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Abstract. We consider a model of stationary population with random size given by a con-
tinuous state branching process with immigration with a quadratic branching mechanism. We
give an exact elementary simulation procedure of the genealogical tree of n individuals randomly
chosen among the extant population at a given time. Then, we prove the convergence of the
renormalized total length of this genealogical tree as n goes to infinity, see also Pfaffelhuber,
Wakolbinger and Weisshaupt (2011) in the context of a constant size population. The limit ap-
pears already in Bi and Delmas (2016) but with a different approximation of the full genealogical
tree. The proof is based on the ancestral process of the extant population at a fixed time which
was defined by Aldous and Popovic (2005) in the critical case.

1. Introduction

Continuous state branching (CB) processes are stochastic processes that can be obtained as the
scaling limits of sequences of Galton-Watson processes when the initial number of individuals
tends to infinity. They hence can be seen as a model for a large branching population. The
genealogical structure of a CB process can be described by a continuum random tree introduced
first by Aldous [4] for the quadratic critical case, see also Le Gall and Le Jan [19] and Duquesne
and Le Gall [12] for the general critical and sub-critical cases. We shall only consider the quadratic
case; it is characterized by a branching mechanism ψθ:

ψθ(λ) = βλ2 + 2βθλ, λ ∈ [0,+∞),

where β > 0 and θ ∈ R. The sub-critical (resp. critical) case corresponds to θ > 0 (resp. θ = 0).
The parameter β can be seen as a time scaling parameter, and θ as a population size parameter.

In this model the population dies out a.s. in the critical and sub-critical cases. In order
to model branching population with stationary size distribution, which corresponds to what is
observed at an ecological equilibrium, one can simply condition a sub-critical or a critical CB to
not die out. This gives a Q-process, see Roelly-Coppoleta and Rouault [22], Lambert [18] and
Abraham and Delmas [1], which can also be viewed as a CB with a specific immigration. The
genealogical structure of the Q-process in the stationary regime is a tree with an infinite spine.
This infinite spine has to be removed if one adopts the immigration point of view, in this case the
genealogical structure can be seen as a forest of trees. For θ > 0, let (Zt, t ∈ R) be this Q-process
in the stationary regime, so that Zt is the size of the population at time t ∈ R. See Chen and
Delmas [9] for studies on this model in a more general framework. Let At be the time to the
most recent common ancestor of the population living at time t, see (16) for a precise definition.
According to [9], we have E[Zt] = 1/θ, and E[At] = 3/4βθ, so that θ is indeed a population size
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parameter and β is a time parameter.

Aldous and Popovic [5], see also Popovic [21], give a description of the genealogical tree of the
extant population at a fixed time using the so-called ancestral process which is a point process
representation of the lineage in a setting very close to θ = 0 in the present model. We extend
the presentation of [5] to the case θ ≥ 0, see Propositions 3.6 and 3.7 which can be summa-
rized as follows. According to [9], the size of the population at time 0, Z0, is distributed as
Eg + Ed, where Eg and Ed are two independent exponential random variables with mean 1/2θ
(take Eg = Ed = +∞ if θ = 0). Conditionally given (Eg, Ed), we describe the genealogy of
the extant population by a Poisson point measure (that we call the ancestral process), namely
A(du, dζ) =

∑

i∈I δui,ζi(du, dζ) where ui represents the individual and ζi its ’age’. From this
point measure, we construct informally a genealogical tree as follows. We view this process as
a sequence of vertical segments in R

2, the tops of the segments being the ui’s and their lengths
being the ζi’s. We add the half line {0}× (−∞, 0] in this collection of segments. We then attach
the bottom of each segment such that ui > 0 (resp. ui < 0) to the first left (resp. first right)
longer segment. See Figure 1 for an example.

Figure 1. An instance of an ancestral process and the corresponding genealogical tree

The ancestral process description allows to give elementary exact simulations of the genealog-
ical tree of n individuals randomly chosen in the extant population at time 0 (or at some time
t ∈ R as the population has a stationary distribution). We give first a static simulation for fixed
n in Subsection 4.1, then two dynamic simulations in Subsections 4.2 and 4.3, where the individ-
uals are taken one by one and the genealogical tree is then updated. Our framework allows also
to simulate the genealogical tree of n extant individuals conditionally given the time A0 to the
most recent common ancestor of the extant population, see Subsection 4.4. Let us stress that
the existence of an elementary simulation method is new, and the question goes back to Lambert
[17] and Theorem 4.7 in [9]

The ancestral process description allows also to compute the limit distribution of the total
length of the genealogical tree of the extant population at time t ∈ R. More precisely, let Λn

be the total length of the tree of n individuals randomly chosen in the extant population at
time t, see (18) for a precise definition. Then we prove, see Proposition 5.1 and (34), that
(Λn − E[Λn|Zt], n ∈ N

∗) converges a.s. and in L2 as n goes down to 0 towards a limit, say Lt.
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The Laplace transform of the distribution of Lt is given by, for λ > 0:

E

[

e−λLt |Zt

]

= eθZt ϕ(λ/(2βθ)), with ϕ(λ) = λ

∫ 1

0

1− vλ

1− v
dv.

The proof is based on technical L2 computations. This result is in the spirit of Pfaffelhuber,
Wakolbinger and Weisshaupt [20] on the tree length of the coalescent, which is a model for con-
stant population size. We also prove that Lt coincides with the limit of the total length Lε of
the genealogical tree up to t− ε of the individuals alive at time t obtained in [6]. More precisely,
we have that (Lε −E[Lε|Zt], ε > 0) converges a.s. towards Lt as ε goes down to zero. See [6] for
some properties of the process (Lt, t ∈ R).

The paper is organized as follows. We first introduce in Section 2 the framework of real trees
and we define the Brownian CRT that describes the genealogy of the CB in the quadratic case.
Section 3 is devoted to the description via a Poisson point measure of the ancestral process of the
extant population at time 0 and Section 4 gives the different simulations of the genealogical tree
of n individuals randomly chosen in this population. Then, Section 5 concerns the asymptotic
length of the genealogical tree for those n sampled individuals.

2. Notations

2.1. Real trees. The study of real trees has been motivated by algebraic and geometric pur-
poses. See in particular the survey [10]. It has been first used in [15] to study random continuum
trees, see also [14].

Definition 2.1 (Real tree). A real tree is a metric space (t, dt) such that:

(i) For every x, y ∈ t, there is a unique isometric map fx,y from [0, dt(x, y)] to t such that
fx,y(0) = x and fx,y(dt(x, y)) = y.

(ii) For every x, y ∈ t, if φ is a continuous injective map from [0, 1] to t such that φ(0) = x
and φ(1) = y, then φ([0, 1]) = fx,y([0, dt(x, y)]).

Notice that a real tree is a length space as defined in [8]. We say that (t, dt, ∂t) is a rooted

real tree, where ∂ = ∂t is a distinguished vertex of t, which will be called the root. Remark that
the set {∂} is a rooted tree that only contains the root.

Let t be a compact rooted real tree and let x, y ∈ t. We denote by [[x, y]] the range of the
map fx,y described in Definition 2.1. We also set [[x, y[[= [[x, y]] \ {y}. We define the out-degree
of x, denoted by kt(x), as the number of connected components of t \ {x} that do not contain
the root. If kt(x) = 0, resp. kt(x) > 1, then x is called a leaf, resp. a branching point. A tree is
said to be binary if the out-degree of its vertices belongs to {0, 1, 2}. The skeleton of the tree t
is the set sk(t) of points of t that are not leaves. Notice that cl (sk(t)) = t, where cl (A) denote
the closure of A.

We denote by tx the sub-tree of t above x i.e.

tx = {y ∈ t, x ∈ [[∂, y]]}
rooted at x. We say that x is an ancestor of y, which we denote by x 4 y, if y ∈ tx. We write
x ≺ y if furthermore x 6= y. Notice that 4 is a partial order on t. We denote by x ∧ y the
Most Recent Common Ancestor (MRCA) of x and y in t i.e. the unique vertex of t such that
[[∂, x]] ∩ [[∂, y]] = [[∂, x ∧ y]].

We denote by ht(x) = dt(∂, x) the height of the vertex x in the tree t and by H(t) the height
of the tree t:

H(t) = max{ht(x), x ∈ t}.
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For ε > 0, we define the erased tree rε(t) (sometimes called in the literature the ε-trimming
of the tree t) by

rε(t) = {x ∈ t\{∂}, H(tx) ≥ ε} ∪ {∂}.
For ε > 0, rε(t) is indeed a tree and rε(t) = {∂} for ε > H(t). Notice that

(1)
⋃

ε>0

rε(t) = sk(t).

Recall t is a compact rooted real tree and let (ti, i ∈ I) be a family of trees, and (xi, i ∈ I) a
family of vertices of t. We denote by t◦i = ti \ {∂ti}. We define the tree t⊛i∈I (ti, xi) obtained
by grafting the trees ti on the tree t at points xi by

t⊛i∈I (ti, xi) = t ⊔
(

⊔

i∈I

t◦i

)

,

dt⊛i∈I(ti,xi)(y, y
′) =



















dt(y, y
′) if y, y′ ∈ t,

dti(y, y
′) if y, y′ ∈ t◦i ,

dt(y, xi) + dti(∂ti , y
′) if y ∈ t and y′ ∈ t◦i ,

dti(y, ∂ti) + dt(xi, xj) + dtj(∂tj , y
′) if y ∈ t◦i and y′ ∈ t◦j with i 6= j,

∂t⊛i∈I(ti,xi) = ∂t,

where A⊔B denotes the disjoint union of the sets A and B. Notice that t⊛i∈I (ti, xi) might not
be compact.

2.2. The Gromov-Hausdorff topology. In order to define random real trees, we endow the set
of (isometry classes of) rooted compact real trees with a metric, the so-called Gromov-Hausdorff
metric, which hence defines a Borel σ-algebra on this set.

First, let us recall the definition of the Hausdorff distance between two compact subsets: let
A,B be two compact subsets of a metric space (X, dX ). For every ε > 0, we set:

Aε = {x ∈ X, dX(x,A) ≤ ε}.
Then, the Hausdorff distance between A and B is defined by:

dX,Haus(A,B) = inf{ε > 0, B ⊂ Aε and A ⊂ Bε}.
Now, let (t, dt, ∂t), (t′, dt′ , ∂t′) be two compact rooted real trees. We define the pointed

Gromov-Hausdorff distance between them, see [16, 15], by:

dGH(t, t′) = inf{dZ,Haus(ϕ(t), ϕ
′(t)) ∨ dZ(ϕ(∂t), ϕ′(∂t′))},

where the infimum is taken over all metric spaces (Z, dZ) and all isometric embeddings ϕ : t −→ Z
and ϕ′ : t′ −→ Z.

