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Abstract
In previous articles, we formalized the problem of optimal allocation strategies for
a (perfect) vaccine in an infinite-dimensional metapopulation model. The aim of the
current paper is to illustrate this theoretical framework with multiple examples where
one can derive the analytic expression of the optimal strategies.Wediscuss in particular
the following points: whether or not it is possible to vaccinate optimally when the
vaccine doses are given one at a time (greedy vaccination strategies); the effect of
assortativity (that is, the tendency to have more contacts with similar individuals) on
the shape of optimal vaccination strategies; the particular case where everybody has
the same number of neighbors.
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1 Introduction

1.1 Motivation

The basic reproduction number, denoted by R0, plays a fundamental role in epidemiol-
ogy as it determines the long-term behavior of an epidemic. For a homogeneousmodel,
it is defined as the number of secondary cases generated by an infected individual in an
otherwise susceptible population. When this number is below 1, an infected individ-
ual causes less than one infection before its recovery in average; the disease therefore
declines over time until it eventually dies out. On the contrary, when the reproduc-
tion number is greater than 1, the disease invades the population. It follows from this
property that a proportion equal to 1− 1/R0 of the population should be immunized
in order to stop the outbreak. We refer the reader to the monograph of Keeling and
Rohani (2008) for a reminder of these basic properties on the reproduction number.

In the heterogeneous generalization of classical compartmental models (Laj-
manovich and Yorke 1976; Beretta and Capasso 1986; Delmas et al. 2022a), the
population is stratified into homogeneous groups sharing the same characteristics (e.g.,
time to recover from the disease and interaction with the other groups). For these so-
called metapopulation models, it is still possible to define a meaningful reproduction
number R0, as the number of secondary cases generated by a typical infectious individ-
ual when all other individuals are uninfected (Diekmann et al. 1990). The reproduction
number can then be identified as the spectral radius of the so-called next-generation
matrix (Van Den Driessche and Watmough 2002). This encompasses SIS, SIR and
SEIR epidemic models; see Section 2 in (Delmas et al. 2022b) for a discussion. With
this definition, it is still true that the outbreak dies out if R0 is smaller than 1 and
invades the population otherwise; see Thieme (1985); Hethcote and Thieme (1985);
Van Den Driessche and Watmough (2002); Thieme (2011); Delmas et al. (2022a) for
instance.

Suppose now that we have at our disposal a vaccine with perfect efficacy, that is,
vaccinated individuals are completely immunized to the disease. After a vaccination
campaign, letη denote the proportion of non-vaccinated individuals in the population:
in inhomogeneous models, η depends a priori on the group as different groups may be
vaccinated differently. We will call η a vaccination strategy. For any strategy η, let us
denote by Re(η) the corresponding reproduction number of the non-vaccinated popu-
lation, also called the effective reproduction number. In the metapopulation model, it
can also be expressed as the spectral radius of the effective next generation matrix; see
Equation (5) below. The choice of η naturally raises a question that may be expressed
as the following informal constrained optimization problem:

{
Minimize: the quantity of vaccine to administrate

subject to: herd immunity is reached, that is, Re ≤ 1.
(1)

For practical reasons, we will instead look at the problem the other way around.
If the vaccine is only available in limited quantities, the decision makers could try to
allocate the doses so as to maximize efficiency; a natural indicator of this efficiency is
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the effective reproduction number. This reasoning leads to the following constrained
problem:

{
Minimize: the effective reproduction number Re

subject to: a given quantity of available vaccine.
(2)

In accordance with (Delmas et al. 2021b), we will denote by Re� the value of this
problem: it is a function of the quantity of available vaccine. The graph of this function
is called the Pareto frontier. In order to measure how bad a vaccination strategy can
be, we will also be interested in maximizing the effective reproduction number given
a certain quantity of vaccine:

{
Maximise: the effective reproduction number Re

subject to: a given quantity of available vaccine.
(3)

The value function corresponding to this problem is denoted by R�
e and its graph is

called the anti-Pareto frontier. We will quantify the “quantity of available vaccine” for
the vaccination strategy η by a costC(η). Roughly speaking the “best” (resp. “worst”)
vaccination strategies are solutions to Problem (2) (resp. Problem (3)). Still following
Delmas et al. (2021b), they will be called Pareto optimal (resp. anti-Pareto optimal)
strategies.

The problem of optimal vaccine allocation has been studied mainly in the metapop-
ulation setting where the population is divided into a finite number of subgroups with
the same characteristics. Longini, Ackerman and Elverback were the first interested
in the question of optimal vaccine distribution given a limited quantity of vaccine
supply (Longini et al. 1978). Using the concept of next-generation matrix introduced
by Diekmann, Heesterbeek and Metz Diekmann et al. (1990), Hill and Longini refor-
mulated this problem thanks to the reproduction number (Hill and Longini 2003).
Several theoretical and numerical studies followed focusing on Problem (1) and/or
Problem (2) in the metapopulation setting (Goldstein et al. 2010; Poghotanyan et al.
2018; Duijzer et al. 2018; Hao et al. 2019). We also refer the reader to the introduction
of Delmas et al. (2021b) for a detailed review of the bibliography.

In two previousworks (Delmas et al. 2021b, a), we provided an infinite-dimensional
framework generalizing the metapopulation model where Problems (2) and (3) are
well-posed, justified that the optimizers are indeed Pareto optimal and studied in
detail the Pareto and anti-Pareto frontiers. Since there is no closed form for the effective
reproduction number, Problems (2) and (3) are hard to solve in full generality: our goal
here is to exhibit examples where one can derive analytic expressions for the optimal
vaccination strategies. The simple models we study give a gallery of examples and
counter-examples to natural questions or conjectures, and may help understanding
common rules of thumb for choosing vaccination policies. We will in particular be
interested in the following three notions.

(i) Greedy parametrization of the frontiers. For the decisionmaker it is important
to know if global optimization and sequential optimization are the same as one
cannot unvaccinate people and redistribute the vaccine once more doses become
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available.More precisely, there is a natural order on the vaccination strategies: let
us write η′ ≤ η if all the people that are vaccinated when following the strategy η

are also vaccinated when following the strategy η′. Let η be an optimal solution
of (2) for cost c = C(η), that is, Re(η) = Re�(c). If, for c′ > c, we can find a
strategy η′ ≤ η such that Re(η

′) = Re�(c′), then the optimizationmay be, at least
in principle, found in a greedy way: giving sequentially each new dose of vaccine
so as to minimize Re gives, in the end, an optimal strategy for any quantity of
vaccine. By analogy with the corresponding notion for algorithms we will say
in this case that there exists a greedy parametrization of the Pareto frontier. The
existence of such a greedy parametrization was already discussed by Cairns in
Cairns (1989) and is examined for each model throughout this paper.

(ii) Assortative/Disassortative network. The second notion is a property of the net-
work called assortativity: a network is called assortative when the nodes tend to
attach to others that are similar in some way and disassortative otherwise. The
assortativity or disassortativity of a network is an important property that helps
to understand its topology. It has been oberved that social networks are usually
assortative while biological and technological networks are disassortative, see
for example (Newman 2002). The optimal vaccination strategies can differ dra-
matically in the case of assortative versus disassortativemixing, see (Galeotti and
Rogers 2013) for a study in a population composed of two groups. This question
is in particular addressed in Sect. 4 for an elementary model with an arbitrary
number of groups.

(iii) How to handle individuals with the same level of connection. Targeting indi-
viduals that are the most connected is a common approach used to prevent an
epidemic in a complex network (Pastor-Satorras and Vespignani 2002). In [17],
we show that these strategies are optimal for the so-called monotonic kernel
models, in which the individuals may be naturally ordered by a score related to
their connectivity. When many individuals or groups are tied for the best score,
either from the beginning or after some vaccine has been distributed, the optimal
way of vaccinating them may be surprisingly varied according to the situation.
This variety of answers appears already in the treatment of such individuals in
the assortative/disassortative toy model developed in Sect. 4. To go further in this
direction, a large part of the current paper, see Sects. 5–7, is devoted to regular or
“constant degree” models where all individuals share the same degree. We shall
in particular ask whether uniform vaccination strategies are either the “best” or
the “worst” or even neither the “best” nor the “worst” possible strategies.

In most of the examples below, the next-generation matrices are symmetric.
Although the optimization problems (2) and (3)make sensewithout symmetry assump-
tions (Delmas et al. 2021b), symmetry, or at least symmetrizability, is required for the
convexity and concavity properties of the effective reproduction number Re proved
in Delmas et al. (2021a). Note that real world data provides in general symmetric or
symmetrizable contact matrices; see for example the POLYMOD matrix in Mossong
et al. (2008) and the theoretical model in Busenberg and Castillo-Chavez (1991).
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1.2 Main results

Section 2 is dedicated to classical finite-dimensional metapopulation models. We
present two simple models that, despite being seemingly very similar, display totally
different behaviors: the asymmetric and symmetric circle graphs. For the first one,
where individuals of the group i can only be infected by individuals of the group i −1
and which corresponds to a next generation matrix given by:

Ki j = 1{i= j+1 mod N },

with N the number of groups or nodes in the circle, we derive a greedy parametrization
of the Pareto frontier. On the second one, where individuals of the group i can only
be infected by individuals of the group i − 1 or i + 1 and which corresponds to a next
generation matrix given by:

Ki j = 1{i= j±1 mod N },

we observe numerically that the Pareto frontier is much more complicated, and in
particular cannot be parametrized greedily. Those two models are in fact constant
degree models; the uniform vaccination strategies are the “worst” for the first model,
and neither the “best” nor the “worst” strategies for the second.

After Sect. 3, where we recall the kernel setting used in Delmas et al. (2021b)
for infinite dimensional models, we focus in Sect. 4 on the effect of assortativity on
optimal vaccination strategies.We define a simple kernelmodel thatmay be assortative
or disassortative depending on the sign of a parameter. In the discrete metapopulation
model, the next generation matrix can be written (up to a multiplicative constant) as:

Ki j =
(
1+ ε1{i �= j}

)
μ j ,

where μ j ≥ 0 represents the proportional size of group j . The model is assortative
if ε < 0 (and ε ≥ −1 so that the matrix K is non-negative) and disassortative if
ε > 0. We describe completely the optimal vaccination strategies, see Theorem 4.2,
and show that the best strategies for the assortative case are the worst ones if the
mixing pattern is disassortative, and vice-versa. We also prove that all the Pareto and
anti-Pareto frontiers admit greedy parametrizations, and that Pareto optimal strategies
prioritize individuals that in some sense have the highest degree, that is, are the most
connected.

In Sect. 5, we consider constant degree models, which are the analogue of regular
graphs in the infinite-dimensional setting. In the discrete metapopulation model, the
sums over each row and the sums over each column of the next generation matrix are
constant.We prove, see Proposition 5.4, that if the effective reproduction function Re is
convex then the uniform strategies are the “best” and they give a greedyparametrization
of the Pareto frontier; and that if Re is concave, the uniform strategies are the “worst”.
Section 6 is then devoted to a particular model of rank two, which corresponds in the
discrete metapopulation model to a next generation matrix of the form:

Ki j = (1+ εαiα j ) μ j with
∑
j

α j μ j = 0,
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where ε may be+1 or−1, and supi α
2
i ≤ 1, so that the matrix K is non-negative. The

condition
∑

j α jμ j = 0 ensures that the model has a constant degree. In those cases,
we give a complete description of the “best” and the “worst” vaccination strategies,
the uniform one being “best” for ε = +1 and “worst” otherwise, see Proposition 6.2.
In Sect. 6.5, we also provide an example of kernel (in infinite dimension) for which
the set of optimal strategies has an infinite number of connected components. In this
particular case, there is no greedy parametrization of the Pareto frontier.

As another application of the results of Sect. 5, we investigate in Sect. 7 geometric
constant degree kernels defined on the unit sphereSd−1 ⊂ Rd . Intuitively an individual
at point x on the sphere is infected by an individual at point y with an intensity k(x, y)
depending on the distance between x and y. Those kernels appear in the graphon
theory as limit of large dense random geometric graphs. We give a particular attention
to the affine model in Sect. 7.3, where:

k(x, y) = 1+ ε〈x, y〉, ε ≥ −1,

where 〈x, y〉 is the usual scalar product in the ambient space Rd . Intuitively, for ε > 0,
the infection propagates through the nearest neighbors: this may be seen as a kind
of spatial assortativity. By contrast, for ε < 0 the infection propagates through the
furthest individuals neighbors, in a spatially disassortative way. For this affine model,
we completely describe the “best” and the “worst” vaccination strategies, see Propo-
sition 7.9.

2 First examples in the discrete setting

In this section, we use the framework developped by Hill and Longini in Hill and
Longini (2003) for metapopulation models and provide optimal vaccination strategies
for two very simple examples. Despite their simplicity, these examples showcase a
number of interesting behaviors, that will occur a in much more general setting, as we
will see in the rest of the paper.

2.1 The reproduction number inmetapopulationmodels

In metapopulation models, the population is divided into N ≥ 2 different subpopu-
lations and we suppose that individuals within a same subpopulation share the same
characteristics. The different groups are labeled 1, 2, …, N . We denote by μ1, μ2, …,
μN their respective size (in proportion with respect to the total size) and we suppose
that those do not change over time. By the linearization of the dynamic of the epi-
demic at the disease-free equilibrium, we obtain the so-called next-generation matrix
K , see Van Den Driessche and Watmough (2002), which is a N × N matrix with non-
negative coefficients. For a detailled discussion on the biological interpretation of the
coefficients of the next-generation matrix, we refer the reader to (Delmas et al. 2022b,
Section 2). We also refer to [14] for an extensive treatment of the two-dimensional
case.
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The basic reproduction number is equal to the spectral radius of the next-generation
matrix:

R0 = ρ(K ), (4)

where ρ denotes the spectral radius. Since the matrix K has non-negatives entries, the
Perron-Frobenius theory implies that R0 is also an eigenvalue of K . If R0 > 1, the
epidemic process grows away from zero infectives while if R0 < 1, the disease cannot
invade the population; see (Van Den Driessche and Watmough 2002 ,Theorem 2) .

We now introduce the effect of vaccination. Suppose that we have at our disposal
a vaccine with perfect efficacy, i.e., vaccinated individuals are completely immunized
to the infection. We denote by η = (η1, . . . , ηN ) the vector of the proportions of non-
vaccinated individuals in the different groups. We shall call η a vaccination strategy
and denote by � = [0, 1]N the set of all possible vaccination strategies. According
to Delmas et al. (2022b, 2021b), the next-generation matrix corresponding to the
dynamic with vaccination is equal to the matrix K multiplied by the matrix Diag(η)

on the right, where Diag(η) is the N × N diagonal matrix with coefficients η ∈ �.
We call the spectral radius of this matrix the effective reproduction number:

Re(η) = ρ (K · Diag(η)) . (5)

The effective reproduction number accounts for the vaccinated (and immunized)
people in the population, as opposed to the basic reproduction number, which cor-
responds to a fully susceptible population. When nobody is vaccinated, that is
η = 1 = (1, . . . , 1), Diag(η) is equal to the identity matrix, the next-generation
matrix is unchanged and Re(η) = Re(1) = R0.

We suppose that the cost of a vaccination strategy is, up to an irrelevant multiplica-
tive constant, equal to the total proportion of vaccinated people and is therefore given
by:

C(η) =
N∑
i=1

(1− ηi )μi = 1−
N∑
i=1

ηiμi , (6)

where η = (η1, . . . , ηN ) ∈ �. We refer to (Delmas et al. 2021b, Section 5.1, Remark
5.2) for considerations on more general cost functions.

Example 2.1 (Uniform vaccination) The uniform strategy of cost c consists in vacci-
nating the same proportion of people in each group: η = (1 − c)1. By homogeneity
of the spectral radius, the reproduction number Re(η) is then equal to (1− c)R0.

