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Abstract. By considering a continuous pruning procedure on Aldous’s Brownian
tree, we construct a random variable Θ which is distributed, conditionally given the
tree, according to the probability law introduced by Janson as the limit distribution
of the number of cuts needed to isolate the root in a critical Galton-Watson tree.
We also prove that this random variable can be obtained as the a.s. limit of the
number of cuts needed to cut down the subtree of the continuum tree spanned by
n leaves.

1. Introduction

The problem of randomly cutting a rooted tree arises first in Meir and Moon
(1970). Given a rooted tree Tn with n edges, select an edge uniformly at random
and delete the subtree not containing the root attached to this edge. On the
remaining tree, iterate this procedure until only the edge attached to the root is
left. We denote by Xn the number of edge-removals needed to isolate the root.
The problem is then to study asymptotics of this random number Xn, depending
on the law of the initial tree Tn.

In the original paper, Meir and Moon (1970) considered Cayley trees and ob-
tained asymptotics for the first two moments of Xn. Limits in distribution were
then obtained by Panholzer (2006) for some simply generated trees, by Drmota
et al. (2009) for random recursive trees, by Holmgren (2010) for binary search
trees, by Bertoin (2012) for Cayley trees and by Janson (2006) for conditioned
Galton-Watson trees. The main result of Janson (2006) states that, if the offspring

Received by the editors February 1, 2013; accepted March 18 2013.

2010 Mathematics Subject Classification. 60J80,60C05.

Key words and phrases. Continuum random tree, records, cutting down a tree.

This work is partially supported by the “Agence Nationale de la Recherche”,

ANR-08-BLAN-0190.

225

http://alea.impa.br/english/index_v10.htm
http://www.univ-orleans.fr/mapmo/membres/abraham/
http://cermics.enpc.fr/~delmas/


226 Romain Abraham and Jean-François Delmas

distribution of the Galton-Watson process is critical (that is with mean equal to
1) with finite variance, which we take equal to 1 for simplicity, then the following
convergence in distribution of the conditional laws (specified by their moments)
holds:

L(Xn/
√
n |Tn/

√
n)

(d)−−−−−→
n→+∞

L(ZT | T ) (1.1)

where T is the so-called continuum random tree (CRT) introduced by Aldous (1991,
1993) and can be seen as the limit in distribution of Tn/

√
n (see Aldous (1993)).

Furthermore, the random variable ZT has (unconditional) Rayleigh distribution

with density x e−x
2/2 1{x>0}. However, there is no constructive description of ZT

conditionally on T .
The first goal of the paper is to give a continuous pruning procedure of the CRT

that leads to a random variable that is indeed distributed, conditionally given the
tree, as ZT . In order to better understand the intuitive idea of the record process
on the CRT, let us first consider the pruning of the simple tree consisting in the
segment [0, 1] divided into n segments of equal length, rooted at 0. Select an edge
at random and discard what is located on the right of this edge. Then chose again
an edge at random on the remaining segments and iterate the procedure until the
segment attached to 0 is chosen. It is clear that the continuous analogue of this pro-
cedure (when the number n of segments tends to +∞) is the so-called stick-breaking
scheme: consider a uniform random variable U1 on [0, 1], then conditionally given
U1, consider a uniform random variable U2 on [0, U1] and so on. The sequence
(Un)n≥0 corresponds to the successive cuts of the interval [0, 1] in the continuous
pruning. Moreover, this sequence can be obtained as the records of a Poisson point
process. More precisely, if we consider a Poisson point measure

∑

i∈I δ(xi,ti) on
[0, 1] × [0,+∞) with intensity the Lebesgue measure, then the sequence (Un) is
distributed as the sequence of jumps of the record process

θ(x) = inf{ti, xi ∈ [0, x]}.

In our case, the limiting object is Aldous’s CRT (instead of the segment [0, 1]).
More precisely, we consider a real tree T associated with the branching mechanism
ψ(u) = αu2 under the excursion measure N. This tree is coded by the height

process
√

2/αBex where Bex is a positive Brownian excursion. This tree is endowed
with two measures: the length measure ℓ(dx) which corresponds to the Lebesgue
measure on the skeleton of the tree, and the mass measuremT (dx) which is uniform
on the leaves of the tree. Let σ = mT (T ) be the total mass of T . Aldous’s CRT
corresponds to the distribution of the tree T conditioned on the total mass σ = 1,
with α = 1/2. We then add cut points on T as above thanks to a Poisson point
measure on T × [0,+∞) with intensity

αℓ(dx)dθ

in the same spirit as in Aldous and Pitman (1998) (see also Abraham and Serlet
(2002) for a direct construction, and Abraham et al. (2010) for the pruning of
a general Lévy tree). We denote by (xi, qi) the atoms of this point measure, xi
represents the location of the cut point and qi represents the time at which it
appears. For x ∈ T , we denote by

θ(x) = inf{qi, xi ∈ [[∅, x]]}
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where [[∅, x]] ⊂ T denotes the path between x and the root. When a mark appears,
we cut the tree on this mark and discard the subtree not containing the root. Then
θ(x) represents the time at which x is separated from the root. Then we define

Θ =

∫

T
θ(x)mT (dx) and Z =

√

2α

σ
Θ.

We prove (see Theorem 3.2) that, conditionally on T , Z and ZT have indeed the
same law. The proof of this result relies on another representation of Θ in terms of
the mass of the pruned tree (a similar result also appears in Addario-Berry et al.
(2012)). More precisely, if we set

σq =

∫

T
1{θ(x)≥q}m

T (dx)

the mass of the remaining tree at time q, then we have

Θ =

∫ +∞

0

σq dq.

Using this framework, we can extend in some sense Janson’s result by obtaining
an a.s. convergence in a special case. We consider, conditionally given T , n leaves
uniformly chosen (i.e. sampled according to the mass measure mT ) and we denote
by Tn the sub-tree of T spanned by these n leaves and the root. The tree Tn is
distributed under N[ · | σ = 1] as a uniform ordered binary tree with n leaves (and
hence 2n− 1 edges) with random edge lengths. We denote by T ∗

n the tree obtained
by removing from Tn the edge attached to the root, and by X∗

n the number of
discontinuities of the process (θ(x), x ∈ T ∗

n). The quantity X∗
n + 1 represents the

number of cuts needed to reduce the binary tree Tn to a single branch attached
to the root. Notice that in our framework, several cuts may appear on the same
branch, so X∗

n looks like X2n−1 for uniform ordered binary trees but is not exactly
the same. Then, we prove in Theorem 4.2 that N-a.e. or N[ · | σ = 1]-a.s.:

lim
n→+∞

X∗
n√
2n

= Z.

This result can be extended by studying the fluctuations of the quantity X∗
n/

√
2n

around its limit, this is the purpose of Hoscheit (2012). In this setting the fluctua-
tions come from the approximation of the record process by its intensity, whereas
there is no contribution from the approximation of T by Tn.

Using the second representation of Θ and results from Abraham et al. (2013a)
on the pruning of general Lévy trees, we also derive a.s. asymptotics on the sizes
(σi, i ∈ I) of the removed sub-trees during the cutting procedure. According to
Propositions 4.4 and 4.5, we have N-a.e.

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = lim

n→+∞

√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ.

This result is extended to general Lévy trees in Abraham and Delmas (2013).
The paper is organized as follows. In Section 2, we introduce the frameworks of

discrete trees and real trees and define rigorously Aldous’s CRT, the mark process
and the record process on the tree. Section 3 is devoted to the identification of the
law of Θ conditionally given the tree. In Section 4, we prove the a.s. convergence
of X∗

n as well as the convergence results on the masses of the removed subtrees.
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Finally, we gathered in Section 5 several technical lemmas that are needed in the
proofs but are not the heart of the paper.

2. The continuum random tree and the mark process

2.1. Real trees. We recall here the definition and basic properties of real trees. We
refer to Evans (2008) Saint Flour lectures for more details on the subject.

Definition 2.1. A real tree is a metric space (T , d) satisfying the following two
properties for every x, y ∈ T :

• (Unique geodesic) There is a unique isometric map fx,y from [0, d(x, y)] into
T such that fx,y(0) = x and fx,y(d(x, y)) = y.

