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Some properties of the range of super-Brownian motion
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Abstract. We consider a super-Brownian motion X. Its canonical measures
can be studied through the path-valued process called the Brownian snake.
We obtain the limiting behavior of the volume of the ε-neighborhood for the
range of the Brownian snake, and as a consequence we derive the analogous
result for the range of super-Brownian motion and for the support of the
integrated super-Brownian excursion. Then we prove the support of Xt is
capacity-equivalent to [0, 1]2 in Rd , d ≥ 3, and the range of X, as well as the
support of the integrated super-Brownian excursion are capacity-equivalent
to [0, 1]4 in Rd , d ≥ 5.
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Introduction

Super-Brownian motion, denoted here by X = (Xt , t ≥ 0), is a measure-
valued process in Rd . It can be obtained as a limit of branching Brownian
particle systems. We refer to Dynkin [8] for such an approximation in a
more general setting. Another way to study super-Brownian motion, is to use
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the path-valued process, called the Brownian snake, which was introduced
by Le Gall [9, 12]. Furthermore this approach allows us to study also the
integrated super-Brownian excursion (ISE). This process appears naturally
when one consider the limit of rescaled lattice trees in high dimension (see
Derbez and Slade [4, 3]). For every bounded Borel set A ⊂ Rd , we denote
by Aε = {

x ∈ Rd; d(x, A) ≤ ε
}

and by |A| the Lebesgue measure of the
set A. Recently Tribe [19] (see also Perkins [16]) proved a convergence
result for the volume of the ε-neighborhood of the support at time t > 0,
supp Xt , of super-Brownian motion in dimension d ≥ 3. More precisely,
Tribe showed that the quantity ε2−d |(supp Xt)

ε ∩ A| converges a.s. to a
deterministic constant times

∫
1A(x)Xt(dx). Using results of Le Gall [11]

on hitting probabilities for the Brownian snake, we give a similar result
for the range of the Brownian snake. We then derive an analogous result
(theorem 2.1) for the range of super-Brownian motion after time t > 0,
Rt (X) defined as the closure of ∪s≥tsupp Xs . More precisely, we show that
there exists a positive constant C0 depending only on d such that for every
Borel set A ⊂ Rd , d ≥ 4, for every t > 0, we have a.s.

lim
ε→0

ϕd(ε) |Rt (X)ε ∩ A| = C0

∫ ∞

t

ds

∫
1A(z)Xs(dz) ,

where ϕ4(ε) = log(1/ε) and ϕd(ε) = ε4−d if d ≥ 5. We also give a similar
result for the support of ISE (corollary 2.4).

Pemantle and Peres [14] defined the notion of capacity-equivalence for
two random Borel sets, and later Pemantle and al. [15] showed that the range
of Brownian motion in Rd , d ≥ 3, is capacity-equivalent to [0, 1]2. As an
application of the previous results, we show (proposition 4.3) that a.s. on
{Xt 6= 0}, the set supp Xt ⊂ Rd , d ≥ 3, is capacity-equivalent to [0, 1]2,
and that a.s. the range Rt (X) ⊂ Rd and the support of ISE for d ≥ 5 are
capacity-equivalent to [0, 1]4.

Let us now describe more precisely the contents of the following sec-
tions. In section 1, we recall the definition of the path-valued process
W = (Ws, s ≥ 0) called the Brownian snake. We denote by ζs the lifetime
of the path Ws . We recall the links between the Brownian snake, super-
Brownian motion and ISE.

In section 1.3, we introduce the main tools concerning the Brownian
snake. In particular, we consider T(x,ε) the hitting time for the Brownian
snake of B̄(x, ε), the closed ball with center x and radius ε:

T(x,ε) = inf
{
s ≥ 0; ∃t ∈ [0, ζs], Ws(t) ∈ B̄(x, ε)

}
.

The function uε(x) = N0
[
T(x,ε) < ∞]

, where N0 is the excursion measure
of the Brownian snake away from the trivial path 0, is the maximal nonneg-
ative solution of 1u = 4u2 on Rd\B̄(0, ε) (see also Dynkin [7]). The study
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of |R(W)ε ∩ A| = ∫
A

dx 1{T(x,ε)<∞}, where R(W) is the range of the Brow-
nian snake, relies on the explicit law of the first hitting path

(
WT(x,ε)

, ζT(x,ε)

)
under the excursion measure. This law has been computed by Le Gall
[11, 13]. It is closely related to the law of the process (xε

t , 0 ≤ t ≤ τ ε),
defined as the unique strong solution of

dxε
t = dβt + ∇uε(x

ε
t − x)

uε(x
ε
t − x)

dt, for 0 ≤ t ≤ τ ε ,

where β is a Brownian motion in Rd started at β0 = 0 and τ ε = inf
{
t ≥ 0;∣∣xε

t − x
∣∣ = ε

}
.

In section 2, we state the main result on the convergence of the volume
of the ε-neighborhood of Rt (X). The method of the proof is completely
different from the one used by Tribe in [19]. It is derived from the conver-
gence of the volume of the ε-neighborhood of the range of the Brownian
snake in L2(N0) (proposition 2.3).

Section 3 is devoted to the proof of the latter convergence. The proof of
the L2(N0) convergence is somewhat technical because we need a precise
rate of convergence. The derivation of this estimate relies heavily on the
explicit law of

(
WT(x,ε)

, ζT(x,ε)

)
under N0. It also depends on precise infor-

mation on the behavior of the function u1 at infinity. In particular we give
the asymptotic expansion of u1 at infinity in section 5.

In section 4 we prove the results on capacity-equivalence for the support
and the range of super-Brownian motion and for the support of ISE. Let
f : [0, ∞) → [0, ∞] be a decreasing function. We define the energy
of a Radon measure ν on Rd with respect to the kernel f by: If (ν) =∫∫

f (|x − y|)ν(dx)ν(dy), and the capacity of a set 3 ⊂ Rd by capf (3) =[
infν(3)=1 If (ν)

]−1
. Following the terminology introduced in [14], we say

that two sets 31 and 32 are capacity-equivalent if there exist two positive
constants c and C such that for every kernel f , we have

c capf (31) ≤ capf (32) ≤ C capf (31) .

Proposition 4.3 states that a.s. the set supp Xt ⊂ Rd , d ≥ 3, is capacity-
equivalent to [0, 1]2, and that a.s. the range Rt (X) ⊂ Rd , as well as the
support of ISE for d ≥ 5 are capacity-equivalent to [0, 1]4. The proof
follows the method of [15].

1. Preliminaries on the Brownian snake and super-Brownian motion

We first introduce some notation. We denote by (Mf ,Mf ) the space of all
finite measures on Rd , endowed with the topology of weak convergence.
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We denote by Bb+(Rp), respectively Bb+(R+ × Rp), the set of all real
bounded nonnegative measurable functions defined on Rp, respectively
on R+ × Rp. We also denote by B(Rp) the Borel σ -field on Rp. For
A ∈ B(Rp), let Cl(A) = Ā be the closure of A. For every measure ν ∈ Mf ,
and f ∈ Bb+(Rd), we shall write

∫
f (y)ν(dy) = (ν, f ). We also denote

by supp ν the closed support of the measure ν. If S is a Polish space, we
denote by C(I, S) the set of all continuous functions from I ⊂ R into S.

1.1. The Brownian snake

We recall some facts about the Brownian snake, a path-valued Markov pro-
cess introduced by Le Gall [9, 12]. A stopped path is a continuous function
w : [0, ζ ] → Rd , where ζ = ζ(w) is called the lifetime of the path. We shall
denote by ŵ the end point w(ζ ). Let W be the space of all stopped paths in
Rd . When equipped with the metric

d(w, w′) = ∣∣ζ(w) − ζ(w′)
∣∣ + sup

s≥0

∣∣w(s ∧ ζ(w)) − w′(s ∧ ζ(w′))
∣∣ ,

the space W is a Polish space.
Let w ∈ W and a, b ≥ 0, such that a ≤ b ∧ ζ(w). There exists a unique

probability measure on W denoted by Qw
a,b(dw′) such that:

(i) ζ(w′) = b, Qw
a,b(dw′)-a.s.

(ii) w′(t) = w(t) for every 0 ≤ t ≤ a, Qw
a,b(dw′)-a.s.

(iii) The law of
(
w′(t + a), 0 ≤ t ≤ b − a

)
under Qw

a,b(dw′) is the law
of Brownian motion in Rd started at w(a) and stopped at time b−a.

We shall also considerQw
a,b(dw′) as a probability on the spaceC([0, b], Rd).

We set Wx = {w ∈ W; w(0) = x} for x ∈ Rd . Let w ∈ Wx . We restate
theorem 1.1 from [9]:

Theorem 1.1 (Le Gall). There exists a continuous strong Markov process
with values inWx , W = (Ws, s ≥ 0), whose law is characterized by the
following two properties.

(i) The lifetime processζ = (
ζs = ζ(Ws), s ≥ 0

)
is a reflecting Brownian

motion inR+.
(ii) Conditionally given(ζs, s ≥ 0), the process(Ws, s ≥ 0) is a time-

inhomogeneous continuous Markov process, whose transition
kernel between timess ands ′ ≥ s is

Ps,s ′(w, dw′) = Qw
m(s,s ′),ζs′ (dw′) ,

wherem(s, s ′) := infr∈[s,s ′] ζr .
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From now on we shall consider the canonical realization of the process
W defined on the space C(R+,Wx). The law of W started at w is denoted by
Ew. We will use the following consequence of (ii): outside a Ew-negligible
set, for every s ′ > s, one has Ws(t) = Ws ′(t) for every t ∈ [0, m(s, s ′)]. We
shall write E∗

w for the law of the process W killed when its lifetime reaches
zero. The distribution of W under E∗

w can be characterized as in theorem 1.1,
except that its lifetime process is distributed as a linear Brownian motion
killed at its first hitting time of {0}. The state space for

(
W,E∗

w

)
is the

space W∗
x = Wx ∪ ∂ , where ∂ is a cemetery point. The trivial path x such

that ζ(x) = 0, x(0) = x is clearly a regular point for the process (W,Ew).
Following [2] chapter 3, we can consider the excursion measure, Nx , outside
{x}. The distribution of W under Nx can be characterized as in theorem 1.1,
except that now the lifetime process ζ is distributed according to Itô measure
of positive excursions of linear Brownian motion. We normalize Nx so that,
for every ε > 0,

Nx

[
sup
s≥0

ζs > ε

]
= 1

2ε
.

The Brownian snake enjoys a scaling property: if λ > 0, the law of the
process W(λ)

s (t) = λ−1Wλ4s(λ
2t) under Nx is λ−2Nλ−1x .

We recall the strong Markov property for the snake under Nx

(see [12]). Let T be a stopping time of the natural filtration FW of the
process W . Assume T > 0 Nx-a.e., and let F , H nonnegative measur-
able functionals on C(R+,W∗

x) such that F is FW
T measurable. Then if θ

denotes the usual shift operator, we have

Nx [T < ∞; F · H ◦ θT ] = Nx

[
T < ∞; F · E∗

WT
[H ]

]
.

Let σ = inf {s > 0; ζs = 0} denote the duration of the excursion of ζ under
Nx . The range R = R(W) of W is defined under Nx by

R = {Ws(t); 0 ≤ t ≤ ζs, 0 ≤ s ≤ σ } .

We also have Nx-a.e., R =
{
Ŵs; 0 ≤ s ≤ σ

}
.

For every nonnegative measurable function F on W∗
x , we have

Nx

[∫ σ

0
F(Ws, ζs) ds

]
=

∫ ∞

0
Ex

[
F(β[0,t], t)

]
dt ,

where β[0,t] is under Px the restriction to [0, t] of a Brownian motion in
Rd started at β0 = x. Now consider under Nx the continuous version(
lts, t > 0, s ≥ 0

)
of the local time of ζ at level t and time s. We define

a measure valued process Y on Rd by setting for every t > 0, for every
ϕ ∈ Bb+(Rd),
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(Yt , ϕ) =
∫ σ

0
dlts ϕ(Ŵs) .

We shall sometimes write Yt(W) to recall that Yt is a function of the Brow-
nian snake. From the joint continuity of the local time and the continuity
of the map s 7→ Ŵs , we get that Nx-a.e., the process Y is continuous on
(0, ∞) for the Prohorov distance on Mf . Let ϕ ∈ Bb+(Rd). We define
on R+ × Rd the function v(t, x) = Nx

[
1 − exp −(Yt , ϕ)

]
, if t > 0, and

v(0, x) = ϕ(x). We will write v(t) for the function v(t, ·). We recall that
the function v is the unique nonnegative measurable solution of the integral
functional equation

v(t) + 2
∫ t

0
ds Ps

[
v(t − s)2

] = J (t) t ≥ 0 , (1)

where J (t, x) = Pt [ϕ](x), and (Pt , t ≥ 0) is the Brownian semi-group in
Rd . A few other remarks on the solution of (1) are presented in section 6.1
below.