Notice that dGH is only a pseudo-metric. We say that two rooted real trees t and t′ are
equivalent (and we note t ∼ t′) if there exists a root-preserving isometry that maps t onto t′,
that is dGH(t, t′) = 0. This clearly defines an equivalence relation. We denote by T the set
of equivalence classes of compact rooted real trees. The Gromov-Hausdorff distance dGH hence
induces a metric on T (that is still denoted by dGH). Moreover, the metric space (T, dGH) is
complete and separable, see [15]. If t, t′ are two-compact rooted real trees such that t ∼ t′, then,
for every ε > 0, we have rε(t) ∼ rε(t

′). Thus, the erasure function rε is well-defined on T. It is
easy to check that the functions rε for ε > 0 are 1-Lipschitz.
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2.3. Coding a compact real tree by a function and the Brownian CRT. Let E be the
set of continuous function g : [0,+∞) −→ [0,+∞) with compact support and such that g(0) = 0.
For g ∈ E , we set σ(g) = sup{x, g(x) > 0}. Let g ∈ E , and assume that σ(g) > 0, that is g is
not identically zero. For every s, t ≥ 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and

(2) dg(s, t) = g(s) + g(t)− 2mg(s, t).

It is easy to check that dg is a pseudo-metric on [0,+∞). We then say that s and t are equivalent
iff dg(s, t) = 0 and we set Tg the associated quotient space. We keep the notation dg for the
induced distance on Tg. Then the metric space (Tg, dg) is a compact real-tree, see [13]. We
denote by pg the canonical projection from [0,+∞) to Tg. We will view (Tg, dg) as a rooted real
tree with root ∂ = pg(0). We will call (Tg, dg) the real tree coded by g, and conversely that g is a
contour function of the tree Tg. We denote by F the application that associates with a function
g ∈ E the equivalence class of the tree Tg.

Conversely every rooted compact real tree (T, d) can be coded by a continuous function g (up
to a root-preserving isometry), see [11].

Let θ ∈ R, β > 0 and B(θ) = (B
(θ)
t , t ≥ 0) be a Brownian motion with drift −2θ and scale

√

2/β: for t ≥ 0,

B
(θ)
t =

√

2/β Bt − 2θt,

where B is a standard Brownian motion. For θ ≥ 0, let n(θ)[de] denote the Itô measure on E of

positive excursions of B(θ) normalized such that for λ ≥ 0:

(3) n(θ)
[

1− e−λσ
]

= ψ−1
θ (λ),

where σ = σ(e) denotes the duration (or the length) of the excursion e and for λ ≥ 0:

(4) ψθ(λ) = βλ2 + 2βθλ.

Let ζ = ζ(e) = maxs∈[0,σ](es) be the maximum of the excursion. We set cθ(h) = n(θ)[ζ ≥ h] for
h > 0, and we recall, see Section 7 in [9] for the case θ > 0, that:

(5) cθ(h) =

{

(βh)−1 if θ = 0

2θ (e2βθh −1)−1 if θ > 0.

We define the Brownian CRT, τ = F (e), as the (equivalence class of the) tree coded by the

positive excursion e under n(θ). And we define the measure N
(θ) on T as the “distribution” of τ ,

that is the push-forward of the measure n(θ) by the application F . Notice that H(τ) = ζ(e).

Remark 2.2. If we translate the former construction into the framework of [12], then, for θ ≥ 0,

B(θ) is the height process which codes the Brownian CRT with branching mechanism ψθ and it
is obtained from the underlying Lévy process X = (Xt, t ≥ 0) with Xt =

√
2β Bt − 2βθt.

Let e with “distribution” n(θ)(de) and let (Λa
s , s ≥ 0, a ≥ 0) be the local time of e at time s

and level a. Then we define the local time measure of τ at level a ≥ 0, denoted by ℓa(dx), as the
push-forward of the measure dΛa

s by the map F , see Theorem 4.2 in [13]. We shall define ℓa for
a ∈ R by setting ℓa = 0 for a ∈ R \ [0,H(τ)].
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2.4. Trees with one semi-infinite branch. The goal of this section is to describe the ge-
nealogical tree of a stationary CB with immigration (restricted to the population that appeared
before time 0). For this purpose, we add an immortal individual living from −∞ to 0 that will
be the spine of the genealogical tree (i.e. the semi-infinite branch) and will be represented by
the half straight line (−∞, 0], see Figure 2. Since we are interested in the genealogical tree, we
don’t record the population generated by the immortal individual after time 0. The distinguished
vertex in the tree will be the point 0 and hence would be the root of the tree in the terminology
of Section 2.1. We will however speak of the distinguished leaf in what follows in order to fit
with the natural intuition. In the same spirit, we will give another definition for the height of a
vertex in such a tree in order to allow negative heights.

0

Figure 2. An instance of a tree with a semi-infinite branch

2.4.1. Forests. A forest f is a family ((hi, ti), i ∈ I) of points of R × T. Using an immediate
extension of the grafting procedure, for an interval I ⊂ R, we define the real tree

(6) fI = I⊛i∈I,hi∈I (ti, hi).

Let us denote, for i ∈ I, by di the distance of the tree ti and by t◦i = ti \ {∂ti} the tree ti
without its root. The distance on fI is then defined, for x, y ∈ fI, by:

df (x, y) =



















di(x, y) if x, y ∈ t◦i ,

hti(x) + |hi − hj |+ htj(y) if x ∈ t◦i , y ∈ t◦j with i 6= j,

|x− hj |+ htj(y) if x 6∈ ⊔i∈I t
◦
i , y ∈ t◦j

|x− y| if x, y 6∈ ⊔i∈I t
◦
i .

Let us recall the following lemma (see [2]).

Lemma 2.3. Let I ⊂ R be a closed interval. If for every a, b ∈ I, such that a < b, and every
ε > 0, the set {i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite, then the tree fI is a complete locally
compact length space.

2.4.2. Trees with one semi-infinite branch.

Definition 2.4. We set T1 the set of forests f = ((hi, ti), i ∈ I) such that

• for every i ∈ I, hi ≤ 0,
• for every a < b, and every ε > 0, the set {i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite.

The following corollary, which is an elementary consequence of Lemma 2.3, associates with a
forest f ∈ T1 a complete and locally compact real tree.

Corollary 2.5. Let f = ((hi, ti), i ∈ I) ∈ T1. Then, the tree f(−∞,0] defined by (6) is a complete
and locally compact real tree.
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Conversely, let (t, dt, ρ0) be a complete and locally compact rooted real tree. We denote by
S(t) the set of vertices x ∈ t such that at least one of the connected components of t \ {x} that
do not contain ρ0 is unbounded. If S(t) is not empty, then it is a tree which contains ρ0. We say
that t has a unique semi-infinite branch if S(t) is non-empty and has no branching point. We
set (t◦i , i ∈ I) the connected components of t \ S(t). For every i ∈ I, we set xi the unique point
of S(t) such that inf{dt(xi, y), y ∈ t◦i } = 0, and:

ti = t◦i ∪ {xi}, hi = −d(ρ0, xi).
We shall say that xi is the root of ti. Notice first that (ti, dt, xi) is a bounded rooted tree. It
is also compact since, according to the Hopf-Rinow theorem (see Theorem 2.5.26 in [8]), it is a
bounded closed subset of a complete locally compact length space. Thus it belongs to T.

The family f = ((hi, ti), i ∈ I) is therefore a forest with hi < 0. To check that it belongs
to T1, we need to prove that the second condition in Definition 2.4 is satisfied which is a direct
consequence of the fact that the tree f[a,b] is locally compact.

We can therefore identify the set T1 with the set of (equivalence classes) of complete locally
compact rooted real trees with a unique semi-infinite branch. We can follow [3] to endow T1

with a Gromov-Hausdorff-type distance for which T1 is a Polish space.

We extend the partial order defined for trees in T to forests in T1, with the idea that the
distinguished leaf ρ0 = 0 is at the tip of the semi-infinite branch. Let f = (hi, ti)i∈I ∈ T1 and
write t = f(−∞,0] viewed as a real tree rooted at ρ0 = 0 (with a unique semi-infinite branch
S(t) = (−∞, 0]). For x, y ∈ t, we set x 4 y if either x, y ∈ S(t) and df (x, ρ0) ≥ df (y, ρ0), or
x, y ∈ ti for some i ∈ I and x 4 y (with the partial order for the rooted compact real tree ti),
or x ∈ S(t) and y ∈ ti for some i ∈ I and df (x, ρ0) ≥ |hi|. We write x ≺ y if furthermore x 6= y.
We define x ∧ y the MRCA of x, y ∈ t as x if x 4 y, as x∧ y if x, y ∈ ti for some i ∈ I (with the
MRCA for the rooted compact real tree ti), as hi ∧ hj if x ∈ ti and y ∈ tj for some i 6= j. We
define the height of a vertex x ∈ t as

hf (x) = df (x, ρ0 ∧ x)− df (ρ0, ρ0 ∧ x).
Notice that the definition of the height function hf for a forest f = (hi, ti)i∈I ∈ T1 is different
than the height function of the tree t = f(−∞,0] viewed as a tree in T, as in the former case the
root ρ0 is viewed as a distinguished vertex above the semi-infinite branch (all elements of this
semi-infinite branch have negative heights for hf whereas all the heights are nonnegative for ht).

2.4.3. Coding a forest by a contour function. We want to extend the construction of a tree of the
type f(−∞,0] via a contour function as in Section 2.3. Let E1 be the set of continuous functions
g defined on R such that g(0) = 0 and lim infx→−∞ g(x) = lim infx→+∞ g(x) = −∞. For such a
function, we still consider the pseudo-metric dg defined by (2) (but for s, t ∈ R) and define the
tree Tg as the quotient space on R induced by this pseudo-metric. We set pg as the canonical
projection from R onto Tg.

Lemma 2.6. Let g ∈ E1. The triplet (Tg, dg, pg(0)) is a complete locally compact rooted real tree
with a unique semi-infinite branch.

