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Proposition 4.8 shows that the equilibrium 0 is not asymptotically stable, in the sense that we
can find initial conditions arbitrarily close to 0 in norm such that ¢ (¢, g) does not converge to 0
pointwise (note that ||w, || may be chosen arbitrarily small). Since we < 1, we get by monotony

and the comparison Theorem that w, < ¢ (z, w;) < ¢ (¢, 1), which implies that w, < g*. In par-
ticular we get the following corollary. ( Or eg iy P«Ln } (17 .S ')
o

Corollary 4.9. If Assumption | is in force and s(Ty — y) > 0, then we have:
[ewuen>o,
Q

We deduce from Proposition 4.8 that ¢ +> ¢ (¢, w,) converges pointwise as ¢ tends to infinity
since ¢ (¢, we) < 1 for all z. According to Proposition 2.13, the limit is an equilibrium. It is not 0
but it might be different from g*. We will use Assumption 2 to ensure that 0 and g* are the only
equilibria. In order to prove this result, we need the following lemma.

Lemma 4.10 (Instantaneous propagation of the infection). Suppose Assumptions | and 2 are in
force. If g € A satisfies fQ g(x) u(dx) > O, then, forall t > 0, ¢(¢, g) is p-a.e. positive.

Proof. Since the flow is order-preserving (see Proposition 2.8), it is sufficient to show the propo-
sition for g such that ||g|| < 1/2. It follows from Equation (29) that:

¢, 8) < lgll + I Tl

Thus, for all ¢ € [0, ¢), with ¢ = (1 — 2||g])/2||7x|| (and ¢ = 400 if ||T|| = 0), we have that
(2, g) < 1/2. Now, we define the function:

Taking ¢ > O smaller if necessary, we get u(¢) < ||gll(1 + ¢|Tx]l) < 1/2 for t € [0, ¢). Then we
getfor ¢ € [0, ¢):

W' (@) — Fu®) = T/2 — lly Du@) — (1 —u@) Tru(®) + yu(?)
= (u(t) — 1/2)Tru(t) — (ly 1l — y)u(@)
<0="0'(z) — F(b(1)),

where b(t) = ¢(t, g). Using the comparison Theorem 2.4, we deduce

@, 8) = u(?). (55)

Now, we fix t € [0, ¢). We denote by A = {x € Q2 : u(#)(x) > 0} the support of u(z). We have:

1
0=(Lae,u() =W Y — (Lac, (1T/2)" (2))

neN
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This implies that (1 4c, (#7%/2)"(g)) = O for all n, and thus that (1 4c, Txu(2)) = 0. We deduce
that:

f k(x, ) udx)u(dy) =0,
ACx A

Since the set A contains the support of g, we get w(A) > 0. It follows from Assumption 2 that
w(A°) = 0. This means that u(z) is p-a.e. positive. Hence, from Equation (55), we get that, for
t €[0,c), ¢(z, g) is n-a.e. positive. Using the semi-group property of the semi-flow this results
propagate on the whole positive half-line and the result is proved. O

Remark 4.11. One can check from its proof, that Lemma 4.10 does not require the integrability
condition (8) in Assumption 1 to be true.

o>t
4

Proposition 4.12 (Uniqueness of the endemic state). Under Assumptions | and 2, the maximal
equilibrium g*:

Now we can show the following important result.

(i) is positive p-a.e.,
(ii) is the unique equilibrium different from 0.

Proof. From Lemma 4.10 together with Remark 3.8, we deduce that every equilibrium different
from O is positive u-a.e. This proves Point (i) as [ g*du > 0 in the supercritical regime according
to Corollary 4.9.

We now prove Point (ii). Let #* be another equilibrium different from 0. Since g* is the
maximal equilibrium, we have A* < g*. We shall prove that 2* is equal to g* almost everywhere.
Let us define the non-negative kernel k by:

k(x,y)
y(y)

k(x,y)=(1 - g*x)) forx,ye Q.