2.2 Optimal allocation of vaccine doses

As mentioned in the introduction and recalled in Sect. 2.1, reducing the reproduction
number is fundamental in order to control and possibly eradicate the epidemic. How-
ever, the vaccine may only be available in a limited quantity, and/or the decision maker
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may wish to limit the cost of the vaccination policy. This motivates our interest in the
following related problem:

{
min Re(η),

such that C(η) = c.
(7)

According to Delmas et al. (2021b), one can replace the constraint {C(η) = c}
by {C(η) ≤ c} without modifying the solutions. The opposite problem consists in
finding out the worst possible way of allocating vaccine. While this does not seem at
first sight to be as important, a good understanding of bad vaccination strategies may
also provide rules of thumb in terms of anti-patterns. In order to estimate how bad a
vaccination strategy can be, we therefore also consider the following problem:

{
max Re(η),

such that C(η) = c.
(8)

According to Delmas et al. (2021b), one can replace the constraint {C(η) = c}
by {C(η) ≥ c} without modifying the solutions.

Since the coefficients of the matrix K · Diag(η) depend continuously on η, it is
classical that its eigenvalues also depend continuously on η (see for example Horn
and Johnson 2013,AppendixD) and in particular the function Re is continuous on� =
[0, 1]N . Since the function C is also continuous on �, the compactness of � ensures
the existence of solutions for Problems (7) and (8). For c ∈ [0, 1], Re�(c) (resp. R�

e(c))
stands for the minimal (resp. maximal) value taken by Re on the set of all vaccination
strategies η such that C(η) = c:

Re�(c) = min{Re(η) : η ∈ � and C(η) = c}, (9)

R�
e(c) = max{Re(η) : η ∈ � and C(η) = c}. (10)

It is easy to check that the functions Re� and R�
e are non increasing. Indeed, if η1

and η2 are two vaccination strategies such that η1 ≤ η2 (where ≤ stands for the
pointwise order), then Re(η

1) ≤ Re(η
2) according to the Perron-Frobenius theory.

This easily implies that Re� and R�
e are non-increasing. We refer to Delmas et al.

(2021b, 2022b) for more properties on those functions; in particular they are also
continuous. For the vaccination strategy η = 0 = (0, ..., 0) (everybody is vaccinated)
with cost C(0) = 1, the transmission of the disease in the population is completely
stopped, i.e., the reproduction number is equal to 0. In the examples below, we will see
that for some next-generation matrices K , this may be achieved with a strategy η with
cost C(η) < 1. Hence, let us denote by c� the minimal cost required to completely
stop the transmission of the disease:

c� = inf{c ∈ [0, 1] : Re�(c) = 0} = inf{C(η) : Re(η) = 0}. (11)
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In a similar fashion, we define by symmetry the maximal cost of totally inefficient
vaccination strategies:

c� = sup{c ∈ [0, 1] : R�
e(c) = R0}. = sup{C(η) : Re(η) = R0}. (12)

According to (Delmas et al. 2021b, Lemma 5.13(ii)), we have c� = 0 if the matrix K
is irreducible, i.e., not similar via a permutation to a block upper triangular matrix.
The two matrices considered below in this section are irreducible.

Following Delmas et al. (2021b), the Pareto frontier associated to the “best” vac-
cination strategies, solution to Problem (7), is defined by:

F = {(c, Re�(c)) : c ∈ [0, c�]}. (13)

The set of “best” vaccination strategies, called Pareto optimal strategies, is defined
by:

P = {η ∈ � : (C(η), Re(η)) ∈ F}. (14)

When c� = 0 (which will be the case for all the examples considered in this paper),
the anti-Pareto frontier associated to the “worst” vaccination strategies, solution to
Problem (8), is defined by:

FAnti = {(c, R�
e(c)) : c ∈ [0, 1]}. (15)

The set of “worst” vaccination strategies, called anti-Pareto optimal strategies, is
defined by:

PAnti = {η ∈ � : (C(η), Re(η)) ∈ FAnti}. (16)

The set of uniform strategies will play a role in the sequel:

Suni = {t1 : t ∈ [0, 1]}. (17)

We denote by F = {(C(η), Re(η)) : η ∈ �} the set of all possible outcomes. Accord-
ing to (Delmas et al. 2021b, Section 6.1), the set F is a subset of [0, 1] × [0, R0]
delimited below by the graph of Re� and above by the graph of R�

e ; it is compact, path
connected and its complement is connected in R2.

Apath of vaccination strategies is ameasurable functionγ : [a, b] → �wherea <

b. It is monotone if for all a ≤ s ≤ t ≤ b we have γ (s) ≥ γ (t), where ≤ denotes the
pointwise order. A greedy parametrization of the Pareto (resp. anti-Pareto) frontier is
a monotone continuous path γ such that the image of (C ◦ γ, Re ◦ γ ) is equal to F
(resp.FAnti). If such a path exists, then its image can be browsed by a greedy algorithm
which performs infinitesimal locally optimal steps.

123



   26 Page 10 of 57 J.-F. Delmas et al.

Fig. 1 Example of optimization for the fully asymmetric circle model with N = 5 subpopulations

Remark 2.2 Let K be the next-generation matrix and let λ ∈ R+\{0}. By homogeneity
of the spectral radius, we have ρ(λK ·Diag(η)) = λρ(K ·Diag(η)). Thus, the solutions
of Problems (7) and (8) and the value of c� are invariant by scaling of the matrix K .
As for the functions Re� and R�

e , they are scaled by the same quantity. Hence, in our
study, the value of R0 will not matter. Our main concern will be to find the best and the
worst vaccination strategies for a given cost and compare them to the uniform strategy.

2.3 The fully asymmetric circle model

We consider a model of N ≥ 2 equal subpopulations (i.e. μ1 = · · · = μN = 1/N )
where each subpopulation only contaminates the next one. The next-generationmatrix,
which is equal to the cyclic permutationmatrix, and the effective next generationmatrix
are given by:

K =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 0 1
1 0 0

⎞
⎟⎟⎟⎟⎟⎠ and K · Diag(η) =

⎛
⎜⎜⎜⎜⎜⎝

0 η2
0 η3

. . .
. . .

0 0 ηN

η1 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (18)

where η = (η1, . . . , ηN ) ∈ � = [0, 1]N . The next-generation matrix can be inter-
preted as the adjacency matrix of the fully asymmetric cyclic graph; see Fig. 1A.

By an elementary computation, the characteristic polynomial of the matrix K ·
Diag(η) is equal to XN −∏1≤i≤N ηi . Hence, the effective reproduction number can

123



Optimal vaccination: various... Page 11 of 57    26 

be computed via an explicit formula; it corresponds to the geometric mean:

Re(η) =
(

N∏
i=1

ηi

)1/N

. (19)

The Pareto and anti-Pareto frontier are totally explicit for this elementary example,
and given by the following proposition. For additional comments on this example; see
also Example 5.9 below.

Proposition 2.3 (Asymmetric circle) For the fully asymmetric circle model, we have:

(i) The least quantity of vaccine necessary to completely stop the propagation of the
disease is c� = 1/N. Pareto optimal strategies have a cost smaller than c�, and
correspond to giving all the available vaccine to one subpopulation:

P =
{
η = (η1, . . . , ηN ) ∈ [0, 1]N : ηi = 1 for all i but at most one

}
.

The Pareto frontier is given by the graph of the function Re� on [0, c�], where Re�

is given by:

Re�(c) = (1− Nc)1/N+ for c ∈ [0, 1].

(ii) The maximal cost of totally inefficient vaccination strategies is c� = 0. The anti-
Pareto optimal strategies consist in vaccinating uniformly the population, i.e.:

PAnti = Suni.

The anti-Pareto frontier is given by the graph of the function R�
e : c �→ 1 − c on

[0, 1].
In Fig. 1B, we have plotted the Pareto and the anti-Pareto frontiers corresponding

to asymmetric circle model with N = 5 subpopulations.

Remark 2.4 (Greedy parametrization) From Proposition 2.3, we see that there exists a
greedy parametrization of the Pareto frontier, which consists in giving all the available
vaccine to one subpopulation until its complete immunization. Similarly, the anti-
Pareto frontier is greedily parametrized by the uniform strategies.

Proof We first prove (i). Suppose that c ≥ 1/N . There is enough vaccine to pro-
tect entirely one of the groups and obtain Re(η) = 0 thanks to Equation (19). This
gives c� ≤ 1/N and Re�(c) = 0 for c ≥ 1/N .

Let 0 ≤ c < 1/N . According to (Boyd and Vandenberghe 2004, Section 3.1.5), the
map η �→ Re(η) is concave. According to Bauer’s maximum principle (Niculescu and
Persson 2006, Corollary A.3.3), Re attains its minimum on {η ∈ [0, 1]N : C(η) = c}
at some extreme point of this set. These extreme points are strategies η ∈ [0, 1]N such
that ηi = 1−Nc for some i and η j = 1 for all j �= i . Since Re is a symmetric function
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of its N variables, it takes the same value (1− Nc)1/N on all these strategies, so they
are all minimizing, which proves Point (i).

We give another elementary proof of (i) when c < 1/N . Let η be a solution of
Problem (7). Assume without loss of generality that η1 ≤ · · · ≤ ηN . Suppose for a
moment that η2 < 1, and let ε > 0 be small enough to ensure η1 > ε and η2 < 1− ε.
Then the vaccination strategy η̃ = (η1 − ε, η2 + ε, η3, . . . , ηN ) is admissible, and:

Re(η̃)N = Re(η)N − (ε(η2 − η1) + ε2)

N∏
i=3

ηi < Re(η)N ,

contradicting the optimality ofη. Therefore the Pareto-optimal strategies have only one
term different from 1, and must be equal to ((1− Nc), 1, . . . , 1), up to a permutation
of the indices.

Now, let us prove (ii). Let η be such that C(η) = c. According to the inequality of
arithmetic and geometric means:

Re(η) ≤ η1 + · · · + ηN

N
= 1− c.

By Example 2.1, the right hand side is equal to the effective reproduction number of
the uniform vaccination at cost c. This ends the proof of the proposition. �

2.4 Fully symmetric circle model

We now consider the case where each of the N subpopulation may infect both of their
neighbours. The next-generation matrix and the effective next-generation matrix are
given by:

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1
1 0 1 0

1
. . .

. . .

0
. . . 0 1

1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and K · Diag(η) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 η2 0 ηN

η1 0 η3 0

η2
. . .

. . .

0
. . . 0 ηN

η1 0 ηN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

Again, we can represent this model as a graph; see Fig. 2A.
There is no closed-form formula to express Re for N ≥ 5 and the optimization is

much harder than the asymmetric case. Since K is irreducible, we have c� = 0. Our
only analytical result for this model is the computation of c�.

Proposition 2.5 (Optimal strategy for stopping the transmission) For the fully sym-
metric circle model, the strategy η′ = 1i even is Pareto optimal for the fully symmetric
circle and Re(η

′) = 0. In particular, c� is equal to C(η′) = � N/2 � /N.
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Fig. 2 Example of optimization for the fully symmetric circle model with N = 12 subpopulations

Proof The term XN−2 of the characteristic polynomial of K ·Diag(η) has a coefficient
equal to the sum of all principal minors of size 2:

− (η1η2 + η2η3 + . . . + ηN−1ηN + ηNη1). (21)

If η is such that NC(η) < � N/2 �, then at least one of the term above is not equal to 0,
proving that the sum is negative. Hence, there is at least one eigenvalue of K ·Diag(η)

different from 0, and Re(η) > 0. We deduce that c� ≥ � N/2 � /N .
Now, let η′ be such that η′

i = 0 for all odd i and η′
i = 1 for all even i , so thatC(η′) =

� N/2 � /N . The matrix K · Diag(η′) is nilpotent as its square is 0. Since the spectral
radius of a nilpotent matrix is equal 0, we get Re(η

′) = 0. This ends the proof of the
proposition.

We can give another proof of the proposition: it is enough to notice that the nodes
labelled with an odd number form a maximal independent set of the cyclic graph.
Taking η′ equal to the indicator function of this set, we deduce from (Delmas et al.
Delmas et al. (2022b), Section 4.2) that η′ is Pareto optimal, Re(η

′) = 0 and c� =
C(η′). �

Wepursue the analysis of this model with numerical computations.We choose N =
12 subpopulations, and compute an approximate Pareto frontier, using the Borg mul-
tiobjective evolutionary algorithm.1 The results are plotted in Fig. 3. We represent
additionnally the curves (c, R(η(c))) where the vaccination strategy η(c) for a given
cost c are given by deterministic path of “meta-strategies”:

• Uniform strategy: distribute the vaccine uniformly to all N subpopulations;
• “One in j” strategy: vaccinate one in j subpopulation, for j = 2, 3, 4.

Let us follow the scatter plot of Re� in Fig. 3A, starting from the upper left.

1 The algorithm is described inHadka andReed (2013); we use the version coded in the BlackBoxOptim
package for the Julia programming language.
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Fig. 3 Pareto frontier and computation of the outcomes for the paths of the four meta-strategies. Some
meta-strategies {ηA, ηB , ηC , ηD} are represented on the right with their corresponding outcome points
A–D on the left

(1) In the beginning nobody is vaccinated, and R0 is equal to 2.
(2) For small costs all strategies have similar efficiency. Zooming in shows that the

(numerically) optimal strateges split the available vaccine equally between four
subpopulations that are separed from each other by two subpopulations. This cor-
responds to the “one in 3” meta-strategies path. As represented in Fig. 3B, ηA with
outcome point A = (C(ηA), Re(ηA)) belongs to this path. In particular, note that
disconnecting the graph is not Pareto optimal for 12c = 3 as the disconnecting
“one in 4” strategy gives values Re = √

2 � 1.41 opposed to the value Re � 1.37
for the “one in 3” strategy with same cost. However, note that, in agreement with
(Delmas et al. 2022b, Proposition 5.3), this disconnecting “one in 4” strategy is
also not anti-Pareto optimal, since it performs better than the uniform strategy with
the same cost.

(3) When 12c = 4 the circle has been split in four “islands” of two interacting sub-
populations. There is a small interval of values of c for which it is (numerically)
optimal to split the additional vaccine uniformly between the four “islands”, and
give it entirely to one subpopulation in each island: see point B and the associated
strategy ηB .

(4) Afterwards (see point C), it is in fact better to try and vaccinate all the (say)
even numbered subpopulations. Therefore, the optimal vaccinations do not vary
monotonously with respect to the amount of available vaccine; in other words,
distributing vaccine in a greedy way is not optimal. This also suggests that, even
though the frontier is continuous (in the objective space (c, r)), the set of optimal
strategies may not be connected: the “one in two” vaccination strategy of point
C cannot be linked to “no vaccination” strategy by a continuous path of optimal
strategies. In particular, the Pareto frontier cannot be greedily parametrized. The
disconnectedness of the set of optimal strategies will be established rigorously in
Sect. 6 for another model.
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(5) For 12c = 6, that is c = c� as stated in Proposition 2.5, it is possible to vaccinate
completely all the (say) odd numbered subpopulations, thereby disconnecting the
graph completely. The infection cannot spread at all.

(6) Even though the problem is symmetric and all subpopulations play the same role,
the proportional allocation of vaccine is far from optimal; on the contrary, the
optimal allocations focus on some subpopulations.

Using the same numerical algorithm,we have also computed the anti-Pareto frontier
for this model; see the dashed line in Fig. 2B. Although we do not give a formal
proof, the anti-Pareto frontier seems to be perfectly given by the following greedy
parametrization:

(1) Distribute all the available vaccine supply to one group until it is completely
immunized.

(2) Once this group is fully vaccinated, distribute the vaccine doses to one of its
neighbour.

(3) Continue this procedure by vaccinating the neighbour of the last group that has
been immunized.

(4) When there are only two groups left, split the vaccine equally between these two.

3 The kernel model

In order to get a finer description of the heterogeneity, we could divide the population
into a growing number of subgroups N → ∞. The recent advances in graph limits
theory (Backhausz and Szegedy 2020; Lovász 2012) justify describing the transmis-
sion of the disease by a kernel defined on a probability space. We already used this
type of model in Delmas et al. (2021a, b, 2022a, b), in particular for an SIS dynamics,
see also (Delmas et al. 2022b, Section 2) for other epidemic models.