Proof. We define the infimum function g(x) on R as the infimum of g between 0 and x: g(x) =
inf [x∧0,x∨0] g. The function g − g is non-negative and continuous. Let ((ai, bi), i ∈ I) be the
excursion intervals of g − g above 0. Because of the hypothesis on g, the intervals (ai, bi) are
bounded. For i ∈ I, set hi = g(ai) and gi(x) = g((ai + x) ∧ bi)− hi so that gi ∈ E . Consider the
forest f = ((hi, Tgi), i ∈ I).
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It is elementary to check that (f(−∞,g(0)], df , g(0)) and (Tg, dg, pg(0)) are root-preserving iso-
metric. To conclude, it is enough to check that f ∈ T1. First remark that, by definition, hi ≤ 0
for every i ∈ I. Let r > 0 and set rg = inf{x, g(x) ≥ g(0)− r} and rd = sup{x, g(x) ≥ g(0)− r}.
Because of the hypothesis on g, we have that rg and rd are finite. By continuity of g − g on
[rg, rd], we deduce that for any ε > 0, the set {i ∈ I; (ai, bi) ⊂ [rg, rd] and sup(ai,bi)(g − g) > ε}
is finite. Since this holds for any r > 0 and that H(Tgi) = sup(ai,bi)(g−g) for all i ∈ I, we deduce
that f ∈ T1. This concludes the proof. �

2.4.4. Genealogical tree of an extant population. For a tree t ∈ T or t ∈ T1 (recall that we identify
a forest f ∈ T1 with the tree t = f(−∞,0] with a different definition for the height function) and
h ≥ 0, we define Zh(t) = {x ∈ t, ht(x) = h} the set of vertices of t at level h also called the
extant population at time h, and the genealogical tree of the vertices of t at level h by:

(7) Gh(t) = {x ∈ t; ∃y ∈ Zh(t) such that x 4 y}.
For f ∈ T1, we write Gh(f) for Gh(f(−∞,0]);

3. Ancestral process

Usually, the ancestral process records the genealogy of n extant individuals at time 0 picked
at random among the whole population. Using the ideas of [5], we are able to describe in the
case of a Brownian forest the genealogy of all extant individuals at time 0 by a simple Poisson
point process on R

2.

3.1. Construction of a tree from a point measure.

Definition 3.1. A point process A(dx, dζ) =
∑

i∈I δ(xi,ζi)(dx, dζ) on R
∗ × (0,+∞) is said to be

an ancestral process if

(i) ∀i, j ∈ I, i 6= j =⇒ xi 6= xj.
(ii) ∀a, b ∈ R, ∀ε > 0, A([a, b]× [ε,+∞)) < +∞.
(iii) sup{ζi, xi > 0} = +∞ if supi∈I xi = +∞; and sup{ζi, xi < 0} = +∞ if inf i∈I xi = −∞.

Let A =
∑

i∈I δ(xi,ζi) be a point process on R
∗× [0,+∞) satisfying (i) and (ii) from Definition

3.1. We shall associate with this ancestral process a genealogical tree. Informally the genealogical
tree is constructed as follows. We view this process as a sequence of vertical segments in R

2,
the tips of the segments being the xi’s and their lengths being the ζi’s. We then attach the
bottom of each segment such that xi > 0 (resp. xi < 0) to the first left (resp. first right) longer
segment or to the half line {0}×(−∞, 0] if such a segment does not exist. This gives a (unrooted,
non-compact) real tree that may not be complete. See also Figure 1 for an example.

Let us turn to a more formal definition. Let us denote by Id = {i ∈ I, xi > 0} and
Ig = {i ∈ I, xi < 0} = I \Id. We also set I0 = I ⊔{0}, x0 = 0 and ζ0 = +∞. We set, for every
i ∈ I0, Si = {xi} × (−ζi, 0] the vertical segment in R

2 that links the points (xi, 0) and (xi,−ζi).
Notice that we omit the lowest point of the vertical segments. Finally we define

(8) T =
⊔

i∈I0

Si.

We now define a distance on T. We first define the distance between leaves of T, i.e. points
(xi, 0) with i ∈ I0, then we extend it to every point of T. For i, j ∈ I0 such that xi < xj , we set

(9) d((xi, 0), (xj , 0)) = 2max{ζk, xk ∈ J(xi, xj)},
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where, for x < y, J(x, y) = (x, y] (resp. [x, y), resp. [x, y]\{0}) if x ≥ 0 (resp. y ≤ 0, resp. x < 0
and y > 0), with the convention max ∅ = 0. For u = (xi, a) ∈ Si and v = (xj , b) ∈ Sj , we set,

with r = 1
2d((xi, 0), (xj , 0)):

(10) d(u, v) = |a− b|1{xi=xj} + (|a− r|+ |b− r|)1{xi 6=xj}.

See Figure 3 for an example. It is easy to verify that d is a distance on T. Notice that T is not
compact in particular because of the infinite half-line attached to (0, 0). In order to stick to the
framework of Section 2.4, the origin (0, 0) will be the distinguished point in T located at height
h = 0.

xi xj

a

b
u v

r − a
r − b

Figure 3. An example of the distance d(u, v) defined in (9)

Finally, we define T(A), with the metric d, as the completion of the metric space (T, d).

Remark 3.2. For every i ∈ Id, we set iℓ the index in I0 such that

xiℓ = max{xj , 0 ≤ xj < xi and ζj > ζi}.
Remark that iℓ is well defined since there are only a finite number of indices j ∈ I0 such that
xj ∈ [0, xi) and ζj > ζi. Similarly, for i ∈ Ig, we set ir the index in I0 such that

xir = min{xj , xi < xj ≤ 0 and ζj > ζi}.
The distance d identifies the point (xi,−ζi) (which does not belong to T by definition) with the
point (xiℓ ,−ζi) if xi > 0 and with the point (xir ,−ζi) if xi < 0 as illustrated on the right-hand
side of Figure 4.

Proposition 3.3. Let A be an ancestral process. The tree (T(A), d, (0, 0)) is a complete and
locally compact rooted real tree with a unique semi-infinite branch and the associated forest belongs
to T1.

We shall call T(A) the tree associated with the ancestral process A.
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Proof. As the completion of a real tree is still a real tree, it is enough to prove that (T, d) is a
real tree, with T defined by (8) and d defined by (9) and (10).

First case: I finite.
We can suppose that I = {1, . . . , n} with x1 < x2 < · · · < xn (with xi 6= 0 for i ∈ I). We

consider the continuous, piece-wise affine function g on R such that

• For 1 ≤ i ≤ n, g(xi) = −ζi,
• For 1 ≤ i ≤ n− 1, g

(

xi+xi+1

2

)

= 0,

• g(x1 − 1) = g(xn + 1) = 0,
• g′(x) = −1 for x < x1 − 1 and g′(x) = 1 for x > xn + 1.

Then, it is easy to see that (T, d) is the tree Tg coded by g (see Section 2.4) and hence is a real
tree. Notice that the number of leaves of T is Card (I0) = n+ 1.

Second case: I infinite, supi∈I xi < +∞ and inf i∈I xi > −∞.
In that case, by Condition (ii) in Definition 3.1, we can order the set I via a sequence (i1, i2, . . .)

such that the sequence (ζik , k ≥ 1) is non-increasing. For every n ≥ 1, we denote by (Tn, dn)
the tree associated with the ancestral process

∑n
k=1 δ(xik

,ζik )
(which is indeed a tree according to

the first case). Remark first that Tn ⊂ Tn+1. Moreover, as ζin+1 ≤ ζik for every 1 ≤ k ≤ n, we
deduce from (9) that dn is equal to the restriction of dn+1 to Tn. Therefore, we have T =

⋃

n≥1 Tn

and d is the distance induced by the distances dn. We deduce that (T, d) is a real tree as limit
of increasing real trees. Indeed, clearly T is connected (as the union of an increasing sequence of
connected sets) and d satisfies the so-called ”4-points condition” (see Lemma 3.12 in [14]). To
conclude, use that those two conditions characterize real trees (see Theorem 3.40 in [14]). We
deduce that (T, d) is a real tree.

Third case: I infinite and supi∈I xi = +∞ or inf i∈I xi = −∞.
We consider in that case, for every integer m ≥ 1 the tree (Tm, dm) induced by the ancestral

process A restricted to [−m,m] × [0,+∞) (which is indeed a tree by the second case). We still
have T =

⋃

m≥1 Tm and the compatibility condition for the distances. We then conclude as for

the second case that (T, d) is a real tree.

By construction of T, it is easy to check that T(A) has a unique semi-infinite branch.

Let us now prove that T(A) is locally compact. Let (yn, n ∈ N) be a bounded sequence of T.
On one hand, let us assume that there exists i ∈ I0 and a sub-sequence (ynk

, k ∈ N) such
that ynk

belongs to Si = {xi} × (−ζi, 0]. Since, for i ∈ I, there exists a unique j ∈ I0 such that
Si ∪ {(xj ,−ζi)} is compact in (T, d), see Remark 3.2, and for i = 0, S0 = {0} × (−∞, 0], we
deduce that the bounded sequence (ynk

, k ∈ N) has an accumulation point in Si ∪ {(xj ,−ζi)} if
i ∈ I or in {0} × (−∞, 0] if i = 0.

On the other hand, let us assume that for all i ∈ I0 the sets {n, yn ∈ Si} are finite. For n ∈ N,
let in uniquely defined by yn ∈ Sin . Since (yn, n ∈ N) is bounded, we deduce from Conditions
(ii-iii) in Definition 3.1, that the sequence (xin , n ∈ N) is bounded in R. In particular, there is a
sub-sequence such that (xink

, k ∈ N) converges to a limit say a. Without loss of generality, we can

assume that the sub-sequence is non-decreasing. We deduce from Condition (ii) in Definition
(3.1) that limε↓0max{ζi, a − ε < xi < a} = 0. This implies thanks to Definition (9) that
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({xink
} × {0}, k ∈ N) is Cauchy in T and using (ii) again that limk→+∞ ζink

= 0. Then use that

d(ynk
, ynk′

) ≤ ζink
+ ζin

k′
+ d((xnk

, 0), (xnk′
, 0))

to conclude that the (ynk
, k ∈ N) is Cauchy in T.

We deduce that all bounded sequence in T has a Cauchy sub-sequence. This proves that T(A),
the completion of T is locally compact. �

Remark 3.4. In the proof of Proposition 3.3, Conditions (i) and (ii) in Definition 3.1 insure that
T(A) is a tree and Conditions (ii) and (iii) that T(A) is locally compact.

3.2. The ancestral process of the Brownian forest. Let θ ≥ 0. Let N (dh, dε, de) =
∑

i∈I δ(hi,εi,ei)(dh, dε, de) be, under P
(θ), a Poisson point measure on R × {−1, 1} × E with in-

tensity βdh (δ−1(dε) + δ1(dε))n
(θ)(de), and let F = ((hi, τi), i ∈ I) be the associated Brownian

forest where τi = Tei is the tree associated with the excursion ei, see Section 2.3. As explained
in Section 3.2.4, this Brownian forest models the evolution of a stationary population directed
by the branching mechanism ψθ defined in (4).