1.2. Super-Brownian motion and ISE

Let us now recall the definition of super-Brownian motion and its connection
with the Brownian snake. The second part of the next theorem is lemma 4.1
from [6]. Let ν ∈ Mf .

Theorem 1.2. There exists a continuous strong Markov processX

= (Xs, s ≥ 0) defined on the canonical spaceC(R+, Mf ), whose law is
characterized by the two following properties underPX

ν .
(i) X0 = ν, PX

ν -a.s.
(ii) For everyϕ ∈ Bb+(Rd), t ≥ s > 0, we have

EX
ν

[
exp [−(Xt , ϕ)] | σ(Xu, 0 ≤ u ≤ s)

] = exp [−(Xs, v(t − s))] ,

where the functionv is the unique nonnegative solution of(1) with
J (t) = Pt [ϕ].

Furthermore, for every integerm ≥ 1, tm > · · · > t1 ≥ 0, ϕ1, . . . , ϕm ∈
Bb+(Rd), we have

EX
ν


exp


−

∑
{i;ti≤t}

(Xt−ti , ϕi)





 = exp [−(ν, v(t))] , (2)

wherev is the unique nonnegative solution to the integral equation(1) with
right-hand sideJ (t) = ∑

{i;ti≤t} Pt−ti [ϕi].
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Theorem 1.3 (Le Gall [9, 12]). Let
∑

i∈I δWi be a Poisson measure on
C(R+,W) with intensity

∫
ν(dx)Nx[·], then the processZ defined by

Z0 = ν andZt = ∑
i∈I Yt (W

i) if t > 0, is distributed according toPX
ν .

We deduce from the normalization of Nx that Nx [Yt 6= 0] = 1/2t < ∞.
This implies that for every t > 0, there is only a finite number of indices
i ∈ I such that the process (Ys(W

i), s ≥ t) is nonzero.
We now recall the connection between ISE and Brownian snake. There

exists a unique collection
(
N(r)

0 , r > 0
)

of probability measure on

C(R+,W∗
0) such that:

1. For every r > 0, N(r)
0 [σ = r] = 1.

2. For every λ > 0, r > 0, F , nonnegative measurable functional on
C(R+,W∗

0),

N(r)
0

[
F(W(λ))

] = N(λ−4r)
0 [F(W)] .

3. For every nonnegative measurable functional F on C(R+,W∗
0),

N0[F ] = 1√
2π

∫ ∞

0
dr r−3/2N(r)

0 [F ] . (3)

The measurability of the mapping r 7→ N(r)
0 [F ] follows from the scaling

property 2. Under N(1)
0 , the distribution of W is characterized as in the-

orem 1.1, except that the lifetime process is distributed according to the
normalized Itô measure. The law of the ISE is the law of the continuous
tree associated to

√
2W , under N(1)

0 (see corollary 4 in [10] and [1] ). In
particular the law of the support of ISE is the law of

√
2R under N(1)

0 , where
we set λA = {x; λ−1x ∈ A}.

1.3. Hitting probabilities for the Brownian snake

We now recall a few results from [11] . Let w ∈ W ∪ C(R+, Rd), we
introduce the first hitting time of A ∈ B(Rd):

τA(w) = inf {t ≥ 0; w(t) ∈ A} ,

with the usual convention inf ∅ = ∞. We omit w when there is no risk of
confusion. Consider the Brownian snake W , and set

T(y,ε) = inf
{
s ≥ 0; ∃t ∈ [0, ζs], Ws(t) ∈ B̄(y, ε)

}
,

where B(y, ε) is the open ball in Rd centered at y with radius ε > 0,
and B̄(y, ε) its closure. We know from [12] that the function defined on
Rd\B̄(0, ε),
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uε(y) := N0
[
T(y,ε) < ∞] = N0

[
R ∩ B̄(y, ε) 6= ∅]

= N−y

[
R ∩ B̄(0, ε) 6= ∅]

,

is the maximal nonnegative solution on Rd\B̄(0, ε) of

1u = 4u2 .

This result was first proved in a more general setting by Dynkin [7] in terms
of superprocesses. The function uε is strictly positive on Rd\B̄(0, ε). For
every y0 ∈ ∂B(0, ε), we have

lim
y∈B̄(0,ε)c;y→y0

uε(y) = ∞ .

Scaling and symmetry arguments show that for every y ∈ Rd\B̄(0, ε),

uε(y) = ε−2u1

( |y|
ε

)
, (4)

where the function u1(r), r ∈ (1, ∞) is the maximal nonnegative solution
on (1, ∞) of

u′′
1(r) + d − 1

r
u′

1(r) = 4u2
1(r) .

It is easy to see that the function u1 is decreasing. In section 5 we give the
asymptotic expansion of u1 at infinity.

We give the following result on the probability of the event
{
T(y,ε) < ∞}

(see lemma 2.1 of [11]). Assume x0 6∈ B̄(y, ε). Then Nx0 -a.e. for every
T ≥ 0, we have

E∗
WT

[
T(y,ε) < ∞]= 2

∫ ζT ∧τB(y,ε)(WT )

0
dt uε(WT (t)−y) e

[
−2

∫ t

0 uε(WT (s)−y) ds
]

= 1 − exp

[
−2

∫ ζT ∧τB(y,ε)(WT )

0
uε(WT (s) − y) ds

]
. (5)

Let x0, x ∈ Rd . We will now describe the law of the path WT(x,ε)
under

Nx0 [· | T(x,ε) < ∞]. First of all we denote by β a Brownian motion in
Rd started at x0 under Px0 . Assume x0 6∈ B̄(x, ε). Corollary 2.3 from [11]
ensures that there exists Px0 -a.s. a unique continuous process xε = (xε

t , 0 ≤
t ≤ τ ε) taking values in Rd such that for every η ∈ (0, |x − x0| −ε), for
every t ≤ τ ε

η = inf
{
s ≥ 0; ∣∣xε

s − x
∣∣ ≤ ε + η

}
,
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xε
t = βt +

∫ t

0

∇uε(x
ε
s − x)

uε(xε
s − x)

ds ,

furthermore, Px0 -a.s. τ ε = limη→0 τ ε
η < ∞ and

∣∣xε
τε − x

∣∣ = ε. We also
recall that thanks to Girsanov’s theorem, we have for every nonnegative
measurable function F on C([0, t], Rd)

Ex0

[
τ ε > t; F

(
xε

[0,t]

)]
=Ex0

[
τB(x,ε)(β) > t; F

(
β[0,t]

) uε(βt − x)

uε(x0 − x)
exp

[
−2

∫ t

0
uε(βs − x) ds

]]
,

where xε
[0,t] and β[0,t] are the restriction of xε and β to [0, t]. The law of xε

under Px0 can be interpreted as a probability measure on W∗
x0

. Consider the
closed set

A = {
w ∈ W∗

x0
; τB̄(x,ε)(w) < ∞}

.

It has been proved in [11] (corollary 2.3) that its capacitary measure with
respect to the Brownian snake with initial point x0 is exactly uε(x0 − x)

times the law of xε under Px0 . This capacitary measure πA can also be
interpreted as the hitting distribution under Nx0 . This result was proved by
Le Gall [13], and we shortly reproduce a proof in the appendix.

Proposition 1.4 (Le Gall). For every nonnegative measurable functionF

onW∗
x0

, we have:

Nx0 [T(x,ε) < ∞; F(WT(x,ε)
, ζT(x,ε)

)] =
∫

πA(dw)F (w, ζ(w)) .

Thus we have
Nx0

[
T(x,ε) < ∞; F(WT(x,ε)

, ζT(x,ε)
)
] = uε(x0 − x)Ex0

[
F(xε, τ ε)

]
.

Hence, we deduce from the above equations that for every nonnegative
measurable function F on C([0, t], Rd), we have

Nx0

[
T(x,ε) < ∞; ζT(x,ε)

> t; F
(
(WT(x,ε)

(s), s ∈ [0, t])
)]

= Ex0

[
τB(x,ε) > t; F

(
β[0,t]

)
uε(βt − x) exp

[
−2

∫ t

0
uε(βs − x) ds

]]
.

(6)

Finally we shall use the following inequality, that can be derived from the
Feynman-Kac formula (use the fact that uε solves 1u = 4uεu)

uε(x) ≥ 2E0

[∫ τB(x,ε)

0
dt uε(βt − x)2 exp

[
−4

∫ t

0
uε(βs −x) ds

]]
. (7)

There is in fact equality in [7] (see the remark on page 293 of [11]).
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2. A property of the range of super-Brownian motion

For A ∈ B(Rd), ε > 0, we set Aε := {
x ∈ Rd; d(x, A) ≤ ε

}
, with

d(x, A) = inf {|x − y|; y ∈ A}. We will write |A| for the Lebesgue measure
of A. We also set

C0 = a02πd/20([d − 2]/2)−1 ,

where the constant a0 is defined in lemma 5.1 (see also the remark below the
lemma). We set Rt (X) = Cl

(⋃
s≥t supp Xs

)
. Let ϕd(ε) = ε4−d if d ≥ 5

and ϕ4(ε) = log(1/ε) for ε > 0.

Theorem 2.1. Let ν ∈ Mf . For every Borel setA ⊂ Rd , d ≥ 4, for every
t > 0, PX

ν -a.s.

lim
ε→0

ϕd(ε) |Rt (X)ε ∩ A| = C0

∫ ∞

t

ds (Xs, 1A) . (8)

If there existsρ < 4 such thatlimε→0 ερ−d |(supp ν)ε| = 0 then(8) holds
with t = 0.

Let K a compact subset of Rd . We consider the measure φ(K) defined
by φ(K)(A) = |K ∩ A|. Since the set Rt (X) is compact for t > 0, the
theorem implies that a.s. the sequence of measures (ϕd(ε)φ(Rt (X)ε), ε >

0) converges weakly to C0
∫ ∞
t

ds (Xs, 1A).
Let us recall the main theorem of [19] (see also [16]).

Theorem 2.2 (Tribe). LetA a bounded Borel set inRd , d ≥ 3. Fix t > 0
andν ∈ Mf . Then there exists a positive constantα0 depending only ond
such that

lim
ε→0

ε2−d |(supp Xt)
ε ∩ A| = α0(Xt , 1A) ,

where the convergence holdsPX
ν -a.s. and inL2(PX

ν ).

We shall deduce theorem 2.1 from the next proposition on the range
of the Brownian snake, whose proof will be given in the next section. For
θ ∈ (0, 1/d), we set hd,θ (ε) = ε1−θ if d ≥ 5 and h4,θ (ε) = log(1/ε)−1/θ

for ε ∈ (0, 1). For short we will write hd for hd,θ .

Proposition 2.3. Let d ≥ 4. For everyθ ∈ (0, 1/d) and everyR0 > 0,
there exists a constantκ = κ(θ) > 0 and ε0 > 0 such that for every
ε ∈ (0, ε0], for everyx0 with |x0| ≤ R0, and every Borel setA ⊂ B̄(0, R0),
we have∣∣∣∣Nx0

[
ϕd(ε)

∣∣R(W)ε ∩ A ∩ B̄(x0, hd(ε))
c
∣∣ −C0

∫ ∞

0
ds (Ys, 1A)

]∣∣∣∣
≤ hd(ε)

κ/2 ,
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and

Nx0

[[
ϕd(ε)

∣∣R(W)ε ∩ A ∩ B̄(x0, hd(ε))
c
∣∣ −C0

∫ ∞

0
ds (Ys, 1A)

]2
]

≤ hd(ε)
κ .

Remark. We have trivially B(x0, ε) ⊂ R(W)ε, Nx0 -a.e. Since Nx0 is an
infinite measure, Nx0 [|R(W)ε ∩ B(x0, δ)|] = ∞ for every ε, δ > 0. This is
the reason why we consider A∩ B̄(x0, hd(ε))

c rather than A in the previous
proposition.

We first give a consequence of this proposition.

Corollary 2.4. Letd ≥ 4. For every Borel setA ⊂ Rd , Nx0-a.e., we have

lim
ε→0

ϕd(ε) |R(W)ε ∩ A| = C0

∫ ∞

0
ds (Ys, 1A) .

The results holdsN(1)
0 -a.s. if|∂A| = 0.