Let (
,F , μ) be a probability space that represents the population: the individuals
have features labeled by 
 and the infinitesimal size of the population with feature x
is given by μ(dx). Let L2(μ) (L2 for short) be the space of real-valued measurable
functions f defined on 
 such that ‖ f ‖2 = (

∫



f 2 dμ)1/2 is finite, where functions
which agree μ-a.s. are identified. Let L2+ = { f ∈ L2 : f ≥ 0} be the subset of non-
negative functions of L2. We define a kernel on
 as a R+-valued measurable function
defined on (
2,F⊗2). We will only consider kernels with finite double-norm on L2:

‖ k ‖2,2 =
(∫


×


k(x, y)2 μ(dx)μ(dy)

)1/2

< +∞. (22)

To a kernel k with finite double-norm on L2, we associate the integral operator Tk
on L2 defined by:

Tk(g)(x) =
∫




k(x, y)g(y) μ(dy) for g ∈ L2 and x ∈ 
. (23)
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The operator Tk is bounded, and its operator norm ‖ Tk ‖L2 satisfies:

‖ Tk ‖L2 ≤ ‖ k ‖2,2 . (24)

According to (Conway 1990, Proposition II.4.7), the operator Tk is actually compact.
A kernel is said to be symmetric if k(x, y) = k(y, x), μ(dx)μ(dy)-almost surely. It
is said to be irreducible if for all A ∈ F , we have:∫

A×Ac
k(x, y) μ(dx)μ(dy) = 0 �⇒ μ(A) ∈ {0, 1}. (25)

If k is not irreducible, it is called reducible.
By analogy with the discrete setting and also based on Delmas et al. (2022a, b), we

define the basic reproduction number in this context thanks to the following formula:

R0 = ρ(Tk), (26)

where ρ stands for the spectral radius of an operator. According to the Krein-Rutman
theorem, R0 is an eigenvalue of Tk. Besides, there exists left and right eigenvectors
associated to this eigenvalue in L2+; such functions are called Perron eigenfunctions.

For f , g two non-negative bounded measurable functions defined on 
 and k a
kernel on
with finite double-norm on L2, we denote by f kg the kernel on
 defined
by:

( f kg)(x, y) = f (x) k(x, y)g(y). (27)

Since f and g are bounded, the kernel f kg has also a finite double-norm on L2.
Denote by � the set of measurable functions defined on 
 taking values in [0, 1].

A function η in � represents a vaccination strategy: η(x) represents the proportion of
non-vaccinated individuals with feature x . In particular η = 1 (the constant function
equal to 1) corresponds to the absence of vaccination and η = 0 (the constant func-
tion equal to 0) corresponds to the whole population being vaccinated. The uniform
strategies are given by:

ηuni = t1

for some t ∈ [0, 1], and we denote by Suni = {t1 : t ∈ [0, 1]} the set of uniform
strategies.

The (uniform) cost of the vaccination strategy η ∈ � is given by the total proportion
of vaccinated people, that is:

C(η) =
∫




(1− η) dμ = 1−
∫




η dμ. (28)

The measure η dμ corresponds to the effective population, that is the individuals who
effectively play a role in the dynamic of the epidemic. The effective reproduction

123



Optimal vaccination: various... Page 17 of 57    26 

number is defined by:

Re(η) = ρ(Tkη), (29)

We consider the weak topology on � given by the trace of the weak topology on
L2, so that with a slight abuse of notation we identify � with {η ∈ L2 : 0 ≤ η ≤ 1}.
According to Theorem 4.2 and Remark 3.2 in Delmas et al. (2021b), the function Re :
η �→ Re(η) is continuous on � with respect to the weak topology. The compactness
of � for this topology implies the existence of solutions for Problems (7) and (8).
We will conserve the same notation and definitions as in the discrete setting for: the
value functions Re� and R�

e , the minimal/maximal costs c� and c�, the various sets of
strategies P and PAnti, and the various frontiers F and FAnti; see Eqs. (9)–(17) in
Sect. 2.2.

We shall also use the following result from (Delmas et al. 2022b, Proposition 5.1)
(recall that a vaccination strategy is defined up the a.s. equality).

Lemma 3.1 Let k be a kernel on
 with finite double-norm on L2 such that a.s. k > 0.
Then, we have c� = 0, c� = 1 and the strategy 1 (resp. 0) is the only Pareto optimal
as well as the only anti-Pareto optimal strategy with cost c = 0 (resp. c = 1).

Example 3.2 (Discrete and continuous representations of ametapopulationmodel)We
recall the natural correspondence between metapopulation models (discrete models)
andkernelmodels (continuousmodels) from (Delmas et al. 2021b, Section 7.4.1).Con-
sider a metapopulation model with N groups given by a finite set 
d = {1, 2, . . . , N }
equipped with a probability measure μd giving the relative size of each group and a
next generation matrix K = (Ki j , i, j ∈ 
d). The corresponding discrete kernel kd
on 
d is defined by:

Ki j = kd(i, j)μ j where μi = μd({i}). (30)

Then, the matrix K · Diag(η) is the matrix representation of the endomorphism Tkdη
in the canonical basis of RN .

Following Delmas et al. (2021b), we can also consider a continuous representation
on the state space 
c = [0, 1) equipped with the Lebesgue measure μc. Let I1 =
[0, μ1), I2 = [μ1, μ1 +μ2), …, IN = [1−μN , 1), so that the intervals (In, 1 ≤ n ≤
N ) form a partition of 
. Now define the kernel:

kc(x, y) =
∑

1≤i, j≤N

kd(i, j)1Ii×I j (x, y). (31)

Denote by Rd
e and Rc

e the effective reproduction number in the discrete and continuous
representation models. In the same manner, the uniform cost in each model is denoted
by Cd and Cc. According to Delmas et al. (2021b), these functions are linked through
the following relation:

Rd
e (η

d) = Rc
e

(
ηc
)
, and Cd(ηd) = Cc(ηc),
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Fig. 4 Kernels kc (equal to 0 in the white zone and to 1 in the black zone) on 
c = [0, 1) and μc the
Lebesgue measure of the continuous model associated to discrete metapopulation models

for all ηd : 
d → [0, 1] and ηc : 
c → [0, 1] such that:

ηd(i) = 1

μi

∫
Ii

ηc dμc for all i ∈ 
d.

Let us recall that the Pareto and anti-Pareto frontiers for the two models are the same.
In Fig. 4, we have plotted the kernels of the continuous models associated to the

asymmetric and symmetric circles models from Sects. 2.3 and 2.4.

4 Assortative versus disassortativemixing

4.1 Motivation

We consider a population divided into an at most countable number of groups. Indi-
viduals within the same group interact with intensity a and individuals in different
groups interact with intensity b. Hence, the model is entirely determined by the coef-
ficients a and b and the size of the different groups. This simple model allows to study
the effect of assortativity, that is, the tendency for individuals to connect with individ-
uals belonging to their own subgroup. The mixing pattern is called assortative (higher
interaction in the same subgroup) if a > b, and disassortative (lower interaction in
the same subgroup) when b > a. Our results illustrate how different the optimal vac-
cination strategies can be between assortative and disassortative models, an effect that
was previously studied by Galeotti and Rogers (2013) in a population composed of
two groups.

When the population is equally split in a finite number of subgroups, and a is equal
to 0, the next-generation matrix of this model corresponds, up to a multiplicative
constant, to the adjacency matrix of a complete multipartite graph. Recall that an m-
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partite graph is a graph that can be coloredwithm different colors, so that all edges have
their two endpoints colored differently. When m = 2 these are the so-called bipartite
graphs. A complete multipartite graph is a m-partite graph (for some m ∈ N∗) in
which there is an edge between every pair of vertices from different colors.

The completemultipartite graphs have interesting spectral properties. Indeed, Smith
(1970) showed that a graph with at least one edge has its spectral radius as its only pos-
itive eigenvalue if and only if its non-isolated vertices induce a complete multipartite
graph. In Esser and Harary (1980), Esser and Harary proved that two complete m-
partite graphs with the same number of nodes are isomorphic if and only if they have
the same spectral radius. More precisely, they obtained a comparison of the spectral
radii of two complete m-partite graphs by comparing the sizes of the sets in their
partitions through majorization; see (Esser and Harary 1980, Lemma 3).

The goal of this section is to generalize and complete these results and give a full
picture of the Pareto and anti-Pareto frontiers for the assortative and the disassortative
models.

4.2 Spectrum and convexity

Wewill use an integer intervals notation to represent the considered kernels. For i, j ∈
N ∪ {+∞}, we set [[i, j]] (resp. [[i, j[[) for [i, j] ∩ (N ∪ {+∞}) (resp. [i, j) ∩ N).
Let N ∈ [[2,+∞]] and 
 = [[1, N ]] if N is finite and 
 = [[1,+∞[[ otherwise. The
set
 is endowed with the discrete σ -algebraF = P(
) and a probability measureμ.
To simplify the notations,wewriteμi forμ({i}) and fi = f (i) for a function f defined
on 
. Without loss of generality, we can suppose that μi ≥ μ j > 0 for all i ≤ j
elements of 
. We consider the kernel k defined for i, j ∈ 
 by:

k(i, j) =
{
a if i = j,

b otherwise,
(32)

where a and b are two non-negative real numbers.
If b = 0, then the kernel is reducible, and, thanks to (Delmas et al. 2021a,

Lemma 5.3), the effective reproduction number is given by the following formula:
Re(η) = amaxi∈
 ηi μi , for all η = (ηi , i ∈ 
) ∈ �. This is sufficient to treat this
case and we have c� = 1− μ1.

From now on, we assume that b > 0. The next two results describe the spectrum
of Tk in both the assortative and disassortative case. Notice the spectrum of Tk is real
as k is symmetric. Recall that R0 = ρ(Tk).

Proposition 4.1 (Convexity/concavity of Re) Let k be given by (32), with b > 0
and a ≥ 0.

(i) Assortative model. If a ≥ b > 0, then the operator Tk is positive semi-definite
and the function Re is convex.

(ii) Disassortative model. If b ≥ a ≥ 0 and b > 0, then R0 is the only positive
eigenvalue of Tk , and it has multiplicity one. Furthermore, the function Re is
concave.
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In the following proof, we shall consider the symmetric matrix Mn of size n × n,
with n ∈ N∗, given by:

Mn(i, j) =
{
a if i = j,

b otherwise.

The matrix Mn is the sum of b times the all-ones matrix and a − b times the identity
matrix. Thus, Mn has two distinct eigenvalues: nb + a with multiplicity 1 and a − b
with multiplicity n − 1.

Proof We first prove (i). For any g ∈ L2, we have:

∫

×


g(x)k(x, y)g(y) μ(dx)μ(dy) = a
∑
i∈


g2i μ
2
i + b

∑
i �= j

gi g j μiμ j ≥ b ‖ g ‖22 .

This implies that Tk is positive semi-definite. Thus, as k is symmetric, the fonction Re

is convex, thanks to (Delmas et al. 2021a, Theorem 4.10).
We nowprove (ii).We give a direct proofwhen N is finite, and use an approximation

procedure for N = ∞. We first assume that N is finite. For n ≤ N , let vn = 1[[1,n]]
and set Tn = Tvnkvn . The non-null eigenvalues of Tn (with their multiplicity) are
the eigenvalues of the matrix Mn · Diagn(μ), where Diagn(μ) is the diagonal n ×
n-matrix with (μ1, . . . , μn) on the diagonal. Thanks to (Horn and Johnson 2013,
Theorem 1.3.22), these are also the eigenvalues of the matrix Qn = Diagn(μ)1/2 ·Mn ·
Diagn(μ)1/2. By Sylvester’s law of inertia (Horn and Johnson 2013, Theorem 4.5.8),
the matrix Qn has the same signature as the symmetric matrix Mn . In particular, since
we have supposed a− b ≤ 0, Mn has only one positive eigenvalue. Thus Qn has only
one positive eigenvalue: thanks to the Perron-Frobenius theory, it is its spectral radius.
This concludes the proof when N is finite by choosing n = N .

If N = ∞, we consider the limit n → N . Since:

lim
n→∞‖ k − vnkvn ‖2,2 = 0,

the spectrum of Tn converges to the spectrum of Tk, with respect to the Hausdorff
distance, and the multiplicity on the non-zero eigenvalues also converge, see (Delmas
et al. 2021a, Lemma 2.4). This shows that ρ(Tk) is the only positive eigenvalue of Tk,
and it has multiplicity one. Since k is symmetric, we deduce the concavity of the
function Re from (Delmas et al. 2021a, Theorem 4.10). �

4.3 Explicit description of the Pareto and anti-Pareto frontiers

For c ∈ [0, 1], we define an “horizontal vaccination” ηh(c) ∈ � with cost c in the
following manner. Rather than defining directly the proportion of non-vaccinated peo-
ple in each class, it will be convenient to define first the resulting effective population
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size, which will be denoted by ξ . For all α ∈ [0, μ1], let ξh(α) ∈ � be defined by:

ξhi (α) = min(α, μi ), i ∈ 
. (33)

For all i ∈ 
, ξhi (α) is a non-decreasing and continuous function of α. The map α �→∑
i ξ

h
i (α) is continuous and increasing from [0, μ1] to [0, 1], so for any c ∈ [0, 1],

there exists a unique αc such that
∑

i ξ
h
i (αc) = 1 − c. We then define the horizontal

vaccination profile ηh(c) ∈ � by:

ηhi (c) = ξhi (αc)/μi , i ∈ 
. (34)

Inwords, it consists in vaccinating in such away that the quantity of the non-vaccinated
individuals ξhi = ηiμi in each subpopulation is always less than the “horizontal”
threshold α: see Fig. 5A. The cost of the vaccination strategy ηh(c) is indeed c. Note
that ηh(0) = 1 (no vaccination), whereas ηh(1) = 0 (full vaccination), and that the
path c �→ ηh(c) is greedy. We denote its range byPh.

For c ∈ [0, 1], we define similarly a “vertical vaccination” ηv(c) ∈ � with cost c.
First let us define for β ∈ [0, N ]:

ξvi (β) = μi ·min(1, (β + 1− i)+), i ∈ 
. (35)

The map β �→ ∑
i ξ

v
i (β) is increasing and continuous from [0, N ] to [0, 1], so for

any c ∈ [0, 1] there exists a unique βc such that
∑

i ξ
v
i (βc) = 1 − c. We then define

the vertical vaccine profile ηv(c) by:

ηvi (c) = ξvi (βc)/μi , i ∈ 
. (36)

In words, if �β� = �, this consists in vaccinating all subpopulations j for j > �, and
a fraction �β� − β of the subpopulation �, see Fig. 5B for a graphical representation.
The cost of the vaccination strategy ηv(c) is by construction equal to c.

For all i ∈ 
, ηvi (c) is a non-increasing and continuous function of c. Just as in the
horizontal case, we have ηv(0) = 1 (no vaccination), ηv(1) = 0 (full vaccination),
and the path c �→ ηv(β(c)) is also greedy. We denote its range byPv.

These twopaths give a greedy parametrization of the Pareto and anti-Pareto frontiers
for the assortative and disassortative models: more explicitly, we have the following
result, whose proof can be found in Sect. 4.4.

Theorem 4.2 (Assortative vs disassortative) Let k be given by (32), with b > 0
and a ≥ 0.

(i) Assortative model. If a ≥ b > 0, then Pv and Ph are greedy parametrizations
of the anti-Pareto and Pareto frontiers respectively.

(ii) Disassortative model. If b ≥ a > 0, thenPv andPh are greedy parametrizations
of the Pareto and anti-Pareto frontiers respectively.

(iii) Complete multipartite model. If a = 0 and b > 0, then Ph is a greedy
parametrization of the anti-Pareto frontier and the subset of strategies η ∈ Pv
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Fig. 5 Greedy parametrization of the (anti-)Pareto front. The bar plot represents the measure μ. The pro-
portion of green in each bar correspond to the proportion of vaccinated individuals in each subpopulation

such that C(η) ≤ 1 − μ0 is a greedy parametrization of the Pareto frontier. In
particular, we have c� = 1− μ1 and c� = 0.

Notice that c� = 0 and c� = 1 in cases (i) and (ii) as k is positive thanks to
Lemma 3.1.

Remark 4.3 (Highest Degree vaccination) The effective degree function of a symmet-
ric kernel k at η ∈ � is the function degη defined on 
 by:

degη(x) =
∫




k(x, y)η(y) μ(dy). (37)

When η = 1, it is simply called the degree of k and is denoted by deg. In our model,
the effective degree of the subgroup i is given by

degη(i) = aηiμi + b
∑
� �=i

η�μ�, (38)

and thus the degree of the subgroup i is given by deg(i) = (a−b)μi +b. Asμi ≥ μ j

for i < j elements of 
, we deduce that the degree function is monotone: non-
increasing in the assortative model and non-decreasing in the disassortative model.
The group with the highest degree therefore corresponds to the largest group in the
assortative model and the smallest group (if it exists) in the disassortative model.

