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Abstract. This paper explores the Site Frequency Spectrum (SFS) in stationary branching
populations. We derive estimates for the SFS associated with a sample from a continuous-state
branching process conditioned to never go extinct, utilizing a quadratic branching mechanism.
The genealogy of such processes is represented by a real tree with a semi-infinite branch, and we
compute the expectation of the SFS under the infinitely-many-sites assumption as the sample
size approaches infinity. Additionally, we present a continuum version of the SFS as a random
point measure on the positive real line and compute the density of its expected measure ex-
plicitly. Finally, we derive estimates for the size of the clonal subpopulation carrying the same
genotype as the most recent common ancestor of the whole population at a given time.

1. Introduction

The Site Frequency Spectrum (SFS) of a genetic sample is a summary statistic of the full
alignment that characterizes each mutation found in the sample by the number of individuals
carrying it. It has been shown to reflect many features of the past dynamics of the population
from which the sample was taken, including variations in ancestral population size, selection, or
the existence of population structure. In this paper, we will give estimates for the expectation
of the SFS associated to a sample from a continuous-state branching process conditioned never
to go extinct. Such processes, first described in [21], are representing the size of an infinite
stationary population undergoing branching. In the general case, the branching mechanism is
described by the Laplace exponent of a spectrally positive Lévy process. Here, we will focus
on the quadratic case in which the underlying Lévy process is a Brownian motion with positive
drift. The genealogy of such stationary branching processes can be represented by a metric space
(T , d) which is a real tree with an infinite branch. We will use the distribution of the subtree
spanned by a uniform sample of n leaves at a given time, which was given in [1], to compute
the expectation of the SFS of such a sample (Theorem 4.3), under the infinitely-many-sites
assumption, as n goes to ∞. We also present a continuum version of the SFS as a random point
measure on R+, following the framework introduced in [8]. We show that the expected measure
has a density with respect to Lebesgue measure, which we compute explicitly (Theorem 5.1).
Finally, we study the part of the population at a given time that carries no additional mutations
compared to its most recent common ancestor. We compute the expectation of the size of this
subpopulation, as well as the ratio between its size and the size of the whole extant population
(Theorem 5.4).

We will now review some results from the literature on the SFS. Given a rooted real tree
T with n leaves, let M be an independent Poisson point process on T with intensity µ > 0.
Each atom of M is a mutation that is carried by the whole subpopulation descended from it.
Each mutation occurs at a different locus (i.e. we assume the infinitely-many-sites model), and
we assume that the ancestral allele at each locus is known. Thus we can define the SFS of a
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n-sample as the vector:

ξ(n) = (ξ
(n)
1 , . . . , ξ

(n)
n−1),

where ξ
(n)
k is the number of mutations carried by exactly k individuals in the sample.

When T is a Kingman coalescent tree with n leaves, the first moment of the SFS can be
explicitly computed:

(1) E[ξ(n)k ] =
θ

k
, k = 1, . . . , n− 1,

where θ is the population-scaled mutation rate θ = 4Neµ. In this expression, Ne is the effective
population size parameter and µ as above, the per-lineage mutation rate. See [14] for a deriva-
tion of this expression, as well as results on second moments. This result was subsequently
extended to accommodate relaxations of the strict assumptions underlying the Kingman coales-
cent. Notably, Griffiths and Tavaré [15] established the following formula for the expectation of
the SFS:

(2) E[ξ(n)k ] =
θ

2

n−k+1∑
i=2

ip(n)(i, k)E[T (n)
i ],

where p(n)(i, k) is the probability that at the time the coalescent has i blocks, a given one of

them contains exactly k leaves, and where T
(n)
i is the amount of time when the coalescent has

exactly i blocks. This formula holds for variable population sizes, but the expectations might
not be explicitly computable.

Equation (2) can be generalized to the case of Λ-coalescents [5], or even Ξ-coalescents [6].
Asymptotic results for Λ-coalescents in the case where Λ is regularly varying at 0 with index
1 < α < 2 (meaning that Λ(dx) = f(x) dx with f(x) ∼ Ax1−α as x→ 0) are found in [2]:

lim
n→∞

nα−2ξ
(n)
k =

θ

2
CA,α

(2− α)Γ(k + α− 2)

k!Γ(α− 1)
,

almost surely for fixed k ≥ 1, where the constant CA,α is explicit. Recently, Kersting et al. [16]
were able to obtain a closed integral formula for the SFS in the special case of the Bolthausen-
Sznitman coalescent:

E[ξ(n)k ] = θn

∫ 1

0

Γ(k − p)

Γ(k + 1)

Γ(n− k + p)

Γ(n− k + 1)

dp

Γ(1− p)Γ(1 + p)
,

which leads to the following asymptotics for large values of n:

(3) E[ξ(n)k ] ∼


θn

logn if k = 1,
θn

k(k−1)
1

log2(n/k)
if k ≥ 2, k/n→ 0,

θ
nf1(u) if k/n→ u ∈ (0, 1),
θ

n−k
1

log(n/(n−k)) if 1− k/n→ 0,

where f1(u) =
∫ 1
0 u

−1−p(1− u)p−1 sin(πp)/(πp)dp is the asymptotic profile of the SFS.
Another vein of research has focused on the use of the SFS to infer parameters of the co-

alescent, such as the Λ or Ξ measure for exchangeable coalescents or ancestral demographic
fluctuations when effective population size is not assumed to be constant through time. Starting
with [26], several negative and positive identifiability results have been proven, see [3, 17, 19, 30],
that put the theory of ancestral demographic reconstruction on solid statistical footing. This
has also led to numerical methods to efficiently compute the SFS under a given coalescent model
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and with a given demography [29] and to use them for hypothesis testing [11, 18] or parameter
inference [20, 25].

The study of site frequency spectra in branching processes, which is the subject of the present
paper, is facilitated by the description of the genealogy of extant populations using coalescent
point processes (CPP), starting with [27]. CPPs are random genealogies defined using sequences
of random variables (Hi, i ≥ 1) representing the time to the most recent common ancestor
(TMRCA) of consecutive individuals:

TMRCA(i, i+ 1) = Hi+1, i ≥ 1.

Lambert [22] proved that for an independent CPP, under mild moment conditions and assuming
uniform mutations along lineages with rate θ, the following holds for fixed k ≥ 1:

lim
n→∞

ξ
(k)
n

n
= θ

∫ ∞

0

1

W (x)2

(
1− 1

W (x)

)k−1

dx a.s.,

where W (x) = 1/P(H > x) is the scale function of the random variables underlying the CPP.
This result was later extended to more general mutation distributions in [8].

Most recently, Schweinsberg and Shuai [28] have examined site frequency spectra for critical or
supercritical birth and death processes, using CPP representations of the genealogy of n sampled
individuals at a given time Tn → ∞, due to [23]. In the critical case, they found Kingman-like
asymptotics for the total length of branches with exactly k sampled leaves in their descendance,
and proved asymptotic normality.

In this work, we will study the SFS associated to a neutral, time-homogeneous mutation
process at rate µ in populations modelled by a stationary continuous-state branching process
(Zt, t ∈ R), for quadratic branching mechanisms given by:

ψ(u) = βu2 + 2βθu,

where β > 0 is a time scaling parameter and 1/θ > 0 can be seen as a population size scaling
parameter. In such a population, sampling n individuals at time 0, representing the present, we

show in Theorem 4.3 that the asymptotic SFS ξ
(n)
k satisfies, for 1 ≤ k ≤ n− 1:

β

µZ0
E[ξ(n)k |Z0] =

1

k
+

1

k
g1

(
θZ0,

k

n

)
+

√
k

n2
g2

(
θZ0,

k

n
, n

)
,

where the function g1 is explicitly given in (32) and represented in Fig. 3, and where g2 is
uniformly bounded. The function g1, which can take positive or negative values, represents
the distortion of the expected SFS with respect to the classical Kingman-coalescent case (1),

for a given value of the present population size Z0. We expect that, when averaging ξ
(n)
k /Z0

over Z0 (which is distributed as the sum of two independent exponentials with parameter 2θ),
this contribution will vanish, leaving only the constant Kingman term µ/(βk). Note that, by
analogy with equation (1), Theorem 4.3 gives an expression for the effective population size in
a stationary continuous-state branching process:

Ne(Z0) =
Z0

4β
,

which simplifies to Ne = 1/(4βθ) when integrating over Z0. Higher stochasticity in the infin-
itesimal branching mechanism, reflected by a higher diffusion coefficient β thus leads to lower
effective population size.

Our result (Theorem 4.3) relies mostly on a representation theorem of the genealogy of a
sample of n individuals using a construction similar to the CPP, obtained in [1]. This construc-
tion is similar to the coalescent point processes (CPPs) extensively studied by Lambert since
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their introduction in [22]. Most notably, in [8], the authors consider general CPPs associated to
Poisson processes and compute asymptotic features of the SFS for these trees. The stationary
setting used in the present work breaks the Poissonian structure of the coalescent point process
and leads to the more involved construction of [1].

We will also present a version of the SFS defined directly on the continuum random tree
representing the genealogy of the whole population, in the spirit of the construction of [8]. We
compute the expected intensity of the continuum SFS and give results about the fraction of
the population carrying the same alleles as its most recent common ancestor, called the clonal
subpopulation: if Zcl is the absolute size of the clonal subpopulation, and R = Zcl/Z0 its relative
size, we compute moments of these quantities, showing in particular that R and Z0 are negatively
correlated, see Theorem 5.4.