• (No loop) If ϕ is a continuous injective map from [0, 1] into T such that
ϕ(0) = x and ϕ(1) = y, then

ϕ([0, 1]) = fx,y([0, d(x, y)]).

A rooted real tree is a real tree with a distinguished vertex denoted ∅ and called
the root.

We denote by [[x, y]] = fx,y([0, d(x, y)]) the range of the mapping fx,y, which is the
unique continuous injective path between x and y in the tree, and [[x, y[[= [[x, y]]\{y}.
A point x ∈ T is said to be a leaf if the set T \ {x} remains connected. We denote
by Lf(T ) the set of leaves of T . The skeleton of the tree is the set of non-leaves
points T \Lf(T ). As the trace of the Borel σ-field on the skeleton of T is generated
by the intervals [[x, y]], one can define a length measure denoted by ℓ(dx) on a real
tree by:

ℓ([[x, y]]) = d(x, y).

We will consider here only compact real trees and these trees can be coded by
some continuous function (see Le Gall (2006) or Duquesne (2008)). We consider a
continuous function ζ : [0,+∞) → [0,+∞) with compact support [0, σ] and such
that ζ(0) = ζ(σ) = 0. This function ζ will be called in the following the height
function. For every s, t ≥ 0, we set

mζ(s, t) = inf
r∈[s∧t,s∨t]

ζ(r),

and

d(s, t) = ζ(s) + ζ(t) −mζ(s, t).

We then define the equivalence relation s ∼ t iff d(s, t) = 0. We set T the quotient
space

T = [0,+∞)/ ∼ .

The pseudo-distance d induces a distance on T and we keep notation d for this
distance. We denote by p the canonical projection from [0,+∞) onto T . The
metric space (T , d) is a compact real tree which can be viewed as a rooted real tree
by setting ∅ = p(0).

On such a compact real tree, we define another measure : the mass measure mT

defined as the push-forward of the Lebesgue measure by the projection p. It is a
finite measure supported by the leaves of T and its total mass is

mT (T ) = σ.
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This coding is very useful to define random real trees. For instance, Aldous’s
CRT is the random real tree coded by 2Bex where Bex denotes a normalized Brow-
nian excursion (i.e. a positive Brownian excursion with duration 1). Here, we will
work under the σ-finite measure N which denotes the law of a real tree coded by an

excursion away from 0 of
√

2
α |B| where |B| is a standard reflected Brownian motion.

The tree T under N is then the genealogical tree of a continuous state branching
process with branching mechanism ψ(u) = αu2 under its canonical measure. In
particular, under N, σ has density on (0,+∞):

dr

2
√
απ r3/2

· (2.1)

We keep parameter α in order to stay in the framework of Abraham and Delmas
(2012), and give the result in the setting of Aldous’s CRT (α = 1/2) or of Brownian
excursion (α = 2).

Using the scaling property of the Brownian motion, there exists a regular version
of the measure N conditioned on the length of the height process ζ. We write N

(r)

for the probability measure N[ · |σ = r]. In particular, we handle Aldous’s CRT if
we work under N(1) with α = 1/2.

If x1, . . . , xn ∈ T , we denote by T (x1, . . . , xn) the subtree spanned by
∅, x1, . . . , xn, i.e. the smallest connected subset of T that contains x1, . . . , xn and
the root. In other words, we have

T (x1, . . . , xn) =

n
⋃

i=1

[[∅, xi]].

With an abuse of notation, we write for every t1, . . . , tn ≥ 0, T (t1, . . . , tn) for the
subtree T (p(t1), . . . , p(tn)).

2.2. The mark process. We define now a mark process M on the tree T . Condi-
tionally given T , let M(dx, dq) be a Poisson point measure on T × [0,+∞) with
intensity 2αℓ(dx)dq. An atom (xi, qi) of this random measure represents a mark
on the tree T , xi is the location of this mark whereas qi denotes the time at which
the mark appears.

Remark 2.2. The coefficient 2α in the intensity is added to have the same intensity
as in the pruning procedures of Abraham and Serlet (2002); Abraham et al. (2010,
2013a) but, as we shall see, it does not appear in the law of the number of records.

In fact we will sometimes work with the restriction of M to T × [0, a] for some
a > 0. To simplify the notations, we will always denote by M the mark process
(even the restricted one) and will write M

T
a for the law of M restricted to T ×

[0, a], conditionally given T . We also write Na[dT dM ] = N[dT ]MT
a [dM ], and

N
(r)
a [dT dM ] = N

(r)[dT ]MT
a [dM ].

We set for every q ≥ 0 and x ∈ T :

θ(x) = inf{q > 0, M([[∅, x]]× [0, q]) > 0} and Tq = {x ∈ T ; θ(x) ≥ q}, (2.2)

respectively the first time a mark appears between the root and x, and the tree
obtained by pruning the original tree at the marks present at time q. We also define
the mass of the tree Tq:

σq = mT (Tq).
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According to Abraham et al. (2010), Tq is distributed under N∞ as a Lévy tree
with branching mechanism

ψq(u) = ψ(u+ q)− ψ(q) = αu2 + 2αqu.

We will denote by N
ψq the distribution of Tq under N. Moreover, thanks to Girsanov

formula (Abraham and Delmas (2012), Lemma 6.2), we have, for every nonnegative
Borel function F

N
ψq [F (T )] = N[F (Tq)] = N

[

F (T ) e−αq
2σ
]

. (2.3)

With the same abuse of notation as for the spanned subtree, we write for every
t ∈ R+, θ(t) instead of θ(p(t)).

2.3. Discrete trees. We recall here the definition of a discrete ordered rooted tree
according to Neveu’s formalism Neveu (1986).

We consider U =
+∞
⋃

n=0

(N∗)n the set of finite sequences of positive integers. The

empty sequence ∅ belongs to U . If u, v ∈ U , we denote by uv the sequence obtained
by juxtaposing the sequences u and v.

A discrete ordered rooted tree T is a subset of U satisfying the three following
properties

• ∅ ∈ T . ∅ is called the root of T .
• For every u ∈ U and i ∈ N

∗, if ui ∈ T then u ∈ T .
• For every u ∈ T , there exists an integer ku(T ) such that

ui ∈ T ⇐⇒ 1 ≤ i ≤ ku(T ).

The integer ku(T ) is the number of offsprings of the vertex u. The leaves of the
tree are the u ∈ T such that ku(T ) = 0. We will consider here only binary trees i.e,
discrete trees such that ku(T ) = 0 or 2.

We can add edge lengths to a discrete tree by considering weighted trees. A
weighted tree is defined by a discrete ordered rooted tree T and a weight hu ∈
[0,+∞) for every u ∈ T . The elements u ∈ T must be viewed as the edges of the
tree and hu is the length of the edge u. Obviously, such a weighted tree can be
viewed as a real tree and we will always make the confusion between a discrete
weighted tree and the associated real tree.

3. Janson’s random variable

Let T be a compact real tree and let M be a mark process on T . We set

Θ =

∫

T
θ(x)mT (dx).

Remark that this can be re-written using the coding by Θ =
∫ σ

0 θ(s)ds.
Using the tree-valued process (Tq , q ≥ 0), we can give another expression for Θ.

Let (θi, i ∈ I) be the set of jumping times of (σq , q ≥ 0). We set:

T i = {x ∈ T ; θ(x) = θi} and σi = mT (T i) = σθi− − σθi . (3.1)

According to Abraham and Delmas (2012), we have that M
T
∞-a.s. T i is a real

tree for all i ∈ I. Then the following result is straightforward as by definition
Θ =

∑

i∈I θiσ
i and σq =

∑

θi≥q σ
i.
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Proposition 3.1. We have M
T
∞-a.s.:

Θ =

∫ +∞

0

σq dq.

The main result of this section is the following theorem that identifies Θ as
Janson’s random variable whose distribution is characterized by its moments.

Theorem 3.2. For every positive integer r, we have

M
T
∞[Θr] =

r!