Proof of Corollary 2.4. Since Nx0 -a.e. the range R(W) is bounded, we only
need to consider a bounded Borel set A. Choose R0 so that A ⊂ B(0, R0)

and fix θ ∈ (0, 1/d). Let κ > 0 be fixed as in proposition 2.3. Let εn

such that hd(εn) = n−2/κ for n ≥ 1. Using the Borel-Cantelli lemma
and the second upper bound of proposition 2.3, we get that the sequence
(ϕd(εn) |R(W)εn ∩ A|, n ≥ 1) converges Nx0 -a.e. to C0

∫ ∞
0 ds (Ys, 1A).

But for ε′ ≤ ε, since R(W)ε
′ ⊂ R(W)ε, we have

ϕd(ε
′)

∣∣∣R(W)ε
′ ∩ A

∣∣∣ ≤ ϕd(ε) |R(W)ε ∩ A| ϕd(ε
′)/ϕd(ε) .

A monotonicity argument using the fact that ϕd(εn+1)/ϕd(εn) converges to
1, completes the proof of the first part.

The above result implies that N0-a.e. the sequence of measures (ϕd(ε)φ

(R(W)ε), ε > 0) converges weakly to C0
∫ ∞

0 ds Ys . Using (3) we see
this convergence also holds dr-a.e. N(r)

0 -a.s. By the scaling property of the
Brownian snake and the family (N(r)

0 , r > 0), we get this convergence holds
N(1)

0 -a.s. Thus we have for every Borel set A ⊂ Rd , N(1)
0 -a.s.

C0

∫ ∞

0
ds (Ys, 1Int(A)) ≤ lim inf

ε→0
ϕd(ε) |R(W)ε ∩ A|

≤ lim sup
ε→0

ϕd(ε) |R(W)ε ∩ A| ≤ C0

∫ ∞

0
ds (Ys, 1Ā) ,

where Int(A) denotes the interior of A. To prove the second part of the
corollary we just need to check that if |∂A| = 0 then

∫ ∞
0 ds (Ys, 1Int(A)) =
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∫ ∞
0 ds (Ys, 1Ā). It is enough to prove that |A| = 0 implies

∫ ∞
0 ds (Ys, 1A) =

0 N(1)
0 -a.s. Conditioning on the lifetime process, we get

N(1)
0

[∫ ∞

0
ds (Ys, 1A)

]
= N(1)

0

[∫ 1

0
dt 1A(Ŵt )

]

=
∫ 1

0
dt N(1)

0

[
Pζt

[1A](0)
]

.

This is equal to zero if |A| = 0. This ends the proof of the second part of
the corollary.

Remark. As a byproduct of the proof we get that Nx0 -a.e. and N(1)
0 -a.s.

the sequence of measures (ϕd(ε)φ(R(W)ε), ε > 0) converges weakly to
C0

∫ ∞
0 ds Ys .

We first state some straightforward consequences of [4] and lemma 5.1.
We say that ε0 > 0 satisfies the condition (C) if ε−θ

0 ≥ 4/3 if d ≥ 5
or log(1/ε0) ≥ 4 log(2/θ)/θ if d = 4. For d = 4 this implies that for
ε ∈ (0, ε0), h4(ε)/ε ≥ 4/3 and

log(log(1/ε))/[θ log(1/ε)] ≤ 1/2 . (9)

For d ≥ 4, θ ∈ (0, 1/d), there exists a constant b1 such that for every ε

satisfying (C), x 6∈ B(0, hd(ε)) we have

uε(x) ≤ b0ϕd(ε)
−1 |x|2−d, (10)

uε(x) ≤ ϕd(ε)
−1 |x|2−d

[
a0 + b1hd(ε)

θ/2
]

. (11)

For |x| > ε, we have

uε(x) ≥ a0ϕd(ε)
−1 |x|2−d if d ≥ 5, (12)

uε(x) ≥ a0ϕ4(ε)
−1 |x|−2

[
1 + log(2 |x|)/ log(1/ε)

]−1
if d = 4 . (13)

We will also often use that for ε satisfying (C): ϕd(ε)hd(ε)
d ≤ hd(ε)

3.

Proof of Theorem 2.1. Recall that for every t > 0, PX
ν a.s. the set Rt (X)

is bounded. Thus we only need to consider a bounded Borel set A. Thanks
to the Markov property of X at time t and theorem 2.2 it is clearly enough
to prove the second part of theorem 2.1. Let ν ∈ Mf and ρ < 4 such that
limε→0 ερ−d |(supp ν)ε| = 0. For short we write a.s. for PX

ν -a.s.
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First step. Recall we can write for every t > 0, Xt = ∑
i∈I Yt (W

i),
where

∑
i∈I δWi is a Poisson measure on C(R+,W) with intensity measure∫

ν(dx)Nx[·]. We let xi
0 denote the starting point of the Brownian snake

Wi (i.e. xi
0 = Wi

0(0)). Notice that a.s. for every i ∈ I , xi
0 ∈ supp ν, which

is bounded thanks to the hypothesis on supp ν. Fix θ ∈ (0, 1/d) such that
d − ρ ≥ (d − 4)/(1 − θ) (and θ < 4 − ρ if d = 4). Fix R0 such that
supp ν ⊂ B(0, R0). Let κ and ε0 < 1 be chosen as in proposition 2.3. We
notice that for every bounded Borel set A ⊂ B(0, R0),

ϕd(ε) |R0(X)ε ∩ A| ≤
∑
i∈I

Vε(W
i) + ϕd(ε)

∣∣A ∩ (supp ν)hd(ε)
∣∣ ,

where

Vε(W
i) = ϕd(ε)

∣∣R(W i)ε ∩ A ∩ B̄(xi
0, hd(ε))

c
∣∣ .

We set V0(W
i) = C0

∫ ∞
0 ds (Ys(W

i), 1A). We use the second moment
formula for a Poisson measure to get:

EX
ν


[∑

i∈I

Vε(W
i) −

∑
i∈I

V0(W
i)

]2



=
∫
ν(dx)Nx

[
[Vε(W)−V0(W)]2]+[∫

ν(dx)Nx [Vε(W)−V0(W)]

]2

.

We deduce from proposition 2.3 that for every ε ∈ (0, ε0],

EX
ν


[∑

i∈I

Vε(W
i) −

∑
i∈I

V0(W
i)

]2

 ≤ [(ν, 1) + (ν, 1)2]hd(ε)

κ .

Notice the hypothesis on supp ν and θ imply that limε→0 ϕd(ε)
∣∣(supp ν)hd(ε)

∣∣
= 0. Arguments similar to those used in the first part of the proof of corollary
2.4 show then a.s.

lim
ε→0

∑
i∈I

Vε(W
i) =

∑
i∈I

V0(W
i) .

Notice we have
∑

i∈I V0(W
i) = C0

∫ ∞
0 ds (Xs, 1A). Using the above re-

mark on supp ν, we deduce that a.s.

lim sup
ε→0

ϕd(ε) |R0(X)ε ∩ A| ≤ C0

∫ ∞

0
ds (Xs, 1A) .

Second step. To get a lower bound, consider an increasing sequence (Ep, p ≥
1) of measurable subsets of E = C(R+,W) such that

⋃
p≥1 Ep = E and
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∫
ν(dx)Nx[Ep] = αp < ∞. (For instance we can take Ep = {W ; sups≥0 ζs

≥ 1/p}.) Then a.s. the set Ip = {
i ∈ I ; Wi ∈ Ep

}
is finite. We have

ϕd(ε) |R0(X)ε ∩ A| ≥
∑
i∈Ip

Vε(W
i) −

∑
(i,j)∈I 2

p; i 6=j

Uε(W
i, Wj) ,

where

Uε(W
i, Wj)

= ϕd(ε)

∣∣∣R(W i)ε ∩ R(Wj)ε ∩ A ∩ B̄(xi
0, hd(ε))

c ∩ B̄(x
j

0 , hd(ε))
c
∣∣∣

= ϕd(ε)

∫
A∩B̄(xi

0,hd (ε))c∩B̄(x
j

0 ,hd (ε))c
dy 1{T(y,ε)(W i)<∞}1{T(y,ε)(Wj )<∞} .

Arguments similar to those of the first step show that a.s.

lim
ε→0

∑
i∈Ip

Vε(W
i) =

∑
i∈Ip

V0(W
i) =

∑
i∈Ip

C0

∫ ∞

0
ds (Ys(W

i), 1A) .

Now conditionally on the cardinality of Ip, the Brownian snakes (W i, i ∈
Ip) are independent and have the same law: µp = α−1

p

∫
ν(dx)Nx[· ∩ Ep].

For two independent Brownian snakes (W, W ′) under µp ⊗ µp, we get
using (10), that for ε satisfying (C),

µp ⊗ µp[Uε(W, W ′)]≤ α−2
p

∫ ∫
ν(dx0)ν(dx ′

0)Nx0 ⊗ Nx ′
0
[Uε(W, W ′)]

≤ ϕd(ε)α
−2
p

∫ ∫
ν(dx0)ν(dx ′

0)

∫
A∩B̄(x0,hd (ε))c∩B̄(x ′

0,hd (ε))c
dy

× [
b0ϕd(ε)

−1 |y − x0|2−d
] [

b0ϕd(ε)
−1

∣∣y − x ′
0

∣∣2−d
]

≤ ϕd(ε)
−1α−2

p (ν, 1)2b2
0 sup

x0∈Rd

∫
B̄(0,R0)\B̄(x0,hd (ε))

dy |y − x0|4−2d

≤
{

cϕd(ε)
−1hd(ε)

4−d if d ≥ 5
cϕ4(ε)

−1 log(log(1/ε)) if d = 4

≤ chd(ε)
θ/2 if d ≥ 4 ,

where the constant c is independent of ε and A. Using the Borel-Cantelli
lemma for the sequence (hd(εn) = n−4/θ , n ≥ 1), and a monotonicity
argument, we get that µp ⊗µp-a.s. limε→0 Uε(W, W ′) = 0. Then since the
cardinality of Ip is a.s. finite, we get that for every integer p ≥ 1, a.s.,
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lim
ε→0

∑
(i,j)∈I 2

p; i 6=j

Uε(W
i, Wj) = 0 .

We deduce that for every integer p ≥ 1, a.s.

lim inf
ε→0

ϕd(ε) |R0(X)ε ∩ A| ≥
∑
i∈Ip

C0

∫ ∞

0
ds (Ys(W

i), 1A) .

We get the lower bound by letting p → ∞. This and the upper bound of
the first step ends the proof of the theorem.

3. Proof of Proposition 2.3

We shall use many times in the sequel the fact that
∫ ∞

0 ds (Ys, 1A) =∫ σ

0 ds 1A(Ŵs) Nx0 -a.e. We assume d ≥ 4. We recall easy equalities, which
can readily be deduced from the results of section 6.1. For every A ∈ B(Rd),
we have

Nx

[∫ σ

0
ds 1A(Ŵs)

]
=

∫
A

dy G(x, y) , (14)

where G is the Green kernel in Rd : G(x, y) = 2−1π−d/20([d − 2]/2) ×
|x − y|2−d , and

Nx

[[∫ σ

0
ds 1A(Ŵs)

]2
]

= 4
∫

dy G(x, y)

[∫
A

dz G(y, z)

]2

. (15)

We can also compute the first moment under E∗
w. For every A ∈ B(Rd),

w ∈ W, we have with ζ = ζ(w),

E∗
w

[∫ σ

0
ds 1A(Ŵs)

]
= 2

∫ ζ

0
dt Nw(t)

[∫ σ

0
ds 1A(Ŵs)

]

= 2
∫ ζ

0
dt

∫
A

dy G(w(t), y) . (16)

Thanks to the space invariance of the law of the Brownian snake, we shall
only consider the case x0 = 0 and A ⊂ B̄(0, R0), for R0 fixed. We fix
θ ∈ (0, 1/d) and R0 > 1. Let ε′

0 > 0 satisfying (C). We consider ε ∈ (0, ε′
0).

In this section, we denote by c, c1, c2, . . . positive constants whose values
depend only on d, θ and R0. The value of c may vary from line to line. For
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short we shall write Aε = A ∩ B̄(0, hd(ε))
c (not to be confused with Aε)

and R for R(W).
We first consider the case d ≥ 5. Notice that

N0
[|Rε ∩ Aε|

] =
∫

Aε

dx N0
[
T(x,ε) < ∞] =

∫
Aε

dx uε(x) .