Notice that k satisfies (37). Since Tx(yg*) = yg*, we deduce from Proposition 3.6 that r(Zi) > 1.
Let ve L9(u)+\ {0} be a left Perron vector of the operator 7 (given by Lemma 3.7 (v)). The
kernel k satisfies Assumption 2 as k does and 1 — g* is positive everywhere (see Remark 2.16).
Hence, v can be chosen positive p-a.e. according to Lemma 3.7 (vi). The following computation:

(v, 78" = (v, Ti(yg")) =r(T) (v, yg*),

shows that r(7i) is actually equal to 1 since (v, yg*) > 0. Now we compute:

0= (v, F(h"))
= (v, Ti(yh*) — yb*) + (v, (g" — h*) Tiyy (Y 1))
= (v, (8" ~ KT (h™),

36



J.-E Delmas, D. Dronnier and P.-A. Zitt Journal of Differential Equations 313 (2022) 1-53

where we used that (v, Tx f — f) =0 as r(Tx) = 1 and v is a left Perron eigenvector. According
to the first part of the proof, A* is u-a.e. positive. Since we have Ty (h*) = yh*/(1 — h*), the
function Ty (k™) is also p-a.e. positive. Hence g* and h* are equal -a.e. since v is p-a.e. positive,
see Lemma 3.7 (vi). This implies in particular that 7; (h*) = T (g*) by Lemma . We deduce
that, for all x € Q:

R (x) = Ti(h*)(x)/ (y (x) + Te(h™) (x)) = Ti(8*) (%) / (v (x) + Tie(8%)(x)) = g7 (x).
Therefore g* is then unique equilibrium different from 0. O

Now we can prove the main result of this section on the pointwise convergence of ¢ (z, g). If
g is p-a.e. equal to O, then clearly, as y is positive, we get that tlim ¢ (t, g) = 0 pointwise, sO we
-0

only need to consider the case where g is not p-a.e. equal to 0.

Theorem 4.13 (Convergence towards the endemic equilibrium). Suppose that Assumptions | and
2 are in force. Let g € A such that [ g(x) u(dx) > 0. Then, we have that for all x € S

and Ro>| lim (2, 8)(x) = g"(x).

Proof. By Lemma 4.10, it is enough to show the result for g p-a.e. positive. The idea is similar
to the proof of Proposition 4.8, that is, to try and find a monotonous trajectory; the difference here
is that we look for a trajectory that is below ¢ (¢, g), and we have to adapt the proof accordingly.
For such a g, the functions (1 — €)gl,>. converge in L) to g when ¢ goes to zero. Besides,
R is greater than 1 by Proposition 4.2. Hence, according to Proposition 4.5, for £ small enough,
we get

Ro((1 — &) gneTiyy) > 1.

By Proposition 4.2 , applied to the kernel (1 — &)1 g(x)>ck(x, ¥), there exists w, € Z2°\ {0}
and A(g) > O such that:

(1 — &) Lge Ti(we) = (Y + A(€)) we. (56)

We may and will assume additionally that ||w.| < €. Since (56) implies that w.(x) = 0 when
g(x) < &, we know that w, < g. The monotony of the semi-flow (see Proposition 2.8) then
implies that, for all t € R :

¢t we) <P(t,8) <Pz, 1). (57)
Besides, we have:
0<A(@)we=(1—8)lgreTi(w:) — ywe
(A —-8)Ti(we) — ywe

< (1 —we)Tp(we) — ywe
= F(wg),

37



J.-F. Delmas, D. Dronnier and P.-A. Zitt Journal of Differential Equations 313 (2022) 1-53

2% — 1 ol
Dn=(ﬂ—01)<l_[2k+2) (]’[(1 ga(k)” )Q‘[(l—g;(k))-l).
=1

Using that [Tj—g %=1 ~ € n~3/2 for some finite constant C > 0, we deduce that

cg—cq =C(B —a)dydg.

This gives the strict monotonicity of the map « > c,. Then, use that d, < dg < dg < +00 for
some B’ € (B, 1/2) to get the continuity. O

We are not able to describe entirely the basins of attraction of each equilibrium. However, the
asymptotic behavior in # of the starting point g tells us quite a lot.