(2α)r

∫

T r

mT (dx1) . . .mT (dxr)
∏r
i=1 ℓ(T (x1, . . . , xi))

·

Proof : Using the expression of Proposition 3.1 for Θ, we have

M
T
∞[Θr] = r! MT

∞

[
∫

0≤q1<q2<···<qr
dq1 . . . dqr σq1 . . . σqr

]

= r!MT
∞

[

∫

0≤q1<q2<···<qr
dq1 . . . dqr

r
∏

k=1

∫

T
mT (dxk)1{xk∈Tqk

}

]

= r!

∫

T r

mT (dx1) . . .m
T (dxr)

∫

0≤q1<q2<···<qr
dq1 . . . dqr

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ].

To evaluate the probability that appears in the last equation, let us remark that,
if y ∈ Tq, then y ∈ Tq′ for every q′ < q. Therefore, we have

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ]

= M
T
∞[x2 ∈ Tq2 , . . . , xr ∈ Tqr

∣

∣ x1 ∈ Tq1 , . . . , xr ∈ Tq1 ]
×M

T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tq1 ].

On one hand, we have

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tq1 ] = M

T
∞ [M(T (x1, . . . , xr)× [0, q1]) = 0]

= exp
(

−2αq1ℓ(T (x1, . . . , xr))
)

.

On the other hand, by standard properties of Poisson point measures, we have

M
T
∞[x2 ∈ Tq2 , . . . , xr ∈ Tqr

∣

∣ x1 ∈ Tq1 , . . . , xr ∈ Tq1 ]
= M

T
∞[x2 ∈ Tq2−q1 , . . . , xr ∈ Tqr−q1 ].

We finally obtain by induction, with the convention q0 = 0:

M
T
∞[x1 ∈ Tq1 , . . . , xr ∈ Tqr ] =

r
∏

k=1

e−2α(qk−qk−1)ℓ(T (xk,...,xr)) .
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Plugging this expression in the integral gives, after an obvious change of variables

M
T
∞[Θr] = r!

∫

T r

mT (dx1) . . .m
T (dxr)

∫

0≤q1<···<qr
dq1 . . . dqr

r
∏

k=1

e−2α(qk−qk−1)ℓ(T (xk,...,xr))

= r!

∫

T r

mT (dx1) . . .m
T (dxr)

r
∏

k=1

∫ +∞

0

dak e
−2αakℓ(T (xk,...,xr))

=
r!

(2α)r

∫

T r

mT (dx1) . . .mT (dxr)
∏r
k=1 ℓ(T (xk, . . . , xr))

·

�

We can then deduce from the results of Janson (2006), that for α = 2, under N
(1)
∞ ,

Θ has Rayleigh distribution. Using then scaling argument in r and α or directly
Corollary 5.3 in the Appendix, we get the following result.

Corollary 3.3. For all r > 0, the random variable Z =
√

2α
r Θ is distributed under

N
(r)
∞ according to a Rayleigh distribution with density x e−x

2/2 1{x≥0}.

In particular, we have easily the first moments of Θ:

N
(r)
∞ [Θ] =

1

2

√

πr

α
and N

(r)
∞
[

Θ2
]

=
r

α
· (3.2)

4. A.s. convergence

4.1. Statement of the main result. Let r ≥ 0 and let T be a tree distributed ac-
cording to N

(r). Let (U1, . . . , Un) be n points uniformly chosen at random on [0, r],
independent of T . We denote by Tn the random tree spanned by these n points i.e.

Tn = T (U1, . . . , Un)

viewed as a discrete ordered weighted tree. Notice that Tn has 2n − 1 edges. Let
(h1, . . . , h2n−1) be the lengths of the edges given in lexicographic order. We consider
the total length of Tn:

Ln = ℓ(Tn) =

2n−1
∑

k=1

hk.

We define mn as the first branching point of Tn, i.e.

n
⋂

k=1

[[∅, p(Uk)]] = [[∅,mn]] (4.1)

and we consider the length of the edge of Tn attached to the root

h∅,n := d(∅,mn) = ℓ([[∅,mn]]) = h1. (4.2)

Let T ∗
n be the sub-tree of Tn where we remove the edge [[∅,mn[[:

T ∗
n = Tn \ [[∅,mn[[,

and L∗
n its total length i.e. L∗

n = Ln − h∅,n.
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We set θ(x−) = inf{θ(y), y ∈ [[∅, x[[} and X∗
n the number of records on the tree

T ∗
n :

X∗
n =

∑

x∈T∗
n

1{θ(x−)>θ(x)}.

Remark 4.1. The introduction of the tree T ∗
n is motivated by the fact that the

number
∑

x∈Tn

1{θ(x−)>θ(x)}

of records on the whole tree is N∞-a.e. infinite. Moreover, X∗
n + 1 represents the

number of cuts that appears on the reduced tree Tn until a mark appears on the
branch attached to the root which reduces the tree to a trivial one consisting of
the root and a single branch attached to it. Hence it is the analogue of the discrete
quantity Xn and is the right quantity to be studied.

We can then state the main result of this section which will be proven in Section
4.5.

Theorem 4.2. We have that, for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

X∗
n√
2n

=

√

α

2r
Θ = Z.

Remark 4.3. Notice that the binary tree Tn has 2n− 1 vertices; and it corresponds
to a critical Galton-Watson tree with reproduction law taking values in {0, 2} and
with variance 1 conditionally on its number of edges being 2n−1. This and Theorem
1.6 in Janson (2006) for α = 1/2 and r = 1, imply that the number of edges with
more than one cut is of order less that

√
n.

We deduce from Theorem 4.2 and Corollary 4.9 that for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

X∗
n

Ln
= α

Θ

σ
·

In the left hand-side, we have the average of the number of records on T ∗
n (as ℓ(T ∗

n)
is of the same order as Ln) and in the right hand-side, the ratio Θ/σ appears as the
value of θ(U) for a leaf chosen uniformly according to the normalized mass measure
mT /σ and α is a constant related to the branching mechanism. This result is
then natural as intuitively the normalized mass measure is the weak limit of the
normalized length measure on Tn.

4.2. Other a.s. convergence results. Recall the definition (2.2) of the pruned sub-
tree Tq. Let T be the set of trees with their mass measure (see Abraham et al.
(2013b)). We define the backward filtration G = (Gq, q ≥ 0) with Gq = σ(Tr , r ≥ q).
Following Abraham et al. (2013a), we get that the random measure:

N (dT ′, dq) =
∑

i∈I
δT i,θi(dT ′, dq)

is under N∞ a point measure on T× R with intensity:

1{q>0}2ασq N
q [dT ′] dq.
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This means that for every non-negative predictable process (Y (T ′, q), q ∈ R+, T ′ ∈
T) with respect to the backward filtration G,

N∞

[
∫

Y (T ′, q)N (dT ′, dq)

]

= N∞

[
∫

Yq 1{q>0}2ασq dq

]

, (4.3)

where (Yq =
∫

Y (T ′, q)Nq[dT ′], q ∈ R+) is predictable with respect to the backward
filtration G. We refer to Daley and Vere-Jones (2003, 2008) for the general theory
of random point measures.

Recall σi = mT (T i).

Proposition 4.4. We have N∞-a.e.:

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

Proof : Let K > 0 be large. We consider the G-stopping time τK = inf{q;σq <
K/2α}. We define for every θ > 0 and every positive integer n,

Qn(θ) =
∑

i∈I
1{σi≥1/n}1{θi>θ}.