We want to describe the genealogical tree of the extant population at some fixed time, say 0.
The looked after genealogical tree is then G0(F) defined by (7). To describe the distribution of
this tree, we use an ancestral process as described in the previous subsection. We first construct
a contour process (Bt, t ∈ R) (obtained by the concatenation of two Brownian motions with
drift) which codes for the tree F(−∞,0] (see Section 2.4 for the notations). The supplementary
variables εi are needed at this point to decide if the tree ti is located on the left or on the right
of the infinite spine. The atoms of the ancestral process are then the pairs formed by the points
of growth of the local time at 0 of B and the depth of the associated excursion of B below 0.

3.2.1. Construction of the contour process. Set I = {i ∈ I; hi < 0}.
For every i ∈ I, we set:

ai =
∑

j∈I

1{εj=εi}1{hj<hi}σ(ej) and bi = ai + σ(ei),

where we recall that σ(ei) is the length of excursion ei. For every t ≥ 0, we set idt (resp. igt )
the only index i ∈ I such that εi = 1 (resp. εi = −1) and ai ≤ t < bi. Notice that idt and
igt are a.s. well defined but on a Lebesgue-null set of values of t. We set Bd = (Bd

t , t ≥ 0) and
Bg = (Bg

t , t ≥ 0) where for t ≥ 0:

Bd
t = hidt

+ eidt
(t− aidt

) and Bg
t = higt + eigt (σ(ei

g
t
)− (t− aigt )).

By standard excursion theory (decomposition of B(θ) above its minimum), we have the following
result.

Proposition 3.5. Let θ ≥ 0. The processes Bd and Bg are two independent Brownian motions
distributed as B(θ).

We define the process B = (Bt, t ∈ R) by Bt = Bd
t 1{t>0} + Bg

−t1{t<0}. By construction, the
process B indeed codes for the tree F(−∞,0].

3.2.2. The ancestral process. Let (Lℓ
t , t ≥ 0) be the local time at 0 of the process Bℓ, where

ℓ ∈ {g,d}. We denote by ((αi, βi), i ∈ Iℓ) the excursion intervals of Bℓ below 0, omitting the
last infinite excursion if any, and, for every i ∈ Iℓ, we set ζi = −min{Bℓ

s, s ∈ (αi, βi)}.
We consider the point measure on R× R+ defined by:

AN (du, dζ) =
∑

i∈Id

δ(Ld
αi

,ζi)(du, dζ) +
∑

i∈Ig

δ(−Lg
αi

,ζi)(du, dζ).
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Bd
tBg

−t

Figure 4. The Brownian motions with drift, the ancestral process and the asso-
ciated genealogical tree

See Figure 4 for a representation of the contour process B, the ancestral process AN and
the genealogical tree G0(F). In this figure, the horizontal axis represents the time for Brownian
motion on the left-hand figure whereas it is in the scale of local time for the ancestral process
on the two right-hand figures. This will always be the case in the rest of the paper dealing with
ancestral processes.

Let [−Eg, Ed] be the closed support of the measure AN (du,R+):

Ed = inf{u ≥ 0, A([u,+∞)× R+) = 0} and Eg = inf{u ≥ 0, A((−∞,−u]× R+) = 0},
with the convention that inf ∅ = +∞. Notice that, for ℓ ∈ {g,d}, we also have Eℓ = Lℓ

∞. We
now give the distribution of the ancestral process AN . Recall cθ defined by (5).

Proposition 3.6. Let θ ≥ 0. Under P
(θ), the random variables Eg, Ed are independent and

exponentially distributed with parameter 2θ (and mean 1/2θ) with the convention that Ed = Eg =

+∞ if θ = 0. Under P
(θ) and conditionally given (Eg, Ed), the ancestral process AN (du, dζ) is a

Poisson point measure with intensity:

1(−Eg,Ed)(u) du |c′θ(ζ)|dζ.

Notice that the random measure AN satisfies Conditions (i)-(iii) from Definition 3.1 and is
thus indeed an ancestral process.

This result is very similar to Corollary 2 in [6]. The main additional ingredient here is the
order (given by the u variable) which will be very useful in the simulation.

Proof. Since Bd and Bg are independent with the same distribution, we deduce that Eg and Ed

are independent with the same distribution. Let θ > 0. Since Bd is a Brownian motion with
drift −2θ, we deduce from [7], page 90, that Ed is exponential with mean 1/2θ. The case θ = 0
is immediate.

The excursions below zero of Bd conditionally given Ed are excursions of a Brownian motion
B(−θ) with drift 2θ (after symmetry with respect to 0) conditioned on being finite, that is
excursions of a Brownian motion B(θ) with drift −2θ. Moreover, by (5), cθ is exactly the tail

distribution of the maximum of an excursion under n(θ). Standard theory of Brownian excursions
gives then the result. �

3.2.3. Identification of the trees. Let TN = T(AN ) denote the locally compact tree associated
with the ancestral process AN , see Proposition 3.3. According to the following proposition, we
shall say that the ancestral process AN codes for the genealogical tree of the extant population
at time 0 for the forest F .
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Proposition 3.7. Let θ ≥ 0. The trees G0(F) under P(θ) and TN belong to the same equivalence
class in T1.

Proof. Let us first remark that the genealogical tree G0(F) can be directly constructed using the
process B as described on Figure 5.

More precisely, recall that B is the contour function of the tree F(−∞,0]. Let us denote by pB
the canonical projection from R to F(−∞,0] as defined in Section 2.4. Recall ((αi, βi), i ∈ Iℓ),

with ℓ ∈ {g,d}, are the excursion intervals of Bℓ below 0. Then G0(F) is the smallest complete
sub-tree of F(−∞,0] that contains the points (pB(αi), i ∈ Ig

⋃Id) and the semi-infinite branch of
F(−∞,0].

Bd
tBg

−t

Figure 5. The genealogical tree inside the Brownian motions

Let i, j ∈ I with 0 < αi < αj for instance. By definition of the tree coded by a function, the
distance between pB(αi) and pB(αj) in G0(F) is given by:

d(pB(αi), pB(αj)) = −2 min
u∈[αi,αj ]

Bu.

But, by definition of AN , we have:

− min
u∈[αi,αj ]

Bu = max
k∈I αi≤αk<αj

(

− min
u∈[αk,βk]

Bu

)

= max
k∈I αi≤αk<αj

ζk.

The other cases αj < αi < 0 and αi < 0 < αj can be handled similarly. We deduce that
the distances on a dense subset of leaves of G0(F) and TN coincide, which implies the result by
completeness of the trees.

�

3.2.4. Local times. The Brownian forest F can be viewed as the genealogical tree of a stationary
continuous-state branching process (associated with the branching mechanism ψθ defined in (4)),

see [9]. To be more precise, for every i ∈ I let (ℓ
(i)
a , a ≥ 0) be the local time measures of the tree

τi. For every t ∈ R, we consider the measure Zt on Zt(F) defined by:

(11) Zt(dx) =
∑

i∈I

1τi(x) ℓ
(i)
t−hi

(dx),
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and write Zt = Zt(1) for its total mass which also represents the population size at time t. For
θ = 0, we have Zt = +∞ a.s. for every t ∈ R. For θ > 0, the process (Zt, t ≥ 0) is a stationary
Feller diffusion, solution of the SDE

dZt =
√

2βZt dBt + 2β(1− θZt)dt.

4. Simulation of the genealogical tree (θ > 0)

We use the representation of trees using ancestral process, see Section 3, which is an atomic
measure on R

∗ × (0,+∞) satisfying conditions of Definition 3.1.

Under P
(θ), let

∑

i∈I δ(hi,εi,ei) be a Poisson point measure on R × {−1, 1} × E with intensity

βdh (δ−1(dε) + δ1(dε))n
(θ)(de), and let F = ((hi, τi), i ∈ I) be the associated Brownian forest.

We denote by ℓ
(i)
a the local time measure of the tree τi at level a (recall that this local time is

zero for a 6∈ [0,H(τi)]) and we denote by ∂i the root of τi. Recall that the extant population at
time h ∈ R is given by Zh(F) defined in Section 2.4.4 and the measure Zh on Zh(F) is defined
by (11).

Let (Xk, k ∈ N
∗) be, conditionally given F , independent random variables distributed accord-

ing to the probability measure Z0/Z0. Remark that the normalization by Z0, which is motivated
by the sampling approach, is not usual in the branching setting, see for instance Theorem 4.7 in
[9], where the sampling is according to Z0 instead leading to the bias factor Zn

0 .
For every k ∈ N

∗, we set ik the index in I such that Xk ∈ τik . For every n ∈ N
∗, we set

In = {ik, 1 ≤ k ≤ n} and for every i ∈ In, we denote by τ
(n)
i the sub-tree of τi generated by the

Xk such that ik = i and 1 ≤ k ≤ n, i.e.

τ
(n)
i =

⋃

1≤k≤n, ik=i

[[∂i,Xk]].

We define the genealogical tree Tn of n individuals sampled at random among the population at
time 0 by:

Tn = (−∞, 0]⊛i∈In (τ
(n)
i , hi).

Notice that Tn ⊂ Tn+1. Since the support of Zh is Zh(F) a.s., we get that a.s. cl
(
⋃

n∈N∗ Tn
)

=
G0(F), where G0(F), see Definition (7), is the genealogical tree of the forest F at time 0.

Recall cθ defined by (5). For δ > 0, we will consider in the next sections a positive random
variable ζ∗δ whose distribution is given by, for h > 0:

(12) P(ζ∗δ < h) = e−δcθ(h) .

This random variable is easy to simulate as, if U is uniformly distributed on [0, 1], then ζ∗δ has
the same distribution as:

1

2θβ
log

(

1− 2θδ

log(U)

)

.

This random variable appears naturally in the simulation of the ancestral process of F as,
if
∑

i∈I δ(zi,ζi) is a Poisson point measure on R × R+ with intensity 1[0,δ](z) dz |c′θ(ζ)|dζ (see
Proposition 3.6 for the interpretation), then ζ∗δ is distributed as maxi∈I ζi.

We now present many ways to simulate Tn. This will be done by simulating ancestral processes,
see Section 3, which code for trees distributed as Tn.

Recall that for an interval I, we write |I| for its length.
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4.1. Static simulation. In what follows, S stands for static. Assume n ∈ N
∗ is fixed. We

present a way to simulate Tn under P(θ) with θ > 0. See Figures 6 and 7 for an illustration for
n = 5.