An interesting extension of the present work would be to generalize Theorem 4.3 to branching
mechanisms containing an infinite jump measure, such as stable branching mechanisms ψ(u) =
uα, 1 < α < 2. This would require an ancestral construction similar to the CPP, but allowing
for multiple branches coalescing at the same time. We expect that the SFS of such populations
would not have a Kingman-like form, but possibly exhibit a U-shape, typical of genealogies
described by Λ-coalescents [13].

The rest of the paper is organized as follows: in Section 2 below, we will introduce the objects
and notations used in the paper, in particular the constructions of [1]. In Section 4, we will give
the proof of Theorem 4.3, then, in Section 5, we will present the continuum version of the SFS
and compute the density of its expected measure. Finally, in Section 5.2, we prove the results
concerning the continuum SFS and the clonal subpopulation.

2. Preliminaries

2.1. Stationary continuous branching processes. We consider a critical quadratic branch-
ing mechanism ψ(u) = βu2 and the associated family (ψθ, θ > 0) of sub-critical branching
mechanisms:

(4) ψθ(u) = ψ(u+ θ)− ψ(θ) = βu2 + 2βθu.

Let θ > 0 be fixed. We note Px the distribution of a continuous-state branching (CB) process
Y = (Yt, t ≥ 0) started at x > 0, with branching mechanism ψθ. The process Y is the solution
of the following Feller diffusion equation where (Bt, t ≥ 0) is a standard Brownian lmotion:

dYt =
√
2βYt dBt − 2βθYt dt and Y0 = x.

We also consider the associated canonical measure N, which is a σ-finite measure on the space
D of nonnegative continuous functions f such that if f(s) = 0 for some s > 0, then f(t) = 0
for all t ≥ s. The Laplace transform of the one-dimensional distributions of Y is given by, for
λ ≥ 0 and t ≥ 0:

Ex[exp(−λYt)] = exp(−xu(t, λ)),
where

u(t, λ) = N[1− exp(−λYt)] =
2θλ

(2θ + λ) exp(2βθt)− λ
·

In particular, we get N[Yt] = exp(−2βθt). The tail distribution of the extinction time ζ =
inf{t > 0, Yt = 0} under the canonical measure is given by, for t ≥ 0:

(5) c(t) = N[ζ > t] =
2θ

exp(2βθt)− 1
·
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It is possible to construct a stationary version of this CB process using an immigration process.
Let:

N (dt,dY ) =
∑
i∈I

δ(ti,Yi)(dt,dY )

be a Poisson point process on R × D with intensity 2β dtN[dY ]. The stationary CB process
Z = (Zt, t ∈ R) is then defined as:

Zt =
∑
ti≤t

Y i
t−ti .

This stationary CB process appears also as the limit of the CB process conditioned not to be
extinct [21]. It is distributed as the stationary Feller diffusion, which is a solution of the following
equation:

dZt =
√

2βZt dBt + 2β(1− θZt) dt, t ∈ R,
and the (stationary) one-dimensional marginal Zt is distributed as the sum of two independent
exponential random variables with parameter 2θ. In particular we have E[Zt] = 1/θ.

2.2. Genealogical tree of the ψθ CB process. The genealogy of the CB process Y (under
the canonical measure) can be described as a random tree encoded by a Brownian excursion as
follows. For a function g ∈ D define a pseudo-distance on R+ by, for s, t ∈ R+:

dg(s, t) = g(s) + g(t)− 2mg(s, t) with mg(s, t) = inf
[s∧t,s∨t]

g.

The quotient metric space Tg = R+/{dg = 0}, with the metric dg, is then a real tree [12]; the
equivalence class of 0, denoted by ϱg, is called the root of the tree Tg. The height of x ∈ Tg is
defined as its distance to the root, that is, as g(t) for any t ∈ R+ in the equivalence class x. We
say that s ∈ R+ is an ancestor of t ∈ R+ if g(s) = mg(s, t); this defines a partial order on Tg,
and we write s ⪯ t identifying s and t with their equivalence class.

Recall θ > 0 is given. Consider a Brownian motion with negative drift B(θ) = (B
(θ)
t =√

2/βB′
t − 2θt, t ≥ 0), where B′ is a standard Brownian motion. Let N[dT ] denote the push-

forward measure of the Itô positive excursion measure of the Brownian motion B(θ) through the
application g 7→ Tg. The σ-finite measure N[dT ] is defined on the Polish space T of compact
rooted real trees endowed with the so-called Gromov-Hausdorff distance (where pointed compact
metric spaces are identified up to an isomorphic transformation). We simply denote the root of
T by ϱ.

We define a local time process of the tree T denoted by Y = (Ya, a ≥ 0) where Ya is a random
measure on T which informally is the uniform measure on the elements of T at distance a from
the root. More formally, let (ℓa(ds), a ≥ 0) be the local time process of B(θ), with ℓa(R+) the
total local time at level a. For any g ∈ D, let Πg be the natural projection from R+ on Tg.
Then, for any a ≥ 0, denote by Ya the push-forward measure of ℓa on T through the map ΠB(θ) .
According to [9, Theorem 1.4.1], the total mass process (Ya(1), a ≥ 0) is distributed under N
as the CB process Y with branching mechanism ψθ under the canonical measure N. For this
reason, we shall identify Ya with Ya(1) for all a ≥ 0, and thus see the tree T as the genealogical
tree associated to the CB Y. See also [10] for a direct construction of measures (Ya, a ≥ 0) from
the tree T . The maximal height (distance from the root) of a T is distributed as the lifetime ζ
of the CB process Y, and it will also be denoted by ζ.

We now informally describe the genealogical tree associated to the stationary CB process Z,
see [7]. Let

∑
i∈I δ(hi,Ti)(dh,dt) be a Poisson point measure on R×T with intensity 2β dhN[dt].

The tree T st is obtained by grafting the trees Ti at height hi along the infinite spine R (and
the root of Ti is identified with hi on the infinite spine R). The local time process (Zt, t ∈ R)
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associated to T st is the sum at each level t of the local times at level t− hi of all trees Ti with
hi ≤ t: Zt =

∑
hi≤t Y i

t−hi
, where Y i is the local time process of the tree Ti. Then, the total mass

process (Zt(1), t ∈ R) is distributed as the stationary CB process Z with branching mechanism
ψθ. As above, we shall identify Zt(1) with Zt. Notice that the measure Zt puts mass only on
the set of leaves of T st at level t.

2.3. Quantities related to the genealogical tree. The height of x ∈ T st, say H(x), is
defined as x if x belongs to the infinite spine R or, if x belongs to the Ti grafted at height hi, as
its height in Ti plus hi. We define a partial order on T st by x ⪯ y for x, y ∈ T st if either (i) x
and y belong to the infinite spine R and H(x) ≤ H(y), or (ii) x belongs to the infinite spine R
and y to the tree Ti grafted at level hi with H(x) ≤ hi, or (iii) x and y belong to the same tree
Ti and x is an ancestor of y in Ti. For x ⪯ y we define Jx, yK = {z ∈ T st : x ⪯ z ⪯ y} the branch
from x to y. It can be isometrically identified with the segment [H(x), H(y)] of R. The length
measure L (dx) on T st is defined through its restriction to Jx, yK for all x ⪯ y as the image of
the Lebesgue measure on [H(x), H(y)].

For a set (xj , j ∈ J) of elements of T st, we define the set of its ancestors as {x ∈ T st : x ⪯
xj for all j ∈ J}. If this set is not empty, then it has a maximal element (for the partial
order ⪯) which is called the most recent common ancestor (MRCA) of (xj , j ∈ J) and its height
is the time to the MRCA (TMRCA). We shall consider the time −A of the MRCA of the extant
population at time 0. Denoting by ζi for the maximal height of the tree Ti, it is also defined as:

A = −min{hi : ζi + hi ≥ 0}.
We also define Nt as the number of ancestors at time −t of the extant population living at

time 0 minus 1 (that is, we don’t take into account the infinite spine):

Nt = Card {i ∈ I : , hi < −t and ζi + hi ≥ 0}.
In particular, we have that a.s.:

(6) {A > t} = {Nt ≥ 1}.
According to [7], we have that Nt is, conditionally on Z−t, distributed as a Poisson random
variable with mean c(t)Z−t. In particular, we have:

(7) E[Nt] =
c(t)

θ
·

2.4. The Kesten tree. We shall also use the so-called Kesten tree T Kesten which is obtained
by grafting the trees Ti at height hi > 0 along the semi-infinite spine R+ rooted at ϱ = 0 ∈ R+.
The local time process (ZKesten

t , t ∈ R) associated to T Kesten is then defined as: ZKesten
t =∑

0<hi≤t Y i
t−hi

. Then, the one-dimensional marginal of the total mass process ZKesten
t = ZKesten

t (1)
is distributed as the size biased distribution of Yt under the excursion measure, that is, for t > 0
and h a measurable non-negative function:

(8) E[h(ZKesten
t )] =

N[Yth(Yt)]

N[Yt]
= e2βθtN[Yth(Yt)].