We have Qn(τK) =
∑

i∈I 1{σi≥1/n}1{σθi+
<K/2α} so that:

N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ N∞

[
∫ +∞

0

dq min

(

σq,
K

2α

)

N

[

1{σ≥1/n} e
−αq2σ

]

]

=

∫ +∞

0

dq N

[

min

(

σ,
K

2α

)

e−αq
2σ

]

N

[

1{σ≥1/n} e
−αq2σ

]

=
1

4απ

∫ +∞

0

dq

∫ +∞

0

du

u3/2
min

(

u,
K

2α

)

e−αq
2u

∫ +∞

1/n

dr

r3/2
e−αq

2r

=
1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

1{r>1/n},

where we used (4.3) for the first equality, Girsanov formula (2.3), and the density
(2.1) of the distribution of σ under N. Elementary computations yields there exists
a finite constant c which depends on K but not on n such that:

N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ c
√
n(1 + log(n)). (4.4)

Classical results on random point measures imply that the process (Nn(θ∨τK), θ ≥
0), with:

Nn(θ) = Qn(θ) − 2α

∫ +∞

θ

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

is a backward martingale with respect to G. Moreover, since (Qn(θ), θ ≥ 0) is a
pure jump process with jumps of size 1, the process (Mn(θ ∨ τK), θ ≥ 0), with:

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

is also a backward martingale with respect to G.
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Using (4.4), we get that N∞
[

(

Nn4(τK)/n2
)2
]

is less than a constant times n−3/2;

therefore
+∞
∑

n=1

(

Nn4(τK)

n2

)2

is finite in L1(N∞) and thus is N∞-a.e. finite. This implies that N∞-a.e.:

lim
n→+∞

Nn4(τK)

n2
= 0.

Moreover, we have by monotone convergence:

2α√
n

∫ +∞

τK

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

= 2α

∫ +∞

τK

dq σq

∫ +∞

1

dr

2
√
απr3/2

e−αq
2 r

n

N∞-a.e.−−−−−→
n→∞

2

√

α

π

∫ +∞

τK

dqσq.

We get that the sequence (Qn4(τK)/n2, n ≥ 1) converges toward 2
√

α
π

∫ +∞
τK

dq σq
N∞-a.e. . Since (Qn(θ), n ≥ 1) is non-decreasing, we deduce that N∞-a.e.:

lim
n→+∞

Qn(τK)√
n

= 2

√

α

π

∫ +∞

τK

dq σq.

Since σ is finite N∞-a.e., we get that N∞-a.e. τK = 0 for K large enough. This
gives the result. �

Proposition 4.5. We have N∞-a.e.:

lim
n→+∞

√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

Proof : The proof is very similar to the proof of Proposition 4.4. We set:

Qn(θ) =
∑

i∈I
σi1{σi≤1/n}1{θi≥θ}.

Mimicking the proof of Proposition 4.4, we have for some finite constant c which
depends on K but not on n:

N∞ [Qn(τK)] = N∞

[
∫ +∞

τK

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

]

≤ 1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

r1{r≤1/n}

≤ cn−1/2(1 + log(n)) < +∞,

as well as:

N∞

[
∫ +∞

τK

dq σqN
[

σ21{σ≤1/n} e
−αq2σ

]

]

≤ 1

8α3/2
√
π

∫

R2
+

du

u3/2
dr

r3/2
min

(

u,
K

2α

)

1√
u+ r

r21{r≤1/n}

≤ cn−3/2(1 + log(n)).
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Classical results on random point measures imply that the processes (Nn(θ ∨
τK), θ ≥ 0) and (Mn(θ ∨ τK), θ ≥ 0), with:

Nn(θ) = Qn(θ)− 2α

∫ +∞

θ

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ

dq σqN
[

σ21{σ≤1/n} e
−αq2σ

]

are backward martingales with respect to G. We get that N∞
[

(

n2Nn4(τK)
)2
]

is

less than a constant times n−3/2. Following the proof of Proposition 4.4, we deduce
that N∞-a.e. limn→+∞ n2Nn4(τK) = 0. Furthermore, we have:

2α
√
n

∫ +∞

τK

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

= 2α
√
n

∫ +∞

τK

dq σq

∫ 1
n

0

dr

2
√
απr

e−αq
2r

= 2α

∫ +∞

τK

dq σq

∫ 1

0

dr

2
√
απr

e−αq
2 r

n

→ 2

√

α

π

∫ +∞

τK

dq σq.

We conclude the proof as in the proof of Proposition 4.4. �

4.3. The record process on the real half-line. We consider here the half-line [0,+∞)
instead of a real-tree T (the half-line is in fact a real tree that we supposed rooted at
0). We define the mark processM under Ma (we omit the T = [0,+∞) in the nota-
tion), it is a Poisson point measure on [0,+∞)2 with intensity 2α1{x≥0, 0≤q≤a}dx dq
and we set for every x ≥ 0

θ(x) = min(a, inf{qi;xi ≤ x}) and X(x) = X(0) +
∑

0<y≤x
1{θ(y−)>θ(y)}.

Remark 4.6. Let us denote by 1 ≥ x1 > x2 > · · · the jumping times of the
process (θ(x), 0 ≤ x ≤ 1) under M∞. By standard arguments on Poisson point
measure, the random variable x1 is uniformly distributed on [0, 1]. Conditionally
given x1, the random variable x2 is uniformly distributed on [0, x1] and so on. We
are thus considering the standard stick breaking scheme and the random vector
(1 − x1, x1 − x2, . . .) is distributed according to the Poisson-Dirichlet distribution
with parameter (0, 1).

For fixed x, θ(x) represents the first time a mark arrives between x and 0 (if it
arrives before time a that is if θ(x) < a); and X(x)−X(0) denotes the number of
(decreasing) records of the process (θ(u), u ∈ [0, x]). It is also the number of cuts
that appear between x and 0 in the stick-breaking scheme before time a.

By construction θ and (θ,X) are Markov processes. Notice that θ is non-
increasing and X is non-decreasing, and M∞-a.s. X(x) = +∞ for every x > 0.

As most of our further proofs will be based on martingale arguments, let us first
compute the infinitesimal generator of the former Markov processes. Notice first
that inf{qi;xi ≤ x} is distributed under M∞ as an exponential random variable
with parameter 2αx. Let g be a bounded measurable function defined on [0,+∞].
For every q ∈ [0,+∞] and x > 0, we have

Mq [g(θ(x))] = M∞[g(min(q, Yx))] = e−2αqx g(q) +

∫ q

0

g(u) 2αx e−2αxu du,
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where Yx is exponentially distributed with parameter 2αx. Notice that if g belongs
to C1(R+) with g′ bounded on R+, we have by an obvious integration by parts that,
for q ∈ [0,+∞] and x > 0,

Mq[g(θ(x))] = g(0) +

∫ q

0

g′(u) e−2αxu du.

We can then compute the infinitesimal generator of θ denoted by L. Let g be a
bounded measurable function defined on [0,+∞] such that g− g(+∞) is integrable
with respect to the Lebesgue measure on R

+. For q ∈ [0,+∞], we have:

L(g)(q) = lim
x→0

Mq[g(θ(x))] − g(q)

x

= lim
x→0

−g(q)1− e−2αqx

x
+

∫ q

0

2αg(u) e−2αxu du

= 2α

∫ q

0

(g(u)− g(q)) du.

Therefore, we get that the process Mg = (Mg
x , x ≥ 0) is a martingale under Mq,

where Mg is defined by:

Mg
x = g(θ(x)) + 2α

∫ x

0

dy

∫ θ(y)

0

(

g(θ(u))− g(y)
)

du. (4.5)

Remark 4.7. If furthermore g belongs to C1(R+) and if x 7→ xg′(x) is integrable
with respect to the Lebesgue measure on R

+, then we have for q ∈ [0,+∞]:

L(g)(q) = −2α

∫ q

0

xg′(x) dx.

Similarly, we can also compute the infinitesimal generator of (θ,X), which we
still denote by L. This quantity is of interest only for θ(0) finite. Let g be a bounded
measurable function defined on R

+ × N. For (q, k) ∈ R
+ × N, we denote by M(q,k)

the law of the process (θ,X) starting from (q, k). Standard computations on birth
and death processes yield that for (q, k) ∈ R

+ × N:

L(g)(q, k) = lim
x→0

M(q,k)[g(θ(x), X(x))] − g(q, k)

x

= lim
x→0

−g(q, k)1− e−2αqx

x
+

∫ q

0

2αg(u, k + 1) e−2αxu du+ o(1)

= 2α

∫ q

0

(g(u, k + 1)− g(q, k)) du.