(i) The size of the population on the left (resp. right) of the origin is Eg (resp. Ed), where
Eg, Ed are independent exponential random variables with mean 1/2θ. Set Z0 = Eg+Ed

for the total size of the population at time 0. Let (Uk, k ∈ N
∗) be independent random

variables uniformly distributed on [0, 1] and independent of (Eg, Ed). Set X0 = 0, and,
for k ∈ N

∗, Xk = Z0Uk − Eg as well as Xk = {−Eg, Ed,X0, . . . ,Xk}.
(ii) For 1 ≤ k ≤ n, set Xg

k,n = max{x ∈ Xn, x < Xk} and Xd
k,n = min{x ∈ Xn, x > Xk}. We

also set ISk = [Xg
k,n,Xk] if Xk > 0 and ISk = [Xk,X

d
k,n] if Xk < 0.

(iii) Conditionally on (Eg, Ed,X1, . . . ,Xn), let (ζSk , 1 ≤ k ≤ n) be independent random vari-

ables such that for 1 ≤ k ≤ n, ζSk is distributed as ζ∗δ , see (12), with δ = |ISk |. Consider

the tree TS
n corresponding to the ancestral process AS

n =
∑

k=1 δ(Xk ,ζ
S
k
).

−Eg EdX0X1 X2X3X4 X5

Figure 6. One realization of Eg, Ed,X1, . . . ,X5.

−Eg EdX1 X4 X0 X3 X5 X2

IS4 IS2

ζS4

ζS2

Figure 7. One realization of the tree TS
5 .

This gives an exact simulation of the tree Tn according to the following result.

Lemma 4.1. Let θ > 0 and n ∈ N
∗. The tree TS

n is distributed as Tn under P
(θ).

Proof. Let B = (Bt, t ∈ R) be the Brownian motion with drift defined in Section 3.2.1 and let
(Lt, t ∈ R) be its local time at 0 i.e.

Lt = Ld
t 1t>0 + Lg

−t1t<0.

We set L∞ = Ld
∞ + Lg

∞ and we consider i.i.d. variables (S1, . . . , Sn) distributed according to
dLs/L∞. We denote by (S(1), . . . , S(n)) the order statistics of (S1, . . . Sn) and, for every i ≤ n,
we set

Mi =

{

−minu∈[S(i),S(i+1)∧0]Bu if S(i) < 0,

−minu∈[S(i−1)∨0,S(i)]Bu if S(i) > 0.
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We set An =
∑

1≤i≤n δ(LS(i)
,ζi) which is (see Definition 3.1) an ancestral process and let T(An)

be the associated tree. As B is the contour process of the tree F(−∞,0], we get that Tn and T(An)
are equally distributed.

Moreover, by Proposition 3.6, Proposition 3.7 and standard results on Poisson point processes,
we get that T(An) and TS

n are also equally distributed.
�

4.2. Dynamic simulation (I). We can modify the static simulation of the previous section to
provide a natural dynamic construction of the genealogical tree. In what follows, D stands for
static. Let θ > 0. We build recursively a family of ancestral processes (An, n ∈ N), with AD

0 = 0
and AD

n =
∑n

k=1 δ(Vk ,ζ
D
k
) for n ∈ N

∗.

(i) Let Eg, Ed, (Xn, n ∈ N) and (Xn, n ∈ N
∗) be defined as in (i) of Section 4.1. For n ∈ N

∗,

set Xg
n = max{x ∈ Xn, x < Xn} and Xd

n = min{x ∈ Xn, x > Xn}.
For n ∈ N

∗ and ℓ ∈ {g,d}, define the interval Iℓn = [Xn ∧Xℓ
n,Xn ∨Xℓ

n] and its length
|Iℓn| = |Xn −Xℓ

n|.
We shall consider and check by the induction the following hypothesis: for n ≥ 2 the

random variables V1, . . . , Vn−1 are such that

(13) X(0,n−1) < V(1,n−1) < X(1,n−1) < · · · < V(n−1,n−1) < X(n−1,n−1),

where (V(1,n−1), . . . , V(n,n)) and (X(0,n−1), . . . ,X(n−1,n−1)) respectively are the order sta-
tistics of (V1, . . . , Vn−1) and of (X0, . . . ,Xn−1) respectively. Notice that (13) holds triv-
ially for n = 1.

We set WD
n = (Eg, Ed,X1, . . . ,Xn, V1, . . . , Vn−1, ζ

D
1 , . . . , ζ

D
n−1).

(ii) Assume n ≥ 1. We work conditionally on WD
n . On the event {Xd

n = Ed} set In = Ign and
on the event {Xg

n = −Eg} set In = Idn. On the event {Xd
n = Ed}

⋃{Xg
n = −Eg}, let Vn

be uniform on In and ζDn be distributed as ζ∗δ , see (12), with δ = |In|.
(iii) Assume n ≥ 2 and that (13) holds. We work conditionally on WD

n . On the event
{−Eg < Xg

n, Xd
n < Ed}, there exists a unique integer κn ∈ {1, . . . , n − 1} such that

Vκn ∈ [Xg
n, Xd

n ]. If Xn ∈ [Xg
n, Vκn), set In = Ign; and if Xn ∈ [Vκn ,X

d
n ], set In = Idn .

Then, let Vn be uniform on In and ζDn be distributed as ζ∗δ , with δ = |In|, conditionally
on being less than ζDκn

.
(iv) Thanks to (ii) and (iii), notice that (13) holds with n − 1 replaced by n, so that the

induction is valid. Set AD
n = AD

n−1 + δ(Vn,ζDn ) and consider the tree TD
n corresponding to

the ancestral process AD
n .

See Figures 8 and 9 for an instance of TD
4 and TD

5 .
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−Eg Ed

X1 X4 X0 X3 X2

V4 V1 V3 V2

Figure 8. An instance of the tree TD
4 .

−Eg Ed

X1 X4 X0 X3 X5 X2

V4 V1 V3 V5 V2

Figure 9. An instance of the tree TD
5 . The length of the new branch attached to

V5 is conditioned to be less than the previous branch that was in the considered
interval attached to V2

Then we have the following result.

Lemma 4.2. Let θ > 0. The sequences of trees (TD
n , n ∈ N

∗) and (Tn, n ∈ N
∗) under P

(θ) have
the same distribution.

Proof. We consider
∑

i∈I δ(ui,ζi) the ancestral process associated to the Poisson point measure
∑

i∈I δ(hi,εi,ei) defined in Section 3.2.2. Let (X ′′
k , k ∈ N

∗) be independent uniform random vari-
ables on [−Eg, Ed]. Set X ′′

0 = 0. For n ≥ 1, let us denote by (X ′′
(k,n), 0 ≤ k ≤ n) the order

statistic of (X ′′
0 , . . . ,X

′′
n).

For every n ≥ 1 and every 1 ≤ k ≤ n, we set ik,n the index in I such that

ζik,n = max
X′′

(k−1,n)
≤ui<X′′

(k,n)

ζi.

Remark that this index exists since, for every ε > 0, the set {i ∈ I, ζi > ε} is a.s. finite.
We set V ′′

(k,n) = uik,n and notice that, by standard Poisson point measure properties, V ′′
(k,n) is,

conditionally given (X ′′
0 , . . . ,X

′′
n), uniformly distributed on [X ′′

(k−1,n),X
′′
(k,n)]. We define

A′′
n =

n
∑

k=1

δ(V ′′

(k,n)
,ζik,n)

.



18 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

By construction, it is easy to check that the order statistics

X ′′
(0,n) < V ′′

(1,n) < X ′′
(1,n) < · · · < V ′′

(n,n) < X ′′
(n,n)

is distributed as
X(0,n) < V(1,n) < X(1,n) < · · · < V(n,n) < X(n,n).

For 1 ≤ k ≤ n, let jk,n ∈ {1, . . . , n} be the index such that V(k,n) = Vjk,n . By construction,

we then deduce that (((V(k,n), ζ
D
jk,n

), 1 ≤ k ≤ n), n ∈ N
∗) is distributed as (((V ′′

(k,n), ζik,n), 1 ≤
k ≤ n), n ∈ N

∗). This implies that the sequence of ancestral processes (A′′
n, n ∈ N

∗) and
(An, n ∈ N

∗) have the same distribution. Then use Proposition 3.7 to get that the sequence of
trees (T ′′

n , n ∈ N
∗), with T ′′

n associated to A′′
n, is distributed as (Tn, n ∈ N

∗). �

4.3. Dynamic simulation (II). In a sense, we had to introduce another random information
corresponding to the position Vn of the largest spine of the sub-tree containing Xn. The con-
struction in this sub-section provides a way to remove this additional information (which is now
hidden) but at the expense to possibly exchange the new inserted branch with one of its neighbor.
In what follows, H stands for hidden. An instance is provided for TH

4 and TH
5 in Figures 10, 11

and 12.
Let θ > 0. We build recursively a family of ancestral processes (AH

n , n ∈ N), with AH
0 = 0 and

AH
n =

∑n
k=1 δ(Xk ,ζ

H
k,n

) for n ∈ N
∗.

(i) Let Eg, Ed, (Xn, n ∈ N) and (Xn, n ∈ N
∗) be defined as in (i) of Section 4.1. For n ∈ N

∗,

set Xg
n = max{x ∈ Xn, x < Xn} and Xd

n = min{x ∈ Xn, x > Xn}. For n ∈ N
∗ and

ℓ ∈ {g,d}, define the interval Iℓn = [Xn ∧Xℓ
n,Xn ∨Xℓ

n] and its length |Iℓn| = |Xn −Xℓ
n|.

We set WH
n = (Eg, Ed,X1, . . . ,Xn, ζ

H
1,n−1, . . . , ζ

H
n−1,n−1).

(ii) Assume n ≥ 1. On the event {Xd
n = Ed} set In = Ign and on the event {Xg

n = −Eg} set

In = Idn . Conditionally on WH
n , let ζ

H
n,n be distributed as ζ∗δ , see (12), with δ = |In|; and

for 1 ≤ k ≤ n− 1, set ζHk,n = ζHk,n−1.

(iii) Assume n ≥ 2. We work conditionally on WH
n . We define:

pd =
|Idn|

|Idn |+ |Ign|
and pg = 1− pd =

|Ign|
|Idn |+ |Ign|

·

(a) On the event {0 ≤ Xg
n, Xd

n < Ed}, there exists a unique integer κdn ∈ {1, . . . , n− 1}
such that Xκd

n
= Xd

n. For 1 ≤ k ≤ n − 1 and k 6= κdn, set ζ
H
n,k = ζHn−1,k. Write

ζHn = ζH
n−1,κd

n
.