Consider the assortative model where all the groups have different size, i.e., μ1 >

μ2 > . . . Following the parametrization c �→ ηh(c), starting from c = 0, will first
decrease the effective size of the group 1 (the group with the highest degree) until it
reaches the effective degree of group2 (with the secondhighest degree).Once these two
groups share the same effective degree which corresponds to reaching μ1η

h
1 = μ2,

they are vaccinated uniformly (that is, ensuring that they keep the same effective
degree: using (38) this corresponds to μ1η

h
1 = μ2η

h
2) until their effective degree is

equal to the third highest degree, and so on and so forth.
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In the disassortative model, the function degη remains (strictly) increasing when
the vaccination strategies inPv are applied. In particular, if μ1 > μ2 > . . ., then the
optimal strategies prioritize the groups with the higher effective degree until they are
completely immunized. If multiple groups share the same degree, it is optimal to give
all available doses to one group.

In conclusion, in both models, the optimal vaccination consists in vaccinating the
groups with the highest effective degree in priority if this group is unique. But if
multiple groups share the same degree (i.e., have the same size), the optimal strategies
differ between the assortative and the disassortative case. In the assortative case, groups
with the same size must be vaccinated uniformly while in the disassortive case, all the
vaccine doses shall be given to one group until it is completely vaccinated.

Example 4.4 (Group sizes following a dyadic distribution) Let N = ∞, 
 = N∗
and μi = 2−i for all i ∈ 
. Following (Delmas et al. 2021b, Section 7.4.1), we will
couple this discrete model with a continuum model for a better visualization on the
figures. Let 
c = [0, 1) be equipped with the Borel σ -field Fc and the Lebesgue
measure μc. The set 
c is partitionned into a countable number of intervals Ii =
[1 − 2−i+1, 1 − 2−i ), for i ∈ N∗, so that μc(Ii ) = μi . The kernel of the continuous
model corresponding to k in (32) is given by:

kc = (a − b)
∑
i∈N∗

1Ii×Ii + b1. (39)

The kernel kc is plotted in Figs. 6A, 7A and 8A for different values of a and b
corresponding respectively to the assortative, the disassortative and the complete mul-
tipartite case corresponding to points (i), (ii) and (iii) ofTheorem4.2 respectively. Their
respective Pareto and anti-Pareto frontiers are plotted in Figs. 6B, 7B and 8B, using
a finite-dimensional approximation of the kernel k and the power iteration method.
In Fig. 8B, the value of c� is equal to 1 − μ1 = 1/2. With this continuous represen-
tation of the population, the set Pv corresponds to the strategies of the form 1[0,t)
for t ∈ [0, 1].

Notice that the Pareto frontier in the assortative case is convex. This is consistent
with (Delmas et al. 2021b, Proposition 6.6) since the cost function is affine and Re

is convex when a ≥ b; see Proposition 4.1 (i). In the same manner, the anti-Pareto
frontier in the disassortative and the multipartite cases is concave. Once again, this is
consistent with (Delmas et al. 2021b, Proposition 6.6) since the cost function is affine
and Re is concave when b ≥ a; see Proposition 4.1 (ii).

4.4 Proof of Theorem 4.2

After recalling known facts of majorization theory, we first consider the finite dimen-
sion models, and then the general case by an approximation argument.

123



   26 Page 24 of 57 J.-F. Delmas et al.

Fig. 6 An assortative model

Fig. 7 A disassortative model

4.4.1 Majorization

In this section, we recall briefly some definitions and results frommajorization theory,
and refer to Arnold (1987); Marshall et al. (2011) for an extensive treatment of this
topic.

Let n ≥ 1 and ξ, χ ∈ Rn+. We denote by ξ↓ and χ↓ their respective order statistics,
that is the vectors in Rn+ with the same components, but sorted in descending order.
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Fig. 8 An example of the complete multipartite model

We say that ξ is majorized by χ , and write ξ ≺ χ , if:

i∑
j=1

ξ
↓
j ≤

i∑
j=1

χ
↓
j for all i ∈ {1, . . . , n}, and

n∑
j=1

ξ j =
n∑
j=1

χ j . (40)

Among the various characterizations of majorization, we will use the following by
Hardy, Littlewood and Pólya; see (Marshall et al. 2011, Proposition I.4.B.3):

ξ ≺ χ ⇐⇒
n∑

i=1

(ξi − t)+ ≤
n∑

i=1

(χi − t)+ for all t ∈ R+, (41)

where u+ = max(u, 0), for all u ∈ R. A real-valued function� defined onRn+ is called
Schur-convex if it is non-decreasing with respect to ≺, that is, ξ ≺ χ implies �(ξ) ≤
�(χ). A function � is called Schur-concave if (−�) is Schur-convex.

4.4.2 Schur-convexity and concavity of the spectral radius in finite dimension

We define the function �n on Rn+ by:

�n(ξ) = ρ(Mn · Diag(ξ)),

where Diag(ξ) is the diagonal n × n-matrix with ξ on the diagonal. By construction,
for η = (η1, . . . , ηn, 0, . . .), we have:

Re(η) = �n(η1μ1, . . . , ηnμn). (42)

The key property below will allow us to identify the optimizers.
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Lemma 4.5 (Schur-concavity and Schur-convexity) Let b > 0 and a ≥ 0. The func-
tion �n is Schur-convex if a ≥ b, and Schur-concave if a ≤ b.

Proof Let us consider the disassortative case where a ≤ b. By a classical result of
majorization theory (Marshall et al. 2011, Proposition I.3.C.2.), it is enough to show
that �n is symmetric and concave.

To prove that �n is symmetric, consider σ a permutation of {1, 2, . . . , n} and Pσ

the associated permutation matrix of size n × n. Since Pσ MnP−1
σ = Mn , we deduce

that �n(ξσ ) = �n(ξ), where ξσ is the σ -permutation of ξ ∈ Rn+. Thus �n is symmet-
ric.

We now prove that �n is concave on Rn+. Since Re is concave thanks to Proposi-
tion 4.1 (ii), we deduce from (42), that the function �n is concave on [0, μ1] × . . . ×
[0, μn]. Since �n is homogeneous, it is actually concave on the whole domain Rn+.
This concludes the proof when a ≤ b.

The proof is the same for the assortative case a ≥ b, replacing the reference to
Proposition 4.1 (ii) by (i). �

4.4.3 Extreme vaccinations for fixed cost

Let us show that the horizontal and vertical vaccinations give extreme points for the
preorder ≺ on finite sets, when the quantity of vaccine is fixed. Recall that ξh and ξv

are defined in (33) and (35) respectively.

Proposition 4.6 (Extreme vaccinations) Let n ∈ 
, β ∈ [0, n) and α ∈ [0, μ1].
Let ξv,n = (ξv1 (β), . . . , ξvn (β)), and ξh,n = (ξh1 (α), . . . , ξhn (α)). For any ξ =
(ξ1, . . . , ξn) ∈ [0, μ1] × · · · × [0, μn], we have:
(

n∑
i=1

ξi =
n∑

i=1

ξ
v,n
i

)
�⇒ ξ ≺ ξv,n, and

(
n∑

i=1

ξi =
n∑

i=1

ξ
h,n
i

)
�⇒ ξh,n ≺ ξ.

Proof Let ξ ∈ [0, μ1]×· · ·×[0, μn] be such that∑n
i=1 ξi =∑n

i=1 ξ
v,n
i . The reordered

vector ξ↓ clearly satisfies the same conditions, so without loss of generality we may
assume that ξ is sorted in descending order. Using Equation (35), we get:

�∑
i=1

ξi ≤
�∑

i=1

μi =
�∑

i=1

ξ
v,n
i , for 1 ≤ � ≤ �β  .

We also have:

�∑
i=1

ξi ≤
n∑

i=1

ξi =
n∑

i=1

ξ
v,n
i =

�∑
i=1

ξ
v,n
i , for � > �β  .

Therefore, we get ξ ≺ ξv,n , by the definition of ≺.
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Similarly, let ξ ∈ [0, μ1]×· · ·×[0, μn] be such that∑n
i=1 ξi =∑n

i=1 ξ
h,n
i . If t ≥ α

then: ∑
i

(ξ
h,n
i − t)+ = 0 ≤

∑
i

(ξi − t)+,

while if t ∈ [0, α), using the fact that
∑n

i=1 ξi = ∑n
i=1 ξ

h,n
i , the expression ξ

h,n
i =

min(α, μi ), and the inequalities ξi ≤ μi , we get:

n∑
i=1

(ξ
h,n
i − t)+ =

n∑
i=1

(ξ
h,n
i − t) +

n∑
i=1

(t − ξ
h,n
i )+

=
n∑

i=1

(ξi − t) +
n∑

i=1

(t − μi )+

≤
n∑

i=1

(ξi − t) +
n∑

i=1

(t − ξi )+

=
n∑

i=1

(ξi − t)+.

This gives ξh,n ≺ ξ , by the characterization (41). �

4.4.4 “Vertical” Pareto optima in the disassortative case

We consider here the disassortative model b ≥ a ≥ 0 and b > 0. Let c ∈ (0, 1)
and D(c) = {η ∈ � : C(η) = c} be the set of vaccination strategies with cost c. We
will solve the constrained optimization Problem (7) that corresponds to:

{
min Re(η),

such that η ∈ D(c).
(43)

Recall the definitions of βc and ηv(c) given page 36. Let η ∈ D(c). Let n be large
enough so that

∑
j>n μ j < 1 − c so that

∑
j≤n η jμ j > 0, and assume that n > βc.

Let η(n) ∈ � be defined by:

η
(n)
i =

∑
j≤n ηvj (c)μ j∑
j≤n η jμ j

1{i≤n} ηi .

Note that since C(ηv(c)) = c = C(η), we have limn→N η(n) = η (pointwise and
in L2). Let ξn = (η

(n)
1 μ1, . . . , η

(n)
n μn) and ξv,n be defined as in Proposition 4.6

with β = βc. By construction, we have
∑n

i=1 ξni =∑n
i=1 ξ

v,n
i , so by Proposition 4.6,

we get ξn ≺ ξv,n . This implies that:

Re(η
(n)) = �n(ξ

n) ≥ �n(ξ
v,n) = Re(η

v(c)),
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where the inequality follows from the Schur concavity of �n in the disassortative
case (see Lemma 4.5) and where the last equality holds as n ≥ �βc �. Since Re is
continuous and η(n) converges pointwise and in L2 to η, we get Re(η) ≥ Re(η

v). This
implies that ηv is a solution of Problem (43).

If a > 0, then k is positive everywhere, andwe deduce fromLemma 3.1 that c� = 1.
If a = 0, it is easy to prove that {0} is a maximal independant set of k; this gives that
c� = 1 − μ1, thanks to (Delmas et al. 2022b, Remark 4.5). Since for all c ∈ [0, c�)

there exists η ∈ Pv such that C(η) = c, we also get thatPv ∩ {η ∈ � : C(η) ≤ c�}
is a parametrization of the Pareto frontier. This gives the parametrization of the Pareto
frontier using Pv from Theorem 4.2 (ii) and (iii).

4.4.5 “Horizontal” anti-Pareto optima in the disassortative case

We still consider b ≥ a ≥ 0 and b > 0. Let c ∈ (0, 1). We now turn to the anti-Pareto
frontier by studying the constrained maximization Problem (8) that corresponds to:

{
max Re(η),

such that η ∈ D(c).
(44)

Recall the definitions of αc and ηh(c) given page 34. Let η ∈ D(c). Let n be large
enough so that

∑
j>n μ j < 1− c and thus

∑
j≤n η jμ j > 0. Define η(n) ∈ � by:

η
(n)
i =

∑
j≤n ηhj (c)μ j∑
j≤n η jμ j

1{i≤n} ηi .

Let ξn = (η
(n)
1 μ1, . . . , η

(n)
n μn) and let ξh,n be defined as in Proposition 4.6 with α =

αc. By construction, we have
∑n

i=1 ξni = ∑n
i=1 ξ

h,n
i , so by Proposition 4.6, we

obtain ξh,n ≺ ξn . This implies that:

Re(η
(n)) = �n(ξ

n) ≤ �n(ξ
h,n) = Re(η

h(c)1[[1,n]]),

where the inequality follows from the Schur concavity of �n .
Now, as n goes to infinity η(n) converges pointwise and in L2 to η, and ηh(c)1[[1,n]]

converges pointwise and in L2 to ηh(c), so by continuity of Re we get Re(η) ≤
Re(η

h(c)), and ηh(c) is solution of the Problem (44) and is thus anti-Pareto optimal
for c ∈ (0, 1) as c� = 0. Since c� = 0, we also deduce from (Delmas et al. 2021b,
Propsotion 5.8 (iii)) that 0 and 1 are anti-Pareto optimal. Since for all c ∈ [0, 1] there
exists η ∈ Ph such that C(η) = c, we deduce that Ph is a parametrization of the
anti-Pareto frontier.

4.4.6 The assortative case

The case a ≥ b > 0, corresponding to point (i) in Proposition 4.2, is handled similarly,
replacing concavity by convexity, minima by maxima and vice versa.
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5 Constant degree kernels and unifom vaccinations

5.1 Motivation

We have seen in the previous section an example of model where vaccinating individ-
uals with the highest degree is the best strategy. A similar phenomenon is studied in
[17], where under monotonicity arguments on the kernel, vaccinating individuals with
the highest (resp. lowest) degree is Pareto (resp. anti-Pareto) optimal. However, in
case multiple individuals share the same maximal degree, the optimal strategies differ
completely between the assortative and the disassortative models: the Pareto optimal
strategies for one model correspond to the anti-Pareto optimal strategies for the other
and vice versa.

Motivated by this curious symmetry, we investigate in this section constant degree
kernels, that is, the situation where all the individuals have the same number of con-
nections. In Sect. 5.2, we define these kernels formally and give the main result on the
optimality of the uniform strategies when Re is either convex or concave, see Propo-
sition 5.4. Section 5.3 is devoted to the proof of this main result. We study in more
detail the optimal strategies in an example of constant degree symmetric kernels of
rank two in Sect. 6. Eventually, we study in Sect. 7 geometric kernels on the sphere,
which are constant degree kernels.

5.2 On the uniform strategies for constant degree kernels

In graph theory, a regular graph is a graph where all vertices have the same number
of in-neighbors, and the same number of out-neighbors. In other words all vertices
have the same in-degree and the same out-degree. Limits of undirected regular graphs
have been studied in details by Backhausz and Szegedy (2020) and Kunszenti-Kovács
et al. (2021). When the graphs are dense, their limit can be represented as a regular
graphon, that is a symmetric kernel with a constant degree function.

Since we do not wish to assume symmetry, we give the following general definition.
For a kernel k on 
, we set, for all z ∈ 
 and A ∈ F :

k(z, A) =
∫
A
k(z, y) μ(dy) and k(A, z) =

∫
A
k(x, z) μ(dx).

For z ∈ 
, its in-degree is k(z,
) and its out-degree is k(
, z).

Definition 5.1 (Constant degree kernel) A kernel k with a finite L2 double-norm and
positive spectral radius R0 > 0 is called constant degree if all the in-degrees and all
the out-degrees have the same value, that is, the maps x �→ k(x,
) and y �→ k(
, y)
defined on 
 are constant, and thus equal.

Remark 5.2 Let k be a constant degree kernel with spectral radius R0 > 0. Notice the
condition “all the in-degrees and out-degrees have the same value” is also equivalent
to 1 being a left and right eigenfunction of Tk. We now check that the corresponding
eigenvalue is R0.
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Let h ∈ L2+(
)\{0} be a left Perron-eigenfunction. Denote by λ the eigenvalue
associated to 1. Then, we have:

λ

∫



h(x) μ(dx) =
∫




h(x)k(x, y)μ(dx)μ(dy) = R0

∫



h(y) μ(dy),

where the first equality follows from the regularity of k and from the fact that h is
a left Perron-eigenfunction of Tk. Since h is non-negative and not equal to 0 almost
everywhere, we get that λ = R0 and 1 is a right Perron-eigenvector of Tk. With a
similar proof, we show that 1 is a left Perron-eigenvector of Tk. In particular, if k is
constant degree, then the reproduction number is given by:

R0 =
∫


×


k(x, y) μ(dx)μ(dy). (45)

Example 5.3 We now give examples of constant degree kernels.