In that case, we get that the process Mg = (Mg
x , x ≥ 0) defined by:

Mg
x = g(θ(x), X(x))− 2α

∫ x

0

dy

∫ θ(y)

0

(

g(u,X(y) + 1)− g(θ(y), X(y))

)

du, (4.6)

is a bounded martingale under M(q,k).
Finally, let us exhibit some martingales associated with the process X which

show that this process can be viewed as a Poisson process with stochastic intensity
2αθ(u)du. Let n ∈ N. Taking g(q, k) = k ∧ n in (4.6), we deduce that the process

N (n) = (N
(n)
x , x ≥ 0) defined for x ≥ 0 by:

N (n)
x = X(x) ∧ n− 2α

∫ x

0

θ(u)1{X(u)<n} du
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is a bounded martingale underM(q,k) (for q < +∞). Notice that for (q, k) ∈ R
+×N,

we have:

M(q,k)[|N (n)
x |] ≤ M(q,k)[X(x) ∧ n] + 2α

∫ x

0

E(q,k)[θ(u)] du

= k ∧ n+ 2α

∫ x

0

E(q,k)[θ(u)1{X(u)<n}] du+ 2α

∫ x

0

E(q,k)[θ(u)] du

≤ k + 4αqx,

where we used that X is non-negative in the first equality, that N (n) is a martingale
in the second one, and that θ is non-increasing in the last one. As (N (n), n ∈ N)
converges a.s. to the process N = (Nx, x ≥ 0) defined for x ∈ R

+ by:

Nx = X(x)− 2α

∫ x

0

θ(u) du, (4.7)

we deduce that N is a martingale under M(q,k) for every (q, k) ∈ R
+ × N.

By taking g(q, k) = k2 in (4.6) and using elementary stochastic calculus and
similar arguments as above, we also get that the processM = (Mx, x ≥ q0) defined
for x ≥ 0 by:

Mx = N2
x − 2α

∫ x

0

θ(u) du (4.8)

is a martingale under M(q,k) for every (q, k) ∈ R
+ × N.

4.4. Sub-tree spanned by n leaves. We recall here some properties of the sub-tree
spanned by n leaves uniformly chosen.

We first recall the density of (h1, . . . , h2n−1) under N
(r), see Aldous (1993) or

Pitman (2006) (Theorem 7.9), see also Duquesne and Le Gall (2005). We denote
by Ln the total length of Tn:

Ln =

2n−1
∑

k=1

hk.

Lemma 4.8. Under N
(r), (h1, . . . , h2n−1) has density:

f (r)
n (h1, . . . , h2n−1) = 2

(2n− 2)!

(n− 1)!

αn

rn
Ln e

−αL2
n/r 1{h1>0,...,h2n−1>0}.

The random variable L2
n, is distributed under N

(r) as rΓn/α where Γn is a γ(1, n)
random variable with density 1{x>0} x

n−1 e−x /(n− 1)!.

Corollary 4.9. We have that N(r)-a.s.

lim
n→+∞

Ln/
√
n =

√

r/α.

Proof : Using Lemma 4.8, we compute

N
(r)

[

+∞
∑

n=1

(

L2
n

n
− r

α

)4
]

=
r

α

+∞
∑

n=1

E

[

(

Γn
n

− 1

)4
]

=
r

α

+∞
∑

n=1

1

n2

(

3 +
1

n

)

< +∞.

This implies that N(r)-a.s.
∑+∞
n=1

(

L2
n

n − r
α

)4

is finite which proves the corollary. �

We end this section by studying the edge attached to the root defined in (4.1)
whose length is denoted h∅,n, see (4.2).
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Proposition 4.10. The sequence (
√
nh∅,n, n ≥ 1) converges in distribution under

N
(r) to

√

r/α E1/2, where E1 is an exponential random variable with mean 1.

Proof : Let k ∈ (−1,+∞). We set Hk = (α/r)k/2N(r)[hk∅,n]. We have using Lemma
4.8,

Hk = 2
(2n− 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1

+

dh1 . . . dh2n−1h
k
1 Ln e

−αL2
n/r .

Consider the change of variables:

u1 =

√

α

r
h1, · · · , u2n−2 =

√

α

r
h2n−2, x =

√

α

r
Ln,

with Jacobian equal to
(

α
r

)n− 1
2 .We get:

Hk = 2
(2n− 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1

+

( r

α

)k/2

uk1

( r

α

)1/2

x e−αx
2/r

1{u1+···+u2n−2≤x}
( r

α

)n− 1
2

du1 · · · du2n−2 dx

= 2
(2n− 2)!

(n− 1)!

∫ ∫

R2
+

du1 dx1{u1≤x} u
k
1x e

−x2

∫ ∫

R
2n−3

+

du2 . . . du2n−21{u2+···+u2n−2≤x−u1}

= 2
(2n− 2)!

(n− 1)!

1

(2n− 3)!

∫ +∞

0

dxx e−x
2

∫ x

0

dh hk(x− h)2n−3.

Set y = x2, to get:

Hk = 2
(2n− 2)!

(n− 1)!

1

(2n− 3)!
β(k + 1, 2n− 2)

∫ +∞

0

dx x2n+k−1 e−x
2

=
(2n− 2)!

(n− 1)!

1

(2n− 3)!
β(k + 1, 2n− 2)

∫ +∞

0

dy yn+
k
2
−1 e−r

=
(2n− 2)!

(n− 1)!

1

(2n− 3)!

Γ(k + 1)(2n− 3)!

Γ(2n+ k − 1)
Γ(n+

k

2
)

=
Γ(k + 1)

2k
Γ(n− 1

2 )

Γ(n+ k
2 − 1

2 )
,

where, for the last equality, we used twice the duplication formula:

Γ(2n− 1)

Γ(n)
=

22n−2Γ(n− 1/2)√
π

· (4.9)

We observe that limn→+∞ N
(r)[nk/2hk∅,n] =

k!
2k

(

r
α

)k/2
= E[(

√
rE1/(2

√
α))k]. This

gives the result, as the exponential distribution is characterized by its moments. �

From the proof of Proposition 4.10, we also get the following result.

Lemma 4.11. For all k ∈ (−1,+∞), we have, when n goes to infinity:

N
(r)[hk∅,n] =

( r

α

)k/2 Γ(k + 1)

2k
Γ(n− 1

2 )

Γ(n+ k
2 − 1

2 )
∼ (r/α)k/2n−k/22−kΓ(k + 1).
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4.5. Proof of Theorem 4.2. We first want to show that, as for a standard Poisson
process, the record counting process on each branch behaves like its (stochastic)
intensity when the number of jumps tends to +∞.

In other words, we set:

∆n =
X∗
n√
n
− 2α√

n

∫

T∗
n

θ(x) ℓ(dx)

and we want to prove that ∆n tends a.s. to 0 (at least along some subsequence).
Using the martingale of Equation (4.8), we have that:

N
(r)
∞

[

∆2
n

∣

∣

∣
Tn

]

=
2α√
n
N

(r)
∞

[

1√
n

∫

T∗
n

θ(x) ℓ(dx)
∣

∣

∣
Tn

]

. (4.10)

Then we use the following lemma whose proof is postponed to Section 4.6.

Lemma 4.12. Let r > 0. There exists a non-negative sequence (R′
n, n ≥ 1) of

random variables adapted to the the filtration (σ(Tn), n ≥ 1) and which converges

N
(r)
∞ -a.s. to 0 such that, for all n ≥ 1, N(r)-a.s.:

rN(r)
∞

[

1√
n

∫

T∗
n

θ(x) ℓ(dx)
∣

∣

∣
Tn

]

≤ Ln√
n
N

(r)
∞

[

Θ
∣

∣

∣
Tn

]

+R′
n. (4.11)

With this lemma, we have:

N
(r)
∞





∑

n≥1

∆2
n41{R′

n4
≤1}



 =
∑

n≥1

N
(r)
∞

[

N
(r)
∞
[

∆2
n4 | Tn4

]

1{R′
n4

≤1}
]

≤
∑

n≥1

2α

n2r
N

(r)
∞

[(

Ln4

n2
N

(r)
∞

[

Θ
∣

∣

∣
Tn4

]

+R′
n4

)

1{R′
n4

≤1}

]

≤
∑

n≥1

2α

n2r

(

1

n2
N

(r)
∞
[

L2
n4

]1/2
N

(r)
∞
[

Θ2
]1/2

+ 1

)

< +∞,

where we used (4.10) and (4.11) for the first inequality, Cauchy-Schwartz inequality
for the second one, and Lemma 4.8 as well as (3.2) for the last one. This result im-

plies that N
(r)
∞ -a.s. limn→+∞ ∆n41{R′

n4
≤1} = 0 and thus N

(r)
∞ -a.s. limn→+∞ ∆n4 =

0 as the sequence (R′
n, n ≥ 1) converges N(r)-a.s. to 0.