Thus we deduce from (12) and (11), that for ε ∈ (0, ε′
0),

a0ε
d−4

∫
A

dx |x|2−d −a0ε
d−4

∫
B(0,ε1−θ )

dx |x|2−d

≤ N0
[|Rε ∩ Aε|

] ≤ εd−4[a0 + b1hd(ε)
θ/2]

∫
A

dx |x|2−d .

Therefore using also (14), we have∣∣∣∣Nx0

[
ε4−d |R(W)ε ∩ Aε| −C0

∫ ∞

0
ds (Ys, 1A)

]∣∣∣∣ ≤ chd(ε)
θ/2 .

Thus we get the first bound of proposition 2.3 (take κ < θ/2 and ε0 small
enough). The proof is similar for d = 4 (use (13) instead of (12) and the
fact that |x| is bounded by R0).

Now we will prove the second bound. To this end we have to find an upper
bound on I = N0

[|Rε ∩ Aε|2
]

and a lower bound on J = N0

[
|Rε ∩ Aε|∫ σ

0 ds 1A(Ŵs)
]
.

3.1. An upper bound onI

The term I can also be written

I =
∫ ∫

Aε×Aε

dx dy N0
[
T(x,ε) < ∞; T(y,ε) < ∞]

.

Consider the above integral as the sum of the integral over |x − y| ≤ 2hd(ε)

(denoted by I1) and the one over |x − y| > 2hd(ε) (denoted by I2). Using
(10) we easily obtain an upper bound on I1:

I1 ≤ |B(0, 2hd(ε))|
∫

Aε

dx N0
[
T(x,ε) < ∞]

≤ chd(ε)
d

∫
Aε

dx ϕd(ε)
−1b0 |x|2−d ≤ c1ϕd(ε)

−2hd(ε)
3 .

Notice the event
{
T(x,ε) < ∞; T(y,ε) < ∞}

is a equal to
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{
T(x,ε) < ∞; T(y,ε) ◦ θT(x,ε)

< ∞} ∪ {
T(y,ε) < ∞; T(x,ε) ◦ θT(y,ε)

< ∞}
,

where θt is the usual shift operator. By symmetry, we get

I2 ≤ 2
∫ ∫

Aε×Aε

dx dy 1{|x−y|>2hd(ε)}N0
[
T(x,ε) < ∞; T(y,ε) ◦ θT(x,ε)

<∞]
.

(17)
Using the strong Markov property of the Brownian snake under N0 at the
stopping time T(x,ε) and (5), we see that the quantity N0

[
T(x,ε) < ∞; T(y,ε)◦

θT(x,ε)
< ∞]

is equal to

N0

[
T(x,ε) < ∞; 2

∫ ζT(x,ε)
∧τB(y,ε)(WT (x,ε))

0
dt uε

(
WT(x,ε)

(t) − y
)

× e
[
−2

∫ t

0 uε

(
WT(x,ε)

(s)−y
)

ds
]]

.

Finally the law of the stopped path WT(x,ε)
under N0 is given by (6). Thus

the previous expression is equal to

2
∫ ∞

0
dt E0

[
τB(x,ε) > t; τB(y,ε) > t; uε(βt − x)uε(βt − y)

× e
[
−2

∫ t

0 ds [uε(βs−x)+uε(βs−y)]
] ]

.

We substitute this last expression for N0
[
T(x,ε) < ∞; T(y,ε) ◦ θT(x,ε)

< ∞]
in (17), and then decompose the right-hand side of (17) in three terms by
considering the integral in dx dy on the sets |βt − x| ∧ |βt − y| > hd(ε)

(integral I21), |βt − x| ≤ hd(ε) (integral I22), and |βt − y| ≤ hd(ε) (inte-
gral I23) (recall |x − y| > 2hd(ε)).

An upper bound on I21. We shall need the following notation:

I0 = 4a2
0

∫
dz G(0, z)

[∫
A

dx |z − x|2−d

]2

.

We use (11) to bound I21 above by: for ε ∈ (0, ε′
0),

4
∫ ∫

Aε×Aε

dx dy 1{|x−y|>2hd(ε)}
∫ ∞

0
dt E0

[
|βt − x| > hd(ε);

|βt − y| > hd(ε); ϕd(ε)
−2 |βt − x|2−d |βt − y|2−d

(
a0 + b1hd(ε)

θ/2
)2

]
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≤ 4ϕd(ε)
−2

[
a2

0 + chd(ε)
θ/2

]
×

∫ ∫
A×A

dx dy

∫
dz G(0, z) |z − x|2−d |z − y|2−d

≤ ϕd(ε)
−2I0 + c2ϕd(ε)

−2hd(ε)
θ/2 .

An upper bound on I22 and I23. By symmetry we have I22 = I23. Before
getting an upper bound on I22, notice that |βt − x| ≤ hd(ε) and |x − y| >

2hd(ε) imply |βt − y| > hd(ε). Furthermore thanks to (10), we get∫
Aε

dy 1{|βt−y|>hd(ε)}uε(βt − y) e−2
∫ t

0 uε(βs−y) ds

≤
∫

A

dy
[
b0ϕd(ε)

−1 |βt − y|2−d
]

≤ b0ϕd(ε)
−1

∫
B(0,R0)

dy |y|2−d

= c3ϕd(ε)
−1 .

Thus the sum I22 + I23 is bounded above by

8c3ϕd(ε)
−1

∫
Aε

dx

∫ ∞

0
dt

×E0

[
τB(x,ε) > t; 1{|βt−x|≤hd(ε)}uε(βt − x) e−2

∫ t

0 uε(βs−x) ds
]

.

Using the Cauchy-Schwarz inequality and formula (7), we get

I22 + I23

≤ 8c3ϕd(ε)
−1

[∫
Aε

dx

∫ ∞

0
dt P0 [|βt − x| ≤ hd(ε)]

]1/2

×
[∫

Aε

dx

∫ ∞

0
dt E0

[
τB(x,ε) > t; uε(βt − x)2 e−4

∫ t

0 uε(βs−x) ds
]]1/2

≤ 8c3ϕd(ε)
−1

[∫
A

dx

∫
dzG(0, z)1{|z−x|≤hd(ε)}

]1/2[∫
Aε

dx2−1uε(x)

]1/2

.

Then thanks to (10), we get

I22 + I23 ≤ c4ϕd(ε)
−3/2hd(ε)

d/2 ≤ c4ϕd(ε)
−2 × hd(ε)

3/2.

Conclusion on the upper bound onI . By combining the previous results,
we get for d ≥ 4

I ≤ c1ϕd(ε)
−2hd(ε)

3+ϕd(ε)
−2I0+c2ϕd(ε)

−2hd(ε)
θ/2+c4ϕd(ε)

−2hd(ε)
3/2 .

Thus we get ϕd(ε)
2I ≤ I0 + c5hd(ε)

θ/2.
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3.2. A lower bound onJ

We shall need the last hitting time of B̄(x, ε) under N0 for the Brownian
snake:

L(x,ε) = sup
{
s ≥ 0; ∃t ∈ [0, ζs], Ws(t) ∈ B̄(x, ε)

}
.

We then get

J =
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ L(x,ε)

0
ds 1A(Ŵs)

]

+
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ σ

T(x,ε)

ds 1A(Ŵs)

]

−
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ L(x,ε)

T(x,ε)

ds 1A(Ŵs)

]
.

The time-reversal invariance property of the Itô measure and the characteri-
zation of the excursion measure Nx readily imply that the latter itself enjoys
the same invariance property. Thus the first two terms of the right-hand side
are equal. We shall denote their sum by J1. Let J2 denote the third term.

A lower bound on J1. Let us use the strong Markov property of the Brow-
nian snake at time T(x,ε), then (16) and (6), to get

J1 = 2
∫

Aε

dx N0

[
T(x,ε) < ∞; 2

∫ ζT(x,ε)

0
dt

∫
A

dy G
(
WT(x,ε)

(t), y
)]

= 4
∫

Aε

dx

∫
A

dy

∫ ∞

0
dtE0

[
τB(x,ε) >t;G(βt , y)uε(βt −x) e−2

∫ t

0 uε(βs−x) ds
]

.

Fatou’s lemma gives that lim infε→0 ϕd(ε)J1 ≥ J0, where

J0 = 4a0

∫ ∫
A×A

dx dy

∫
dz G(0, z)G(z, y) |z − x|2−d .

Unfortunately, we need an estimate on the rate of convergence. This requires
some technical calculations. Notice that on {τB(x,hd(ε))(β) > t}, inequalities
(12), (13) and (10) imply

a0ϕd(ε)
−1Fd(βt − x) |βt − x|2−d ≤ uε(βt − x) ≤ b0ϕd(ε)

−1 |βt − x|2−d ,

where Fd(z) = 1 if d ≥ 5 and F4(z) = [
1 + log(2 |z|)/ log(1/ε)

]−1
.

For short we write 0t = 2b0ϕd(ε)
−1

∫ t

0 |βs − x|2−d ds. Then ϕd(ε)J1 is
bounded below by
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J ′
1 = 4a0

∫
Aε

dx

∫
A

dy

∫ ∞

0
dt

×E0
[
τB(x,hd(ε)) > t; G(βt , y) |βt − x|2−d Fd(βt − x) e−0t

]
.

In order to obtain an upper bound on
∣∣J ′

1 − J0

∣∣, we have to find an upper
bound on∫ ∫

A×A

dx dy

∫ ∞

0
dt

×E0

[
G(βt , y) |βt − x|2−d

[
1 − 1Aε

(x)1{τB(x,hd (ε))>t}Fd(βt − x) e−0t

]]
.

Thus we shall decompose 1 − 1Aε
(x)1{τB(x,hd(ε)) > t}Fd(βt − x) e−0t into

a sum of four terms:[
1 − 1Aε

(x)
] +1Aε

(x)
[
1 − 1{τB(x,hd (ε))>t}

]
+1Aε

(x)1{τB(x,hd (ε))>t} [1 − Fd(βt − x)]

+1Aε
(x)1{τB(x,hd (ε))>t}Fd(βt − x)

[
1 − e−0t

]
.

We denote by J11, J12, J13 and J14 the corresponding integrals. The integral

J11 =
∫

A\Aε

dx

∫
A

dy

∫ ∞

0
dt E0

[
G(βt , y) |βt − x|2−d

]
is easily bounded above by∫

B(0,hd (ε))

dx

∫
B(0,R0)

dy

∫
dz G(0, z)G(z, y) |z − x|2−d ≤ c6hd(ε)

2 .

We bound J12 by applying the strong Markov property of Brownian motion
at time τB(x,hd(ε)),

J12 =
∫

Aε

dx

∫
A

dy

∫ ∞

0
dt E0

[
τB(x,hd(ε)) ≤ t; G(βt , y) |βt − x|2−d

]
≤

∫
Aε

dx

∫
A

dy

×E0

[
τB(x,hd(ε)) < ∞;

∫
dz G(βτB(x,hd (ε))

, z)G(z, y) |z − x|2−d

]
.

An easy calculation shows that there exists a constant c7 such that for every
(x, x ′) ∈ B(0, 2R0) × B(0, 2R0),

∣∣x − x ′∣∣ ≤ 1/2,
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∫
B(0,R0)

dy

∫
dz G(x ′, z)G(z, y) |z − x|2−d ≤ c7ϕd(

∣∣x ′ − x
∣∣)

Furthermore we have for every r ∈ (0, 1),

∫
B(0,R0)

dx P0
[
τB(x,r) < ∞] =

∫
B(0,R0)

dx

[(
r

|x|
)d−2

∧ 1

]
≤ crd−2 .

(18)
We deduce from the previous remarks that if d ≥ 5,

J12 ≤ chd(ε)
4−d

∫
Aε

dx P0
[
τB(x,hd(ε)) < ∞] ≤ chd(ε)

4−d+d−2 = chd(ε)
2 ,

and if d = 4, J12 ≤ c log(1/hd(ε))hd(ε)
2. Thus we get that for d ≥ 4,

J12 ≤ c8hd(ε)
3/2. If d ≥ 5 then J13 = 0. For d = 4 thanks to (9) we have

for |z| ≥ h4(ε), |1 − F4(z)| ≤ 2 |log(2 |z|)| / log(1/ε). We deduce that

J13 ≤ log(1/ε)−1
∫ ∫

A×A

dx dy

∫ ∞

0
dt

×E0
[
τB(x,hd(ε)) > t; G(βt , y)2 |log(2 |βt − x|)| |βt − x|−2

]
≤ c log(1/ε)−1

∫ ∫
A×A

dx dy

×
∫

dz G(0, z) |log(2 |z − x|)| |z − x|−2 G(z, y)

≤ c log(1/ε)−1 ≤ c9hd(ε)
θ .