(i) Let G = (V , E) be a finite non-oriented simple graph, and μ the uniform proba-
bility measure on the vertices V . The degree of a vertex x ∈ V is given by

deg(x) = �{y ∈ V : (x, y) ∈ E}.

The graph G is constant degree if all its vertices have the same degree, say d ≥ 1.
Then the kernel defined on the finite space 
 = V by the adjacency matrix is
constant degree with R0 = d. Notice it is also symmetric.

(ii) Let G = (V , E) be a finite directed graph, and μ be the uniform probability
measure on the vertices V . The in-degree of a vertex x ∈ V is given by

degin(x) = �{y ∈ V : (y, x) ∈ E},

and the out-degree is given by

degout(x) = �{y ∈ V : (x, y) ∈ E}.

The graph G is regular if all its vertices have the same in-degree and out-degree,
say d ≥ 1. Then the kernel defined on the finite space 
 = V by the adjacency
matrix is regular with R0 = d. Notice it might not be symmetric.

(iii) Let 
 = (R/(2πZ))m be the m-dimensional torus endowed with its Borel σ -
field F and the normalized Lebesgue measure μ. Let f be a measurable square-
integrable non-negative function defined on 
. We consider the geometric kernel
on 
 defined by:

k f (x, y) = f (x − y).

The kernel k f has a finite double-norm as f ∈ L2. The operator Tk f corresponds
to the convolution by f , and its spectral radius is given by R0 = ∫



f dμ. Then

the kernel k f is constant degree as soon as f is not equal to 0 almost surely.
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This example is developed in Sect. 7 in the case m = 1 (corresponding to d = 2
therein), see in particular Examples 7.2 and 7.3.

(iv) More generally, let (
, ·) be a compact topological group and letμ be its left Haar
probability measure. Let f be non-negative square-integrable function on
. Then
the kernel k f (x, y) = f (y−1 · x) is constant degree.
We summarize our main result in the next proposition, whose proof is given in

Sect. 5.3. We recall that a strategy is called uniform if it is constant over 
.

Proposition 5.4 (Uniform strategies for constant degree kernels) Let k be a constant
degree kernel on 
.

(i) If the map Re defined on � is convex, then all uniform strategies are Pareto
optimal (i.e. Suni ⊂ P). Consequently, c� = 1, the Pareto frontier is the segment
joining (0, R0) to (1, 0), and for all c ∈ [0, 1]:

Re�(c) = (1− c)R0.

(ii) If the map Re defined on � is concave, then the kernel k is irreducible and all
uniform strategies are anti-Pareto optimal (i.e. Suni ⊂ PAnti). Consequently, c� =
0, the anti-Pareto frontier is the segment joining (0, R0) to (1, 0), and for all c ∈
[0, 1]:

R�
e(c) = (1− c)R0.

In (Delmas et al. 2021a, Section 4.2), we give sufficient condition on the spectrum
of Tk to be either concave or convex. Combining this result with Proposition 5.4, we
get the following corollary.

Corollary 5.5 Let k be a constant degree symmetric kernel.

(i) If the eigenvalues of Tk are non-negative, then the uniform vaccination strategies
are Pareto optimal and c� = 1 (i.e. Suni ⊂ P).

(ii) If R0 is a simple eigenvalue of Tk and the others eigenvalues are non-positive,
then the kernel k is irreducible, the uniform vaccination strategies are anti-Pareto
optimal and c� = 0 (i.e. Suni ⊂ PAnti).

Remark 5.6 (Equivalent conditions) Let k be a constant degree symmetric kernel. The
eigenvalues of the operator Tk are non-negative if and only if Tk is semi-definite
positive, that is:∫


×


k(x, y)g(x)g(y)μ(dx)μ(dy) ≥ 0 for all g ∈ L2. (46)

Similarly, the condition given in Corollary 5.5 (ii) that implies the concavity of Re is
equivalent to the semi-definite negativity of Tk on the orthogonal of 1:∫


×


k(x, y)g(x)g(y)μ(dx)μ(dy) ≤ 0 for all g ∈ L2 such that
∫




g dμ = 0.

(47)

123



   26 Page 32 of 57 J.-F. Delmas et al.

Remark 5.7 (Comparison with a result from Poghotanyan et al. (2018)) (Poghotanyan
et al. 2018, Theorem 4.7) obtained a similar result in finite dimension using a result
from Friedland (1981): if the next-generation non-negative matrix K of size N × N
satisfies the following conditions

(i)
∑N

j=1 Ki j does not depend on i ∈ [[1, N ]] (which corresponds the parameters ai
in (Poghotanyanet al. 2018, Equation (2.4)) being all equal),

(ii) μi Ki j = μ j K ji for all i, j ∈ [[1, N ]] where μi denote the relative size of popula-
tion i (which corresponds to (Poghotanyan et al. 2018), Equation (2.4)),

(iii) K is not singular and its inverse is an M-matrix (i.e., its non-diagonal coefficients
are non-positive),

then the uniform strategies are Pareto optimal (i.e., they minimize the reproduction
number among all strategies with same cost). Actually, this can be seen as a direct
consequence of Corollary 5.5 (i). Indeed, the corresponding kernel kd defined by (30)
in the discrete probability space 
 = [[1, N ]] endowed with the discrete probabil-
ity measure μd also defined by (30) has constant degree thanks to Point (i) and is
symmetric thanks to Point (ii). Since K−1 is an M-matrix, its real eigenvalues are
positive according to (Berman and Plemmons, 1994, Chapter 6 Theorem 2.3). The
eigenvalues of Tkd and K are actually the same as K is the representation matrix
of Tkd in the canonic basis of RN . We conclude that the operator Tkd is positive defi-
nite. Hence Corollary 5.5 (i) can be applied to recover that the uniform strategies are
Pareto optimal.

However, Points (i) and (ii) togeteher with the positive-definitiveness of K do not
imply Point (iii). As a counter-example, consider a population divided in N = 3
groups of same size (i.e, μ1 = μ2 = μ3 = 1/3) and the following next-generation
matrix:

K =
⎛
⎝3 2 0
2 2 1
0 1 4

⎞
⎠ with inverse K−1 =

⎛
⎝ 1.4 −1.6 0.4
−1.6 2.4 −0.6
0.4 −0.6 0.4

⎞
⎠ .

Clearly Points (i) and (ii) hold and Point (iii) fails as K−1 is not an M-matrix. Never-
theless, thematrix K is definite positive as its eigenvalues σ(K ) = {5, 2+√

3, 2−√
3}

are positive. And thus, thanks to Corollary 5.5 (i), we get that the uniform strategies
are Pareto optimal. Hence, Corollary 5.5 (i) is a strict generalization of (Poghotanyan
et al. 2018, Theorem 4.7) even for finite metapopulation models.

Remark 5.8 We also refer the reader to the paper of Friedland and Karlin (1975): from
the Inequality (7.10) therein, we can obtain Corollary 5.5 (i) when 
 is a compact set
ofRn ,μ is a finitemeasure, k is a continuous symmetrizable kernel such that k(x, x) >

0 for all x ∈ 
. Further comments on related results may be found in (Delmas et al.
2021a, Section 4).

Below, we give examples of metapopulation models from the previous sections
where Proposition 5.4 applies. For continuousmodels, we refer the reader to Sections 6
and 7.
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Example 5.9 (Fully asymmetric cycle model) We consider the fully asymmetric cir-
cle model with N ≥ 3 vertices developed in Sect. 2.3. Since the in and out degree
of each vertex is exactly one, the adjacency matrix is constant degree according to
Example 5.3 (ii).

The spectrum of the adjency matrix is given by the N th roots of unity, so for N ≥ 3
it does not lie in R− ∪ {R0}, so Corollary 5.5 does not apply. However, in this case
the effective spectral radius Re is given by formula (19), which corresponds to the
geometric mean. According to (Boyd and Vandenberghe 2004, Section 3.1.5), the
map η �→ Re(η) is concave, so Proposition 5.4 (ii) applies. This proves that the
spectral condition given in Corollary 5.5 and in (Delmas et al. 2021a, Section 4.1) to
get the concavity of Re is only sufficient.

Example 5.10 (Finite assortative and disassortative model) Let 
 = {1, 2, . . . , N }
and μ be the uniform probability on 
. Let a, b ∈ R+. We consider the kernel from
the models developed in Sect. 4:

k(i, j) = a1i= j + b1i �= j .

Since μ is uniform, the kernel k is constant degree; provided its spectral radius is
positive, i.e., a or b is positive.

In the assortativemodel 0 < b ≤ a, according to Proposition 4.1 (i), the eigenvalues
of the symmetric operator Tk are non-negative. Hence, Corollary 5.5 (i) applies: the
uniform strategies are Pareto optimal. This is consistent with Theorem 4.2 (i).

In the dissortative model, we have 0 ≤ a ≤ b and b > 0. According to Proposi-
tion 4.1 (ii), the eigenvalues of Tk different from its spectral radius are non-positive.
Hence, Corollary 5.5 (ii) applies: the uniform strategies are anti-Pareto. This is con-
sistent with Theorem 4.2 (ii) and (iii).

5.3 Proof of Proposition 5.4

By analogy with (Eaves et al. 1985), we consider the following definition.

Definition 5.11 (Completely reducible kernels) A kernel k is said to be completely
reducible if there exist an at most countable index set I , and measurable sets 
0 and
(
i , i ∈ I ), such that 
 is the disjoint union 
 = 
0 � (

⊔
i∈I 
i ), the kernel k

decomposes as k =∑i∈I 1
i k1
i a.e., and, for all i ∈ I , the kernel k restricted to
i

is irreducible with positive spectral radius.

As in the discrete case for so-called line sum symmetric matrices, see (Eaves et al.
1985, Lemma 1), kernels for which for any x the out-degree is equal to the in-degree
are necessarily completely reducible; the fact that these degrees do not depend on x
impose further constraints.

Lemma 5.12 (Complete reduction) If k is a constant degree kernel on 
, then k is
completely reducible. Furthermore, the set 
0 from Definition 5.11 is empty, the car-
dinal of the partition (
i , i ∈ I ) is equal to the multiplicity of R0 and thus is finite;
and, for all i ∈ I , the kernel k restricted to 
i is a constant degree irreducible kernel
with spectral radius equal to R0.
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Proof We recall that a set A ∈ F is invariant if k(Ac, A) = 0, where for A, B ∈ F :

k(B, A) =
∫
B×A

k(x, y) μ(dx)μ(dy).

Since for each x , the in-degree k(x,
) is equal to the out-degree k(
, x), we get by
integration k(A,
) = k(
, A), so

k(Ac, A) = k(Ac,
) − k(Ac, Ac) = k(
, Ac) − k(Ac, Ac) = k(A, Ac).

Therefore if A is invariant, then so is its complement Ac. According to (Delmas et al.
2021a, Section 5) and more precisely Remark 5.1(viii), there exists then an at most
countable partition of 
 made of 
0 and (
i , i ∈ I ) such that k = ∑

i∈I ki , with
ki = 1
i k1
i , μ(
i ) > 0 and ki restricted to 
i is irreducible with positive spectral
radius. Since 1 is an eigenvector of Tk associated to the eigenvalue R0 and the sets 
0
and (
i , i ∈ I ) are pairwise disjoint, we deduce that 
0 is of zero measure and 1
i is
an eigenvector of Tki with eigenvalue R0 > 0, for all i ∈ I . Hence, all the kernels ki
restricted to 
i are irreducible constant degree kernels with spectral radius equal to
R0. Thus, the cardinal of I is equal to the multiplicity of R0 (for Tk). Since k has
finite L2 double-norm, the operator Tk is compact, and the multiplicity of R0 > 0,
and thus the cardinal of I , is finite. �
Lemma 5.13 Let k be a constant degree irreducible kernel on 
. Then the uniform
strategy is a critical point for Re among all the strategies with the same cost in (0, 1),
and more precisely: for all η with the same cost in (0, 1) as ηuni ∈ Suni and ε > 0
small enough, we have:

Re((1− ε)ηuni + εη) = Re(η
uni) + O(ε2).

Proof Let ηuni be the uniform strategy with cost c ∈ (0, 1). Since k is irreducible,
we get that (1 − c)R0 is a simple isolated eigenvalue of kηuni, whose corresponding
left and right eigenvector are 1 as kηuni is also constant degree. For η ∈ �, we get
that Tk((1−ε)ηuni+εη) converges to Tkηuni (in operator norm, thanks to (24)) as ε goes
down to 0. Notice that:∥∥ Tk(ηuni+ε(η−ηuni)) − Tkηuni

∥∥2
L2 = O(ε2).

According to (Kloeckner 2019, Theorem 2.6), we get that for any η ∈ � and ε > 0
small enough:

Re((1− ε)ηuni + εη) − Re(η
uni) = ε

∫



k(x, y)(η(y) − ηuni(y)) μ(dx)μ(dy) + O(ε2)

= εR0

∫



(η(y) − ηuni(y)) μ(dy) + O(ε2),

where for the last equality we used that k is constant degree. In particular, if η and ηuni

have the same cost c ∈ (0, 1), then Re((1− ε)ηuni + εη)− Re(η
uni) = O(ε2), which
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means that the uniform strategy is a critical point for Re among all the strategies with
cost c ∈ (0, 1). �
Proof of Proposition 5.4 We prove (i), and thus consider k constant degree and Re

convex. We first consider the case where k is irreducible. For any η, Lemma 5.13 and
the convexity of Re imply that

Re(η
uni) + O(ε2) = Re((1− ε)ηuni + εη) ≤ (1− ε)Re(η

uni) + εRe(η),

where ηuni the uniform strategy with the same cost as η. Letting ε go to 0, we
get Re(η) ≥ Re(η

uni), so Re is minimal at ηuni.
Since C(ηuni) = c and Re(η

uni) = (1− c)R0, we deduce that Re�(c) = (1− c)R0
and thus, the Pareto frontier is a segment given by F = {(c, (1− c)R0) : c ∈ [0, 1]}.

In what follows, we write Re[k] to stress that the reproduction function on �

defined by (29) depends on the kernel k: Re[k](η) = ρ(Tkη) for η ∈ �. If k is not
irreducible, then use the representation from Lemma 5.12 (or Delmas et al. 2021a,
Lemma 5.3), to get that Re[k] = maxi∈I Re[ki ]. Since the cost is affine, we deduce
that a strategy η with Re[k](η) = � ∈ [0, R0] is Pareto optimal if and only if, for
all i ∈ I , the strategies ηi = η1
i are Pareto optimal for the kernel k restricted to 
i

and Re[ki ](ηi ) = �; see also (Delmas et al. 2022b, Proposition 5.7). Then the first
step of the proof yields that ηi = �1
i and thus the uniform strategy ηuni = �1
 is
Pareto optimal. This ends the proof of (i).

We now prove (ii). We first check that the kernel k is irreducible. Thanks to
Lemma 5.12, the kernel k is completely reducible with a zero measure 
0. However,
(Delmas et al. 2021a, Lemma 5.10) also implies that it is monatomic, a notion intro-
duced in (Delmas et al. 2021a, Section 5.2) which intuitively states that k has only one
irreducible component. Together with complete reducibility, this implies that k is irre-
ducible. The rest of the proof is then similar to the proof of (i) under the irreducibility
assumption. �

6 Constant degree symmetric kernels of rank two

6.1 Motivation

Consider the integral operator Tk on L2 associated to a kernel k with finite double
norm on L2. According to (Conway 1990, p. 267), the operator Tk is an Hilbert-
Schmidt integral operator. If furthermore the kernel k is symmetric, thanks to the
spectral theorem for compact operators (Conway 1990, Theorem II.7.6), we have the
following decomposition in L2(
2, μ⊗2):

k(x, y) =
∑

0≤n<N

εnαn(x)αn(y),

where 0 ≤ N ≤ +∞, εn ∈ {−,+} and (αn, 0 ≤ n < N ) is an orthogonal family of
eigenvectors of Tk such that εn ‖αn ‖2 is equal to the eigenvalue associated to αn . In
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particular, for constant degree symmetric kernel k and assuming that the rank of Tk is
at least two (N ≥ 2), α0 is equal to 1 and the decomposition writes:

k(x, y) = R0 +
∑

1≤n<N

εnαn(x)αn(y),

where αn for 1 ≤ n < N is orthogonal to 1. The integral operator associated to the
kernel R0 + ε1α1(x)α1(y) is the best ‖ · ‖L2 -approximation of Tk by an operator of
rank two if ‖α1 ‖ ≥ ‖αn ‖ for all 1 ≤ n < N .