With probability pd, set ζ
H
n,κd

n
= ζHn and let ζHn,n be distributed as ζ∗δ , with δ = |Ign|,

conditionally on being less than ζHn .
With probability pg, set ζ

H
n,n = ζHn and let ζH

n,κd
n
be distributed as ζ∗δ , with δ = |Idn |,

conditionally on being less than ζHn .
(b) On the event {−Eg < Xg

n, Xd
n ≤ 0}, there exists a unique integer κgn ∈ {1, . . . , n−1}

such that Xκg
n
= Xg

n. For 1 ≤ k ≤ n − 1 and k 6= κgn, set ζHn,k = ζHn−1,k. Write

ζHn = ζH
n−1,κg

n
.

With probability pg, set ζ
H
n,κg

n
= ζHn and let ζHn,n be distributed as ζ∗δ , with δ = |Idn |,

conditionally on being less than ζHn .
With probability pd, set ζ

H
n,n = ζHn and let ζH

n,κg
n
be distributed as ζ∗δ , with δ = |Ign|,

conditionally on being less than ζHn .
(iv) Let TH

n be the tree corresponding to the ancestral process AH
n =

∑n
k=1 δ(Xk ,ζ

H
k,n

).
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We have the next result.

Lemma 4.3. Let θ > 0. The sequences of trees (TH
n , n ∈ N

∗) and (Tn, n ∈ N
∗) under P

(θ) have
the same distribution.

Proof. The proof is left to the reader. It is in the same spirit as the proof of Lemma 4.2, but
here we consider the random variables ((V ′′

(k,n), 1 ≤ k ≤ n), n ∈ N
∗) as unobserved. �

−Eg EdX1 X4 X0 X3 X2X5

ζH4,2

Figure 10. An instance of the tree TH
4 with the new individual X5.

−Eg EdX1 X4 X0 X3 X5 X2

ζH5,2

Figure 11. An instance of the tree TH
5 with TH

4 given in Figure 10 and the event
associated with pd (a new segment is attached to X5).

−Eg EdX1 X4 X0 X3 X5 X2

ζH5,2

Figure 12. An instance of the tree TH
5 with TH

4 given in Figure 10 and the event
associated with pg (the segment previously attached to X2 is now attached to X5

and a new segment is attached to X2).
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4.4. Simulation of genealogical tree conditionally on its maximal height. Let F =
((τi, hi), i ∈ I) be a Brownian forest under P

(θ). Recall the definition of A0 the time to the
MRCA of the population living at time 0 given in (16). The goal of this section is to simulate
the genealogical tree Tn of n individuals uniformly sampled in the population living at time 0,
conditionally given the time to the MRCA of the whole population is h, that is given A0 = h.

Let A(du, dζ) =
∑

j∈I δ(uj ,ζj)(du, dζ) be the ancestral process of Definition 3.1. Recall the

notations Eg, Ed from Sectionj 3.2.2. Let ζmax = sup{ζj , j ∈ I} and define the random index
J0 ∈ I such that ζmax = ζJ0 . Note that J0 is well defined since for every ε > 0, the set
{j ∈ I, ζj > ε} is finite. We set X = uJ0 ∈ (−Eg, Ed). Remark that ζmax is distributed as A0.

For r ∈ R, let r+ = max(0, r) and r− = max(0,−r) be respectively the positive and negative
part of r. The proof of the next lemma is postponed to the end of this section.

Lemma 4.4. Let θ > 0. Under P(θ), conditionally given ζmax = h, the random variables Eg+X−,
|X|, Ed−X+ and 1{X≥0} are independent; Eg+X−, |X| and Ed−X+ are exponentially distributed
with parameter 2θ + cθ(h) and 1{X≥0} is Bernoulli 1/2.

Let h > 0 be fixed. For δ > 0, let ζ∗,hδ be a positive random variable distributed as ζ∗δ
conditionally on {ζ∗δ ≤ h}, i.e., for 0 ≤ u ≤ h:

P(ζ∗,hδ ≤ u) = P(ζ∗δ ≤ u
∣

∣ ζ∗δ ≤ h) = e−δ(cθ(u)−cθ(h)) .

Then the static simulation runs as follows.

(i) Simulate three independent random variables E1, E2, E3 exponentially distributed with
parameter 2θ+ cθ(h), and another independent Bernoulli variable ξ with parameter 1/2.
If ξ = 0, set Eg = E1, X = E2, Ed = E2 + E3, and if ξ = 1, set Eg = E1 + E2, X =
−E2, Ed = E3. Let Xk and Xk be defined as in (i) of Section 4.1 for 1 ≤ k ≤ n.

(ii) Let the intervals ISk be defined as in (ii) of Section 4.1 for 1 ≤ k ≤ n.

(iii) Conditionally on (Eg, Ed,X,X1, . . . ,Xn), let (ζhk , 1 ≤ k ≤ n) be independent random

variables such that, for 1 ≤ k ≤ n, ζhk is distributed as ζ∗,hδ with δ = |ISk | if X 6∈ ISk ;

and ζhk = h if X ∈ ISk . Consider the tree Th
n corresponding to the ancestral process

Ah
n =

∑

k=1 δ(Xk ,ζ
h
k
).

The proof of the following result which relies on Lemma 4.4 is similar to the one of Lemma 4.1,
and is not reproduced here.

Lemma 4.5. Let θ > 0, h > 0 and n ∈ N
∗. The tree Th

n is distributed as Tn under P
(θ)

conditionally given A0 = h.

Notice that the height of Th
n is less than or equal to h. When strictly less than h, it means

that no individual of the oldest family has been sampled.

Proof of Lemma 4.4. By Proposition 3.6, the pair E = (Eg, Ed) under P
(θ) has density:

fE(eg, ed) = (2θ)2 e−2θ(eg+ed) 1{eg≥0,ed≥0}.

Moreover, by standard results on Poisson point measures, the conditional density of the pair
(X, ζmax) given (Ed, Eg) = (eg, ed) exists and is:

f
E=(eg,ed)
X,ζmax

(x, h) =
1

eg + ed
1[−eg,ed](x) (eg + ed) |c′θ(h)| e−cθ(h)(eg+ed) 1{h≥0}

= 1[−eg,ed](x) |c′θ(h)| e−cθ(h)(eg+ed) 1{h≥0}.
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We deduce that the vector (Eg, Ed,X, ζmax) has density:

f(eg, ed, x, h) = (2θ)2|c′θ(h)| e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed, h≥0}

and that the random variable ζmax has density:

fζmax(h) =

∫

(2θ)2|c′θ(h)| e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed, h≥0} deg ded dx

= (2θ)2|c′θ(h)|
2

(2θ + cθ(h))3
1{h≥0}.

Therefore, the conditional density of the vector (Eg, Ed,X) given ζmax = h is:

f ζmax=h
E,X (eg, ed, x) =

1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥0,−eg≤x≤ed}.

For any nonnegative measurable function ϕ, we have:

E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X≥0}

∣

∣ ζmax = h]

= E
(θ)[ϕ(Eg,X,Ed −X)1{X≥0}

∣

∣ ζmax = h]

=

∫

ϕ(eg, x, ed − x)
1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(eg+ed) 1{eg≥0, ed≥x≥0} deg ded dx

=

∫

ϕ(e1, e2, e3)
1

2
(2θ + cθ(h))

3 e−(2θ+cθ(h))(e1+e2+e3) 1{e1≥0, e2≥0, e3≥0} de1 de2 de3,

using an obvious change of variables. Similarly, we get:

E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X<0}

∣

∣ ζmax = h]

= E
(θ)[ϕ(Eg +X−, |X|, Ed −X+)1{X≥0}

∣

∣ ζmax = h].

This proves the lemma. �

5. Renormalized total length of the genealogical tree

Let F = ((hi, τi), i ∈ I) be a Brownian forest under P
(θ) with θ > 0. Recall that the tree

F(−∞,0] belongs to T1. For a forest f ∈ T1, recall that Zh(f) denotes the set of vertices of F(−∞,0]

at level h. We shall also consider Z∗
h(f) = Zh(f)

⋂S(f(−∞,h])
c the extant population at time h

except the point on the semi-infinite branch (−∞, h]. For r ≤ h, we define the set of ancestors
at time r in the past of the extant population at time h forgetting the individual in the infinite
spine:

(14) Mh
r (f) = Gh(f)

⋂

Z∗
r (f)

and its cardinality

(15) Mh
r (f) = Card (Mh

r (f)).

We also define the time to the MRCA of Zt(F) as

(16) At = t− sup
{

r ≤ t; M t
r = 0

}

.

We want to define the length of the genealogical tree Gt(F) of all extant individuals at time
t (which is a.s. infinite) by approximating this genealogical tree by trees with finite length and
take compensated limits. Without loss of generality we can take t = 0 (since the distribution of
the Brownian forest is invariant by time translation).
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Two approximations may be considered here. The first one is to consider for ε > 0 the
genealogical tree of individuals at time t− ε, with descendants at time t, and let ε goes down to
0. We define the total length of the genealogical tree of the current population up to ε > 0 in
the past as:

(17) Lε =

∫ ∞

ε
M0

−s ds.

Set L = (Lε, ε > 0). According to [6], we have E[Lε|Z0] = −Z0 log(2βθε)/β+O(ε) (see also (21)

as L̃ε is distributed as Lε), and that the sequence (Lε −E[Lε|Z0], ε > 0) converges a.s. as ε goes
down to zero towards a limit say L. Furthermore, for all λ > 0,

E

[

e−λL |Z0

]

= eθZ0 ϕ(λ/(2βθ)), with ϕ(λ) = λ

∫ 1

0

1− vλ

1− v
dv.

The second approximation consists in looking at the genealogical tree associated with n in-
dividuals picked at random in the population at time 0. Recall Definition (11) of Zh. Let
(Xk, k ∈ N

∗) be, conditionally on F , independent random variables with distribution Z0(dx)/Z0.
This models individuals uniformly chosen among the population living at time 0. Define the
ancestors of X1, . . . ,Xn at time s < 0 as:

M(n)
s (F) = {x ∈ M0

s(F); x ≺ Xi for some 1 ≤ i ≤ n},
and M

(n)
s = Card (M(n)

s (F)) its cardinality. We define the total length of the genealogical tree
of n individuals uniformly chosen in the current population as:

(18) Λn =

∫ ∞

0
M

(n)
−s ds.

Set Λ = (Λn, n ∈ N
∗). The next theorem states that the two approximations give the same limit

a.s.

Theorem 5.1. The sequence (Λn − E[Λn|Z0], n ∈ N
∗) converges a.s. and in L2 towards L as n

tends to +∞. And we also have E[Λn|Z0] =
Z0
β log

(

n
2θZ0

)

+O(n−1 log(n)).

The rest of the section is devoted to the proof of this theorem.