3. Coalescent Point Process of sampled stationary trees

We recall the following construction from [1]. Let T st be the genealogical tree associated to
the stationary CB process Z defined in the previous section. We shall consider the genealogical
sub-tree Tn spanned by n individual uniformly chosen among the population at time 0. More
precisely, let (Xk, k ∈ N∗) be independent leaves of T st at a given level, say 0 for simplicity,
chosen uniformly, that is according to the probability measure Z0/Z0. For n ∈ N∗, let Tn be
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the subtree spanned by the leaves X1, . . . ,Xn (that is, the smallest subtree of T st containing
X1, . . . ,Xn) rooted at the MRCA of X1, . . . ,Xn. We refer to [1] for a more formal definition. We
now give an elementary representation of the tree Tn.

(i) Let (Eg, Ed) be independent exponential random variables with parameter 2θ; so that Z0

is distributed as Eg+Ed. For simplicity, we identify Z0 with Eg+Ed. Let also (Uk, k ∈
N∗) be independent random variables, uniformly distributed on [0, 1], independent of
Eg, Ed. We define the positions X0 = 0 and Xk = Z0Uk − Eg for k ∈ N∗. The position
X0 corresponds to the individual alive at time 0 of the immortal lineage.

(ii) Let n ∈ N∗ be fixed. We consider the set of “leaves” Ln = {−Eg, Ed, X0, . . . , Xn−1} and
the corresponding order statistics X(0) = −Eg < X(1) < . . . < X(n) < X(n+1) = Ed. For
k ∈ {0, . . . , n+ 1} we consider the interval [X(k), X(k+1)] for X(k) < 0, [X(k−1), X(k)] for
X(k) > 0, and the singleton {X(k)} for X(k) = 0, and denote by Ik its length. Notice

that
∑n+1

k=0 Ik = Z0.
(iii) Recall the function c defined in (5). For δ > 0, let ζ∗(δ) be a random variable on (0,∞)

whose distribution is given by:

P(ζ∗(δ) ≤ t) = e−δc(t) for t > 0.

In particular, ζ∗(δ) is distributed as:

(9)
1

2βθ
log

(
1 +

2θδ

E

)
,

where E is an exponential random variable with mean 1. Notice that if (ζi, i ∈ I), with I
at most countable, are independent random variables with ζi distributed as ζ∗(δi), then
supi∈I ζi is distributed as ζ∗(δ) with δ =

∑
i∈I δi.

Conditionally on Ln, let (ζk, 0 ≤ k ≤ n + 1) be independent random variables such
that ζk is distributed as ζ∗(Ik), with E in (9) independent of Ik, for 0 ≤ k ≤ n+ 1, and
consider the ancestral point measure on R× R+ (notice the sum is from 1 to n):

(10) An =

n∑
k=1

δ(X(k),ζk).

Notice that (0, 0) is an atom of An.
Finally, let Tn be the ancestral tree associated defined as following: attach the semi-

infinite branch (−∞, 0] at the position X0 = 0 on the segment [−Eg, Ed], and for all
1 ≤ k ≤ n, such that X(k) ̸= 0, attach a branch with length ζk at the position X(k) on
the segment [−Eg, Ed]. Then, identify the bottom of each branch such that X(k) < 0
(resp. X(k) > 0) with the point with depth ζk on the first branch with longer length on
the right (resp. on the left). Eventually cut the semi-infinite branch at its last (going
downwards) branching point, say ϱn, which is at length max1≤k≤n ζk. Then, consider ϱn
as the root of Tn. An instance of the ancestral tree is represented in Fig 1.

The next result is a consequence of [1, Lemma 4.1]; notice however that in [1] the ancestral
lineage (that is the position of X0) is given, and that X0 is not seen as a leaf of the sampled
tree. In other words, the approach developed in [1] does not involve the immortal lineage and
thus sees the stationary CB process Z as a CB process with immigration, whereas our approach
here takes into account the immortal lineage as X0 is a leaf of Tn.

Lemma 3.1 (Representation of the genealogical tree of n individuals). For n ∈ N∗, the rooted
tree Tn spanned by X1, . . . ,Xn is distributed as the rooted tree Tn.
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−Eg X(1)

ζ1

X(2)

ζ2

X(3) X(4)

ζ4

X(5)

ζ5

Ed

ϱn •

ϱ •

Figure 1. An instance for n = 5 of the ancestral tree Tn with its root ϱn, which
appears in Lemma 3.1. In this instance, the semi-infinite branch is attached to
X(3) = X0 = 0 and cut at the MRCA ϱn of the uniformly sampled individuals
{X1, . . . , X4} in the whole population [−Eg, Ed] and X0. The branch attached
to X(k) has length ζk, with ζ3 = 0 by convention as X(3) = 0. The tree T′

n which
appears in Lemma 5.2 is similar but for the semi-infinite branch which is now cut
at the MRCA ϱ of the whole population [−Eg, Ed]. (Of course ϱ is an ancestor
of ϱn and can be equal to ϱn.)

According to [7, Proposition 7.3], conditionally on Z0, the time A of the grand MRCA of the
entire population at time 0 is distributed as ζ∗(Z0), and thus also distributed as max0≤k≤n+1 ζk
conditionally on Ln, that is:

(11) P(A ≤ t |Z0 = z) = P
(

max
0≤k≤n+1

ζk | (Uk, k ∈ N∗), Eg + Ed = z

)
= exp(−c(t)z).

(This formula can also be deduced from (6) and the distribution of Nt.)
We end this section with a technical lemma which will be used later on. Let n ∈ N∗ be fixed.

Using the ancestral process An from (10), we define for j ≤ ℓ ∈ J1, nK:

(12) ζ⋆j: ℓ = ζj ∨ · · · ∨ ζℓ = sup
j≤i≤ℓ

ζi.

We also define ζMRCA
j: ℓ for the time to the MRCA of X(j), . . . , X(ℓ). By construction, we have

ζMRCA
j: ℓ ≤ ζ⋆j: ℓ, see Fig. 2 for various instances (and Fig. 2(d) for an instance of strict inequality).

Notice that ζMRCA
j: j = 0 by construction and recall that ζj = 0 if X(j) = 0. We have the following

precise result.

Lemma 3.2 (Time to the MRCA of consecutive individuals). Let n ∈ N∗ be given. Let 1 ≤ j <
ℓ ≤ n. We have:

ζMRCA
j: ℓ =


ζ⋆j+1: ℓ if X(j) ≥ 0,

ζ⋆j: ℓ−1 if X(ℓ) ≤ 0,

ζ⋆j: ℓ if X(j)X(ℓ) ≤ 0.

Proof. In the first case (see Fig. 2 on the top left for an illustration), we consider that X(j) = 0,
and thus ζj = 0. Then, the branch with length ζ⋆j: ℓ necessarily branches on the ancestral
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−Eg

•ζj−1

X(j)

• ζMRCA
j: ℓ

X(ℓ)

• ζℓ+1

Ed

(a) X(j) = 0, ζMRCA
j: ℓ = ζ⋆j: ℓ and

Lj: ℓ = 0.

−Eg

•ζj−1

X(j)

• ζMRCA
j: ℓ

X(ℓ)

• ζℓ+1

Ed

(b) X(j) = 0, ζMRCA
j: ℓ = ζ⋆j: ℓ and

Lj: ℓ > 0.

0 X(j)

• ζMRCA
j: ℓ

X(ℓ)

• ζℓ+1

Ed

(c) X(j) > 0, ζMRCA
j: ℓ = ζ⋆j: ℓ and

Lj: ℓ = 0.

0 X(j)

• ζ⋆j: ℓ

•ζMRCA
j: ℓ

X(ℓ)

• ζℓ+1

Ed

(d) X(j) > 0, ζMRCA
j: ℓ < ζ⋆j: ℓ and

Lj: ℓ > 0.

Figure 2. Four possible configurations of X(j), . . . , X(ℓ) with their TMRCA

ζMRCA
j: ℓ , along with locations (in blue and of length Lj: ℓ) for k-admissible muta-

tions (with k = ℓ− j+1) carried only by this set of leaves, whenever these exist.
Notice that ζMRCA

j: ℓ is strictly less than ζ⋆j: ℓ only in the bottom left figure.

branch of X(j) (that is, the branch attached to X(j)), and the branching point is the MRCA of

X(j), . . . , X(ℓ). Thus the time to the MRCA is ζMRCA
j: ℓ = ζ⋆j+1: ℓ = ζ⋆j: ℓ, where we used that ζj = 0

for the last equality.
In the second case, we consider that X(j) > 0 and ζj = ζ⋆j: ℓ, see an instance in Fig. 2 on the

top right. Then, the branch with length ζ⋆j+1: ℓ necessarily branches on the ancestral branch of

X(j), and the branching point is the MRCA of X(j), . . . , X(ℓ). This also gives ζMRCA
j: ℓ = ζ⋆j+1: ℓ.