Because it completes the study of the previous section but also because it can
give some insights on the shape of the Pareto and anti-Pareto frontier for general
symmetric constant degree kernels according to the stability results (Delmas et al.
2021b, Proposition 4.3 and Porposition 6.2), we will treat the case of symmetric
constant degree kernels whose associated operator is of rank two, where one can
explicitely minimize and maximize Re among all strategies at a given cost.

6.2 Pareto and anti-Pareto frontiers

We suppose that 
 = [0, 1) is equipped with the Borel σ -field F and a probability
measure μ whose cumulative distribution function ϕ, defined by ϕ(x) = μ([0, x])
for x ∈ 
, is continuous and increasing. We consider the following two kernels on
:

kε(x, y) = R0 + εα(x)α(y), with ε ∈ {−,+}, (48)

where R0 > 0 and α ∈ L2 is strictly increasing and satisfies:

sup



α2 ≤ R0 and
∫




α dμ = 0. (49)

Remark 6.1 (Generality)Wenote that this particular choice of
may bemadewithout
loss of generality, and that the strict monotonicity assumption on α is almost general:
we refer the interested reader to Sect. 6.3 for further discussion on this point.

For ε ∈ {−,+}, the kernel kε is symmetric and constant degree. Furthermore, we
have that R0 and ε

∫



α2 dμ are the only non-zero eigenvalues (and their multiplicity
is one) of Tkε with corresponding eigen-vector 1 and α. Since α2 ≤ R0, we also get
that R0 is indeed the spectral radius of Tkε .

The Pareto (resp. anti-Pareto) frontier is already greedily parametrized by the uni-
form strategies for the kernel k+ (resp. k−), see Corollary 5.5. The following result
restricts the choice of anti-Pareto (resp. Pareto) optimal strategies to two extreme
strategies. Hence, in order to find the optima, it is enough to compute and compare
the two values of Re for each cost.

We recall the set of uniform strategies Suni = {t1 : t ∈ [0, 1]} and consider the
following sets of extremal strategies:

S0 = {1[0,t) : t ∈ [0, 1]} and S1 = {1[t,1) : t ∈ [0, 1]}
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as well as the following set of strategies which contains Suni thanks to (49):

S⊥α =
{
η ∈ � :

∫



α η dμ = 0

}
.

Recall that strategies are defined up to the a.s. equality. The proof of the next propo-
sition is given is Sect. 6.4

Proposition 6.2 (Optima are uniform or on the sides) Let [0, 1) be endowed with a
probability measure whose cumulative distribution function is increasing and contin-
uous. Let kε be given by (48) with R0 > 0 and α a strictly increasing function on [0, 1)
such that (49) holds.

(i) The kernel k+. A strategy is Pareto optimal if and only if it belongs to S⊥α . In
particular, for any c ∈ [0, 1], the strategy (1− c)1 costs c and is Pareto optimal.
The only possible anti-Pareto strategies of cost c are 1[0,1−c) and 1[c,1). In other
words,

P = S⊥α and PAnti ⊂ S0 ∪ S1.

(ii) The kernel k−. A strategy is anti-Pareto optimal if and only if it belongs to S⊥α .
In particular, for any c ∈ [0, 1], the strategy (1 − c)1 costs c and is anti-Pareto
optimal. The only possible Pareto strategies of cost c are 1[0,1−c) and 1[c,1). In
other words,

P ⊂ S0 ∪ S1 and PAnti = S⊥α.

In both cases, we have c� = 0 and c� = 1.

Remark 6.3 Intuitively, the populations {α < 0} and {α > 0} behave in an assortative
way for k+ and in a disassortative way for k−. As in Sect. 4, the uniform strate-
gies are Pareto optimal in the “assortative” k+ case and anti-Pareto optimal in the
“disassortative” k− case.

Remark 6.4 Under the assumptions of Proposition 6.2, if furthermore α is anti-
symmetric with respect to 1/2, that is α(x) = −α(1 − x) for x ∈ (0, 1), and μ

is symmetric with respect to 1/2, that is μ([0, x]) = μ([1− x, 1)), then it is easy to
check from the proof of Proposition 6.2 that the strategies from S0 and S1 are both
optimal:PAnti = S0∪S1 for k+ andP = S0∪S1 for k−. We plotted such an instance
of k+ and the corresponding Pareto and anti-Pareto frontiers in Fig. 9. We refer to
Sect. 6.5 for an instance where α is not symmetric and P �= S0 ∪ S1 for k−.

6.3 On the choice ofÄ = [0, 1) and on themonotonicity assumption

Using a reduction model technique from (Delmas et al. 2021b, Section 7), let us first
see that there is no loss of generality by considering the kernel kε = R0 + εα ⊗ α

on 
 = [0, 1) endowed with the Lebesgue measure μ and with α non-decreasing.
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Fig. 9 An example of a constant degree kernel operator of rank two

Suppose that the function α in (48) is replaced by an R-valued measurable func-
tion α0 defined on a general probability space (
0,F0, μ0) such that (49) holds.
Thus, with obvious notations, for ε ∈ {−,+}, the kernel R0 + εα0 ⊗ α0 is a ker-
nel on 
0. Denote by F the repartition function of α0 (that is, F(r) = μ0(α0 ≤ r)
for r ∈ R) and take α as the quantile function of α0, that is, the right continuous
inverse of F . Notice the function α is defined on the probability space (
,F , μ) is
non-decreasing and satisfies (49). Consider the probability kernel κ : 
0 × F →
[0, 1] defined by κ(x, ·) = δF(α0(x))(·), with δ the Dirac mass, if α is continuous
at α0(x) (that is, F(α0(x)−) = F(α0(x))) and the uniform probability measure
on [F(α0(x)−), F(α0(x))]otherwise.On themeasurable space (
0×
,F0⊗F ), we
consider the probability measure ν(dx1, dx2) = μ0(dx1)κ(x1, dx2), whose marginals
are exactly μ0 and μ. Then, for ε ∈ {−,+}, we have that :

R0 + εα0(x1)α0(y1) = R0 + εα(x2)α(y2) ν(dx1, dx2) ⊗ ν(dy1, dy2)-a.s.

According to (Delmas et al. 2021b, Section 7.3), see in particular Proposition 7.3
therein, the kernels R0 + εα0 ⊗ α0 and R0 + εα ⊗ α are coupled and there is a
correspondence between the corresponding (anti-)Pareto optimal strategies and their
(anti-)Pareto frontiers are the same.

Hence, there is no loss in generality in assuming that the function α in (48) is indeed
defined on [0, 1) and is non-decreasing.

On the contrary, one cannot assume in full generality that α is strictly increasing, as
when it is only non-decreasing, the situation is more complicated. Indeed, let us take
the parameters R0 = 1 and α = 1[0,0.5) −1[0.5,1). Then, the kernel k− is complete bi-
partite: k− = 1[0,0.5)×[0.5,1) + 1[0.5,1)×[0,0.5). Hence, according to Theorem 4.2 (iii),
we have c� = 0.5 for the kernel k−. In a similar fashion, one can see that k+ =
1[0,0.5)×[0,0.5) + 1[0.5,1)×[0.5,1) is assortative and reducible; it is then easy to check
that c� = 0.5 for the kernel k+. However, it is still true that, for all costs c:
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• 1[0,1−c) or 1[c,1) is solution of Problem (8) when the kernel k+ is considered,
• 1[0,1−c) or 1[c,1) is solution of Problem (7) when the kernel k− is considered.

From the proof of Proposition 6.2, we cannot expect to have strict inequalities in (59)
if α is only non-decreasing, and thus one cannot expect S0 ∪ S1 to contain PAnti for
the kernel k+ or P for the kernel k−.

6.4 Proof of Proposition 6.2

We assume that R0 > 0 and α is a strictly increasing function defined on 
 = [0, 1)
such that (49) holds. Without loss of generality, we shall assume that R0 = 1 unless
otherwise specified. We write Rε

e for the effective reproduction function associated
to the kernel kε. We shall also write εa for a if ε = + and −a if ε = −. We first
rewrite Rε

e in two different ways in Sect. 6.4.1. Then, we consider the kernel k− in
Sect. 6.4.2 and the kernel k+ in Sect. 6.4.3.

6.4.1 Two expressions of the effective reproduction function

We provide an explicit formula for the function Rε
e , and an alternative variational

formulation, both of which will be needed below.

Lemma 6.5 Assume R0 = 1 and α is a strictly increasing function defined on 
 =
[0, 1) such that (49) holds. We have for ε ∈ {+,−} and η ∈ �:

2Rε
e (η) =

∫
η dμ + ε

∫
α2 η dμ +

√(∫
η dμ − ε

∫
α2 η dμ

)2

+ 4ε

(∫
α η dμ

)2

.

(50)

Alternatively, Rε
e (η) is the solution of the variational problem:

Rε
e (η) = sup

h∈Bη
+

(∫ 1

0
h η dμ

)2

+ ε

(∫ 1

0
h α η dμ

)2

, (51)

where

Bη
+ =

{
h ∈ L2+ :

∫ 1

0
h2 η dμ = 1

}
.

The supremum in (51) is reached for the right Perron eigenfunction of Tkη chosen in
Bη
+.

Proof We first prove (50). For all η ∈ �, the rank of the kernel operator Tkεη is smaller
or equal to 2 and Im(Tkεη) ⊂ Vect(1, α). The matrix of Tkεη in the basis (1, α) of the
range of Tkεη is given by:

( ∫
η dμ

∫
α η dμ

ε
∫

α η dμ ε
∫

α2 η dμ

)
. (52)
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An explicit computation of the spectrum of this matrix yields Equation (50) for its
largest eigenvalue.

The variational formula (51) is a direct consequence of general Lemma 6.6 below.
�

Lemma 6.6 (Variational formula for Re when k is symmetric) Suppose that k is
a symmetric kernel on 
 with a finite double-norm in L2. Then, we have that for
all η ∈ �:

Re(η) = sup
h∈Bη

+

∫

×


h(x)η(x) k(x, y) h(y)η(y) μ(dx)μ(dy), (53)

where

Bη
+ =

{
h ∈ L2+ :

∫



h2 η dμ = 1

}
.

The supremum in (53) is reached for the right Perron eigenfunction of Tkη chosen in
Bη
+.

Proof For afinitemeasure ν on (
,F ), as usual,wedenote by L2(ν) the set ofmeasur-
able real-valued functions f such that

∫



f 2dν < +∞ endowed with the usual scalar
product, so that L2(ν) is an Hilbert space. Let η ∈ �. We denote by Tkη the integral
operator associated to the kernel kη seen as an operator on the Hilbert space L2(ηdμ):
for g ∈ L2(ηdμ) and x ∈ 
 we have Tkη(g)(x) = ∫



k(x, y) η(y) g(y) μ(dy).

The operator Tkη is self-adjoint and compact since the double-norm of k in L2(ηdμ)

is finite. It follows from the Krein-Rutman theorem and the Courant-Fischer-Weyl
min-max principle that its spectral radius is given by the variational formula:

ρ(Tkη) = sup
h∈Bη

+

∫

×


h(x) k(x, y) h(y) η(x)μ(dx) η(y)μ(dy).

Besides, the set L2(μ) is densely and continuously embedded in L2(ηdμ) and the
restriction of Tkη to L2(μ) is equal to Tkη. Thanks to ((Delmas et al. 2021a, Lem-
mas 2.1 (iii) and 2.2), we deduce that ρ(Tkη) is equal to ρ(Tkη), which gives (53).

Let h0 be the right Perron eigenfunction of Tkη chosen such that h0 ∈ Bη
+. We get:

∫

×


η(x)h0(x) k(x, y) η(y)h0(y) μ(dx)μ(dy) = Re(η)

∫



η(x)h0(x)
2 μ(dx) = Re(η).

Thus, the supremum in (53) is reached for h = h0. �

6.4.2 The kernel k−

Since α is increasing, we have μ(α2 = R0) = 0 and thus the symmetric kernel k−
is positive μ⊗2-a.s. It follows from Remark 3.1 that c� = 0 and c� = 1, and the
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strategy 1 (resp. 0) is the only Pareto optimal as well as the only anti-Pareto optimal
strategy with cost c = 0 (resp. c = 1). Since the kernel k− is constant degree and
symmetric, and the non-zero eigenvalues of Tk− are given by R0 = 1 and − ∫ α2 dμ,
the latter being negative, we deduce from Corollary 5.5 (ii) that Suni ⊂ PAnti. On the
one hand, if η is anti-Pareto optimal with the same cost as ηuni ∈ Suni, one can use
that R−

e (η) = ∫ η dμ (as R−
e (ηuni) = ∫ ηuni dμ) and (50) to deduce that η ∈ S⊥α . On

the other hand, if η belongs to S⊥α , we deduce from (50) that Re(η) = ∫
η dμ, and

thus η is anti-Pareto optimal. In conclusion, we get PAnti = S⊥α .
We now study the Pareto optimal strategies. We first introduce a notation inspired

by the stochastic order of real valued random variables: we say that η1, η2 ∈ � with
the same cost are in stochastic order, and we write η1 ≤st η2 if:

∫ t

0
η1 dμ ≥

∫ t

0
η2 dμ for all t ∈ [0, 1]. (54)

We also write η1 <st η2 if the inequality in (54) is strict for at least one t ∈ (0, 1). If
η1 <st η2 and h is an increasing bounded function defined on [0, 1), then we have:

∫



h η1 dμ <

∫



h η2 dμ. (55)

Let c ∈ (0, 1) be fixed. Define the vaccination strategies with cost c:

η0 = 1[0,1−c) and η1 = 1[c,1). (56)

In particular we have η0 <st η1 asμ has no atom and
 as full support. Let η /∈ {η0, η1}
be a vaccination strategy with cost c; necessarily

η0 <st η <st η1.

We now rewrite the function R−
e in order to use the stochastic order on the vacci-

nation strategies. We deduce from (50) that:

4R−
e (η) = 4

∫
η dμ − H(η)2 with H(η) =

√∫
(1+ α)2η dμ −

√∫
(1− α)2η dμ. (57)

Then, using that α is increasing and [−1, 1]-valued, we deduce from (55) (with h =
(1+ α)2 and h = −(1− α)2) and the definition of H in (57) that:

H(η0) < H(η) < H(η1).

This readily implies that R−
e (η) > min

(
R−
e (η0), R−

e (η1)
)
. Thus, among strategies of

cost c, the only possible Pareto optimal ones areη0 andη1.Wededuce thatP ⊂ S0∪S1.
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6.4.3 The kernel k+

Arguing as for k−, we get that c� = 0 and c� = 1, and the strategy 1 (resp. 0) is the
only Pareto optimal as well as the only anti-Pareto optimal strategy with cost c = 0
(resp. c = 1). Since the kernel k+ is constant degree and symmetric, and the non-
zero eigenvalues of Tk+ given by R0 and

∫



α2 dμ are positive, we deduce from
Corollary 5.5 (i) that Suni ⊂ P .

Arguing as inSect. 6.4.2 for the identificationof the anti-Pareto optimabasedon (50)
(with ε = + instead of ε = −) and using that Suni ⊂ P (instead of Suni ⊂ PAnti), we
deduce that P = S⊥α .

We now consider the anti-Pareto optima. Let c ∈ (0, 1). We first start with some
comparison of integralswith respect to the vaccination strategies, with cost c, η0 and η1
defined by (56). Let η be a strategy of cost c not equal to η0 or η1 (recall that a strategy
is defined up to the a.s. equality). Consider the monotone continuous non-negative
functions defined on [0, 1]:

φ0 : x �→ ϕ−1
(∫

[0,x)
η dμ

)
, and φ1 : x �→ ϕ−1

(
1−

∫
[x,1)

η dμ

)
.