Notice first that thanks to (9), Fd(z) ≤ 2 for |z| ≥ hd(ε). We have, using
the Markov property for Brownian motion at time s,

J14 ≤ 2
∫ ∫

A×A

dx dy

∫ ∞

0
dt

×E0

[
τB(x,hd(ε)) >t; G(βt , y) |βt −x|2−d 2b0ϕd(ε)

−1
∫ t

0
|βs − x|2−d ds

]

≤ cϕd(ε)
−1

∫ ∫
A×A

dx dy

∫ ∞

0
ds

∫ ∞

0
dt

×E0
[|βs − x|2−d Eβs

[|βt − x| > hd(ε); G(βt , y) |βt − x|2−d
]]

≤ cϕd(ε)
−1M(d, hd(ε)) ,
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where

M(d, ε) =
∫ ∫

B(0,R0)2
dx dy

∫ ∫
dz dz′

×G(0, z) |z − x|2−d G(z, z′)G(z′, y)
∣∣z′ − x

∣∣2−d
1|z′−x|>ε .

An easy computation shows there exists a constant c such that for ε ∈ (0, 1],

M(d, ε) ≤




c if d ∈ {4, 5},
c + c log(1/ε) if d = 6,

cε6−d if d ≥ 7 .

(19)

Thus we easily deduce that J14 ≤ c10hd(ε)
θ .

We have ϕd(ε)J1 ≥ J0 − 4a0(J11 + J12 + J13 + J14). Putting together
the previous results, we get for d ≥ 4,

ϕd(ε)J1 ≥ J0 − 4a0[c6hd(ε)
2 + c8hd(ε)

3/2 + c9hd(ε)
θ + c10hd(ε)

θ ]

≥ J0 − c11hd(ε)
θ .

An upper bound on J2. We will first recall the decomposition of the Brow-
nian snake under E∗

w (see theorem 2.5 in [12]). We denote by (αi, βi), i ∈ I ,
the excursion intervals of ζ above its minimum process (i.e. of the pro-
cess (ζt − infs∈[0,t] ζs) above 0) before σ under E∗

w. For i ∈ I the paths
Ws, s ∈ [αi, βi] coincide over [0, ζαi

]. For every i ∈ I , and s ≥ 0 we set
Wi

s (t) = W(αi+s)∧βi
(t+ζαi

), t ∈ [0, ζ i
s ] with ζ i

s = ζ(αi+s)∧βi
−ζαi

. ThenWi
s is

a stopped path (Wi
s ∈ W) with initial point W(αi+s)∧βi

(ζαi
) = Ŵαi

= w(ζαi
).

Proposition 1 (Le Gall). The random measure
∑

i∈I δ(ζαi
,W i) is underE∗

w a
Poisson point measure on[0, ζ(w)]×C(R+,W) with intensity2 dt Nw(t)[·].

The process (
∑

i∈I 1{ζαi
=t}δWi , t ∈ [0, ζw]) is a Poisson point process

with inhomogeneous intensity. We will now describe the law underE∗
WT(x,ε)

of

the first excursion (ζαi0
, W i0) which hits the ball B̄(x, ε), that is, with evident

notation, the excursion characterized by T(x,ε)(W
i) = +∞ if ζαi

< ζαi0
and

T(x,ε)(W
i0) < +∞. Notice first that under N0[· | T(x,ε) < ∞], E∗

WT(x,ε)
-a.s.

there exist excursions Wi which hit the ball B̄(x, ε). Indeed we have thanks
to lemma 2.1 of [11] that N0[. | T(x,ε) < ∞]-a.s.

E∗
WT(x,ε)

[∃i ∈I, T(x,ε)(W
i)<∞] = 1−exp −2

∫ ζT(x,ε)

0
dtuε(WT(x,ε)

(t)−x)=1 .

Since the integral
∫ r

0 dt uε(WT(x,ε)
(t)− x) is finite for r < ζT(x,ε)

, we deduce
there exists a unique first excursion (ζαi0

, W i0) which hits B̄(x, ε). Classi-
cal arguments on Poisson point process implies that the law of (ζαi0

, W i0)
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is 21[0,ζT(x,ε)
)(t) dt NWT(x,ε)

(t)[T(x,ε) < ∞, ·]. We introduce the random time
M(x,ε) = inf

{
s > T(x,ε); ζs = m(T(x,ε), L(x,ε))

}
. It is clear from the defini-

tion of the excursion i0 that αi0 = M(x,ε) under E∗
WT(x,ε)

. We will now express
J2 using the excursion i0. We have

J2 = 2
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ L(x,ε)

M(x,ε)

ds 1A(Ŵs)

]

= 2
∫

Aε

dx N0

[
T(x,ε) < ∞;E∗

WT(x,ε)

[∫ L(x,ε)

M(x,ε)

ds 1A(Ŵs)

]]

= 2
∫

Aε

dx N0

[
T(x,ε) < ∞;E∗

WT(x,ε)

[∫ L(x,ε)(W
i0 )

αi0

ds 1A(Ŵ i0
s )

]]

= 4
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ ζT(x,ε)

0
dt NWT(x,ε)

(t)

×
[
T(x,ε) < ∞;

∫ L(x,ε)

0
ds 1A(Ŵs)

]]
.

We used the time reversal property of the Brownian snake for the first
equality, then the strong Markov property and at last the definition of the
excursion i0 and its law. We will distinguish according to

{
t ≥ τB(x,hd(ε))

}
(integral J21) and

{
t < τB(x,hd(ε))

}
(integral J22). Notice that since x ∈ Aε

we have τB(x,hd(ε))(WT(x,ε)
) < ζT(x,ε)

N0-a.e.
We now bound J21 using (14).

J21 = 4
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ ζT(x,ε)

τB(x,hd (ε))

dt NWT(x,ε)
(t)

×
[
T(x,ε) < ∞;

∫ L(x,ε)

0
ds 1A(Ŵs)

]]

≤ 4
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ ζT(x,ε)

τB(x,hd (ε))

dt NWT(x,ε)
(t)

[∫ σ

0
ds 1A(Ŵs)

]]

= 4
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ ζT(x,ε)

τB(x,hd (ε))

dt

∫
A

dy G(WT(x,ε)
(t), y)

]
.

Now we use (6), the Cauchy-Schwarz inequality and (7) to get

J21 ≤ 4
∫

Aε

dx

∫ ∞

0
dt E0

[
τB(x,ε) > t ≥ τB(x,hd(ε));∫

A

dy G(βt , y)uε(βt − x) e−2
∫ t

0 uε(βr−x)dr
]
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≤ 4

[
2−1

∫
Aε

dx uε(x)

]1/2 [∫
Aε

dx

∫ ∞

0
dt

× E0

[
t ≥ τB(x,hd(ε));

(∫
A

dy G(βt , y)

)2
]]1/2

≤ cϕd(ε)
−1/2

[∫
Aε

dx P0
[
τB(x,hd(ε)) < ∞]

× sup
x ′∈B(0,2R0)

∫
dz G(z, x ′)

(∫
A

dy G(z, y)

)2
]1/2

≤ cϕd(ε)
−1/2hd(ε)

(d−2)/2 .

We used the strong Markov property at time τB(x,hd(ε)) and (18) for the last
two inequalities. This implies that J21 ≤ c12ϕd(ε)

−1hd(ε)
1/2.

Using the time reversal property of the Brownian snake, the strong
Markov property at time T(x,ε) and (16) we get

J22 = 4
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ τB(x,hd (ε))

0
dt NWT(x,ε)

(t)

×
[
T(x,ε) < ∞;

∫ σ

T(x,ε)

ds 1A(Ŵs)

] ]

= 8
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ τB(x,hd (ε))

0
dt

×NWT(x,ε)
(t)

[
T(x,ε) < ∞;

∫ ζT(x,ε)

0
ds

∫
A

dy G(WT(x,ε)
(s), y)

] ]
.

We will distinguish according to
{
s ≥ τB(x,hd(ε))

}
(integral J23) and

{
s <

τB(x,hd(ε))

}
(integral J24). We now bound J23. Let β and β̃ denote two Brow-

nian motions. We have

J23 = 8
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ τB(x,hd (ε))

0
dt

× NWT(x,ε)
(t)

[
T(x,ε) < ∞;

∫ ζT(x,ε)

τB(x,hd (ε))

ds

∫
A

dy G(WT(x,ε)
(s), y)

] ]

= 8
∫

Aε

dx

∫ ∞

0
dt E0

[
τB(x,hd(ε)) > t; uε(βt − x) e−2

∫ t

0 uε(βr−x)dr

∫ ∞

0
dsEβt

[
τB(x,ε)(β̃) > s ≥ τB(x,hd(ε))(β̃) ;
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∫
A

dy G(β̃s, y)uε(β̃s − x) e−2
∫ s

0 uε(β̃v−x)dv

] ]

≤ cϕd(ε)
−1

∫
Aε

dx

∫ ∞

0
dt E0

[
τB(x,hd(ε)) > t; |βt − x|2−d

×
[∫ ∞

0
ds Eβt

[
τB(x,ε)(β̃) > s; uε(β̃s − x)2 e−4

∫ s

0 uε(β̃v−x)dv
]]1/2

×
[∫ ∞

0
ds Eβt

[
s ≥ τB(x,hd(ε))(β̃);

(∫
A

dy G(β̃s, y)

)2
]]1/2 ]

≤ cϕd(ε)
−1

∫
Aε

dx

∫ ∞

0
dt E0

[
τB(x,hd(ε)) > t; |βt − x|2−d

× [
2−1uε(βt − x)

]1/2
[
Eβt

[
τB(x,hd(ε))(β̃) < ∞;

Eβ̃τB(x,hd (ε))

[∫ ∞

0
ds

(∫
A

dy G(β̃s, y)

)2
]]]1/2 ]

≤ cϕd(ε)
−3/2

∫
Aε

dx

∫ ∞

0
dt E0

[
τB(x,hd(ε)) > t;

|βt − x|(6−3d)/2 Pβt

[
τB(x,hd(ε)) < ∞]1/2

]

×
[

sup
x ′∈B(0,2R0)

∫
dz′G(x ′, z′)

(∫
A

dy G(z′, y)

)2
]1/2

≤ cϕd(ε)
−3/2

∫
Aε

dx

∫
|z−x|≥hd(ε)

dz G(0, z)

|z − x|(6−3d)/2 hd(ε)
(d−2)/2 |z − x|(2−d)/2 .

We used (6) twice for the second equality, (10) and Cauchy-Schwarz in-
equality for the first inequality, (7) and the strong Markov property at
time τB(x,hd(ε)) for the second and (18) for the last. We easily deduce that
J23 ≤ c13ϕd(ε)

−1hd(ε).
For J24 we have using (6) twice and (10) twice,

J24 = 8
∫

Aε

dx N0

[
T(x,ε) < ∞;

∫ τB(x,hd (ε))

0
dt

× NWT(x,ε)
(t)

[
T(x,ε) < ∞;

∫ τB(x,hd (ε))

0
ds

∫
A

dy G(WT(x,ε)
(s), y)

] ]
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= 8
∫

Aε

dx

∫ ∞

0
dt

∫ ∞

0
ds E0

[
τB(x,hd(ε)) > t;

uε(βt − x) e−2
∫ t

0 uε(βr−x)dr Eβt

[
τB(x,hd(ε))(β̃) > s;

∫
A

dy G(β̃s, y)uε(β̃s − x) e−2
∫ s

0 uε(β̃v−x)dv

] ]

≤ cϕd(ε)
−2

∫
Aε

dx

∫ ∞

0
dt

∫ ∞

0
ds E0

[
τB(x,hd(ε)) > t; |βt − x|2−d

× Eβt

[
τB(x,hd(ε))(β̃) > s;

∫
A

dy G(β̃s, y)

∣∣∣β̃s − x

∣∣∣2−d
] ]

≤ cϕd(ε)
−2M(d, hd(ε)) .

Using (19) we get J24 ≤ c14ϕd(ε)
−1hd(ε)

θ . As a conclusion we get

J2 ≤ c12ϕd(ε)
−1hd(ε)

1/2 + c13ϕd(ε)
−1hd(ε) + c14ϕd(ε)

−1hd(ε)
θ .

Conclusion on the lower bound onJ . By combining the previous results,
we get for d ≥ 4,

ϕd(ε)J ≥ J0 − c11hd(ε)
θ − ϕd(ε)J2 ≥ J0 − c15hd(ε)

θ .

3.3. End of the proof of Proposition 2.3

We deduce from formula (15), that

J0 = C0N0

[[∫ σ

0
1A(Ŵs) ds

]2
]
, and I0 = C0

2N0

[[∫ σ

0
1A(Ŵs) ds

]2
]

.