In order to conclude, it remains to study the asymptotic behavior of

1√
n

∫

T∗
n

θ(x) ℓ(dx)

which is the purpose of the next proposition which will also be proven in Section
4.6.

Proposition 4.13. We have that, for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

1√
n

∫

T∗
n

θ(x) ℓ(dx) =
1√
rα

Θ. (4.12)



Record process on the CRT 241

We deduce from (4.12), that N
(r)
∞ -a.s. the sequence (X∗

n4/n2, n ≥ 1) converges

to 2
√

r
αΘ. Then using that (X∗

n, n ≥ 1) is increasing, we get for k ∈ N, such that

n4 < k ≤ (n+ 1)4, that:

n2

(n+ 1)2
X∗
n4

n2
≤ X∗

k√
k
≤ (n+ 1)2

n2

X∗
(n+1)4

(n+ 1)2
·

Thus, we get that N
(r)
∞ -a.s. the sequence (X∗

k/
√
k, k ≥ 1) converges to 2

√

α
rΘ.

4.6. Proof of Proposition 4.13 and Lemma 4.12. First, let us remark that, as

Ln/
√
n tends N

(r)
∞ -a.s. to

√

r/α by Corollary 4.9 and is σ(Tn)-measurable, it suf-
fices to study the limit of

1

Ln

∫

T∗
n

θ(x) ℓ(dx).

Let us exhibit a martingale that converges to Θ. Let Fn be the σ-field generated
by Tn and (θ(x), x ∈ Tn). The filtration (Fn, n ≥ 1) is increasing towards ∨n≥1Fn =
F , the σ-field generated b y T and (θ(s), s ∈ [0, σ]) = (θ(x), x ∈ T ).

We consider the process (Mn, n ≥ 1) defined by, for q ∈ [0,+∞]:

Mn = N
(r)
q

[

Θ
∣

∣

∣
Fn
]

.

Thanks to (3.2), we get that:

N
(r)
q [M2

n] ≤ N
(r)
q

[

Θ2
]

≤ N
(r)
∞
[

Θ2
]

=
r

α
·

Therefore (Mn, n ≥ 1) is (a well defined) square integrable non-negative martingale.

In particular it converges N
(r)
q -a.s. (and in L2(N

(r)
q )) to Θ as the increasing σ-fields

Fn increase to F .
In the next lemma whose proof is given in Section 4.7, we compare

1

Ln

∫

T∗
n

θ(x) ℓ(dx)

to Mn.

Lemma 4.14. We have, for n ≥ 1,

−Rn ≤Mn − r

Ln

∫

T∗
n

θ(x) ℓ(dx) ≤ Vn, (4.13)

where (Rn, n ≥ 1) and (Vn, n ≥ 1) are non-negative sequences which converge

N
(r)
∞ -a.s. to 0. Furthermore the non-negative sequence (R′

n, n ≥ 1), with R′
n =

N
(r)
∞ [Rn|Tn] Ln/

√
n, converges N

(r)
∞ -a.s. to 0.

This lemma ends the proof of Proposition 4.13. Moreover, as N
(r)
∞ [Mn | Tn] =

N
(r)
∞ [Θ | Tn], it also proves Lemma 4.12.

4.7. Proof of Lemma 4.14. In order to first give a description of the marked tree
conditionally on Fn, we consider the sub-trees that are grafted on Tn. For x, y ∈ T ,
we define an equivalence relation by setting

x ∼Tn
y ⇐⇒ [[∅, x]] ∩ Tn = [[∅, y]] ∩ Tn

and we set (Ti, i ∈ In) for the different equivalent classes. The set Ti can be viewed
as a rooted real tree with root xi = Ti ∩ Tn. Notice that xi represents the point of
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Tn at which the tree Ti is grafted on Tn. Finally, we set θi = θ(xi) and σi = mT (Ti)
which corresponds to the length of the height process of Ti.

Using Theorem 3 of Le Gall (1993) (combined with the spatial motion θ), we get
the following result.

Lemma 4.15. Under Nq conditionally on Fn, the point measure
∑

i∈In
δ(Ti,θi,xi)(dT , dq′, dx)

is a Poisson point measure with intensity

2α1Tn
(x)ℓ(dx) N[dT ] δθ(x)(dq

′).

We deduce from that Lemma the next result.

Lemma 4.16. Under N
(r)
q and conditionally on Fn, the point measure

Nn(dσ, dq
′, dx) =

∑

i∈In
δ(σi,θi,xi)(dσ, dq

′, dx)

is distributed as a Poisson point measure:

Ñ (dσ, dq′, dx) =
∑

j∈J
δ(σ̃j ,θj ,xj)(dσ, dq

′, dx)

with intensity

2α1Tn
(x)ℓ(dx)

dσ

2
√
απ σ3/2

1{σ>0} δθ(x)(dq
′)

conditioned on {∑j∈J σ̃j = r}.
We can compute some elementary functionals of Nn.

Lemma 4.17. Under N
(r)
q and conditionally on Fn, the point measure Nn has

intensity:

2α1Tn
(x)ℓ(dx) E(r),Ln [dσ] δθ(x)(dq),

where E
(r),Ln satisfies, for any non-negative measurable function F :

2α

∫

Tn

ℓ(dx) E(r),Ln [F (x, σ)] = E





∑

j∈J
F (sj , σ̃j)

∣

∣

∣

∑

j∈J
σ̃j = r



 .

We also have:

E
(r),Ln [σ] =

r

2αLn
and E

(r),Ln [σ3/2] ≤ 2√
απ

1

Ln
r2 e−αL

2
n/r . (4.14)

Proof : The first part of the Lemma is a consequence of the exchangeability of
(σi, i ∈ In). With F (q, r′) = r′, we get:

2αLnE
(r),Ln [σ] = 2α

∫

Tn

ℓ(dx) E(r),Ln [σ] = E





∑

j∈J
σ̃j |

∑

j∈J
σ̃j = r



 = r.

This gives the first equality of (4.14). Recall that:

N
[

1− e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

(

1− e−µr
)

=
√

µ/α.
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We have, using the Palm formula for Poisson point measures, for a > 1/2:

E





∑

j∈J
σ̃aj e

−µ∑

i∈J
σ̃i



 = E





∑

j∈J
σ̃aj e

−µσ̃j e−µ
∑

i∈J,i6=j σ̃i





= 2αLnN
[

σa e−µσ
]

exp
(

−2αLnN
[

1− e−µσ
])

= 2αLnN
[

σa e−µσ
]

e−2Ln
√
αµ .

Moreover, we have:

N
[

σa e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

ra e−µr =
1

2
√
απ

Γ(a− 1/2)µ1/2−a.

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2
j

)

e−µ
∑

i∈J σ̃i





= 2αLn e
−2Ln

√
αµ

(

2
√
αLnN[σ

3/2 e−µσ] +
1

Γ(3/2)
N[σ2 e−µσ]

)

= 2αLn e
−2Ln

√
αµ 1

2
√
απ

(

2
√
αLn
µ

+
1

µ3/2

)

=
2√
π

∂2

∂µ2
e−2Ln

√
µα .

Let us recall the Laplace transform for the density of a stable subordinator of index
1/2: for a > 0 and µ ≥ 0,

a

∫ +∞

0

dr√
2πr3

e−µr−a
2/(2r) = e−a

√
2µ .