Proposition 4.16. For all g € A, and for all « € (0, 1/2), we have:
,_.,_-——-"—;’
limsupn3/2 (n) <cy = limsupg(s, g)l< & 74 &

n =0

liminfn®2g(n) > ¢y —> liminfe(z, g) > f_gj
n =0 \ d\

3/2

In particular, we have:

limsupn™“gn) =0 = ¢(t, g)— 0,
n

1iminfn3/2g(n) =00 = ¢(t,8) > g’{/z.

n
Proof. Since k is upper-triangular, the long-time behavior of the dynamic does not depend
on the first terms of the initial condition. Indeed, for n > 2, consider the subspace E, =
{ge L : g(p)=0for1 < p <n} of functions whose first n — 1 terms are 0. Denote by P,
the canonical projection from .£°° on E,.. Forn > 2 and g € A, we have:

Pug (2, 8) = Py (¢(2, P,(g))) . (62)

Let us denote by < the partial order defined by g < A if there exists n > 2 such that P,(g) <
Py, (h).

Suppose that limsupr”/“g(n) < c,. Since o — ¢, is strictly increasing, forany o < 8 < 1/2,
the asymptotics of g and gz imply that g < g;. Since the flow is order-preserving, this entails
limsupg(t, g) < g:;' This inequality holds for all 8 > «: we get the conclusion by continuity of
the map I' : « — g;. The proof of the other implication is similar. O

3/2

4.6. Uniform convergence

In the subcritical case, Theorem 4.6 shows an exponentially fast convergence, in the uniform
norm. By contrast, the convergence results in the critical and supercritical case from Sections 4.3
and 4.4 only hold pointwise.

In the next result, we show how to recover a form of uniformity; in particular we recover
uniform convergence in the particular case where infy > 0.
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The evolution Equation (66) can be seen as the SIS evolution Equation (3) on an extended feature
space:

o the feature x = (x, &) lives in & = Q x X endowed with the o-field # ® ¥,
e the recovery rate is given by y(x) =y (x, §),
e the extended transmission kernel is given by:

R
i (x, dy)]= (1 —e@x, &) =48y, Ok (x, dy)n(y, d?). (67)

Remark 5.1. In the leaky mechanism, we suppose that the vaccine acts directly on the suscepti-
bility and the infectiousness of the individuals. Protective gears (like respirators or safety glasses)
which are designed to protect the wearer from absorbing airborne microbes or transmitting them
have a similar effect. Hence, Equation (66) is not limited to vaccination and can also be used as
a model for distribution of equipment in the population.

5.1.2. The all-or-nothing mechanism

In this setting, e(x, §), is defined as the probability to immunize completely the individual
with feature x to the disease with vaccine &. We generalize Equation (14) to get the following
infinite dimensional evolution equation:

atu(t’x’S) = —y(x,é)u(t,x,é-‘)

+ (1 —ex,§) —ul, x,§)) f (1 =8y, ENu(t, y, Hr(x,dy)n(y,ds). (68)

QxX

The probability v(z, x, &) = u(t, x,§)/(1 — e(x, &)) for an individual with feature x which has
not been vaccinated by the inoculation of vaccine £ to be infected at time ¢ satisfies the following
equation:

atv(t9x’§) = —V(x)v(f,x,f)

+(1—v(t,x,§))/(1—5(}’,;“))1)(1,)%{)(1—E(y,f))x(x,d}’)ﬂ(y,df)- (69)

QxX
As before, the evolution Equation (69) can be seen as the SIS evolution Equation (3) on the

same extended feature space € = Q x I, still endowed with the o-field % ® ¥, with the same
recovery rate y (x) = y (x, &), but the transmission kernel now reads:

R
#(x,dy) Ll_ (1 —e(y, )NA =80y, Ok (x,dy)n(y, dg). (70)

Notice the difference between the evolution Equation (66) for leaky mechanism and the evolu-
tion Equation (69) for the all-or-nothing mechanism is that e(y, ¢) in (69) (or in the kernel x¢
from (70)) is replaced by e(x, &) in (66) (or in the kernel ikt from (67)).
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