Thus we get from section 3.1 and 3.2 that for ε small enough

N0

[[
ϕd(ε) |Rε ∩ Aε| −C0

∫ σ

0
ds 1A(Ŵs)

]2
]

≤ c5hd(ε)
θ/2+2c15hd(ε)

θ .

Take κ < θ/2 and ε0 small to get the second upper bound of proposition
2.3.
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4. Capacity equivalence for the support and the range of X

Let f : (0, ∞) → [0, ∞) be a decreasing function. We put f (0) =
limr↓0 f (r) ∈ [0, ∞]. We define the energy of a Radon measure ν on
Rd with respect to the kernel f by: If (ν) = ∫ ∫

f (|x − y|)ν(dx)ν(dy),
and the capacity of a set 3 ∈ B(Rd) by

capf (3) =
[

inf
ν(3)=1

If (ν)

]−1

.

Following [14], we say that two sets 31 and 32 are capacity-equivalent if
there exist two positive constants c and C such that for every kernel f , we
have

c capf (31) ≤ capf (32) ≤ C capf (31) .

The next lemma is an immediate consequence of the remarks in [15] p.385.

Lemma 4.1. Let3 ⊂ Rd be a bounded Borel set. Suppose there exist two
positive constantsc′ andγ such that

lim
ε→0

εγ−d |3ε| = c′ .

Then there exists a constantC such that for every kernelf , we have

capf (3) ≤ C

[∫ 1

0
f (r)rγ−1dr

]−1

.

For every measure µ ∈ Mf , we set

Sε(µ) =
∫ ∫

µ(dx)µ(dy) p(ε2, x − y) ,

where p is the Brownian transition density in Rd : p(t, x) = (2πt)−d/2

e− |x|2 /2t , (t, x) ∈ (0, ∞) × Rd . The next lemma is also an immediate
consequence of [15] (p.387).

Lemma 4.2. Let3 ⊂ Rd be a bounded Borel set. Suppose there exist two
positive constantsc′ andγ and a measureµ ∈ Mf such thatµ(3c) = 0
and

lim
ε→0

εd−γ Sε(µ) = c′ .

Then there exists a constantc such that for every kernelf , we have

c

[∫ 1

0
f (r)rγ−1dr

]−1

≤ capf (3) .
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For example, for every integer p ≤ d, we can consider the cube [0, 1]p

as a subset of Rd , and then we obviously have

lim
ε→0

εp−d
∣∣([0, 1]p

)ε∣∣ = 2π(d−p)/2/0((d − p)/2) ,

and if µ is Lebesgue measure on [0, 1]p,

lim
ε→0

εd−pSε(µ) = (2π)(p−d)/2 .

Thus we deduce from lemmas 4.1 and 4.2 that there exist two positive
constants c′

p, C ′
p, such that for every kernel f ,

c′
p

[∫ 1

0
f (r)rp−1dr

]−1

≤ capf ([0, 1]p) ≤ C ′
p

[∫ 1

0
f (r)rp−1dr

]−1

.

(20)
We shall prove the following result on super-Brownian motion and ISE.

Proposition 4.3. (i) Assumed ≥ 3. Let t > 0, ν ∈ Mf . PX
ν -a.s. on

{Xt 6= 0}, the setsupp Xt is capacity-equivalent to[0, 1]2.
(ii) Assumed ≥ 5. Let t > 0, ν ∈ Mf . PX

ν -a.s. on{Xt 6= 0}, the setRt (X)

is capacity-equivalent to[0, 1]4. Furthermore, if there exists a positive
numberρ < 4 such thatlimε→0 ερ−d |(supp ν)ε| = 0, thenPX

ν -a.s. the
setR0(X) is capacity-equivalent to[0, 1]4.

(iii) Assumed ≥ 5. The setRt (W) is capacity-equivalent to[0, 1]4 N(1)
0 -

a.s. on{yt 6= 0}.
Proof of Proposition 4.3 (i).Let d ≥ 3. It is well-known that for t > 0,
PX

ν -a.s. the set supp Xt is bounded. Thus, thanks to theorem 2.2, PX
ν -a.s.,

we have

lim
ε→0

ε2−d |(supp Xt)
ε| = α0(Xt , 1) .

Now apply lemma 4.1 to 3 = supp Xt , with γ = 2 and take p = 2 in (20).
We get that PX

ν -a.s., on {Xt 6= 0}, there exists a (random) constant C1 > 0,
such that for every kernel f ,

capf (supp Xt) ≤ C1 capf ([0, 1]2) .

For the second part of (i), we use lemma 4.4 below. Recall notation Yt from
section 1.1.

Lemma 4.4. Fix t > 0 andx ∈ Rd , d ≥ 3. Then we have

lim
ε→0

εd−2(2π)d/2Sε(Yt ) = 4

d − 2
(Yt , 1) ,

where the convergence holdsNx-a.e. and inL2(Nx).
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Let us explain how the proof is completed using lemma 4.4. Thanks to
lemma 4.2, the above lemma and (20) imply that Nx-a.e. on {Yt 6= 0}, there
exists a positive constant c1 such that for every kernel f ,

capf (supp Yt) ≥ c1 capf ([0, 1]2) .

Now remember that for t > 0, under PX
ν , we can write Xt = ∑

i∈I Yt (W
i),

where
∑

i∈I δWi is a Poisson measure on C(R+,W) with intensity
∫

ν(dx)

Nx[·]. On {Xt 6= 0}, there exists i0 such that Yt(W
i0) 6= 0. Then we have

supp Yt(W
i0) ⊂ supp Xt . Thus the previous lemma entails that there exists

a.s. a positive constant c1(W
i0) such that for every kernel f ,

capf (supp Xt) ≥ capf (supp Yt(W
i0)) ≥ c1(W

i0) capf ([0, 1]2)

This completes the proof of (i).

Proof of Proposition 4.3 (ii). Let d ≥ 5. We argue as in the proof of (i)
using theorem 2.1 instead of theorem 2.2 and the following lemma instead
of lemma 4.4.

Lemma 4.5. Fix t ≥ 0 and x ∈ Rd , d ≥ 5. Then we have for every
T > t ≥ 0,

lim
ε→0

εd−4(2π)d/2Sε

(∫ T

t

ds Ys

)
= 16

(d − 2)(d − 4)

∫ T

t

ds (Ys, 1) ,

where the convergence holdsNx-a.e. and inL2(Nx).

Proof of Proposition 4.3 (iii). Let d ≥ 5. For the first part we argue as in the
proof of (i) using the second part of corollary 2.4 instead of theorem 2.2.
Notice that thanks to (3) and the scaling property of the family (N(r)

0 , r > 0),
the convergence in lemma 4.5 also holds N(1)

0 -a.s. The second part of (iii)
is then a direct consequence of lemma 4.2 (with µ = ∫ T

0 ds Ys and γ = 4)
and (20) (with p = 4).

The proofs of lemmas 4.4 and 4.5 are very similar. We shall only prove
the latter. The former uses the same techniques in a simpler way.

Proof of Lemma 4.5.We first want to show the convergence in L2(Nx). Fix
T > t ≥ 0. By standard monotone class arguments, we deduce from the
results of Section 6.1 an explicit expression for

Nx

[∫ T

0
· · ·

∫ T

0
ds1 · · · ds4

×
∫

· · ·
∫

Ys1(dx1) · · ·Ys4(dx4)g(s1, . . . , s4, x1, . . . , x4)

]
,
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where g is any measurable positive function on (R+)4 × (Rd)4. Spe-
cializing to the case g(s1, . . . , s4, x1, . . . , x4) = ∏4

i=1 1[t,T ](si)p(ε2, x1 −
x2)p(ε2, x3 − x4), we get

Nx

[
Sε

(∫ T

t

ds Ys

)2
]

= 1

3
4!23

∫ T

0
ds

∫
dy p(s, x − y)

{
4

∫ T −s

(t−s)+
ds1

∫
dy1 p(s1, y − y1)

×
∫ T −s

0
ds2

∫
dy2 p(s2, y − y2)

∫ T −s−s2

(t−s−s2)+
ds3

∫
dy3 p(s3, y2 − y3)

×
∫ T −s−s2

0
ds4

∫
dy4 p(s4, y2 − y4)

∫ T −s−s2−s4

(t−s−s2−s4)+
ds5

×
∫

dy5 p(s5, y4 − y5)

∫ T −s−s2−s4

(t−s−s2−s4)+
ds6

×
∫

dy6 p(s6, y4 − y6)[p(ε2, y1 − y3)p(ε2, y5 − y6)

+p(ε2, y1 − y5)p(ε2, y3 − y6) + p(ε2, y1 − y6)p(ε2, y3 − y5)]

+
∫ T −s

0
ds7

∫
dy7 p(s7, y − y7)

∫ T −s−s7

(t−s−s7)+
ds8

∫
dy8 p(s8, y7 − y8)

×
∫ T −s−s7

(t−s−s7)+
ds9

∫
dy9 p(s9, y7 − y9)

∫ T −s

0
ds10

∫
dy10p(s10, y − y10)

×
∫ T −s−s10

(t−s−s10)+
ds11

∫
dy11 p(s11, y10 − y11)

∫ T −s−s10

(t−s−s10)+
ds12

×
∫

dy12p(s12, y10 − y12)[p(ε2, y8 − y9)p(ε2, y11 − y12)

+p(ε2, y8 − y11)p(ε2, y9 − y12) + p(ε2, y8 − y12)p(ε2, y9 − y11)]
}

We write J1, J2, J3, J4, J5, and J6, respectively for the integrals correspond-
ing to the integrands p(ε2, y1 −y3)p(ε2, y5 −y6), p(ε2, y1 −y5)p(ε2, y3 −
y6), p(ε2, y1 −y6)p(ε2, y3 −y5), p(ε2, y8 −y9)p(ε2, y11 −y12), p(ε2, y8 −
y11)p(ε2, y9 − y12), and p(ε2, y8 − y12)p(ε2, y9 − y11) respectively. As we
shall see the integral J4 gives the main contribution. Before proceeding to
the calculations, we give three useful bounds: for every positive real number
s, ε2 < 2−1(T −1 ∧ T ), we have for d ≥ 5∫ T

0

(
ε2 + s + r

)−d/2
dr ≤ 2

d − 2

(
ε2 + s

)1−d/2
, (21)



Some properties of the range of super-Browninan motion 535

∫ T

0

(
ε2 + s + r

)1−d/2
dr ≤ 2

d − 4

(
ε2 + s

)2−d/2
, (22)

∫ T

0

(
ε2 + r

)2−d/2
dr ≤ HT (ε) :=




2(d − 6)−1ε6−d if d ≥ 7,
4 ln ε−1 if d = 6,√

6T if d = 5.

(23)

From now on, we assume that ε2 < 2−1(T −1 ∧ T ) and also ε2 ln ε−1 < T

if d = 6. Let us derive an upper bound on J1. By repeated applications of
the Chapman-Kolmogorov identities, we get

J1 ≤ 28
∫ T

0
· · ·

∫ T

0
ds . . . ds6

∫
dy p(s, x − y)

∫
dy1 p(s1, y − y1)

×
∫

dy2 p(s2, y − y2)

∫
dy3 p(s3, y2 − y3)

∫
dy4 p(s4, y2 − y4)

×
∫

dy5 p(s5, y4 − y5)

∫
dy6p(s6, y4 − y6)p(ε2, y1 − y3)p(ε2, y5 − y6)

= 28
∫ T

0
· · ·

∫ T

0
ds · · · ds6 p(ε2 + s1 + s2 + s3, 0)p(ε2 + s5 + s6, 0) .

We can apply (21), (22) and (23) to get:

J1 ≤ 28

(2π)d
T

∫ T

0
ds1

4

(d − 2)(d − 4)
(ε2 + s1)

2−d/2 4

(d − 2)(d − 4)
T ε4−d

≤ c1T
2ε4−dHT (ε) ,

where the constant c1 depends only on d. We can use the same method for
J2:

J2 ≤ 28
∫ T

0
· · ·

∫ T

0
ds · · · ds6

∫
dy p(s, x − y)

∫
dy1 p(s1, y − y1)

×
∫

dy2 p(s2, y − y2)

∫
dy3 p(s3, y2 − y3)

∫
dy4 p(s4, y2 − y4)

×
∫

dy5 p(s5, y4 − y5)

∫
dy6 p(s6, y4 − y6)

×p (ε2, y1 − y5)p(ε2, y3 − y6)

= 28
∫ T

0
· · ·

∫ T

0
ds · · · ds6

∫
dz p(s4, z)p(ε2 + s1 + s2 + s5, z)

×p (ε2 + s3 + s6, z) ,
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where we made the change of variables z = y2−y4. Sincep(ε2+s3+s6, z) ≤
p(ε2 + s3 + s6, 0) and p(ε2 + s1 + s2 + s5, z) ≤ p(ε2 + s1 + s2 + s5, 0),
we can argue as for J1 to get:

J2 ≤ 28
∫ T

0
· · ·

∫ T

0
ds · · · ds6 p(ε2 + s1 + s2 + s5, 0)p(ε2 + s3 + s6, 0).