From that formula, we have

∂2

∂µ2
e−2Ln

√
µα =

∂2

∂µ2

1√
π

∫ +∞

0

dx

x3/2
e−1/x e−αL

2
nµx

=
1√
π

(

αL2
n

)2
∫ +∞

0

dx
√
x e−1/x e−αL

2
nµx

=
Ln

√
α√
π

∫ +∞

0

dr
√
r e−αL

2
n/r e−µr

= 2αLn

∫ +∞

0

dr

2
√
απ r3/2

r2 e−αL
2
n/r e−µr .

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2
j

)

∣

∣

∣

∑

i∈J
σ̃i = r



 =
4αLn√
π
r2 e−αL

2
n/r .

Then, using the first part of Lemma 4.17 with F (s, σ) = 2
√
αLnσ

3/2 + 1
Γ(3/2) σ

2,

we get the second inequality of (4.14). �

Now we prove Lemma 4.14.
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We consider the set I∗n = {i ∈ In, xi ≥ mn} of indexes such that Ti is not grafted
on the edge [[∅,mn]]. We set:

An = {s ≥ 0; [[∅, s]] ∩ T ∗
n 6= ∅} =

⋃

i∈I∗n

T i, M∗
n = N

(r)
q

[
∫

An

θ(s) ds
∣

∣

∣
Fn
]

and Vn =Mn −M∗
n.

Notice that the sequence (An, n ∈ N
∗) is non-decreasing and that

⋂

n∈N∗ Acn = ∅,
as there is no tree grafted on the root. By dominated convergence, this implies that

N
(r)
q -a.s.:

lim
n→+∞

∫

Ac
n

θ(s) ds = 0.

As:

Vn+m = N
(r)
q

[

∫

Ac
n+m

θ(s) ds
∣

∣

∣
Fn+m

]

≤ N
(r)
q

[

∫

Ac
n

θ(s) ds
∣

∣

∣
Fn+m

]

,

and as Fn+m increases to F , we get that lim supm→+∞ Vn+m ≤
∫

Ac
n
θ(s) ds and

thus N
(r)
q -a.s.

lim
n→+∞

Vn = 0. (4.15)

We define the function Hq (see Proposition 5.5 for a closed formula) by:

Hq(r) = N
(r)
q [Θ].

We have, with Θi = Θ(Ti) =
∫

Ti
θ(x) mT (dx):

M∗
n = N

(r)
q

[
∫

An

θ(s) ds
∣

∣

∣
Fn
]

= N
(r)
q





∑

i∈I∗n

Θi

∣

∣

∣
Fn



 = N
(r)
q





∑

i∈I∗n

N
(σi)
θ(xi)

[Θ]
∣

∣

∣
Fn





= N
(r)
q





∑

i∈I∗n

Hθ(xi)(σi)
∣

∣

∣
Fn



 .

Since Hq(r) ≤ qr, see (5.14) in Proposition 5.5, we get using the first equality of
(4.14) in Lemma 4.17:

M∗
n = 2α

∫

T∗
n

ℓ(dx) E(r),Ln [Hθ(x)(σ)]

≤ 2α

∫

T∗
n

ℓ(dx) θ(x)E(r),Ln [σ] = r
1

Ln

∫

T∗
n

ℓ(dx) θ(x).

This gives the upper bound of (4.13).
We shall now prove the lower bound of (4.13). Since Hq(r) ≥ qr− 1

2

√
απ q2r3/2,

see (5.14) in Proposition 5.5, we also get using the second equality of (4.14) in
Lemma 4.17:

Mn ≥M∗
n ≥ r

1

Ln

∫

T∗
n

ℓ(dx) θ(x) − 1

2

√
απ E

(r),Ln [σ3/2]

∫

T∗
n

ℓ(dx) θ(x)2

≥ r
1

Ln

∫

T∗
n

ℓ(dx) θ(x) − 1

2
r2 e−αL

2
n/r θ2∅,n
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where θ∅,n = θ(mn). This proves the lower bound of (4.13) with:

Rn =
1

2
r2 e−αL

2
n/r θ2∅,n. (4.16)

It remains to prove that this quantity tends to 0. First, we have:

N
(r)
∞ [h2∅,nθ

2
∅,n] = N

(r)
∞ [h2∅,nN

(r)
∞ [θ2∅,n |h∅,n]] =

1

(2α)2
,

where we used that θ∅,n is exponentially distributed conditionally given h∅,n for the
second equality. We deduce that:

N
(r)
∞

[

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2

]

<∞

and hence N
(r)
∞ -a.s.:

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2
<∞.

This implies that, N
(r)
∞ -a.s., for some finite Fn-measurable random variable C1:

h2∅,nθ
2
∅,n ≤ C1n

2.

Using Lemma 4.11, we have N
(r)
∞ [h

−1/2
∅,n ] ∼ n1/4

√

απ/2r, which implies by similar

arguments that, N
(r)
∞ -a.s., for some finite σ(Tn)-measurable random variable C2:

h
−1/2
∅,n ≤ C2n

3/2. (4.17)

Finally, using Formula (4.16) for Rn, we have N
(r)
∞ -a.s.:

Rn ≤ C1C
4
2 n

8r2 e−αL
2
n/r .

As N
(r)
∞ -a.s. limn→+∞ Ln/

√
n =

√

r/α, we deduce that limn→+∞Rn = 0.
Using (4.17), we deduce that:

R′
n =

Ln√
n
N

(r)
∞ [Rn | Tn] =

Ln√
n

r2

2
e−αL

2
n/r

1

4α2

1

h2∅,n
≤ C4

2

r2

8α2
n11/2Ln e

−αL2
n/r .

Thus, we get that the non-negative sequence (R′
n, n ≥ 1), converges N

(r)
∞ -a.s. to 0,

which ends the proof.

5. Appendix

5.1. Computations on Rayleigh distributions. Let Z be a Rayleigh random variable.

Lemma 5.1. Let µ > 0, c ≥ 0. We have:

1√
π

∫ +∞

0

dr√
r

e−µr E
[

e−
√
2r cZ′

]

=
1

c+
√
µ
· (5.1)

Proof : We set

J =

√

µ

2

∫ ∞

0

dr√
r

e−µr
∫ ∞

0

dx x e−x
2/2 e−c

√
2r x .
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With the change of variable t2 = 2µr and with ρ = c/
√
µ, we get:

J =

∫

[0,+∞)2
dtdx x exp(−(t2 + x2 + 2ρtx)/2)

=

∫

[0,+∞)2
dtdx (x+ ρt) e−(t2+x2+2ρtx)/2 −ρ

∫

[0,+∞)2
dtdx t e−(t2+x2+2ρtx)/2

=

∫ ∞

0

dt
[

− exp(−(t2 + x2 + 2ρtx)/2)
]x=+∞
x=0

− ρJ

=

∫ ∞

0

dt e−t
2/2 −ρJ

=
√

π/2− ρJ.

This implies that J =

√

π/2

ρ+ 1
=

√

µ

2

√
π

c+
√
µ
, which is exactly what we needed. �

5.2. Joint law of (Θ, σ). Notice that the joint law of (Θ, σ) under N∞ is given in
Corollary 3.3. However, we shall need the joint distribution under Nq. For this
reason, we compute the Laplace transform of (Θ, σ) using the theory of super-
process.

Let λ > 0, µ ≥ 0. We set for q ∈ [0,+∞]:

F (q) = Nq

[

1− e−λΘ−µσ] . (5.2)

We define the function:

G(x) =

(
√

µ

α
+

λ

2α

)

e
2α
λ

(

x−
√
µ/α

)

−x− λ

2α
· (5.3)

The function G is one-to-one from [
√

µ/α,+∞) to [0,+∞), is increasing and is of
class C∞.

Lemma 5.2. Let λ > 0, µ ≥ 0. The function F is of class C1 on [0,+∞) and
solves the following equation on [0,+∞):

αF (q)2 + 2α

∫ q

0

xF ′(x) dx = λq + µ. (5.4)

Furthermore, we have F = G−1.