Let i ∈ {0, 1}. Let φ−1
i denote the generalized left-continuous inverse of φi . Note

that η(x)μ(dx)-a.s., φ−1
i ◦φi (x) = x . The measure ηi dμ is the push-forward of η dμ

through φi , so that for h bounded measurable:

∫
h η dμ =

∫
hi ηi dμ with hi = h ◦ φ−1

i . (58)

Since η is not equal to η0 a.s., there exists x0 < 1 − c such that, φ0(x) = x
for x ∈ [0, x0] and φ0(x) < x for x ∈ (x0, 1]. Thus, we deduce that φ−1

0 (y) = y
for all y ∈ [0, x0] and φ−1

0 (y) > y for all y ∈ (x0, 1 − c]. Similarly, since η is not
equal to η1 almost surely, there exists x1 > c such that φ−1

1 (y) = y for all y ∈ (x1, 1]
and φ−1

1 (y) < y for all y ∈ [c, x1). Since α is increasing and μ has no atom and
full support in 
, we deduce from from (58), applied to hα, that if h is a.s. positive
bounded measurable, then:

∫
h0 α η0 dμ <

∫
h α η dμ <

∫
h1 α η1 dμ. (59)

Let h be the right Perron eigenfunction of Tk+η chosen such that h ∈ Bη
+. Since k+

is positive a.s. and thus irreducible with positive spectral radius, we have that h is
positive a.s. Thanks to Lemma 6.5, we have:

R+
e (η) =

(∫
h η dμ

)2

+
(∫

h α η dμ

)2

and
∫

h2 η dμ = 1. (60)
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We deduce from (58) that for i ∈ {0, 1}:
∫

h η dμ =
∫

hi ηi dμ and 1 =
∫

h2 η dμ =
∫

h2i ηi dμ.

In particular hi belongs to Bηi+ . Using that h > 0 a.s., we then deduce from (60)
and (59) that:

R+
e (η) < max

i∈{0,1}

(∫
hi ηi dμ

)2

+
(∫

hi α ηi dμ

)2

≤ max
i∈{0,1} Re(ηi ).

We conclude that only η0 or η1 can maximize R+
e among the strategies of cost c ∈

(0, 1). We deduce that PAnti ⊂ S0 ∪ S1.

6.5 An example where all parametrizations of the Pareto frontier have an infinite
number of discontinuities

The purpose of this section is to give a particular example of kernel on a contin-
uous model where we rigorously prove that the Pareto frontier cannot be greedily
parametrized, that is, parametrized by a continuous path in � (as in the fully sym-
metric circle), and that all the parametrizations have an arbitrary large number of
discontinuities (possibly countably infinite).

We keep the setting from Sect. 6.2.Without loss of generality, we assume that R0 =
1, andwe consider the kernel k− = 1−α⊗α on
 = [0, 1) endowedwith its Lebesgue
measure. We know from the previous section that, for any cost, either η0 or η1 are
Pareto optimal, and that all other strategies are non-optimal. The idea is then to build
an instance of the function α in such a way that for some costs, one must vaccinate
“on the left” and for other costs “on the right”.

Let N ∈ [[2,+∞]]. Consider an increasing sequence (xn, n ∈ [[0, N ]]) such that
x0 = 1/2, xN = 1 and limn→∞ xn = 1 if N = ∞. For 0 ≤ n < N , let pn = xn+1−xn
and assume that pn+1 < pn for n ∈ [[0, N [[. For n ≥ 1, let x−n be the symmetric
of xn with respect to 1/2, i.e., x−n = 1− xn . The function α is increasing piecewise
linear defined on (0, 1) by:

α(x) =

⎧⎪⎨
⎪⎩
2x − 1, for x ∈ [x2m, x2m+1),

x − 1+ x2m−1+x2m
2 for x ∈ [x2m−1, x2m).

(61)

See Fig. 10A for an instance of the graph of α given in Example 6.9. Note that for
all n ∈ [[0, N [[, we have:

∫ xn+1

xn
α dμ = −

∫ x−n

x−n−1

α dμ. (62)
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Fig. 10 Plots of the functions of interest in Sect. 6.5

This proves that the integral of α over [0, 1) is equal to 0. Of course, sup[0,1) α2 =
1 = R0. Hence, α satisfies Condition (49).

We recall that a function γ : [0, c�] �→ � is a parametrization of the Pareto frontier
if for all c ∈ [0, c�] the strategy γ (c) is Pareto optimal with costC(γ (c)) = c. Nowwe
can prove there exists no greedy parametrization of the Pareto frontier of the kernel k−
and even impose an arbitrary large lower bound for the number of discontinuities.

Proposition 6.7 Let N ∈ [[2,+∞]]. Consider the kernel k− = 1 − α ⊗ α from (48)
on 
 = [0, 1) endowed with its Lebesgue measure, with α given by (61). Then, any
parametrization of the Pareto frontier has at least 2N − 2 and at most 20N − 2
discontinuities.

The proof is given at the end of this section, and relies on the following technical
lemma based on the comparison of the followingmonotone paths γ0 and γ1 from [0, 1]
to �:

γ0(t) = 1[0,t), and γ1(t) = 1[1−t,1), t ∈ [0, 1] (63)

which parameterizes S0 and S1 as γ0([0, 1]) = S0 and γ1([0, 1]) = S1. Notice that
strategies γ0(t) and γ1(t) have the same cost 1− t .

Consider the function δ : [0, 1] → Rwhich, according to Proposition 6.2, measures
the difference between the effective reproduction numbers at the extreme strategies:

δ(t) = Re(γ0(t)) − Re(γ1(t)). (64)

The function δ is continuous and δ(0) = δ(1) = 0; see for example Fig. 10B for its
graph when α is taken from Example 6.9. We say that t ∈ (0, 1) is a zero crossing of δ

if δ(t) = 0 and there exists ε > 0 such that δ(t + r)δ(t − r) < 0 for all r ∈ (0, ε).
The following result gives some information on the zeros of the function δ.
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Lemma 6.8 Under the assumptions of Proposition 6.7, the function δ defined in (64)
has at least 2N − 2 zero-crossings in (0, 1) and at most 20N zeros in [0, 1]. Besides,
if N = ∞, 0 and 1 are the only accumulation points of the set of zeros of δ.

Proof Using the explicit representation of R−
e from Lemma 6.5, see (50) with ε = −,

we get the function δ can be expressed as:

2δ(t) = V1(t) − V0(t) +
√
V0(t)2 − M0(t)2 −

√
V1(t)2 − M1(t)2, (65)

where, as
∫

α dμ = 0:

M0(t) = 2
∫ t

0
α dμ, V0(t) = t +

∫ t

0
α2 dμ, M1(t) = M0(1− t) and V1(t) = t +

∫ 1

1−t
α2 dμ.

Elementary computations give that for all n ∈ [[0, N [[:
∫ xn+1

xn
α(x)2 dx −

∫ x−n

x−n−1

α(x)2 dx = (−1)n p3n
4

, (66)

where we recall that pn = xn+1 − xn . Hence, we obtain that for all n ∈ [[−N , N ]]:

V1(xn) − V0(xn) = 1

4

∞∑
i=| n |

(−1)i p3i . (67)

Since the sequence (pn, n ∈ [[0, N [[) is decreasing,wededuce that the signofV1(xn)−
V0(xn) alternates depending on the parity of n ∈]] − N , N [[: it is positive for odd n
and negative for even n. The same result holds for the numbers δ(xn) since M0(xn) =
M1(1 − xn) for all n ∈ [[−N , N ]] according to (62) (use that, with b > 0, the
function x �→ x − √

x2 − b2 is decreasing for x ≥ √
b as its derivative is negative).

This implies that δ has at least 2N − 2 zero-crossings in (0, 1).
We now prove that δ has at most 20N zeros in [0, 1] and that 0 and 1 are the only

possible accumulation points of the set of zeros of δ. It is enough to prove that δ has at
most 10 zeros on [xn, xn+1] for all finite n ∈ [[−N , N [[. On such an interval [xn, xn+1],
the function α is a polynomial of degree one. Consider first n odd and non-negative,
so that for t ∈ [xn, xn+1], we get that with a = 1− (xn + xn+1)/2:

M0(t) = 2t2 − 2t + b1, V0(t) = 4

3
t3 − 2t2 + 2t + b2,

M1(t) = t2 − 2at + b3, V1(t) = −1

3
t3 + at2 + (1− a2)t + b4,

where bi are constants. If t is a zero of δ, then it is also a zero of the polynomial P
given by:

P = 4(V1 − V0)
(
V0M

2
1 − V1M

2
0

)
−
(
M2

0 − M2
1

)2
.
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Fig. 11 An example of a constant degree kernel operator of rank two

Since the degree of P is exactly 10, it has at most 10 zeros. Thus δ has at most 10
zeros on [xn, xn+1]. This ends the proof. �
Proof of Proposition 6.7 According to Proposition 6.2, the only possible Pareto strate-
gies of cost c = 1 − t ∈ [0, 1] are γ0(t) and γ1(t), and only one of them is optimal
when δ �= 0. A zero crossing of the function δ on (0, 1) therefore corresponds to a dis-
continuity of any parametrization of the Pareto frontier. We deduce from Lemma 6.8
that in (0, 1) there are at least 2N − 2 and at most 20N − 2 zeros crossing and thus
discontinuities of any parametrization of the Pareto frontier. �

Example 6.9 In Fig. 10A, we have represented the function α defined by (61) where:

xn = 1

2
log12(12(n + 1)), 0 ≤ n ≤ N = 11.

Hence, the mesh (xn, −N ≤ n ≤ N ) is composed by 2N + 1 = 23 points. The graph
of the corresponding function δ defined in (64) is drawn in Fig. 10B. The grayplot
of the kernel k− = 1 − α ⊗ α is given in Fig. 11A and the associated Pareto and
anti-Pareto frontiers are plotted in Fig. 11B.

7 Geometric kernels on the sphere

A geometric random graph is an undirected graph constructed by assigning a random
point in a latent metric space to each node and by connecting two nodes according to a
certain probability that depends on the distance between their latent point. Because of
its geometric stucture, this model is appealing for a wide-range of applications such
as wireless networks modelling (Hekmat and Van Mieghem 2003), social networks
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(Hoff et al. 2002) and biological networks (Higham et al. 2008). A geometric random
graphmodel can be represented as a symmetric kernel defined on the latent space (also
called graphon) according to Lovász (2012).

In this section, we focus our study on the latent space given by the unit sphere. In
Sect. 7.1 we present themathematical model, and give in Sect. 7.2 sufficient conditions
on the kernel for uniform strategies to be Pareto or anti-Pareto optimal. Section 7.3 is
devoted to the explicit descriptions of the Pareto and anti-Pareto optimal vaccination
strategies in the affine case.

7.1 Themodel

Let d ≥ 2. Let 
 = Sd−1 be the unit sphere of the Euclidean d-dimensional space Rd

endowed with the usual Borel σ -field and the uniform probability measureμ. Let 〈·, ·〉
denote the usual scalar product on Rd and let

δ(x, y) = arccos(〈x, y〉)

denote the geodesic distance between x, y ∈ Sd−1. By symmetry, the distribution
on [−1, 1] of the scalar product of two independent uniformly distributed random
variables in Sd−1 is equal to the distribution of the first coordinate of a uniformly
distributed unit vector: it is the probability measure on [−1, 1] with density with
respect to the Lebesgue measure proportional to the function wd defined on [−1, 1]
by:

wd(t) = (1− t2)(d−3)/2 1(−1,1)(t).

In particular, we deduce from the Funk-Heck formula (take n = 0 in (Dai andXu 2013,
Theorem 1.2.9) that for any non-negative measurable function h defined on [−1, 1]
and x ∈ Sd−1, we have:

∫
Sd−1

h(〈x, y〉) μ(dy) = cd

∫ 1

−1
h(t) wd(t) dt with cd = �( d2 )

�( d−1
2 )

√
π
· (68)

We consider a symmetric kernel k on Sd−1 corresponding to a geometric random
graph model on Sd−1, given by:

k(x, y) = p(〈x, y〉) = f ◦ δ(x, y), x, y ∈ Sd−1, (69)

where p : [−1, 1] → R+ is a measurable function and f = p ◦ cos : [0, π ] → R+.
We assume that k has finite double-norm on L2; thanks to (68), this is equivalent to:

∫ 1

−1
p(t)2 wd(t) dt =

∫ π

0
f (θ)2 sin(θ)d−2dθ < ∞. (70)
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By symmetry, using that the scalar product and the measure μ are invariant by rota-
tions, we deduce that the kernel k is a constant degree kernel. According to (45) and
using (68), we get that the basic reproduction number is given by:

R0 = cd

∫ 1

−1
p(t) wd(t) dt = cd

∫ π

0
f (θ) sin(θ)d−2 dθ. (71)

By (Dai andXu2013,Theorem1.2.9), the eigenvectors of the symmetric operatorTk
on L2(Sd−1) are the spherical harmonics, and in particular, they don’t depend on the
function p. We recall the linear subspace of spherical harmonics of degree n for n ∈ N
has dimension dn given by d0 = 1 and for n ∈ N∗:

dn = 2n + d − 2

n + d − 2

(
n + d − 2

n

)
.

The corresponding eigenvalues (λn, n ∈ N) are real and given by:

λn = cd

∫ 1

−1
p(t)

Gn(t)

Gn(1)
wd(t) dt = cd

∫ π

0
f (θ)

Gn(cos(θ))

Gn(1)
sin(θ)d−2 dθ, (72)

where Gn is the Gegenbauer polynomial of degree n and parameter (d − 2)/2 (see
(Dai and Xu 2013, Section B.2) with Gn = C (d−1)/2

n ). We simply recall that G0 = 1
and that for d = 2, the Gegenbauer polynomials are, up to a multiplicative constant,
the Chebyshev polynomials of the first kind:

Gn(cos(θ)) = 2

n
cos(nθ) for θ ∈ [0, π ] and n ∈ N∗;

and that for d ≥ 3, r ∈ (−1, 1) and θ ∈ [0, π ]:
∞∑
n=0

rnGn(cos(θ)) = (1+ r2 − 2r cos(θ))−(d−2)/2 and Gn(1) =
(
n + d − 3

n

)
for n ∈ N∗.

Thus, if λ �= 0 is an eigenvalue of Tk, then its multiplicity is the sum of all the
dimensions dn such that λn = λ. The eigenvalue R0 (associated to the eigenvector 1
which is the spherical harmonic of degree 0) is in fact simple according to the next
Lemma.

Lemma 7.1 Let k be a kernel on Sd−1 given by (69), with finite double-norm and such
that R0 > 0. Then the kernel k is constant degree and irreducible, and its eigenvalue
R0 is simple.

Proof The kernel k is trivially a constant degree kernel. Since d0 = 1, we only need
to prove that λn < λ0 = R0 for all n ∈ N∗ to get that R0 is simple, and then use
Lemma 5.12 to get that k is irreducible.

According to (Abramowitz and Stegun 1972, Equation 22.14.2) or (Atkinson and
Han 2012, Section 3.7.1), we get that |Gn(t)| ≤ Gn(1) for t ∈ [−1, 1]. Since Gn is
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a polynomial, the inequality is strict for a.e. t ∈ [−1, 1]. Using (72), we obtain that
λn < λ0 for all n ∈ N∗. �
Example 7.2 (The circle: d = 2) In case d = 2, we identify the circle S1 with 
 =
R/2πZ and the scalar product 〈θ, θ ′〉 = cos(θ − θ ′). The kernel k from (69) is
the convolution kernel given by k(θ, θ ′) = p(cos(θ − θ ′)) = f (θ − θ ′), where
f is symmetric non-negative and 2π periodic and its restriction to [0, π ] is square
integrable. Then, we can consider the development in L2([0, π ]) of f as a Fourier
series:

f (θ) =
∞∑
n=0

an( f ) cos(nθ), θ ∈ [0, π ], (73)

where:

a0( f ) = 1

π

∫ π

0
f (θ) dθ and an( f ) = 2

π

∫ π

0
cos(nθ) f (θ) dθ for n ≥ 1.(74)

It follows from Equation (73) that the kernel has the following decomposition
in L2([0, 2π)2):

k(θ, θ ′) = a0( f ) +
∞∑
n=1

an( f )
(
cos(nθ) cos(nθ ′) + sin(nθ) sin(nθ ′)

)
, θ, θ ′ ∈ [0, 2π).