In the third case, we consider that X(j) > 0 and there exists i ∈ J2, ℓK such that ζi = ζ⋆j: ℓ,

and thus ζi = ζ⋆j+1: ℓ (see Fig. 2 bottom left for an illustration of this configuration). Let

ig = inf{i′ ∈ J1, j − 1K : ζi′ > ζi or X(i′) = 0}. By definition, the ancestral branch of the leaf
X(i) branches onto the ancestral branch ofX(ig) ifX(ig) > 0 or onto the spine ifX(ig) = 0. In both

cases, the branching point is the MRCA of X(j), . . . , X(ℓ). This also gives ζMRCA
j: ℓ = ζi = ζ⋆j+1: ℓ.
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Those three cases give a complete picture when X(j) ≥ 0. The case X(ℓ) ≤ 0 is similar. So we
are left with the case X(j)X(ℓ) < 0, where one of the leaves X(j), . . . , X(ℓ) belongs to the infinite
spine (see Fig. 2 bottom right). In this case, the MRCA of X(j), . . . , X(ℓ) is on the spine at

height ζMRCA
j: ℓ = ζ⋆j: ℓ, □

4. Discrete Frequency Spectrum

The neutral mutations on the stationary population are given by the atoms of a point measure
on T st with intensity a mutation rate, say µ > 0, times the length measure L (dx) on T st. We
sample n ∈ N∗ individuals from the extant population in a stationary branching process at a
given time, say 0 for simplicity. In this section, we will first give some general results for the
site frequency spectra of the ancestral tree Tn, defined in Section 3, with n fixed. Thanks to
Lemma 3.1, we can recast the problem using a point measure M =

∑
i∈I δmi on the random tree

Tn (associated with the ancestral point measure An) with intensity µ times the length measure

on its branches. The associated site frequency spectrum (ξ
(n)
k , 1 ≤ k ≤ n − 1) is then defined

by:

(13) ξ
(n)
k =

∑
i∈I

1{cn(mi)=k},

where for x ∈ Tn, cn(x) ∈ J1, nK is the number of leaves X(j) among the n sampled leaves such
that x ⪯ X(j). Note that the only vertex of Tn such that cn(x) = n is the root ϱ, which justifies
that we are only considering the SFS up to index k = n− 1.

We stress that if a mutation is present in exactly k ∈ J1, n − 1K leaves of Tn, then those
leaves necessarily have consecutive positions, in the sense that the leaves carrying that mutation
are exactly X(j), . . . , X(j+k−1) for some j ∈ J1, n − k + 1K. In order to be carried by exactly k
consecutive leaves, a mutation has to be ancestral to their MRCA, but no ancestral to any other
leaf. We will call such mutations k-admissible.

Lemma 4.1 (k-admissible mutations). Let n ∈ N∗ and k ∈ J1, n − 1K be given. Conditionally
on the ancestral point measure An, the number of k-admissible mutations carried by the k-tuple
X(j), . . . , X(ℓ), for j ∈ J1, n− k + 1K and ℓ = j + k − 1, is Poisson distributed with mean µLj: ℓ,
where:

(14) Lj: ℓ =


[ζj ∧ ζℓ+1 − ζMRCA

j: ℓ ]+ if X(j) > 0,

[ζj−1 ∧ ζℓ − ζMRCA
j: ℓ ]+ if X(ℓ) < 0,

[ζj−1 ∧ ζℓ+1 − ζMRCA
j: ℓ ]+ if X(j)X(ℓ) ≤ 0,

where in (14) we set ζ0 = ζn+1 = +∞ by convention and ζMRCA
j: ℓ = 0 if k = 1 by construction.

Intuitively, the first two cases in equation (14) represent the two symmetric situations in
which all of the leaves X(j), . . . , X(j+k−1) are on one side of the infinite spine. In those cases,
k-admissible mutations are possible only on ancestral branches of the X(j), . . . , X(j+k−1), see
Fig. 2(d). The third case represents the contribution of the spine, which is nonzero if and only
if both ζj−1 and ζj+k are greater than the longest ancestral branch among the ζ1, . . . , ζk and if
X(j−1) and X(j+k) lie on opposite sides of the spine, see Fig. 2(b).

Proof. We first assume that X(j) > 0, meaning that all the k consecutive leaves X(j), . . . , X(ℓ)

are on the right side of the spine. The mutations carried only by the k leaves need to lie on the
stem of the genealogical tree, say Tj: ℓ, of X(j), . . . , X(ℓ), which is of length ζ⋆j: ℓ − ζMRCA

j: ℓ . By

Lemma 3.2, this length is also equal to [ζj − ζ⋆j+1: ℓ]+. We shall now assume it is positive, that

is, ζMRCA
j: ℓ < ζj , see Fig. 2(d) for an instance.
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If ζℓ+1 ≤ ζMRCA
j: ℓ , all mutations on the stem will also be carried by X(ℓ+1) since the ancestral

branch of X(ℓ+1) will be grafted on Tj: ℓ, providing no k-admissible mutations. If ζMRCA
j: ℓ <

ζℓ+1 ≤ ζj , then the ancestral branch of X(ℓ+1) will be grafted on the stem of Tj: ℓ, and only
mutations between the root of this sub-tree and that branching point will be k-admissible. If
ζℓ+1 > ζj , then the ancestral branch of X(ℓ+1) will be grafted below the stem, and all mutations
on the stem are then k-admissible.

In conclusion the part of branch carrying the k-admissible mutations is of length [ζℓ+1 ∧ ζj −
ζMRCA
j: ℓ ]+.

The case X(ℓ) < 0 is similar. So, we now consider the case X(j)X(ℓ) ≤ 0, see Fig. 2(b) for
an instance of Lj: ℓ > 0. In particular, there exists i ∈ Jj, ℓK (random) such that X(i) = 0,
and the MRCA of X(j), . . . , X(ℓ) belongs to the ancestral lineage of X(i), that is the spine. The
k-admissible mutations then need to be on the spine below the MRCA but above the MRCA
of X(j−1), . . . , X(ℓ) and the MRCA of X(j), . . . , X(ℓ+1). Using the convention ζ0 = ζn+1 = +∞,
we deduce the part of the branch carrying the k-admissible mutations is of length [ζj−1 ∧ ζℓ+1−
ζMRCA
j: ℓ ]+. □

The number of k-admissible mutations carried by Tn is Poisson distributed with mean µLk

with:

(15) Lk =
n−k+1∑
j=1

Lj: k.

We have a simple closed formula for the expectation of Lk. Recall (9). Let U(1) < · · · < U(n) be
the order statistics of n independent uniform random variable on [0, 1] which are also independent
of Z0 and of an independent exponential random variable E with mean 1. Set S0 = 0 and for
ℓ ∈ J1, nK:

Sℓ = E
[

1

2βθ
log

(
1 +

2θZ0 U(ℓ)

E

) ∣∣∣Z0

]
Lemma 4.2 (Mean of Lk). Let n ∈ N∗ and k ∈ J1, n− 1K be given. We have:

(16) E[Lk |Z0] = (n− k)(2Sk − Sk−1 − Sk+1) + Sk+1 − Sk−1.

Proof. Since x ∧ y = x+ y − x ∨ y and [x− z]+ = x ∨ z − z, we get that:

[x ∧ y − z]+ = x ∨ z + y ∨ z − z − x ∨ y ∨ z for all x, y, z ∈ R.

Set J ∈ J1, nK such that X(J) = 0. Using Lemmas 3.2 and 4.1, we obtain for k > 1 and that:

E[Lk |Z0]

= E
[ ∑
J<j≤n−k+1

(
ζ⋆j: j+k−1 + ζ⋆j+1: j+k1{j+k≤n} − ζ⋆j+1: j+k−1 − ζ⋆j: j+k1{j+k≤n}

)
|Z0

]
+ E

[ ∑
1≤j<J−k+1

(
ζ⋆j−1: j+k−21{j≥2} + ζ⋆j: j+k−1 − ζ⋆j: j+k−2 − ζ⋆j−1: j+k−11{j≥2}

)
|Z0

]
+ E

[ ∑
1∨(J−k+1)≤j≤J∧(n−k+1)

(
ζ⋆j−1: j+k−11{j≥2} + ζ⋆j: j+k1{j+k≤n} − ζ⋆j: j+k−1 − ζ⋆j−1: j+k1{j≥2, j+k≤n}

)
|Z0

]
.

Let U(1) < · · · < U(n) be the order statistics of n independent uniform random variable on [0, 1]
which are also independent of Z0. We simply denote by Wℓ the random variable given by (9)
with δ replaced by Z0 U(ℓ) and E independent of Z0, U1, . . . , Un. In particular, conditionally on
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J and Z0, we have that ζ⋆j: ℓ is distributed as Wℓ−j+1 if J < j ≤ ℓ ≤ n or 1 ≤ j ≤ ℓ < J but
simply as Wℓ−j if 1 ≤ j ≤ J ≤ ℓ ≤ n and j < ℓ as ζJ = 0. We thus deduce that:

E[Lk |Z0] = E
[ ∑
J<j≤n−k+1

(
Wk +Wk1{j+k≤n} −Wk−1 −Wk+11{j+k≤n}

)
|Z0

]
+ E

[ ∑
1≤j<J−k+1

(
Wk +Wk1{j≥2} −Wk−1 −Wk+11{j≥2}

)
|Z0

]
+ E

[ ∑
1∨(J−k+1)≤j≤J∧(n−k+1)

(
Wk1{j≥2} +Wk1{j+k≤n} −Wk−1 −Wk+11{j≥2, j+k≤n}

)
|Z0

]
.