≤ c1T
2ε4−dHT (ε) .

By symmetry, we get J2 = J3. We want now to find an upper bound on J4.
Using (21), (22) and (23) we get:

J4 = 26
∫ T

0
ds

∫
dy p(s, x − y)

[ ∫ T −s

0
ds7

∫ T −s−s7

(t−s−s7)+
ds8

∫ T −s−s7

(t−s−s7)+
ds9

×
∫

dy7 p(s7, y − y7)

∫
dy8 p(s8, y7 − y8)

×
∫

dy9 p(s9, y7 − y9)p(ε2, y8 − y9)

]2

= 26
∫ T

0
ds

[∫ T −s

0
ds7

∫ T −s−s7

(t−s−s7)+
ds8

∫ T −s−s7

(t−s−s7)+
ds9p(ε2 + s8 + s9, 0)

]2

≤ 26(2π)−d

×
∫ T

0
ds

[ ∫ T −s

0
ds7

4

(d − 2)(d − 4)

[
ε2 + 2(t − s − s7)+

]2−d/2

]2

= 210

(2π)d [(d − 2)(d − 4)]2 ×
∫ T

0
ds

[
ε4−d[(T − s) − (t − s)+]

+
∫ (t−s)+

0
ds7

[
ε2 + 2(t − s − s7)+

]2−d/2

]2

≤ 210

(2π)d [(d − 2)(d − 4)]2

×
∫ T

0
ds

[
ε4−d[(T − s) ∧ (T − t)] + 2−1H2T (ε)

]2

≤ 210

(2π)d

[
ε4−d

(d − 2)(d − 4)

]2 [
(T − t)3

3
+ (T − t)2t

]
+c2T

2ε4−dHT (ε) ,
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where the constant c2 depends only on d. We now compute an upper bound
on J5:

J5 ≤ 26
∫ T

0
· · ·

∫ T

0
ds · · · ds12

∫
dy p(s, x − y)

∫
dy7 p(s7, y − y7)

×
∫

dy8 p(s8, y7 − y8)

∫
dy9 p(s9, y7 − y9)

∫
dy10 p(s10, y − y10)

×
∫

dy11 p(s11, y10 − y11)

×
∫

dy12 p(s12, y10 − y12)p(ε2, y8 − y11)p(ε2, y9 − y12)

= 26
∫ T

0
· · ·

∫ T

0
ds · · · ds12

×
∫

dz p(s7 + s10, z)p(ε2 + s8 + s11, z)p(ε2 + s9 + s12, z) ,

where we made the change of variables z = y10 − y7. Since p(ε2 + s9 +
s12, z) ≤ p(ε2 + s9 + s12, 0), and p(ε2 + s7 + s8 + s10 + s11, 0) ≤ p(ε2 +
s7 + s8 + s10, 0), we can argue as for J1, and get:

J5 ≤ c1T
2ε4−dHT (ε) .

By symmetry we get J6 = J5. Combining the previous bounds leads to

Nx

[
Sε

(∫ t

0
ds Ys

)2
]

≤ 210

(2π)d

[
ε4−d

(d − 2)(d − 4)

]2 [
(T − t)3

3
+(T −t)2t

]
+ c3T

2ε4−dHT (ε) ,

where the constant c3 depends only on d.
We shall now find a lower bound for Nx

[
Sε(

∫ T

t
ds Ys)

∫ T

t
ds (Ys, 1)

]
.

Using similar arguments as in the beginning of the proof, we get

I := Nx

[
Sε

(∫ T

t

ds Ys

) ∫ T

t

ds (Ys, 1)

]

= 1

3
3!23

∫ T

0
ds

∫
dy p(s, x − y)

∫ T −s

(t−s)+
ds1

∫
dy1 p(s1, y − y1)

×
∫ T −s

0
ds2

∫
dy2 p(s2, y − y2)

∫ T −s−s2

(t−s−s2)+
ds3
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×
∫

dy3 p(s3, y2 − y3)

∫ T −s−s2

(t−s−s2)+
ds4

×
∫

dy4 p(s4, y2 − y4)
[
p(ε2, y1 − y3) + p(ε2, y1 − y4)

+p(ε2, y3 − y4)
]

.

Since we are looking for a lower bound, we restrict our attention to the term
p(ε2, y3 − y4). We get

I ≥ 24
∫ T

0
ds

∫ T −s

(t−s)+
ds1

∫ T −s

0
ds2

∫ T −s−s2

(t−s−s2)+
ds3∫ T −s−s2

(t−s−s2)+
ds4 p(ε2 + s3 + s4, 0)

= 24

(2π)d/2

4

(d − 2)(d − 4)

∫ T

0
ds [(T − s) ∧ (T − t)]

×
∫ T −s

0
ds2

[(
ε2 + 2(t−s−s2)+

)2−d/2 −2
(
ε2 + (T − s − s2)

)2−d/2
]

≥ 26

(2π)d/2

1

(d − 2)(d − 4)

∫ T

0
ds [(T − s) ∧ (T − t)]

× [
ε4−d(T − s − (t − s)+) − 2HT (ε)

]

≥ 26

(2π)d/2

ε4−d

(d − 2)(d − 4)

[
(T − t)3

3
+ (T − t)2t

]
− c4T

2HT (ε) ,

where c4 depends only on d. Finally we deduce from section 6.1, with
ϕ(s) = 1[0,T −t](s), that

Nx

[[∫ T

t

ds (Ys, 1)

]2
]

= 4

[
(T − t)3

3
+ (T − t)2t

]
.

Combining the previous results, we get for ε small enough

Nx

[[
εd−4(2π)d/2Sε

(∫ T

t

ds Ys

)
− 24

(d − 2)(d − 4)

∫ T

t

ds (Ys, 1)

]2
]

≤ c5T
2εd−4HT (ε) ≤ c6T

2ε ,

where c6 depends only on d. This gives the convergence in L2(Nx). Now
Sε

(∫ T

t
ds Ys

)
is monotone decreasing in ε (cf lemma 5.3 in [15]). The Nx-

a.e. convergence then follows from the previous estimate by an application
of the Borel-Cantelli lemma and monotonicity arguments.
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5. Some properties of the function u1

We consider the function u1, which is the maximal solution on (1, ∞) of
the non linear differential equation

u′′(r) + d − 1

r
u′(r) = 4u(r)2 .

Lemma 5.1. There exist positive constantsa0, b0 andb′
1, depending only

ond, such that

lim
r→∞ rd−2u1(r) = a0 if d ≥ 5, lim

r→∞ r2 log(r) u1(r) = a0 = 1/2 if d = 4;
furthermore for everyr > 1,

u1(r) ≥ a0r
2−d if d ≥ 5, u1(r) ≥ a0r

−2 log(2r)−1 if d = 4; (24)

and for everyr ≥ 4/3,

u1(r) ≤ b0r
2−d if d ≥ 5, u1(r) ≤ b0[2r2 log(r)]−1 if d = 4; (25)

u1(r) ≤ a0r
2−d + b′

1r
6−2d if d ≥ 5, (26)

u1(r) ≤ a0r
−2 log(r)−1+b′

1r
−2 log(r)−2 log(log(r)) if d = 4 . (27)

For d ≥ 5, we will see the constant a0 can be expressed as the radius of
convergence of a series. We will prove this lemma by giving the asymptotic
expansion of u1 at ∞.

Lemma 5.2. If d ≥ 5, we have

u1(r) = r2−d

∞∑
n=0

anr
−n(d−4), r > 1 ,

wherea0 is as in the above lemma and the sequence(an) is given by the
recurrence:

an = 4

nδ(nδ + 1)
(d − 2)−2

n∑
k=0

akan−k−1, for n ≥ 1

andδ = d − 4

d − 2
.

For d = 4, we have

u1(r) = 1

r2

[
1

2 log(r)
+ log(log(r))

4 log(r)2
+ O

(
log(r)−2

)]
at + ∞ .
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We introduce the auxiliary function

z(t) = 4(d − 2)−2(d−1)/(d−2)t u1

[(
t

d − 2

)1/(d−2)
]

, for t > d − 2 .

This function is a positive solution on (d − 2, ∞) of

y ′′(t) = t−δ−2y(t)2 , (28)

Let η > 0 be fixed. Set s = t − d + 2 − η, z̃(s) = z(t) and φ(s) =
(s + d − 2 + η)−δ−2. Then z̃ solves y ′′(s) = φ(s)y(s)2, s ≥ 0. We deduce
from [18] p.132 case I (take σ = −δ − 2, λ = 2) that the function z̃ is
decreasing for s ≥ 0. Since η > 0 is arbitrary, we get that z itself (i.e.
rd−2u1(r)) is decreasing.
Proof of Lemma 5.2 in the cased ≥ 5. We deduce from theorems 1.1
and 2.4 of [18] (see also p.132 case 3, where a > 0 is implicit) that the
limit q = lims→∞ z̃(s) = limt→∞ z(t) exists and is positive. Hence by
integrating (28) twice from t to ∞, we get for t > d − 2,

z(t) − q =
∫ ∞

t

(r − t)r−δ−2z(r)2 dr . (29)

Now consider the sequence (qn, n ≥ 0) defined byq0 = 1 and the recurrence

qn = 1

nδ(nδ + 1)

n−1∑
k=0

qkqn−k−1, for n ≥ 1 .

Clearly we have for every n ≥ 0, qn ≤ 2 [4/δ]n γn+1, where the sequence
(γn, n ≥ 1) is introduced in the appendix. Thus the radius of convergence
R of the series

∑
qns

n is bounded from below by δ/4. The power series
z0(t) = ∑

qnq
n+1t−δn is convergent and even C∞ as a function of t for

t > t1 = [q/R]1/δ. This power series also solves (29) for t > t1. The same
arguments as in the proof of the Gronwall lemma show that equation (29)
possesses a unique solution bounded in a neighborhood of infinity. Thus the
functions z and z0 agree for t > t1 ∨ (d − 2).

Since limt↓d−2 z(t) = +∞, we get t1 ≤ d − 2. Let us now prove that
t1 ≥ d − 2. Since q and the coefficients qn are positive, it is enough to
prove that for any integer p, z(t) ≥ vp(t) for t ∈ (d − 2, +∞), where
vp(t) = ∑p

n=0 qnq
n+1t−δn, and then let p goes to infinity to get t1 ≥ d − 2.

We consider the function f = z − vp defined on (d − 2, +∞). We have
f > 0 at least over I = (d−2, d−2+η)∪(η−1, +∞), for η small. It is easy
to check, using the definition of qn that f ′′(t) ≥ t−δ−2[z(t) + vp(t)]f (t).
Hence f is convex when f is positive. If there exists t such that f (t) ≤ 0,
then since f is positive on I , there exists a last zero t0 of f that is f (t0) = 0
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and f > 0 on J = (t0, +∞). Now f is convex and positive on J , and
f (t0) = limt→+∞ f (t) = 0. This is absurd. Thus we deduce that f is
positive over (d−2, +∞). As we noticed this in turn implies that t1 = d−2.
The radius of convergence of the series

∑
qns

n is q(d − 2)−δ and we have
for t > d − 2

z(t) =
∞∑

n=0

qnq
n+1t−nδ .

Thus we get with obvious notation for r > 1,

u1(r) = 4−1(d − 2)d/(d−2)r2−d

∞∑
n=0

qnq
n+1(d − 2)−n(d−4)/(d−2)r−n(d−4)

= r2−d

∞∑
n=0

anr
−n(d−4) .

The recurrence formula for (an) is a consequence of the recurrence formula
for (qn).

Proof of Lemma 5.1 (d ≥ 5). From the above expression we easily deduce
(25) and (26). Since the real numbers (an, n ≥ 0) are positive, (24) follows
easily. Notice that 4(d − 2)−2a0 is the radius of convergence of the series∑

qns
n.

