nxo [C_ALOQI F(Wz7 §I)1L>t:| = /Mxo(dW)QI(C)F(Wv C)éa:v [e_)LL 1L>O] s

where M (dw) = ;" da IP{ (dw)and IP (dw) is the law of By 4) started at
xo, viewed as a probability measure on % ,,. Here g, (a) = (2t3)~"2a exp
[—a?/2t] is the entrance density under Itd measure of positive excursions.
We have

o0
@@:« [ei)LL lL>0] = 5:, [1L>0] - ,/() ds A eixs 5:/ [1L>s] .
We first consider

N, = / M, (W), (O F (w, ¢) / ds e & 1] .
0

Let Q}(w, dw’) denote the transition kernel of the Brownian snake killed
when its lifetime reaches 0. Then we have

N, = / ds 1e f My (d%)q () F (., 7) / 0" (w, dw) &% [11-0] .
0

Recall that (Wj, &%) is symmetric with respect to the reference measure
M, (dw), cf [11]. Thus the measure M, (dw)Q¥(w,dw’) is symmetric,
and we have

N, = / ds he / M., (dw) / OF(w, dw)g, (Y F (W, ¢)&% [Lroo] .
0
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Let U(w”, dw) denotes the potential kernel of (W;, &%). Using the def-

inition of the capacitary measure of A (that is [ 7(dw")U(W",dw) =
M,,(dw)é&y, [1r-0]), we get

A =/ ds ke“an(dW/’)/U(W”,dW)
0

< [ Qi dwaeF. ¢
- /O T dsae / TA(dW") / i / 0} (W', dwW)qi (¢ Y F(W, £')
- | Car (1] [maaw) [ Qi awia @ F e
By letting & — oo, we also have
/ Mo (@), (€) F (W, )87 [110]

=/ dr/”A(dW’/)fo(W”, dw'g,(¢YFW', ¢') .
0
Thus we get

N, [e 5% F(Wi, £)1-4]

_ /0 dr oV / T (dw) / 0 (w, dW)qi (¢ )F (W, ') .

The end of the proof is now similar to the end of the proof of theorem 3.2.1
from Port and Stone [17] concerning the interpretation of the capacitary
measure as a last exit distribution (use that fooo qg:(a)dt = 1). O
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