By definition, we have Sℓ = E[Wℓ |Z0] for ℓ ∈ J1, nK. We get:

E[Lk |Z0] = 2(n− k)Sk − (n− k + 1)Sk−1 − (n− k − 1)Sk+1

= (n− k)(2Sk − Sk−1 − Sk+1) + Sk+1 − Sk−1.

It is easy to check that this formula also holds for k = 1 as S0 = 0. □

We now compute the SFS of the ancestral tree Tn of n ∈ N∗ individuals sampled from the
extant population in a stationary branching process at a given time, say 0 for simplicity.

Theorem 4.3 (Site frequency spectra of n individuals at a given generation). The expected
number of mutations carried by exactly k ∈ J1, n − 1K individuals among n ≥ 2 individuals
sampled uniformly in the population at a fixed time for a stationary subcritical branching process
satisfies:

β

µZ0
E[ξ(n)k |Z0] =

1

k
+

1

k
g1

(
θZ0,

k

n

)
+

√
k

n2
g2

(
θZ0,

k

n
, n

)
,

where the function g1 is continuous on R∗
+ × [0, 1] with g1(z, 0) = 0 and for all z, there exists

a constant C such that g1(z, u) ≤ Cu(| log(u)| + 1) and g2(z, u, n) ≤ C for all u ∈ [0, 1] and
n ≥ 2. In particular, if (kn, n ∈ N∗) is a sequence such that limn→∞ kn/n = u ∈ [0, 1] and
kn ∈ J1, n− 1K, then we have:

(17) lim
n→∞

kn E[ξ
(n)
kn

|Z0] =
µZ0

β
(1 + g1 (θZ0, u)) .

The function g1 is explicitly given in (32) and drawn in Fig. 3 for various values of z. Note
that g1(z, u) = 2(z− 1)u log(u)+O(u) for small u, hence g1 is not differentiable at u = 0 except
for the singular value z = 1, which corresponds to the case in which Z0 is equal to its mean
E[Z0] = 1/θ.

Proof. Thanks to Lemma 3.1, we recast the problem using a point measure M on the random
tree Tn (associated with the ancestral point measure An) with intensity µ times the length
measure on its branches. Let J ∈ J1, nK such that X(J) = 0. We also recall the definition (12)
of ζ⋆j: ℓ and that ζJ = 0.

Let k ∈ J1, n−1K. The number of k-admissible mutations carried by Tn is Poisson distributed
with mean µLk given in (15). Recall that Sk is distributed as E[ζ∗(Z0U(k))] with U(k) the k-th
order statistics of n independent random variables U1, . . . , Un uniformly distributed over [0, 1]
also independent of Z0, and (Z0, U(k)) is independent of E in (9). We also recall formula (5.15)
from [1]:

E [ζ∗(δ)] = δ H(2θδ) with H(x) =

∫ ∞

0

1− e−u

u

du

u+ x
·



SITE FREQUENCY SPECTRUM IN STATIONARY BRANCHING POPULATIONS 13

0.0 0.2 0.4 0.6 0.8 1.0
u

0.8

0.6

0.4
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g 1
(z

,u
)
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z = 1.0
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Figure 3. Plot of g1(z, u) for various values of z.

Let γ be the Euler constant. Using that:

1− γ =

∫ 1

0

(
1− e−u−u

) du

u2
+

∫ ∞

1

(
1− e−u

) du

u2
,

and elementary computations, we get that:

H(x) =

∫ 1

0

(
1− e−u−u+

u2

2
− u3

6

)(
1

u+ x
− 1

u

)
du

u
+

∫ ∞

1
(1− e−u)

(
1

u+ x
− 1

u

)
du

u

+

∫ 1

0

(
1− u

2
+
u2

6

)
du

u+ x
+

∫ 1

0

(
1

2
−u
6

)
du+ 1− γ

= h0(x)−
(
1 +

x

2
+
x2

6

)
log(x)− x

6
+ 1− γ,

where:

(18) h0(x) =

(
1 +

x

2
+
x2

6

)
log(1 + x)−

∫
(0,∞)

f(u)
x du

u+ x
,

and:

(19) f(u) =
1

u2

(
1− e−u−u+

u2

2
− u3

6

)
1{u≤1} +

1

u2
(
1− e−u

)
1{u>1}.

This decomposition is motivated by the fact that f(u)/u2 is integrable. So we get:

βE [ζ∗(δ)] = −δ
(
1 + θδ +

2

3
θ2δ2

)
log(2θδ) + (1− γ)δ − θ

3
δ2 + δh0(2θδ).

Let log+(x) = max(0, log(x)). For simplicity, we set:

(20) h1(x) = xh0(x),

and get the following bounds on the derivatives of h1: there exists a finite constant C such that
for x ≥ 0:

(21) |h(i)1 (x)| ≤ C(1 + x3−i log+(x)) and i ∈ {0, . . . , 3}.
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Now, in the computation of Sk, the random variable U(k), which is independent of Z0, has
a Beta distribution with parameter (k, n − k + 1). We recall that if V has a Beta distribution
with parameter (a, b) and i ∈ N:

E[V ] =
a

a+ b
,

E[V 2] =
a(a+ 1)

(a+ b)(a+ b+ 1)
,

E[V i+1 log(V )] =
a · · · (a+ i)

(a+ b) · · · (a+ b+ i)

(
Ψ(a+ i+ 1)−Ψ(a+ b+ i+ 1)

)
,

with Ψ(x) = Γ′(x)/Γ(x) the digamma function. We shall use that for x > 0:

(22) log(x)− 1

x
≤ Ψ(x) ≤ log(x)− 1

2x
and Ψ(x+ 1) = Ψ(x) +

1

x
·

Let us mention that Ψ(ℓ+ 1) = Hℓ − γ, with H0 = 0 and Hℓ =
∑ℓ

i=1 i
−1 the harmonic sum for

ℓ ∈ N∗ and γ the Euler constant.
We set:

Bn,k = Ψ(n+ 2)−Ψ(k + 1) + 1− γ − log(2θZ0),

Cn,k = Ψ(n+ 3)−Ψ(k + 2)− 1

3
− log(2θZ0),

Dn,k = Ψ(n+ 4)−Ψ(k + 3)− log(2θZ0)

and

An,k =
k

(n+ 1)
Bn,k + θZ0

k(k + 1)

(n+ 1)(n+ 2)
Cn,k +

2θ2Z2
0

3

k(k + 1)(k + 2)

(n+ 1)(n+ 2)(n+ 3)
Dn,k,

as well as:

Fn,k = E
[
U(k) h0(2θZ0 U(k)) |Z0

]
=

1

2θZ0
E
[
h1(2θZ0 U(k)) |Z0

]
.

In particular, we have:

(23)
β

Z0
Sk = An,k + Fn,k.

By convention we set U(0) = 0 so that the formula (23) also holds for k = 0 as by convention
S0 = 0. Recall k ∈ J1, n− 1K. Using (22), we also get:

β

Z0
Sk−1 = An,k + Fn,k−1 −

1

(n+ 1)

(
Bn,k − 1 +

1

k

)
− θZ0

k

(n+ 1)(n+ 2)

(
2Cn,k −

k − 1

k + 1

)
− 2θ2Z2

0

3

k(k + 1)

(n+ 1)(n+ 2)(n+ 3)

(
3Dn,k −

k − 1

k + 2

)
,

β

Z0
Sk+1 = An,k + Fn,k+1 +

1

(n+ 1)
(Bn,k − 1)

+ θZ0
k + 1

(n+ 1)(n+ 2)
(2Cn,k − 1)

+
2θ2Z2

0

3

(k + 1)(k + 2)

(n+ 1)(n+ 2)(n+ 3)
(3Dn,k − 1) .
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So for k ∈ J1, n− 1K, we have:

(24)
β

Z0
E[Lk |Z0] =

1

k
+

B
(1)
n,k

(n+ 1)
+ θZ0

C
(1)
n,k

(n+ 1)(n+ 2)

+
2θ2Z2

0

3

(k + 1)D
(1)
n,k

(n+ 1)(n+ 2)(n+ 3)
+
(
R

(1)
n,k + (n− k)R

(2)
n,k

)
.

with:

B
(1)
n,k = 2Bn,k − 3,

C
(1)
n,k = 2(−n+ 3k + 1)Cn,k +

n(3k + 1)− (5k2 + 2k + 1)

k + 1
,

D
(1)
n,k = 6(−n+ 2k + 1)Dn,k +

1

k + 2
((n− k)(5k + 4)− (2k2 + 3k + 4)),

R
(1)
n,k = Fn,k+1 − Fn,k−1,

R
(2)
n,k =

(
2Fn,k − Fn,k−1 − Fn,k+1

)
.