Proof : The first part of the Lemma is a well known result from Laplace transform
of superprocess Dynkin (1993) (Theorem 1.8) or equivalently of Brownian snake
Le Gall (1999) (Theorem 4). We set f(x) = λx + µ. We introduce the function
ut(q) defined for t ≥ 0 and q ≥ 0 by:

ut(q) = Nq

[

1− e−
∫

σ

0
f(θ̂s)1{ζs leqt} ds

]

.

We deduce from Theorem II.5.11 of Perkins (2002) that u is the unique non-negative
solution of:

ut(q) + Eq

[
∫ t

0

αut−s(θ(s))
2 ds

]

= Eq

[
∫ t

0

f(θ(s)) ds

]

.

Using the Markov property of θ, we get that for t ≥ r ≥ 0:

ut(q) + Eq

[
∫ r

0

αut−s(θ(s))
2 ds

]

= Eq

[
∫ r

0

f(θ(s)) ds

]

+ Eq[ut−r(θ(r))]. (5.5)
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Notice that limt→+∞ ut(q) = F (q). And we have:

ut(q) ≤ F (q) ≤ N

[

1− e−(q+µ)σ
]

=
√

(q + µ)/α.

By monotone convergence, we deduce from (5.5) that:

F (q) + Eq

[
∫ r

0

αF (θ(s))2 ds

]

= Eq

[
∫ r

0

f(θ(s)) ds

]

+ Eq[F (θ(r))].

This implies that the process N = (Nt, t ≥ 0) defined by:

Nt = F (θ(t)) +

∫ t

0

(

f(θ(s))− αF (θ(s))2
)

ds,

is a martingale under Eq, for q < +∞. We deduce from (4.5) (with g = F ) that:

∫ t

0

(

f(θ(s))− αF (θ(s))2 − 2α

∫ θ(s)

0

(F (x) − F (q)) dx

)

ds

is a martingale. Since it is predictable, it is a.s. constant. We get that a.e. for
q ≥ 0:

f(q)− αF (q)2 + 2αqF (q)− 2α

∫ q

0

F (x) dx = 0,

that is a.e.:

F (q) =

√

q2 − 2

∫ q

0

F (x) dx+ (f(q)/α) + q.

Since by construction F is non-decreasing, we get that F is continuous and then of
class C1. An obvious integration by parts gives (5.4).

We now prove the second part of the Lemma. Notice that F (0) = N0 [1− e−µσ] =
√

µ/α. By differentiating (5.4) we have:

2αF ′(q)(F (q) + q) = λ. (5.6)

This implies that F ′ > 0 and thus F is one-to-one from [0,+∞) to [
√

µ/α,+∞).
Moreover, F−1 solves the differential equation

g′(x) =
2α

λ
(g(x) + x). (5.7)

Elementary computations give that the unique solution to (5.7) with the initial

condition g(
√

µ/α) = 0 is G. Thus, we get by uniqueness F−1 = G. �

Notice that F (+∞) = +∞ which doesn’t able us to compute directly the Laplace
transform of (Θ, σ). However, we deduce easily the following result, which gives an
alternative proof of Corollary 3.3.

Corollary 5.3. Let λ > 0, µ ≥ 0. We have:

N∞
[

σ e−µσ−λΘ
]

=
1

2
√
αµ+ λ

· (5.8)

In particular, under N∞, conditionally on σ,
√

2α
σ Θ is distributed as a Rayleigh

random variable Z independent of σ.
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Proof : We have for q ∈ [0,+∞):

∂µF (q) = Nq

[

σ e−λΘ−µσ] . (5.9)

Since G(F (q)) = q we get:

(∂µG)(F (q)) +G′(F (q)) ∂µF (q) = 0.

We have:

∂µG(x) = − 1

λ
e

2α
λ

(x−
√
µ/α) = − 1

λ

1

2
√
αµ+ λ

(2αG(x) + 2αx+ λ).

Notice that G′(F (q)) = 1/F ′(q). We deduce from (5.6) that:

∂µF (q) =
1

2α(F (q) + q)

1

2
√
αµ+ λ

(2αq + 2αF (q) + λ)

=
1

2
√
αµ+ λ

(

1 +
λ

2α(F (q) + q)

)

.

Letting q go to infinity gives the first part of the Corollary.
For the last part, use Lemma 5.1 and the distribution of σ under N given in (2.1)

to conclude. �

The last part of the Section is devoted to the computation of the first moment

of Θ under N
(r)
q , with q < +∞. We first give the asymptotic expansion of F with

respect to small λ. We write O(λk) for any function g of q, µ and λ such that for
any q > 0, µ > 0 and ε > 0 there exists a finite constant C (depending on q, µ and
ε) such that for all λ ∈ [0, ε], |g(q, µ, λ)| ≤ Cλk. Notice that O(λk) is not uniform
in q or µ.

Lemma 5.4. Let q ∈ (0,+∞). We set z = q
√

α
µ . We have:

F (q) =

√

µ

α
+

λ

2α
log(1 + z)− λ2

4α3/2µ1/2

z − log(1 + z)

1 + z
+O(λ3). (5.10)

In particular, we deduce that:

∂λF (q)|λ=0 =
1

2α
log(1 + z) and ∂2λF (q)|λ=0 = − 1

2α3/2µ1/2

z − log(1 + z)

1 + z
·

(5.11)

Proof : Using the second part of Lemma 5.2 and (5.3), we get:

F (q) =

√

µ

α
+

λ

2α
log

(

2αq + 2αF (q) + λ

2
√
αµ+ λ

)

. (5.12)

Using (5.2), we get that F (q) decreases to
√

µ/α when λ goes down to 0, that is

F (q) =
√

µ/α+O(1). Plugging this in the right-hand side of (5.12), we get:

F (q) =

√

µ

α
+O(λ).

Plugging this in the right-hand side of (5.12), we get:

F (q) =

√

µ

α
+

λ

2α
log(1 + z) +O(λ2).

Plugging this again in the right-hand side of (5.12), we get (5.10). This readily
implies (5.11). �
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We can then compute the first moment of Θ under N
(r)
q .

Proposition 5.5. Let Hq(r) = N
(r)
q [Θ]. We have, for r > 0 and q ∈ [0,+∞):

Hq(r) =

√

r

2α

∫ q
√
2αr

0

dy E
[

e−yZ
]

. (5.13)

and

0 ≤ qr −Hq(r) ≤
1

2

√
πα q2r3/2. (5.14)

Proof : By the change of variable y = q
√
2αz, we have

Hq(r) =
q
√
r

2

∫ r

0

dz√
z

∫ +∞

0

dxx exp

(

−x
2

2
− q

√
2αz x

)

.

Then we compute for µ > 0,
∫ +∞

0

dr

2
√
απr

e−µrHq(r)

=
q

4
√
πα

∫ +∞

0

dr e−µr
∫ r

0

dz√
z

∫ +∞

0

dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

∫ +∞

0

dz√
z

∫ +∞

z

dr e−µr
∫ +∞

0

dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

1

µ

∫ +∞

0

dz√
z
e−µz

∫ +∞

0

dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used equality (5.1) for the last equality.
On the other hand, we have:

∫ +∞

0

dr

2
√
απr

e−µr N(r)
q [Θ] = −∂µ

∫ +∞

0

dr

2
√
απ r3/2

e−µr N(r)
q [Θ]

= −∂µNq
[

e−µσ Θ
]

= −∂µ
[

∂λF (q)|λ=0

]

= − 1

2α
∂µ log

(

1 + q

√

α

µ

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used Definition (5.2) of F for the third equality an d (5.11) for the fourth

one. Therefore, we have that dr-a.e. N
(r)
q [Θ] = Hq(r). Then the equality holds for

all r > 0 by continuity (using again a scaling argument).
Then, use 0 ≤ 1− e−z ≤ z for z ≥ 0, to get (5.14). �

Acknowlegment. The authors wish to thank an anonymous referee for his
useful remarks that improved considerably the presentation of the paper and for
suggesting the elegant proof of Theorem 3.2.



250 Romain Abraham and Jean-François Delmas

References

R. Abraham and J.-F. Delmas. A continuum-tree-valued Markov process. Ann.
Probab. 40 (3), 1167–1211 (2012). MR2962090.

R Abraham and J.-F. Delmas. The forest associated with the record process on a
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