5.1. Preliminary results. Let Eg and Ed be two independent exponential random variable
with parameter 2θ. Let N =

∑

i∈I δzi,τi be, conditionally given (Eg, Ed), distributed as a Poisson

point measure with intensity 1[−Eg,Ed](z) dzN
(θ)[dτ ]. We define L̃ = (L̃ε, ε > 0) with:

L̃ε =
∑

i∈I

(ζi − ε)+,

where ζi = H(τi) is the height of τi. Let (Uk, k ∈ N
∗) be independent random variables uniformly

distributed on [0, 1] and independent of (N , Eg, Ed). We set X0 = 0, and Xk = (Eg+Ed)Uk−Eg

for k ∈ N
∗. Fix n ∈ N

∗. Let X(0,n) ≤ · · · ≤ X(n,n) be the corresponding order statistic
of (X0, . . . ,Xn). We set X(−1,n) = −Eg and X(n+1,n) = Ed. We define the interval Ik,n =
(X(k−1,n),X(k,n)) and its length ∆k,n = X(k,n) − X(k−1,n) for 0 ≤ k ≤ n + 1. We set ∆n =

(∆k,n, 0 ≤ k ≤ n+ 1). For 1 ≤ k ≤ n, we define Λ̃ = (Λ̃n, n ∈ N
∗) by:

Λ̃n =
n
∑

k=1

ζ∗k,n. with ζ∗k,n = max{ζi; zi ∈ Ik,n}.

Recall the definitions of Z0 in (11), L = (Lε, ε > 0) in (17) and Λ = (Λn, n ∈ N
∗) in (18).

Thanks to Proposition 3.6, we deduce that (Z0, L,Λ) is distributed as (Eg + Ed, L̃, Λ̃). So to
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prove Theorem 5.1, it is enough to prove the statement with Λ̃ instead of Λ.

For convenience, we set Z0 = Eg + Ed. Elementary computations give the following lemma.
Recall that z+ = max(z, 0).

Lemma 5.2. Let θ > 0 and ε > 0. We have:

(19) N
(θ)[(ζ − ε)+] =

∫ ∞

ε
cθ(h) dh = − 1

β
log(2βθε) +O(ε),

(20) N
(θ)[(ζ − ε)2+] = 2

∫ ∞

ε
hcθ(h) dh − 2ε

∫ ∞

ε
cθ(h) dh = 2

∫ ∞

0
hcθ(h) dh +O(ε log(ε)).

We deduce that:

E[L̃ε|Z0] = −Z0

β
log(2βθε) +O(ε),(21)

E[L̃2
ε|Z0] = 2Z0

∫ ∞

0
hcθ(h) dh + E[L̃ε|Z0]

2 +O(ε log(ε)),(22)

where we used that if
∑

i∈I δxi
is a Poisson point measure with intensity µ(dx), then:

(23) E





(

∑

i∈I

f(xi)

)2


 = µ(f2) + µ(f)2.

Eventually, let us notice that with the change of variable u = cθ(h) (so that dh = du/βu(u+2θδ)),
we have:

(24) 2

∫ ∞

0
hcθ(h) dh =

1

β2θ

∫ ∞

0

log(v + 1)

v(v + 1)
dv.

Recall the definition of ζ∗δ for δ > 0, see (12). Let γ be the Euler constant, and thus:

γ = −
∫ +∞

0
log(u) e−u du.

We have the following lemma.

Lemma 5.3. Let δ > 0. We have:

(25) E[ζ∗δ ] = − δ

β
log(2θδ) +

δ

β
(1− γ) +

δ

β
g1(2θδ),

with |g1(x)| ≤ x(| log(x)|+ 2) for x > 0 and

(26) E[(ζ∗δ )
2] = 2δ

∫ ∞

0
hcθ(h) dh +

δ

β2θ
g2(2θδ),

with |g2(x)| ≤ x(| log(x)|+ 2) for x > 0. We also have:

(27) E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= 2δ

∫ ∞

0
hcθ(h) dh + g3(δ)

and there exists a finite constant c such that for all x > 0 and ε ∈ (0, 1], we have |g3(x)| ≤
cx2(1 + x)(| log(x)|+ 1)(| log(ε)| + 1) + cεx(| log(x)|+ 1)(1 + x) + ε2.

The end of this section is devoted to the proof of Lemma 5.3.
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5.1.1. Proof of (25). Using (12), we get:

(28) E[ζ∗δ ] =

∫ ∞

0
P(ζ∗δ > h) dh =

∫ ∞

0
(1− e−δcθ(h)) dh =

δ

β

∫ ∞

0
(1− e−u)

du

u(u+ 2θδ)
,

where we used the change of variable u = δcθ(h). It is easy to check that for a > 0.

(29) log(1 + a) ≤ | log(a)| + log(2).

Let a > 0. We have:
∫ 1

0
(1− e−u)

du

u(u+ a)
=

∫ 1

0
(1− u− e−u)

du

u(u+ a)
+ log(1 + a)− log(a)

=

∫ 1

0
(1− u− e−u)

du

u2
+ log(1 + a)− log(a) + ag1,0(a),

with

g1,0(a) = −
∫ 1

0
(1− u− e−u)

du

u2(u+ a)
≤
∫ 1

0

du

2(u+ a)
=

1

2
(log(1 + a)− log(a)) ≤ | log(a)|+ 1

2

and g1,0(a) ≥ 0, where we used that 0 ≤ −(1− u− e−u) ≤ u2/2 for u ≥ 0. We also have:
∫ ∞

1
(1− e−u)

du

u(u+ a)
=

∫ ∞

1
(1− e−u)

du

u2
− ag1,1(a),

with

g1,1(a) =

∫ ∞

1
(1− e−u)

du

u2(u+ a)
≤
∫ ∞

1

du

u3
≤ 1

2
·

Notice that, by integration by parts, we have:
∫ 1

0
(1−u−e−u)

du

u2
+

∫ ∞

1
(1−e−u)

du

u2
= e−1 +

∫ 1

0
log(u) e−u du+1−e−1 +

∫ ∞

1
log(u) e−u du = 1−γ.

We deduce that:
∫ ∞

0
(1− e−u)

du

u(u+ a)
= 1− γ − log(a) + g1(a)

with g1(a) = log(1 + a) + ag1,0(a)− ag1,1(a) and

|g1(a)| = | log(1 + a) + ag1,0(a)− ag1,1(a)| ≤ a(| log(a)|+ 2).

Then, use (28) to get (25).

5.1.2. Proof of (26). Using (12), we get:

(30) E[(ζ∗δ )
2] = 2

∫ ∞

0
h(1− e−δcθ(h)) dh = 2

δ

β

∫ ∞

0

1

2βθ
log

(

u+ 2θδ

u

)

(1− e−u)
du

u(u+ 2θδ)
,

where we used the change of variable u = δcθ(h). Let a > 0. We set:

g2,1(a) =

∫ ∞

1
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
·

We have using that 0 ≤ log(1 + x) ≤ x for x > 0:

|g2,1(a)| ≤ a

∫ ∞

1

du

u3
≤ a

2
·
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We also have:
∫ 1

0
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
=

∫ 1

0
log

(

u+ a

u

)

du

u+ a
+ g2,2(u)

=

∫ ∞

0

log(v + 1)

v(v + 1)
dv − g2,3(a) + g2,2(a),

with the change of variable v = a/u as well as:

g2,2(a) =

∫ 1

0
log

(

u+ a

u

)

(1− u− e−u)
du

u(u+ a)
and g2,3(a) =

∫ a

0

log (v + 1)

v(v + 1)
dv.

We have, using log(1 + v) ≤ v for v > 0 (twice), that:

0 ≤ g2,3(a) ≤
∫ a

0

dv

v + 1
≤ a.

We have, using |1− u− e−u | ≤ u2/2 if u > 0 for the first inequality and (29) for the last, that:

|g2,2(a)| ≤
1

2

∫ 1

0
log
(

1 +
a

u

) udu

(u+ a)
≤ a

2

∫ 1

0

du

(u+ a)
≤ a(| log(a)| + 1

2
).

We deduce that:
∫ ∞

0
log

(

u+ a

u

)

(1− e−u)
du

u(u+ a)
=

∫ ∞

0

log(v + 1)

v(v + 1)
dv + g2(a)

and

|g2(a)| = |g2,1(a)− g2,3(a) + g2,2(a)| ≤ a(| log(a)|+ 2).

Then, use (30) as well as the identity (24) to get (26).

5.1.3. Proof of (27). Using properties of Poisson point measures, we get that if
∑

j∈J δζj is a

Poisson point measure with intensity δN[dζ] and ζ∗δ = maxj∈J ζj, then for any measurable non-
negative functions f and g, we have:

E

[

f(ζ∗δ ) e
−

∑
j∈J g(ζj)

]

= E

[

f(ζ∗δ ) e
−g(ζ∗

δ
)−G(ζ∗

δ
)
]

with G(r) = δN
[

(1− e−g(ζ))1{ζ<r}

]

.

We deduce that:

E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= E[ζ∗δ (ζ
∗
δ − ε)+] + δg3,1(δ),

with g3,1(δ) = E

[

ζ∗δN
[

(ζ − ε+)1{ζ<h}

]

|h=ζ∗
δ

]

. According to (25), there exists a finite constant

c > 0 such that for all δ > 0, we have E[ζ∗δ ] ≤ cδ(| log(δ)|+ 1)(1 + δ). We deduce from (19) that
there exists a finite constant c independent of δ > 0 and ε ∈ (0, 1] such that:

g3,1(δ) ≤ E[ζ∗δ ]N[(ζ − ε)+] ≤ cδ(| log(δ)| + 1)(1 + δ)(| log(ε)| + 1).

We also have:

E[ζ∗δ (ζ
∗
δ − ε)+] = E[(ζ∗δ )

2]− E[(ζ∗δ )
21{ζ∗

δ
<ε}]− εE[ζ∗δ1{ζ∗δ>ε}] = 2δ

∫ ∞

0
hcθ(h) dh + g3,2(ε, δ),

with, thanks to (25) and (26), |g3,2(ε, δ)| ≤ cδ2(| log(δ)| + 1) + ε2 + cεδ(| log(δ)| + 1)(1 + δ), for
some finite constant c independent of δ > 0 and ε > 0. We deduce that:

E

[

ζ∗δ
∑

i∈I

(ζi − ε)+

]

= 2δ

∫ ∞

0
hcθ(h) dh + g3(δ)
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and for some finite constant c independent of δ > 0 and ε ∈ (0, 1].

|g3(δ)| ≤ cδ2(1 + δ)(| log(δ)| + 1)(| log(ε)| + 1) + cεδ(| log(δ)| + 1)(1 + δ) + ε2.