So we get with u = k/n ∈ (0, 1):

B
(1)
n,k

(n+ 1)
=
u

k
(−2 log(u)− 1− 2γ − 2 log(2θZ0)) +O

( u
k2

)
,

C
(1)
n,k

(n+ 1)(n+ 2)
=
u

k

(
2(1− 3u) (log(u) + log(2θZ0)) +

11

3
− 7u

)
+O

( u
k2

)
,

(k + 1)D
(1)
n,k

(n+ 1)(n+ 2)(n+ 3)
=
u2

k
(6(1− 2u) (log(u) + log(2θZ0)) + 5− 7u) +O

( u
k2

)
,

where O
(
u/k2

)
has to be understood as a function of θ, Z0, n, and k which is bounded by C/nk,

with C a constant depending only on θ and Z0. We first consider the term R
(1)
n,k:

2θZ0R
(1)
n,k = E

[
h1(2θZ0 (∆ + U(k−1)))− h1(2θZ0 (U(k−1)))) |Z0

]
,

where ∆ = U(k+1) − U(k−1) is distributed as U(2). Recall u = k/n, and notice that:

(25) E
[
(U(k−1) − u)2

]
=
u(1− u)

n
+O(n−2).

Notice that (25) holds indeed for k = 1 as by convention U(0) = 0 and the left hand-side of (25)

is equal to O(1/n2). Since:

h1(δ + x)− h1(x) = δh′1(x) +

∫ δ

0
(δ − t)h′′1(t+ x) dt,

and, thanks to (21) for the control of the second derivative of h1:

|h′1(2θZ0 U(k−1))− h′1(2θZ0u)| ≤ C(1 + θZ0)
3|U(k−1) − u|

we deduce, using Cauchy-Schwartz inequality and (25), that:

R
(1)
n,k = E[∆]h′1(2θZ0 u) + θZ0 E[∆2]1/2 E

[
(U(k−1) − u)2

]1/2
O (1) + θZ0O

(
E[∆2]

)
(26)

=
2

k
uh′1 (2θZ0 u) +O

(
u2

k3/2

)
.
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We now control the term R
(2)
n,k. We have:

(27) 2h1(x+ δ)− h1(x)− h1(x+ δ + δ′) = (δ − δ′)h′1(x) +H(x, δ, δ′),

with:

(28) H(x, δ, δ′)

= 2

∫ δ

0
(δ − t)h′′1(x+ t) dt −

∫ δ+δ′

0
(δ + δ′ − t)h′′1(t) dt

=

(
δ2 − (δ + δ′)2

2

)
h′′1(x) +

∫ δ

0
(δ − t)2h′′′1 (t+ x) dt− 1

2

∫ δ+δ′

0
(δ − t)2h′′′1 (t+ x) dt.

Take X = 2θZ0U(k−1), δ = 2θZ0∆ and δ′ = 2θZ0∆
′ with ∆ = U(k) − U(k−1) and ∆′ = U(k+1) −

U(k). Notice that ∆ and ∆′ are distributed as U(1) and that (∆, U(k−1)) and (∆′, U(k−1)) have
the same distribution. This implies that:

E[(∆−∆′)h′1(X) |Z0] = 0,

and thus:

(29) 2θZ0R
(2)
n,k = E[2h1(X + δ)− h1(X)− h1(X + δ + δ′)] = E[H(X, δ, δ′) |Z0].

We also have, thanks to (21):

|h′′1(2θZ0 U(k−1))− h′′1(2θZ0u)| ≤ C(1 + θZ0)
2|U(k−1) − u|.

Using (29), (25) and that ∆ +∆′ is distributed as U(2), we obtain similarly that:

R
(2)
n,k = 2θZ0

(
E[∆2]− E[(∆ +∆′)2]

2

)
h′′1(2θZ0 u) +

1

n
O

(
u2

k3/2

)
= −2θZ0

u

nk
h′′1 (2θZ0 u) +

1

n
O

(
u2

k3/2

)
.

We thus obtain that:

(30) R
(1)
n,k + (n− k)R

(2)
n,k =

2

k
uh′1 (2θZ0 u)−

2θZ0

k
u(1− u)h′′1 (2θZ0 u) +O

(
u2

k3/2

)
.

In conclusion, we get that for k ∈ J1, n− 1K:

(31)
βk

Z0
E[Lk |Z0] = 1 + g1(θZ0, u) +O

(
u2

k1/2

)
= 1 + g1(θZ0, u) +

k3/2

n2
O (1) ,

with g1 given for u ∈ [0, 1] and z > 0 by:

g1(z, u) =u (−2 log(u)− 1− 2γ − 2 log(2z))(32)

+ zu

(
2(1− 3u) (log(u) + log(2z)) +

11

3
− 7u

)
+

2

3
z2u2 (6(1− 2u) (log(u) + log(2z)) + 5− 7u)

+ 2uh′1 (2zu)− 2zu(1− u)h′′1 (2zu) ,

where h1 is defined in (20) through h0 from (18) and f from (19). Thanks to (21), we get that
g is continuous on R∗

+ × [0, 1], that g1(z, 0) = 0 and that for all z > 0, there exists a constant

C such that g1(z, u) ≤ Cu(| log(u)| + 1). Set g2(z, u, n) as n
2/
√
k the very last right hand side

term of (31) so that g2(z, u, n) = O(1). Then, use Lemma 4.1, to get E[ξ(n)k |Z0] = µE[Lk |Z0].
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Note that for k = n−1, formula (14) reduces to E[Ln−1|Z0] = 2(Sn−1−Sn−2). The derivations

above are still valid in that case, except for R
(1)
n,n−1 = 2(Fn,n−1 − Fn,n−2) and R

(2)
n,n−1 = 0. The

same computations (with ∆ = U(n−1) − U(n−2) distributed as U(1)) give the same asymptotic

(26) for R
(1)
n,n−1. Since for u = 1, the second derivative term u(1−u)h′′1(2θZ0u) vanishes in (30),

this enables us to recover the asymptotic (17). □

5. Continuous Frequency Spectrum

In this section, we will consider the continuous frequency spectrum of the genealogical tree
T st associated to the stationary CB process Z. We consider a (neutral) mutation process given
by a Poisson point process on M =

∑
i∈I δmi on T st with intensity µL (dx), where µ > 0 is the

individual mutation rate and L (dx) the length measure on T st.
The total offspring subtree of x ∈ T st is defined by T st(x) = {y ∈ T st : x ⪯ y} and the

corresponding clonal sub-tree is defined by:

(33) T st
clonal(x) = {y ∈ T st(x) : M(Jx, yK) = 0}.

In the following sections we shall study the mean measure of the size of the population at time 0
carrying a mutation and the size of the clonal population at time 0 of the MRCA of the extant
population at time 0.

5.1. The mean site frequency measure. Following [8], we consider the site frequency point
measures on (0,+∞) of the extant population at time 0:

(34) Φ =
∑
i∈I

δZ0(T st(mi)).

In other words, we associate to each mutation on the tree the size of the population at time 0
carrying it. The main result of this section describes the mean measures Λ of this point measure:

(35) Λ(dr) = E[Φ(dr)].

Let Γ(0, r) =
∫∞
r v−1 e−v dv denote the incomplete Gamma function.

Theorem 5.1 (The mean SFS measure). The mean site frequency measure Λ of the genealogical
tree T st (associated to the stationary CB process Z) is absolutely continuous with respect to the
Lebesgue measure on R+, with density given by:

(36) f(r) =
µ

β

(
e−2θr

θr
+ e−2θr +2θr Γ(0, 2θr)

)
.

It is worth noticing that

f(r) ∼r→0+
µ

βθr
and f(r) ∼r→+∞

2µ

β
e−2θr .

In other terms, for small r, that is, for mutations shared by a small fraction of the extant
population at time 0, the only significant contribution comes from the mutations not located on
the spine. By contrast, for large r, corresponding to mutations shared by a large number of the
extant population, only spine mutations are significant.

The discrete equivalent of the site frequency point measure is the following measure, defined

on (0, 1), with ξ
(n)
k as in (13):

Φ
(n)
d =

∑
1≤k≤n−1

ξ
(n)
k δ k

n
.
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As n goes to∞, conditionally on T st, this measure converges a.s. to the normalized site frequency
point measure:

Φ
(∞)
d =

∑
i∈I

δZ0(T st(mi))/Z0
.

Unfortunately, due to the lack of a branching structure for the normalized process Zt/Z0, it is

not straightforward to obtain an expression for the mean measure of Φ
(∞)
d as in Theorem 5.1.

Proof. Recall −A denotes the TMRCA and Nt the number of the at time −t of the extant
population living at time 0. Recall the construction of the genealogical tree T st from Section 2.2.
We shall identify s ∈ R with the element on the infinite spine R of T st at height s.

Using the branching property, we get for h a non-negative measurable function defined on
[0,+∞) with h(0) = 0:

Λ(h) = E

[∑
i∈I

h(Z0(T st(mi)))

]

= E
[∫

T st

M(dx)h(Z0(T st(x)))

]
= µE

[∫ ∞

0
dtNtN[h(Yt) | ζ > t]

]
+ µE

[∫ A

0
dtE[h(Z0(T st(−t))) |A > t]

]
.

In this formula, the first term represents the contributions at time 0 of the Nt individuals at
time t before the present that are ancestral to the population at time 0, whereas the second
term is the contribution of the infinite spine, that is, the descendants at time 0 of populations
immigrating between time −t and 0.

The density distribution qt of Yt under the excursion measure N, see [24, p. 63], is given by:

N[dYt = r] = qt(r) dr =
4θ2 e−2βθt

(1− e−2βθt)2
exp

(
− 2θr

1− e−2βθt

)
dr.