Proof of Lemma 5.2 in the cased = 4. We write f (t) ∼ g(t) at 0+ when
the real function f and g are positive or negative on I = (0, 0 + ε) for
some ε > 0 and limt∈I,t→0 f (t)/g(t) = 1. We also write f (t) ∼ g(t) at
∞ when f (1/t) ∼ g(1/t) at 0+. Since z ≥ 0, we know from [18] p.133
case 4, that z(t) ∼ log(t)−1 at ∞. We deduce from (28) that z is convex
positive and limt→+∞ z(t) = 0. This implies z′(t) is negative on (2, ∞).
From (28), we also have z′′(t) ∼ [t log(t)]−2 at ∞. By integration, we get
z′(t) ∼ t−1 log(t)−2 at ∞. We now consider the function w(s) = z(es)

which solves w′′ − w′ = w2 on (log 2, ∞). Notice that the function w is
positive decreasing and w′ is negative. We also have w(s) ∼ s−1, w′(s) ∼
−s−2 and w′′(s) = o(s−2) at ∞. Thus the function defined on (0, ∞) by

p(w(s)) = w′(s), for s ∈ (log 2, ∞) ,

is well defined and even of class C1, and p′(w(s)) = w′′(s)/w′(s). Thus the
function p can be extended as a C1 function on [0, ∞) by setting p(0) = 0
and p′(0) = 0. Furthermore it solves

p(w)p′(w) − p(w) = w2 on [0, ∞) .
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We also have p(w) ∼ −w2 at 0+. We consider the sequence (ρn, n ≥ 2)

defined by ρ2 = 1 and the recurrence

ρn =
n−1∑
k=2

kρkρn−k+1, for n ≥ 3 .

The radius of convergence of the series
∑

(−1)n+1ρnw
n is 0, nevertheless

we will prove this is the asymptotic expansion of p at 0+. We set Hn(w) =∑n
k=2(−1)k+1ρkw

k for n ≥ 2. We now prove by induction that p(w) =
Hn(w)+hn(w), where hn(w) = o(wn) at 0+. This is true for n = 2. Let us
assume it is true at stage n. Let gn,α(w) = (1−α)(−1)nρn+1w

n+1 −hn(w).
We easily have

g′
n,α(w)p(w) + gn,α(w)[H ′

n(w) − 1]

=
{

α(−1)nρn+1w
n+1 + o(wn+1),

(−1)n+1ρn+2w
n+2 + o(wn+2), if α = 0.

Let us assume n is even. For α = 0, the above right hand side is negative
on (0, ε], for ε small enough. Since p is negative and [H ′

n(w) − 1] < 0
on [0, ε], for ε small, we see that gn,0(w) < 0 implies g′

n,0(w) ≥ 0. As
gn,0(0) = 0, we get by contradiction that gn,0 ≥ 0 on [0, ε]. This implies
hn(w) ≤ ρn+1w

n+1. Similar arguments for α > 0 implies that gn,α ≤ 0
on [0, εα] for εα > 0 small enough. Since this holds for any α > 0 and
since hn(w) ≤ ρn+1w

n+1 for w small enough, we deduce that hn+1(w) =
hn(w) − ρn+1w

n+1 = o(wn+1). If n is odd the proof is similar.
From the definition of p, we then have w′(s) = Hn(w(s))+O(w(s)n+1)

at ∞. For n = 3 this gives w′(s) = −w(s)2 + 2w(s)3 + O(w(s)4) at ∞.
Since w(s) ∼ s−1 at +∞, we deduce by integration that

1

w(s)
−2 log w(s) + O(1) = s at infinity .

Standard arguments yields w(s) = s−1 + 2s−2 log(s) + O(s−2) at infinity.
Thus we have

u1(r) = 1

r2

[
1

2 log(r)
+ log(log(r))

4 log(r)2
+ O

(
log(r)−2

)]
at + ∞ .

Notice the previous calculation can be continued to give an asymptotic
expansion of u1.

Proof of Lemma 5.1 (d = 4). The inequalities (25) and (27) follow easily
from the above equality. We will now prove that for every r > 1, u1(r) ≥
[2r2 log(2r)]−1. We consider the function f (r) = u1(r) − [2r2 log(2r)]−1.
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The function f is positive at least over (1, 1+η)∩(η−1, ∞) for η small. Let
us assume that f achieves its minimum at r0 and that f (r0) ≤ 0. Then we
have r0 ∈ [1 + η, η−1], f ′(r0) = 0 and f ′′(r0) ≥ 0. An easy computation
gives

f ′′(r) = 4f (r)

[
u1(r) + 1

2r2 log(2r)

]
− 3

r
f ′(r) − 1

2r4(log(2r))3
.

Evaluation at r = r0 implies that f ′′(r0) < 0. This contradicts the assump-
tion. Hence f is positive, that is we get (24) for d = 4.

6. Appendix

6.1. Formula for moments of the Brownian snake

For the reader’s convenience, we recall some explicit formulas for moments
of the Brownian snake. These formulas are well-known, at least in the con-
text of superprocesses (see e.g. Dynkin [5]). We can compute the Laplace
functional of

∫ t

0 ds(Ys, ϕ(s)) for ϕ ∈ Bb+(R+×Rd). To this end start from
the finite dimensional Laplace functional (2) with ti = i/m, ϕi = 1

m
ϕ(i/m)

for a nonnegative continuous function ϕ with compact support on R+×Rd .
Thanks to the continuity of the process X, by a suitable passage to the limit,
we get for ν ∈ Mf

EX
ν

[
exp

[
−

∫ t

0
(Xt−s, ϕ(s)) ds

]]
= exp [−(ν, v(t))] ,

where v is a nonnegative solution of (1) with right-hand side J (t, x) =∫ t

0 ds Pt−s[ϕ(s)](x). This can be extended by monotone class arguments to
any ϕ ∈ Bb+(R+×Rd). The uniqueness of the solution is easily established
using arguments similar to the classical Gronwall lemma. Then we get
v(t, x) = Nx[1 − exp[− ∫ t

0 ds (Yt−s, ϕ(s))]], thanks to theorem 1.3.
Now we introduce an auxiliary power series. Let us consider the analytic

function f (λ) = 1−√
1 − λ for |λ| < 1. It is easy to check that for |λ| < 1,

we have

f (λ) =
∞∑

n=1

γnλ
n ,

where the sequence (γn, n ≥ 1) is defined by γ1 = 1/2 and the recurrence

γn = 1

2

n−1∑
k=1

γkγn−k for n ≥ 2
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(use the fact that f solves 2f (λ) = f (λ)2 +λ). Now let T > 0 and J a non-
negative measurable function onR+×Rd, such thatMT =sup[0,T ]×Rd J(t, x)

< ∞. We define the family of measurable functions (hn, n ≥ 1) on R+ ×
Rd , by the initial condition

h1(t) = J (t) ,

and the recurrence

hn(t) = 2
n−1∑
k=1

∫ t

0
ds Ps

[
hk(t − s)hn−k(t − s)

]
for n ≥ 2 . (30)

We clearly have for every n ≥ 1,

sup
[0,T ]×Rd

|hn| ≤ [4T ]n−1[2MT ]nγn .

Thus the power series w(λ, t) = ∑
(−1)n+1λnhn(t) is normally convergent

on [0, T ] × Rd for |λ| < [8T MT ]−1. And it clearly solves the integral
equation on [0, T ] × Rd

w(t) + 2
∫ t

0
ds Ps

[
w(t − s)2

] = λJ (t) . (31)

To get the uniqueness of the solution to the previous integral equation, use ar-
guments similar to Gronwall’s lemma. Finally we can compute the moments
for the process Y under Nx . Indeed, let ϕ ∈ Bb+(R+×Rd). We have shown
that for λ > 0, the function vλ(t, x) = Nx

[
1 − exp −λ

∫ t

0 (Yt−s, ϕ(s)) ds
]

is the unique solution to (31) on R+ × Rd with J (t, x) = ∫ t

0 ds Ps[ϕ(t −
s)](x). Thus for λ ≥ 0 small enough, we have vλ(t) = w(λ, t). Then from
the series expansion for w(λ, t), we get for every integer n ≥ 1

Nx

[(∫ t

0
ds (Yt−s, ϕ(s))

)n]
= n!hn(t, x) ,

where the functions hn are defined by h1(t) = ∫ t

0 ds Ps[ϕ(t − s)], and
the recurrence (30). In the same way it can be shown that for every ϕ ∈
Bb+(Rd), for every t ≥ 0, n ≥ 1,

Nx

[
(Yt , ϕ)n

] = n!hn(t, x) ,

where the functions are defined by h1(t) = Pt [ϕ], and the recurrence (30).
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6.2. Proof of Proposition 1.4

We use the notations of the first section. Let L the last exit time of A ={
w ∈ W∗

x0
; τB̄(x,ε)(w) < ∞}

:

L = sup
{
s > 0; ∃t ∈ [0, ζs], Ws(t) ∈ B̄(x, ε)

}
,

with the convention sup ∅ = 0. It is enough to prove the proposition with
T(x,ε) replaced by L, since WL and WT(x,ε)

are identically distributed under
Nx0 , thanks to the invariance of Nx0 under time reversal. We now compute
for λ ≥ 0, t ≥ 0,

Nx0

[
e−λL◦θt F (Wt, ζt )1L>t

]
,

where F is a bounded nonnegative continuous function on W∗
x0

which van-
ished on a neighborhood of x0. We refer to [11] for the new notations and
the properties of the Brownian snake used here. We often write ζ for ζ(w).
Using the Markov property at time t , we deduce from the characterization
of Nx0 that

Nx0

[
e−λL◦θt F (Wt, ζt )1L>t

] =
∫

Mx0(dw)qt (ζ )F (w, ζ )E∗
w

[
e−λL 1L>0

]
,

whereMx0(dw) = ∫ ∞
0 da Pa

x0
(dw) andPa

x0
(dw) is the law ofβ[0,a] started at

x0, viewed as a probability measure on Wx0 . Here qt (a) = (2πt3)−1/2a exp
[−a2/2t] is the entrance density under Itô measure of positive excursions.
We have

E∗
w

[
e−λL 1L>0

] = E∗
w [1L>0] −

∫ ∞

0
ds λ e−λs E∗

w [1L>s] .

We first consider

Nλ =
∫

Mx0(dw)qt (ζ )F (w, ζ )

∫ ∞

0
ds λ e−λs E∗

w [1L>s] .

Let Q∗
s (w, dw′) denote the transition kernel of the Brownian snake killed

when its lifetime reaches 0. Then we have

Nλ =
∫ ∞

0
ds λ e−λs

∫
Mx0(dw)qt (ζ )F (w, ζ )

∫
Q∗

s (w, dw′)E∗
w′ [1L>0] .

Recall that (Ws,E
∗
w) is symmetric with respect to the reference measure

Mx0(dw), cf [11]. Thus the measure Mx0(dw)Q∗
s (w, dw′) is symmetric,

and we have

Nλ =
∫ ∞

0
ds λ e−λs

∫
Mx0(dw)

∫
Q∗

s (w, dw′)qt (ζ
′)F (w′, ζ ′)E∗

w [1L>0] .
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Let U(w′′, dw) denotes the potential kernel of (Ws,E
∗
w). Using the def-

inition of the capacitary measure of A (that is
∫

πA(dw′′)U(w′′, dw) =
Mx0(dw)E∗

w [1L>0]), we get

Nλ =
∫ ∞

0
ds λ e−λs

∫
πA(dw′′)

∫
U(w′′, dw)

×
∫

Q∗
s (w, dw′)qt (ζ

′)F (w′, ζ ′)

=
∫ ∞

0
ds λ e−λs

∫
πA(dw′′)

∫ ∞

s

dr

∫
Q∗

r (w
′′, dw′)qt (ζ

′)F (w′, ζ ′)

=
∫ ∞

0
dr

[
1 − e−λr

] ∫
πA(dw′′)

∫
Q∗

r (w
′′, dw′)qt (ζ

′)F (w′, ζ ′) .

By letting λ → ∞, we also have∫
Mx0(dw)qt (ζ )F (w, ζ )E∗

w [1L>0]

=
∫ ∞

0
dr

∫
πA(dw′′)

∫
Q∗

r (w
′′, dw′)qt (ζ

′)F (w′, ζ ′) .

Thus we get

Nx0

[
e−λL◦θt F (Wt, ζt )1L>t

]
=

∫ ∞

0
dr e−λr

∫
πA(dw)

∫
Q∗

r (w, dw′)qt (ζ
′)F (w′, ζ ′) .

The end of the proof is now similar to the end of the proof of theorem 3.2.1
from Port and Stone [17] concerning the interpretation of the capacitary
measure as a last exit distribution (use that

∫ ∞
0 qt (a) dt = 1).
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