(75)

Assume that a0( f ) > 0, that is, f is non-zero. Then, the spectral radius R0 = a0( f )
is an eigenvalue with multiplicity one associated to the eigenfunction 1 (and thus k
is a constant degree kernel). The other eigenvalues are given by λn = an( f )/2 for
all n ≥ 1 and, when non zero and distinct, have multiplicity 2.

7.2 Sufficient condition for convexity or concavity

We would like to provide conditions on the function f or p that ensure that the eigen-
values (λn, n ≥ 1) given by (72) of the operator Tk with the kernel k defined by (69) are
all non-negative or all non-positive so that Re is convex or concave according to Corol-
lary 5.5. Schoenberg’s theorem, see (Dai and Xu 2013, Theorem 14.3.3) or (Gneiting
2013, Theorem 1), characterizes the continuous function f such that the kernel k is
positive semi-definite (and thus the eigenvalues (λn, n ≥ 1) are all non-negative) as
those with non-negative Gegenbauer coefficients: f = ∑∞

n=0 an Gn , where the con-
vergence is uniform on [−1, 1], with an ≥ 0 for all n ∈ N and

∑∞
n=0 an Gn(1) finite.

When d = 2, this corresponds to the Böchner theorem. We refer to Gneiting (2013)
and references therein for some characterization of functions f such that the kernel k
from (69) is definite positive. We end this section with some examples.
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Example 7.3 Wegive an elementary example in the setting ofExample 7.2whend = 2.
Set

f+(θ) = (π − θ)2 and f−(θ) = π2 − (π − θ)2 for θ ∈ [0, π ].

We can compute the Fourier coefficients of f+ and f− as:

(π − θ)2 = π2

3
+

∞∑
n=1

4

n2
cos(nθ), θ ∈ [0, π ].

Using Corollary 5.5 and (Delmas et al. 2021a, Theorem 4.10), we deduce that the
function Re associated to the convolution kernel k = f+ ◦ δ is convex and Suni ⊂ P;
whereas the function Re associated to the convolution kernel k = f− ◦ δ is concave
and Suni ⊂ PAnti.

Example 7.4 (Kernel from a completely monotone function) Let ϕ be a continuous
non-negative function defined on R+, such that ϕ is completely monotone, that is, ϕ
is infinitely differentiable on (0,+∞) and (−1)nϕ(n) ≥ 0 on (0,+∞) for all n ≥ 1.
Using (Gneiting 2013, Theorem7), we get that the geometric kernel k = f ◦δ onSd−1,
with d = 2, where f = ϕ[0,π ] is positive definite (thus all the eigenvalues of Tk are
non-negative). Thanks to Corollary 5.5 and (Delmas et al. 2021a, Theorem 4.10), we
deduce that Re is convex and the uniform strategies are Pareto optimal: Suni ⊂ P .

Example 7.5 (Kernel from a Bernstein function) Let ϕ be a Bernstein function, that
is a non-negative C1 function defined on R+ such that ϕ(1) is completely monotone.
Assume furthermore that supR+ ϕ < ∞. This gives that the function t �→ (supR+ ϕ)−
ϕ(t) defined onR+ is continuous non-negative and completelymonotone. Consider the
geometric kernel k = f ◦ δ on Sd−1, with d = 2, where f = ϕ[0,π ]. We deduce from
(Gneiting 2013, Theorem 7), see also the previous example, that all the eigenvalues
of the integral operator Tk, but for R0, are non-positive. Then, using Corollary 5.5
and (Delmas et al. 2021a, Theorem 4.10), we get that Re is concave and the uniform
strategies are anti-Pareto optimal: Suni ⊂ PAnti.

Example 7.6 (Kernel from a power function) Let m ≥ 1 be an integer and θ0 ≥ π a
real number. Using (Gneiting 2013, Lemma 4), we get that for f (θ) = (θ0−θ)m , Re is
convex and the uniform vaccination strategies are Pareto optimal; and that for f (θ) =
θm0 − (θ0 − θ)m , Re is concave and the uniform strategies are anti-Pareto optimal.

Example 7.7 (The function p is a power series) According to (Gneiting 2013, Theo-
rem 1), if the function p can be written as p(t) = ∑

n∈N bn tn with bn non-negative
and

∑
n∈N bn finite, then, for all d ≥ 2, the kernel k defined by (69) on Sd−1 is semi-

definite positive (and definite positive if the coefficients bn are positive for infinitely
many even and infinitely many odd integers n), and thus the function Re is convex
and the uniform vaccination strategies are Pareto optimal thanks to Corollary 5.5 and
(Delmas et al. 2021a, Theorem 4.10).
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Example 7.8 (The kernel is a power of the metric) Consider the function p(t) =
2ν/2|1 − t |ν/2, with ν > (1 − d)/2, so that condition (70) holds. This corresponds
to the kernel k(x, y) = |x − y|ν which is a power of the distance between x and y.
According to (Atkinson and Han 2012, Section 3.7.1) and Equation (3.74) therein,
for n ≥ 1, the eigenvalues λn have the same sign as

∏n−1
k=0(−ν + 2k). So, we deduce

that for ν ∈ ((1 − d)/2, 0) all the eigenvalues are positive and thus Re is convex
and the uniform vaccination strategies are Pareto optimal; and for ν ∈ (0, 2) all the
eigenvalues (but λ0 = R0 > 0) are negative and thus Re is concave and the uniform
strategies are anti-Pareto optimal. The latter case is also a consequence of (Gneiting
2013, Theorem 1), whereas the former case is not a direct consequence of (Gneiting,
2013, Theorem 1) as

∑
n∈N bn is not finite when ν is negative.

7.3 The affinemodel

Recall
 = Sd−1 ⊂ Rd , with d ≥ 2, is endowedwith the uniform probability measure
μ. In this section, we suppose that themodel is affine, that is, the kernel k given by (69),
i.e. k(x, y) = p(〈x, y〉), has a linear envelope:

p(t) = a + bt for t ∈ [−1, 1].

The kernel k being non-negative non-constant with R0 > 0 is equivalent to the con-
dition a ≥ |b| > 0 on the parameter (a, b). This model corresponds to f (θ) =
a + b cos(θ) for θ ∈ [0, π ]. Since the Gegenbauer polynomials (Gn, n ∈ N) are
orthogonal with respect to the measure wd(t) dt , we easily deduce from (72) that the
non-zero eigenvalues of the integral operator Tk are R0 = a (with multiplicity d0 = 1)
and λ1 = b/d (with multiplicity d1 = d).

For x ∈ Sd−1 and t ∈ [−1, 1], we consider the following balls centered at x :

B(x, t) = {y ∈ Sd−1 : 〈x, y〉 ≥ t}.

Recall that strategies are defined up to the a.s. equality. We consider the following sets
of extremal strategies, for x ∈ Sd−1:

Sballs =
{
1B(x,t) : x ∈ Sd−1, t ∈ [−1, 1]

}
,

as well as the following set of strategies which contains the set of uniform strategies
Suni = {t1 : t ∈ [0, 1]}:

S⊥id =
{
η ∈ � :

∫
Sd−1

x η(x) μ(dx) = 0

}
.

Proposition 7.9 Let a ≥ |b| > 0 and the kernel k on Sd−1, with d ≥ 2, be given by:

k(x, y) = a + b〈x, y〉.
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(i) The case b > 0. A strategy is Pareto optimal if and only if it belongs to S⊥id. In
particular, for any c ∈ [0, 1], the strategy (1− c)1 costs c and is Pareto optimal.
The anti-Pareto optimal strategies are 1B(x,t) for x ∈ Sd−1 and t ∈ [−1, 1]. In
other words:

P = S⊥id and PAnti = Sballs.

(ii) The case b < 0. A strategy is anti-Pareto optimal if and only if it belongs to S⊥id.
In particular, for any c ∈ [0, 1], the strategy (1 − c)1 costs c and is anti-Pareto
optimal. The Pareto optimal strategies are 1B(x,t) for x ∈ Sd−1 and t ∈ [−1, 1].
In other words:

PAnti = Sballs and Suni = S⊥id.

In both cases, we have c� = 1 and c� = 0.

Example 7.10 We consider the kernel k = 1+ b〈·, ·〉 on the sphere Sd−1, with d = 2.
This model has the same Pareto and anti-Pareto frontiers as the equivalent model
given by 
 = [0, 1) endowed with the Lebesgue measure and the kernel (x, y) �→
1+ b cos(π(x − y)), where the equivalence holds in the sense of (Delmasetal. 2021b,
Section 7), with an obvious deterministic coupling θ �→ exp(2iπθ). We provide the
Pareto and anti-Pareto frontiers in Fig. 12 with b = 1 (top) and with b = −1 (bottom).

Proof The proof of Proposition 7.9 is decomposed in four steps. Step 1: Re(η) is
the eigenvalue of a 2 × 2 matrix M(η). Without loss of generality, we shall assume
that R0 = a = 1. Since k is positive a.s., we deduce that c� = 1 and c� = 0 thanks
to Lemma 3.1; and the strategy 1 (resp. 0) is the only Pareto optimal as well as the
only anti-Pareto optimal strategy with cost 0 (resp. 1). So we shall only consider
strategies η ∈ � such that C(η) ∈ (0, 1).

Let z0 ∈ Sd−1. Write b = ελ2 with ε ∈ {−1,+1} and λ ∈ (0, 1], and define the
function α on Sd−1 by:

α = λ 〈·, z0〉.

Let η ∈ � with cost c ∈ (0, 1). As c� = 1 > C(η), we get that Re(η) > 0. We
deduce from the special form of the kernel k that the eigenfunctions of Tkη are of the
form ζ + βλ〈·, y〉 with ζ, β ∈ R and y ∈ Sd−1. Since Re(η) > 0, the right Perron
eigenfunction, say hη, being non-negative, can be chosen such that hη = 1+βηλ〈·, yη〉
with βη ≥ 0 and βηλ ≤ 1. Up to a rotation on the vaccination strategy, we shall take
yη = z0, that is:

hη = 1+ βη α.

From the equality Re(η)hη = Tkηhη, we deduce that:

Re(η) =
∫
Sd−1

η(y) μ(dy) + βη λ

∫
Sd−1

η(y) 〈y, z0〉μ(dy), (76)
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Fig. 12 Two examples of a geometric kernel on the circle R \ Z

βηRe(η)〈·, z0〉 = ελ

∫
Sd−1

η(y) 〈·, y〉μ(dy) + βη ελ2
∫
Sd−1

η(y) 〈·, y〉〈y, z0〉μ(dy).

(77)

Evaluating the latter equality at x = z0, we deduce that Re(η) is a positive eigenvalue
of the matrix M(η) associated to the eigenvector (1, βη), where:

M(η) =
( ∫

η dμ
∫

α η dμ
ε
∫

α η dμ ε
∫

α2 η dμ

)
. (78)

We end this step by proving the following equivalence:

βη = 0 ⇐⇒
∫

α η dμ = 0. (79)
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Indeed, if βη = 0, then the vector (1, 0) is an eigenvector of M(η) associated to the
eigenvalue Re(η). We deduce from (78) that

∫
α η dμ = 0. Conversely, if

∫
α η dμ =

0, then the matrix M(η) is diagonal with eigenvalues
∫

η dμ and
∫

α2 η dμ. As α2 ≤ 1
with strict inequality on a set of positive μ-measure, we deduce that:

∫
η dμ >

∫
α2 η dμ. (80)

Since (1, βη) is an eigenvector of M(η), this implies that βη = 0. This proves (79).
Step 2: Re(η) is the spectral radius of the matrix M(η), that is, Re(η) = ρ(M(η)).

We first consider the case ε = −1. Since α is non constant as λ > 0, we deduce
from the Cauchy-Schwarz inequality, that the determinant of M(η) is negative. As
c� = 1 a.s., we deduce that Re(η) > 0, and thus the other eigenvalue is negative.
Since α2 ≤ 1, the trace of M(η) is non-negative, thus Re(η) is the spectral radius of
the matrix M(η).

We now consider the case ε = +1. Let ηuni be the uniform strategy with the same
cost as η. Thanks to (76), we get Re(η

uni) = ∫ ηuni dμ = ∫ η dμ. Since the non-zero
eigenvalues of Tk, that is, 1 and λ2/d, are positive, we deduce from Corollary 5.5 (i),
that the uniform strategies are Pareto optimal (Suni ⊂ P), so we have:

Re(η) ≥ Re(η
uni) =

∫
η dμ.

We deduce from (76) that βη

∫
α η dμ ≥ 0.

On the one hand, if βη

∫
α η dμ = 0, then, by (79), the matrix M(η) is diagonal.

Using (80), we obtain that Re(η) = ρ(M(η)). On the other hand, if βη

∫
α η dμ > 0,

then the matrix M(η) has positive entries. Since the eigenvector (1, βn) also has
positive entries, it is the right Perron eigenvector and the corresponding eigenvalue
is the spectral radius of M(η), that is, Re(η) = ρ(M(η)). To conclude, the equal-
ity Re(η) = ρ(M(η)) holds in all cases.

Step 3: Re(η) = ∫
η dμ ⇐⇒ η ∈ S⊥id. Let η ∈ � such that Re(η) = ∫

η dμ.
We deduce from (76) that βη

∫
α η dμ = 0. Thanks to (79), this implies that βη = 0.

Using (77), we obtain that
∫
yη(y) μ(dy) = 0 and thus η ∈ S⊥id. Clearly if η ∈ S⊥id,

we deduce from (76) that Re(η) = ∫ η dμ.
As a consequence and since Suni ⊂ S⊥id, we deduce from Corollary 5.5 that

if ε = +1, then Suni ⊂ P and thus P = S⊥id; and that if ε = −1, then Suni ⊂ PAnti

and thus PAnti = S⊥id.

Step 4: A relation with the constant degree symmetric kernels of rank two from
Sect. 6. This step is in the spirit of (Delmas et al. 2021b, Section 7) on coupled
models. Let X be a uniform random variable on Sd−1. Let 
0 = [−1, 1] endowed
with the probability measureμ0(dt) = cd wd(t) dt , and set�0 the set of [0, 1]-valued
measurable functions defined on 
0. According to (Kallenberg 2021, Theorem 8.9),
there exists η0 ∈ �0 such that:

η0(〈X , z0〉) = E [η(X) | 〈X , z0〉] a.s. (81)
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Set α0 = λt , and define the matrix:

M0(η0) =
( ∫


0
η0 dμ0

∫

0

α0 η0 dμ0

ε
∫

0

α0 η0 dμ0 ε
∫

0

α2
0 η0 dμ0

)
.

By construction of η0, we have M0(η0) = M(η). Thanks to Sect. 6, see Lemma 6.5
(but for the fact that 
 therein in replaced by [−1, 1]), we get that M0(η0) is exactly
the matrix in (52), and thus the spectral radius of M0(η0) is the effective reproduction
number of the model associated to the constant degree symmetric kernel of rank two
kε
0 = 1+εα0⊗α0 given in (48) (with
,μ, α replaced by
0,μ0 and α0). We deduce
that: if η is Pareto or anti-Pareto optimal for the model (Sd−1, μ, k) then so is η0
for the model (
0, μ0, kε

0); and if η0 is Pareto or anti-Pareto optimal for the model
(
0, μ0, kε

0), so is any strategy η such that (81) holds.
We first consider the case ε = +1. According to Proposition 6.2, we get that the

anti-Pareto optimal strategies are η0 = 1[−1,t) or η0 = 1[−t,1) for a given cost c (with t
uniquely characterized by c). Using that 0 ≤ η ≤ 1, we deduce that the only possible
choice for η such that (81) holds is to take η = 1B(−z0,t) or η = 1B(−z0,t). Since z0 was
arbitrary, we get that the only possible anti-Pareto optimal strategies belong to Sballs.
Notice that anti-Pareto optimal strategies exist for all cost c ∈ [0, 1] as k > 0 a.s.,
see Lemma 3.1 and (Delmas et al. 2021b, Section 5.4) for irreducible kernels, loss
function Re and uniform cost function C given by (28). Since the set of anti-Pareto
optimal strategies is also invariant by rotation, we deduce that PAnti = Sballs.

The case ε = −1 is similar and thus P = Sballs in this case. (Note that the
irreducibility of the kernel k is only used in (Delmas et al. 2021b, Lemma 5.13) for
the study of anti-Pareto frontier.) �
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