Using also the expectation of Nt in (7) and N[ζ > t] = c(t), we obtain for the first term that:

E
[∫ ∞

0
dtNtN[h(Yt) | ζ > t]

]
=

1

θ

∫
(0,∞)

h(r) dr

∫ ∞

0
dt qt(r)

=

∫
(0,∞)

h(r)
e−2θr

βθr
dr.

For the second term, we notice that T st(−t) is distributed as the Kesten tree (rooted at −t)
defined in Section 2.2. Using (8), we get that:

E[h(Z0(T st(−t)))] = E[h(ZKesten
t )] = e2βθtN[Yt h(Yt)].
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Using also (11) and that Z0 is distributed as the sum of two independent exponential random
variable with parameter 2θ, we get:

E
[∫ A

0
dtE[h(Z0(T st(−t))) |A > t]

]
=

∫ ∞

0
dtP(A > t) e2βθtN[Yt h(Yt)]

=

∫ ∞

0
dt

∫
(0,∞)

dr (1− (1− e−2βθt)2) e2βθt rqt(r)h(r)

=
2θ

β

∫
(0,∞)

h(r)dr r

∫ 1

0

1 + u

u2
e−2θr/u du

=
1

β

(
e−2θr +2θr

∫ 1

0
e−2θr/u du

u

)
=

1

β

(
e−2θr +2θr Γ(0, 2θr)

)
.

□

5.2. The clonal subpopulation size. In this section, we consider the size Zcl of the clonal
population at time 0, meaning the individuals sharing the same type as the MRCA ϱ of the
extant population at time 0:

Zcl = Z0(T st
clonal(ϱ)),

with the clonal sub-tree defined by (33). Of course, we have Zcl ≤ Z0 a.s.. By definition of the
mutation point measure M, we get that for all n ≥ 1:

E[Zn
cl |Z0] = E

[∫
(T st)n

e−µL(X1,...,Xn)
n∏

i=1

Z0(dXi)

∣∣∣∣∣ Z0

]
,

where L(X1, . . . ,Xn) is the length of the tree T ′
n spanned by the n leaves X1, . . . ,Xn uniformly

sampled in the extant population at time 0 and the MRCA, say ϱ′, of the extant population.
We recall the tree Tn spanned by the n leaves X1, . . . ,Xn is rooted at the MRCA of X1, . . . ,Xn,
and is thus a sub-tree of T ′

n obtained by removing the (possibly empty) branch from ϱ′ to just
before the MRCA of X1, . . . ,Xn.

Following Section 3, we consider the tree T′
n defined as Tn but for the last step where we

cut the semi-infinite branch not at its last (going downwards) branching point ϱn, which is at
length max1≤k≤n ζk, but at ϱ which is at length max0≤k≤n+1 ζk. Notice that the distribution
of max0≤k≤n+1 ζk does not depend on n, see (11), which explain why we do not stress the
dependence of ϱ in n. See Fig. 1 for an instance of T′

n. Similarly to Lemma 3.1, using [1,
Lemma 4.1], we get the following result.

Lemma 5.2 (Representation of the genealogical tree of n individuals and the MRCA of the
extant population). For n ∈ N∗, the rooted tree T ′

n spanned by ϱ′n,X1, . . . ,Xn is distributed as
the rooted tree T′

n.

We thus deduce that:

(37) E[Zn
cl |Z0] = E

[
Zn
0 e−µLn

∣∣ Z0

]
with Ln the total length of the tree T′

n. By construction the total length of T′
n is given by the

length of the segments attached to the random points X1, . . . , Xn−1 and the the semi-infinite
spine cut at max0≤k≤n+1 ζk which is attached to X0 = 0, that is:

Ln = max
0≤k≤n+1

ζk + Λn−1 and Λn−1 =

n∑
k=1

ζk.
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(Notice that in the above formula ζℓ = 0 for the index ℓ ∈ J1, nK such that X(ℓ) = X0.)

Remark 5.3 (On the asymptotic of Ln). Let us mention that the asymptotics of Λn−1 has been
computed in [1, Section 5], and we have the following convergence in distribution:

Λn−1 −
Z0

β
log

(
n

2θZ0

)
(d)−−−→

n→∞
L,

where the distribution of L is given in [4, Lemma 5.4] (with L denoted by W0 therein). In
fact the construction of the ζk’s can be done in such way that this convergence is a.s., see [1,
Theorem 5.1]. This provides the a.s. convergence of Ln − Z0 log(n)/β in the setting of [1].
However, we did not investigate the joint law of L and the TMRCA of the whole population at
time 0 given by max0≤k≤n+1 ζk (which we recall does not depend on n).

Recall that β(a, b) = Γ(a)Γ(b)/Γ(a+ b) for a, b ∈ R∗
+. We set:

R =
Zcl

Z0
and α =

µ

2βθ
·

Theorem 5.4. For n ∈ N∗, we have:

(38) E[Zn−1
cl R] =

α

(1 + α)n

[
β

(
n,

2 + α

1 + α

)
+ β

(
n,

α

1 + α

)
− 2

n

]
E
[
Zn−1
0

]
.

The formula for E[Zn
cl] is explicit and given by (44) below. In particular, we have:

(39) E[Zcl] = E[RZ0] =
6

(α+ 1)(α+ 2)(α+ 3)
E[Z0] and E[R] =

2

(α+ 1)(α+ 2)

and thus:

Cov(R,Z0) = − 2α

(α+ 1)(α+ 2)(α+ 3)
E[Z0].

We also have:
E[Zn

cl]

E[Zn
0 ]

∼n→∞
2α

2 + α
Γ

(
α

1 + α

)
1

(1 + α)n nα/(1+α)
·

Interestingly, Theorem 5.4 shows that R and Z0 are negatively correlated as Corr(R,Z0) =
−1 + 3/(α+ 3) : larger populations tend to have smaller clonal subpopulations, and this effect
becomes stronger as the mutation rate increases.

5.3. Proofs of Theorem 5.4. We shall use many times the following formula for b > 0:

β(1, b) =
1

b
and β(a, b) ∼a→∞ Γ(b) a−b,

and, as Γ(b+ 1) = bΓ(b), for a > 1:

β(a− 1, b+ 1) =
b

a− 1
β(a, b).

We shall also use that for U uniform on [0, 1], a ≥ 0, k > 0 and b = a/(1 + α):

(40) U(k, a) := E
[
Uα+a

(
1− U1+α

)k−1
]
=

1

1 + α
β(k, 1 + b),

that for a > 0 and k > 1:

(41) U(k − 1, a) =
a

k − 1

1

(1 + α)2
β(k, b),
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and that for a > 1 + α and k > 2:

(42) U(k − 2, a) =
a(a− 1− α)

(k − 1)(k − 2)

1

(1 + α)3
β(k, b− 1).

Let n ∈ N∗. As Z0 is the sum of two independent exponential random variables with mean
1/2θ, we get:

E[Zn−1
0 ] =

n!

(2θ)n−1
·

Using (37), we first consider the quantity:

E[Zn−1
cl R] = E

[
Zn−1
0 e−µLn

]
.

We shall now go back to the definition of the random variables (ζk, 0 ≤ k ≤ n+1) from Item
(ii) of Section 3 to give a nice representation of the distribution of (max0≤k≤n+1 ζk,Λn−1) under

the probability measure dQn = Zn−1
0 dP/E[Zn−1

0 ]. Thus, since 2θZ0 has the Γ(2, 1) distribution,
we obtain that under Qn it has the Γ(n+ 1, 1) distribution.

Recall the random variables X(0) = −Eg < X(1) < . . . < X(n) < X(n+1) = Ed. For k ∈
{0, . . . , n + 1} are the order statistics of {−Eg, Ed, X0, . . . , Xn−1} with X0 = 0 and Xk =
Z0Uk−Eg for k ∈ N∗ and (Uk, k ∈ N∗) be independent random variables, uniformly distributed
on [0, 1], independent of Eg, Ed.

In particular the random variables (∆k = 2θ(X(k) −X(k−1)), 1 ≤ k ≤ n + 1) are distributed
as (2θZ0(U

′
(k) − U ′

(k−1)), 1 ≤ k ≤ n + 1), where U ′
(0) = 0 < U ′

(1) < . . . < U ′
(n) < U ′

(n+1) = 1 is

the order statistics of {0, 1, U ′
1, . . . , U

′
n}, where the random variables (U ′

k, k ∈ N∗) are uniformly
distributed on [0, 1], independent and independent of Z0. Using properties of the Poisson process,
we deduce that under Qn, the random variables (∆k, 1 ≤ k ≤ n+ 1) are distributed as (Ek, 1 ≤
k ≤ n+1), where E = (Ek, k ∈ N∗) are independent exponential random variables with mean 1.

Set (ζ ′k, 1 ≤ k ≤ n+ 1) with:

ζ ′k =
1

2βθ
log

(
E′

k + Ek

E′
k

)
,

where the random variables (E′
k, k ∈ N∗) are distributed as E and independent of E. Now

recall there exists a (random) index i ∈ J1, nK such that ζi = 0, so intuitively among the n + 2
random variable ζ0, . . . , ζn+1, there are only n+ 1 non trivial ones. More precisely, we get that
(max0≤k≤n+1 ζk,Λn−1) is under Qn distributed as:(

max
1≤k≤n+1

ζ ′k,
n∑

k=2

ζ ′k

)
.