5.2. A technical lemma. An elementary induction gives for n ∈ N that:
∫ 1

0
(1− x)n| log(x)| dx =

Hn+1

n+ 1
and

∫ 1

0
(1 − x)n log2(x) dx =

2

n+ 1

n+1
∑

k=1

Hk

k
,

where Hn =
∑n

k=1 k
−1 is the harmonic sum. Recall that Hn = log(n) + γ + (2n)−1 + O(n−2).

So we deduce that:

(31) (n+ 1)

∫ 1

0
(1− x)n| log(x)| dx = log(n) + γ +

3

2n
+O(n−2).

It is also easy to deduce that for a, b ∈ {1, 2}:

(32)

∫ 1

0
xa(1− x)n| log(x)|b dx = O

(

logb(n)

na+1

)

.

Recall Λ̃n and ∆n defined in Section 5.1. We give a technical lemma.

Lemma 5.4. We have:

(33) E[Λ̃n|∆n] =
Z0

β
(1− γ)−

n
∑

k=1

∆k,n

β
log(2θ∆k,n) +Wn,

with E[|Wn| |Z0] = O(n−1 log(n)) and

(34) E[Λ̃n|Z0] =
Z0

β
log

(

n

2θZ0

)

+O(n−1 log(n)).

We have also:

(35) E[Λ̃2
n|Z0] = 2Z0

∫ ∞

0
hcθ(h) dh + E[Λ̃n |Z0]

2 +O(n−1 log2(n)).

Proof. We first prove (33). We have E[Λ̃n|∆n] =
∑n

k=1 E[ζ
∗
δ ]|δ=∆k,n

. We deduce from (25) that

(33) holds with:

Wn =
∆0,n +∆n+1,n

β
(γ − 1) +

1

β

n
∑

k=1

∆k,ng1(2θ∆k,n).

Since, conditionally on Z0, the random variables ∆k,n are all distributed as Z0Ũn, where Ũn is
independent of Z0 and has distribution β(1, n + 1), we deduce using (32) that:

E[|Wn| |Z0] ≤ 2
(1 − γ)Z0

β
E[Ũn] + n

2θZ2
0

β
E[Ũ2

n(| log(2θZ0Ũn)|+ 2)|Z0] = O(n−1 log(n)).

We then prove (34). Taking the expectation in (33) conditionally on Z0, we get:

E[Λ̃n|Z0] =
Z0

β
(1− γ)− n

Z0

β
H(2θZ0) + E[Wn|Z0],

where

(36) H(a) = E[Ũn log(aŨn)].

We deduce from (31) that:

(37) nH(a) = log(a)− log(n) + 1− γ +O(n−1 log(n)).
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This gives:

E[Λ̃n|Z0] =
Z0

β
log

(

n

2θZ0

)

+O(n−1 log(n)).

We finally prove (35). We have:

(38) E

[

Λ̃2
n|∆n

]

=

n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
−

n
∑

k=1

E [ζ∗δ ]
2
|δ=∆k,n

+ E

[

Λ̃n|∆n

]2
.

We have thanks to (26):
n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
= 2Z0

∫ ∞

0
hcθ(h) dh +W1,n,

with

W1,n = −2(∆0,n +∆n+1,n)

∫ ∞

0
hcθ(h) dh +

n
∑

k=1

∆k,n

β2θ
g2(2θ∆k,n).

Using similar computations as the ones used to bound E[|Wn| |Z0], we get E[|W1,n| |Z0] =
O(n−1 log(n)) so that

E

[

n
∑

k=1

E
[

(ζ∗δ )
2
]

|δ=∆k,n
|Z0

]

= 2Z0

∫ ∞

0
hcθ(h) dh +O(n−1 log(n)).

Thanks to (25), we have E [ζ∗δ ]
2 ≤ cδ2(| log(δ)| + 1)2(1 + δ)2 for some finite constant c which

does not depend on δ. We set H2(a) = E

[

Ũ2
n log

2(aŨn)(1 + Ũn)
2
]

, and using (32), we get:

(39) H2(a) = O(n−3 log2(n)) = O(n−2 log2(n)).

We deduce that:

E

[

n
∑

k=1

E [ζ∗δ ]
2
|δ=∆k,n

|Z0

]

= O(n−1 log2(n)).

Then using (34), elementary computations give:

E

[

E

[

Λ̃n|∆n

]2
|Z0

]

= 2
Z0

β
(1− γ)E[Λ̃n|Z0]−

Z2
0

β2
(1− γ)2 +

1

β2
J1,n + J2,n − 2

β
J3,n,

with J2,n = E[W 2
n |Z0],

J1,n = E





(

n
∑

k=1

∆k,n log(2θ∆k,n)

)2
∣

∣

∣
Z0



 and J3,n = E

[

Wn

(

n
∑

k=1

∆k,n log(2θ∆k,n)

)

∣

∣

∣
Z0

]

.

By Cauchy-Schwartz, we have |J3,n| ≤
√

J1,nJ2,n. Using (
∑n

k=1 ak)
2 ≤ n

∑n
k=1 a

2
k, we also get:

J2,n ≤ 8

β2
(γ − 1)2Z2

0E[Ũ
2
n] +

2n

β2
Z2
0E

[

Ũ2
ng

2
1(2θZ0Ũn)

]

= O(n−2).

By independence, we obtain:

J1,n = n(n− 1)E [∆1,n log(2θ∆1,n)|Z0]
2 + nE

[

∆2
1,n log

2(2θ∆1,n)|Z0

]

.

Recall the function H defined in (36) and its asymptotic expansion (37). We have, using (39),
that:

J1,n = n(n− 1)Z2
0H(2θZ0)

2 + nZ2
0H2(2Z0) = Z2

0

(

− log

(

n

2θZ0

)

+ 1− γ

)2

+O(n−1 log2(n)).
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So we deduce that:

1

β2
J1,n + J2,n − 2

β
J3,n =

(

−Z0

β
log

(

n

2θZ0

)

+
Z0

β
(1− γ)

)2

+O(n−1 log2(n))

=

(

−E[Λ̃n|Z0] +
Z0

β
(1− γ)

)2

+O(n−1 log2(n)).

We deduce that:

E

[

E

[

Λ̃n|∆n

]2
|Z0

]

= E[Λ̃n |Z0]
2 +O(n−1 log2(n)).

So in the end, using (38), we get:

E

[

Λ̃2
n |Z0

]

= 2Z0

∫ ∞

0
hcθ(h) dh + E[Λ̃n |Z0]

2 +O(n−1 log2(n)).

�

5.3. Proof of Theorem 5.1. We shall keep notations from Section 5.1. We set Jn(ε) =

E

[

(

Λ̃n − L̃ε

)2
|Z0

]

. We have:

Jn(ε) = E[Λ̃2
n|Z0] + E[L̃2

ε|Z0]− 2E[Λ̃nL̃ε|Z0].

By conditioning with respect to ∆n, and using the independence, we get:

E[Λ̃nL̃ε|Z0] = E

[

E[Λ̃nL̃ε|∆n]|Z0

]

= Σn + E

[

E[Λ̃n|∆n]E[L̃ε|∆n]
∣

∣

∣
Z0

]

= Σn + E[Λ̃n|Z0]E[L̃ε|Z0],

where we used that E[L̃ε|∆n] = E[L̃ε|Z0] for the last equality, and:

Σn = E





n
∑

k=1

E



ζ∗k,n
∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n



−
n
∑

k=1

E[ζ∗k,n|∆n]E





∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n





∣

∣

∣
Z0



 .

So using (22) and (35), we get:

Jn(ε) = 4Z0

∫ ∞

0
hcθ(h) dh − 2Σn +

(

E[Λ̃n|Z0]− E[L̃ε|Z0]
)2

+O(ε log(ε)) +O(n−1 log2(n)).

Then taking ε ≍ n−1, we get, using (21), (34) and Lemma 5.5 below:

Jn(ε) =
Z2
0

β2
log2

(

nε
β

Z0

)

+O(n−1 log2(n)).

We deduce that Λ̃n− L̃Z0/(nβ) converges in probability to 0 and, by Borel-Cantelli lemma almost

surely along the sub-sequence n3. Recall that the sequence (L̃ε −E[L̃ε|Z0], ε > 0) converges a.s.,

as ε goes down to 0, towards a limit say L̃. Notice that E[L̃Z0/nβ|Z0] = E[Λ̃n|Z0]+O(n−1 log(n))

and thus, we deduce that (Λ̃n3 − E[Λ̃n3 |Z0], n ∈ N
∗) converges also a.s. towards L̃. Then use

(33) to get that for k ∈ [n3, (n + 1)3):

Λ̃n3 − E[Λ̃n3 |Z0] +O(n−1 log(n)) ≤ Λ̃k − E[Λ̃k|Z0] ≤ Λ̃(n+1)3 − E[Λ̃(n+1)3 |Z0] +O(n−1 log(n)).

Then conclude that (Λ̃n − E[Λ̃n|Z0], n ∈ N
∗) converges also a.s. towards L.

Lemma 5.5. Let ε ≍ n−1. We have:

Σn = 2Z0

∫ ∞

0
hcθ(h) dh +O(n−1 log2(n)).
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Proof. We have E

[

∑

zi∈Ik,n
(ζi − ε)+

∣

∣

∣
∆n

]

= ∆k,nN[(ζ − ε)+]. Thanks to (25), (31) and (32), we

get:

E

[

n
∑

k=1

∆k,nE[ζ
∗
k,n|∆n]

∣

∣

∣
Z0

]

=
nZ2

0

β
E

[

Ũ2
n

(

log(2θZ0Ũn) + (1 − γ) + g1(2θZ0Ũn)
)

|Z0

]

= O(n−2 log(n)).

We deduce from (19) with ε ≍ n−1 that:

E





n
∑

k=1

E[ζ∗k,n|∆n]E





∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n





∣

∣

∣
Z0



 = O(n−1 log2(n)).

According to (27), we have:

n
∑

k=1

E



ζ∗k,n
∑

zi∈Ik,n

(ζi − ε)+

∣

∣

∣
∆n



 = 2Z0

∫ ∞

0
hcθ(h) dh +W ′′′

n ,

with

W ′′′
n = −2(∆0,n +∆n+1,n)

∫ ∞

0
hcθ(h) dh +

n
∑

k=1

g3(∆k,n).

Since ε ≍ n−1, we deduce that

E[|W ′′′
n ||Z0] ≤

2Z0

n+ 1

∫ ∞

0
hcθ(h) dh +O(n−1 log2(n)).

This gives the result. �

References

[1] R. Abraham and J.-F. Delmas. Williams’ decomposition of the Lévy continuum random tree and simultaneous
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