The random variables (Vk, k ∈ N), with:

Vk =
E′

k

E′
k + Ek

,

are independent and uniformly distributed on [0, 1]. We deduce that:

(43) E[Zn−1
cl R] = E

[
Zn−1
0

]
E

( min
1≤k≤n+1

V α
k

) n∏
j=2

V α
j

 .
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Elementary computations give that:

E

( min
1≤k≤n+1

V α
k

) n∏
j=2

V α
j

 = 2An + (n− 1)Bn,

with, thanks to (40):

An = E

V α
1

n+1∏
k=2

1{V1<Vk}

n∏
j=2

V α
j

 =
1

(1 + α)n−1
E
[
Uα(1− U)

(
1− U1+α

)n−1
]

=
1

(1 + α)n−1

(
U(n, 0)− U(n, 1)

)
=

1

(1 + α)n

[
1

n
−β
(
n,

2 + α

1 + α

)]
,

and for n ≥ 2, thanks to (41):

Bn = E

V 2α
2

∏
k=1,3,...,n+1

1{V2<Vk}

n−1∏
j=3

V α
j


=

1

(1 + α)n−2
E
[
U2α(1− U)2

(
1− U1+α

)n−2
]

=
1

(1 + α)n−2

(
U(n− 1, α)− 2U(n− 1, 1 + α) + U(n− 1, 2 + α)

)
=

1

n− 1

1

(1 + α)n

[
αβ

(
n,

α

1 + α

)
− 2(1 + α)

n
+ (2 + α)β

(
n,

2 + α

1 + α

)]
.

We deduce that:

2An + (n− 1)Bn =
α

(1 + α)n

[
β

(
n,

2 + α

1 + α

)
+ β

(
n,

α

1 + α

)
− 2

n

]
.

We thus deduce (38) from (43). Taking n = 1, gives the value of E[R] in (39).

We now compute E[Zn
cl]. We have:

E[Zn
cl] =

1

2θ
E
[
Zn−1
0 (2θZ0) e

−µLn
]

=
1

2θ
E[Zn−1

0 ]E

(E1 + . . . En+1) min
1≤k≤n+1

(
E′

k

Ek + E′
k

)α n∏
j=2

(
E′

j

Ej + E′
j

)α


=
1

n+ 1
E[Zn

0 ]
(
2Cn + (n− 1)Dn

)
,

with:

Cn = E

E1 min
1≤k≤n+1

(
E′

k

Ek + E′
k

)α n∏
j=2

(
E′

j

Ej + E′
j

)α


and for n ≥ 2:

Dn = E

E2 min
1≤k≤n+1

(
E′

k

Ek + E′
k

)α n∏
j=2

(
E′

j

Ej + E′
j

)α
 .
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We have:

Cn = E

(E1 + E′
1) (1− V1)

(
min

1≤k≤n+1
V α
k

) n∏
j=2

V α
k


= 2E

(1− V1)

(
min

1≤k≤n+1
V α
k

) n∏
j=2

V α
k


= 2A(0)

n +A(01)
n + (n− 1)B(0)

n ,

where we used that E1 + E′
1 is independent of V1 for the third equality, and with:

A(0)
n = E

(1− V1)V
α
1

n+1∏
k=2

1{V1<Vk}

n∏
j=2

V α
j


=

1

(1 + α)n−1
E
[
Uα(1− U)2 (1− Uα+1)n−1

]
=

1

(1 + α)n−1

(
U(n, 0)− 2U(n, 1) + U(n, 2)

)
=

1

(1 + α)n

[
1

n
−2β

(
n,

2 + α

1 + α

)
+ β

(
n,

3 + α

1 + α

)]
,

and (using elementary computations for the last equality):

A(01)
n = 2E

(1− V1)V
α
n+1

n∏
k=1

1{Vn+1<Vk}

n∏
j=2

V α
j

 = A(0)
n ,

and for n ≥ 2:

B(0)
n = 2E

(1− V1)V
2α
2

∏
k=1,3,...,n+1

1{V1<Vk}

n∏
j=3

V α
j


=

1

(1 + α)n−2
E
[
U2α(1− U)3(1− U1+α)n−2

]
=

1

(1 + α)n−2

(
U(n− 1, α)− 3U(n− 1, 1 + α) + 3U(n− 1, 2 + α)− U(n− 1, 3 + α)

)
=

1

n− 1

1

(1 + α)n

[
αβ

(
n,

α

1 + α

)
− 3

(1 + α)

n
+ 3(2 + α)β

(
n,

2 + α

1 + α

)
− (3 + α)β

(
n,

3 + α

1 + α

)]
.

Similarly, we also have for n ≥ 2:

Dn = E

(E2 + E′
2) (1− V2)

(
min

1≤k≤n+1
V α
k

) n∏
j=2

V α
j


= 2E

(1− V2)

(
min

1≤k≤n+1
Vk

)α n∏
j=2

V α
j


= 2

(
2A(1)

n +B(11)
n + (n− 2)B(1)

n

)
,
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with:

A(1)
n = E

V α
1 (1− V2)

n+1∏
k=2

1{V1<Vk}

n∏
j=2

V α
j

 = An −A(2)
n ,

and:

A(2)
n = E

V α
1 V2

n+1∏
k=2

1{V1<Vk}

n∏
j=2

V α
j


=

1

(2 + α) (1 + α)n−2
E
[
Uα(1− U)(1− U2+α)(1− U1+α)n−2

]
=

1

(2 + α) (1 + α)n−2

(
U(n− 1, 0)− U(n− 1, 2 + α)− U(n− 1, 1) + U(n− 1, 3 + α)

)
=

1

n− 1

1

(2 + α) (1 + α)n

[
(1 + α)− (2 + α)β

(
n,

2 + α

1 + α

)
− β

(
n,

1

1 + α

)
+ (3 + α)β

(
n,

3 + α

1 + α

)]
,

and with (using elementary computations for the last equality):

B(11)
n = E

(1− V2)V
2α
2

∏
k=1,3,...,n

1{V2<Vk}

n∏
j=3

V α
j

 = B(0)
n ,

and lastly with, for n ≥ 3:

B(1)
n = E

(1− V2)V
α
2 V 2α

3

∏
k=1,2,4,...,n+1}

1{V3<Vk}

n∏
j=4

V α
j


= Bn −B(2)

n ,

and, using (42):

B(2)
n =

1

(2 + α) (1 + α)n−3
E
[
U2α(1− U)2(1− U2+α)(1− U1+α)n−3

]
=

1

(2 + α) (1 + α)n−3

(
U(n− 2, α)− U(n− 2, 2 + 2α)

− 2U(n− 2, 1 + α) + 2U(n− 2, 3 + 2α) + U(n− 2, 2 + α)− U(n− 2, 4 + 2α)
)

=
1

(n− 1)(n− 2)

1

(2 + α) (1 + α)n

[
(n− 1)α(1 + α)β

(
n− 1,

α

1 + α

)
− (2 + 2α)(1 + α)

n

− 2(1 + α)2 + 2(3 + 2α)(2 + α)β

(
n,

2 + α

1 + α

)
+ (2 + α)β

(
n,

1

1 + α

)
− (4 + 2α)(3 + α)β

(
n,

3 + α

1 + α

)]
.

In conclusion, we obtain that:

(44) E[Zn
cl]

=
1

n+ 1
E[Zn

0 ]
(
2Cn + (n− 1)Dn

)
=

2

n+ 1
E[Zn

0 ]
(
3A(0)

n + 2(n− 1)(An −A(2)
n +B(0)

n ) + (n− 1)(n− 2)(Bn −B(2)
n )
)
.
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Taking n = 1 in the above formula, we get:

E[Zcl] = 3A
(0)
1 E[Z0] =

3

(1 + α)

[
1− 2

1 + α

2 + α
+

1 + α

3 + α

]
E[Z0],

which gives the first part of (39). We now give the leading term in (44). We have:

(1 + α)nA(0)
n = O(n−1),

(1 + α)nAn = O(n−1),

(1 + α)nA(2)
n = O(n−1),

(1 + α)nB(0)
n = o(n−1),

(1 + α)nBn = n−1−α/(1+α)αΓ

(
α

1 + α

)
+O(n−2),

(1 + α)nB(2)
n = n−1−α/(1+α) 1 + α

2 + α
αΓ

(
α

1 + α

)
+O(n−2).

We deduce that:

E[Zn
cl] =

2α

2 + α
Γ

(
α

1 + α

)
E[Zn

0 ]
1

(1 + α)n

(
1

nα/(1+α)
+O(n−1)

)
.

This ends the proof of Theorem 5.4.
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Patrick Hocheit, INRAE, MaIAGE,Université Paris-Saclay, 78350 Jouy-en-Josas, France
Email address: patrick.hoscheit@inrae.fr


	1. Introduction
	2. Preliminaries
	2.1. Stationary continuous branching processes
	2.2. Genealogical tree of the  CB process
	2.3. Quantities related to the genealogical tree
	2.4. The Kesten tree

	3. Coalescent Point Process of sampled stationary trees
	4. Discrete Frequency Spectrum
	5. Continuous Frequency Spectrum
	5.1. The mean site frequency measure
	5.2. The clonal subpopulation size
	5.3. Proofs of Theorem 5.4

	References

