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Abstract. Starting from a stochastic individual-based description of an SIS epidemic spreading on
a random network, we study the dynamics when the size n of the network tends to infinity. We
recover in the limit an infinite-dimensional integro-differential equation studied by Delmas, Dronnier
and Zitt (2022) for an SIS epidemic propagating on a graphon. Our work covers the case of dense
and sparse graphs, provided that the number of edges grows faster than n, but not the case of
very sparse graphs with O(n) edges. In order to establish our limit theorem, we have to deal with
both the convergence of the random graphs to the graphon and the convergence of the stochastic
process spreading on top of these random structures: in particular, we propose a coupling between
the process of interest and an epidemic that spreads on the complete graph but with a modified
infection rate.

Received by the editors July 31st, 2023; accepted February 14th, 2024.
2010 Mathematics Subject Classification. 05C80, 92D30, 60F99.
Key words and phrases. Random graph, mathematical models of epidemics, measure-valued process, large network

limit, limit theorem, graphon.
This work was financed by the Labex Bézout (ANR-10-LABX-58) and the COCOON grant (ANR-22-CE48-0011),

and by the platform MODCOV19 of the National Institute of Mathematical Sciences and their Interactions of CNRS.
V.C.T. is partly financed by the Chaire “Modélisation Mathématique et Biodiversité” of Veolia-Ecole Polytechnique-
Museum National d’Histoire Naturelle-Fondation X. The research leading to this article was largely performed while
A. Velleret was a researcher at LAMA and at GIPSA-Lab.

1375

http://alea.impa.br/english/index_v21.htm
https://doi.org/10.30757/ALEA.v21-52


1376 Jean-François Delmas et al.

1. Introduction

We consider the spread of diseases with potential reinfections in large heterogeneous populations
structured by random networks. We focus on SIS models, in which the population is partitioned
into two classes, namely S for susceptible individuals and I for infected ones. Infected individuals
can transmit the disease to susceptible ones if they are in contact through the social network.
Infected individuals remain infectious until their recovery, which is assumed to be spontaneous.
The susceptibility and infectivity of individuals as well as their degrees in the social network can
be heterogeneous, which makes the dynamics of such systems very complex. In this paper, we are
interested in establishing limit theorems showing that, in large population, the possibly complex
dynamics of the epidemics can be approximated by a system of integro-differential equations.

To be more precise, we start from a stochastic individual-based model of a finite population of
size n, where each individual i in the population is characterized by a feature xi that belongs to
a generic space X (assumed to be metric, separable and complete). One may think of the feature
being a group label (so that X can be discrete), or the individual’s age (so that X = R+), or their
location (so that X can be the sphere or Rd), or a combination of those. The distribution of features
in the population can be encoded by the (possibly random) measure:

µ(n)(dx) =
1

n

n∑
i=1

δxi(dx).

The social contacts in the population are modeled by a random network, G(n), which is fixed in
time: a contact between individuals i and j means that the edge (i, j) belongs to G(n), which
happens with probability w

(n)
E (xi, xj) depending on their respective features independently of all

other edges. Each individual i is, at time t, in a state, say Ei
t , which is either S (susceptible) or

I (infected). The initial condition is completely characterized by the (possibly random) sequences
X (n) = (xi)i∈[[1,n]] and E(n) = (Ei

0)i∈[[1,n]]. At time t, if i is infected, that is Ei
t = I, then it recovers

at rate γ(n)(xi) ≥ 0, also depending on its feature; if i is susceptible, that is Ei
t = S, then it can be

infected by individual j at rate w
(n)
I (xi, xj) provided that i and j are connected (in G(n)) and j is

infected. At time t, we describe the infected population with the measure η
I,(n)
t on X given by:

η
I,(n)
t (dx) =

1

n

n∑
i=1

1{Ei
t=I} δxi(dx). (1.1)

Our main result, see Theorem 2.7 for a precise statement, is on the convergence of the processes
ηI,(n) = (η

I,(n)
t )t∈R+ to a deterministic process ηI = (ηIt )t∈R+ of the form:

ηIt (dx) = u(t, x)µ(dx), (1.2)

where the probability measure µ(dx), namely the limit of the sequence µ(n), represents the proba-
bility for an individual of the population taken at random to have feature x, and u(t, x) represents
the probability for an individual with feature x to be infected at time t. We will show that the
function (u(t, x), t ∈ R+, x ∈ X) is the unique solution of the integro-differential equation:

∂tu(t, x) = (1− u(t, x))

∫
X
u(t, y)w(x, y)µ(dy)− γ(x)u(t, x), (1.3)

with initial condition u(0, ·) = u0, where u0(x) is the probability for an individual with feature x
to be infected at time 0. In (1.3), the function w(x, y) will be interpreted as a transmission kernel
from (infected) individuals with feature y to (susceptible) individuals with feature x, and contains
information on both the network and the transmission rate. The function γ(x) can be interpreted
as the recovery rate of (infected) individual with feature x, as γ(n) in the finite population model.
For this convergence to hold, we assume, see Assumptions 2.3 and 2.6:
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a) Convergence of the initial condition. The distribution of the features µ(n) in the
population converges to a limit measure µ (for the weak topology on non-negative measures).
The initial distribution of the infected population η

I,(n)
0 converges to a deterministic limit

ηI0 , with ηI0(dx) = u0(x)µ(dx).
b) Uniform convergence and regularity of the limit parameters. The recovery rate

γ(n) as well as the average transmission rate w(n), given by the following formula for any
(x, y) ∈ X2:

w(n)(x, y) = nw
(n)
E (x, y)w

(n)
I (x, y),

converge uniformly to γ and w, which are respectively µ-a.e. and µ⊗2-a.e. continuous. The
scaling factor n appears naturally as nw

(n)
E (x, y) corresponds to the density of contacts

between an individual with feature x and the population with feature y (scaled by the
measure µ(dy)), where each of these contacts corresponds to a potential infection rate of
w

(n)
I (x, y).

c) Control on the infection rate. We assume the following convergence in mean (see
Assumption 2.6 for a precise and slightly more general statement):

lim
n→∞

1

n2

∑
i,j∈[[1,n]]

w
(n)
I

(
xi, xj

)
= 0, (1.4)

meaning that the infection rate per edge is small on average over the population.

Our results cover in particular the case of dense and sparse graphs, when the total number of
edges is scaled to be of order na with a = 2 and a ∈ (1, 2) respectively (see Remark 2.5 below);
this corresponds for example to w

(n)
E ≡ na−2 and thus w(n)

I of order n1−a, by Assumption b) above.
Notice that (1.4) trivially holds in this case. However, our method fails to cover very sparse graphs
corresponding to a = 1 for which the number of edges is of order n thus w(n)

I of order 1, as (1.4) does
not hold. Simulations, see Section 4.3, hint that, although a deterministic limit may be derived,
this limit is nonetheless not suitably represented by the deterministic process (1.2)-(1.3). Yet, the
very-sparse case triggered a large literature; in this direction, see the reference in the related works
section below.

In the dense heterogeneous case (a = 2), if w(n)
E does not depends on n, and thus is equal to w̄E ,

and if w(n)
I = n−1w̄I , for some fixed kernels w̄E and w̄I , then we have w = w̄Ew̄I . In this case the

sequence of graphs, G(n), which models the connection in the population of size n, converges towards
a graphon with parameter w̄E , see Lovász (2012, Part 3). The quantity w̄E(x, y) is understood as
the density of connections between the population with feature x and the population with feature
y. Then the kernel w can be seen as the result of weighting the graphon w̄E by another kernel w̄I ,
which represents the interaction rates between features. See Remark 2.4 below for further comment
in this direction.
Related work. There has been a growing literature on epidemics spreading on graphs, and the
interested reader can refer to Andersson (1998); Andersson and Britton (2000); Britton and Pardoux
(2019); House (2012); Kiss et al. (2017); Newman (2002, 2003). Scaling limits for such processes
have been considered mostly when the characteristics of the graph are fixed: for instance, diseases
spreading on fixed lattices or configuration model graphs with fixed degree distributions. Many
points of view have been taken: with moment closures Durrett (2007); Georgiou et al. (2020), or
using limit theorems for semi-martingale processes Ball and Neal (2008); Volz (2008); Miller (2011);
Decreusefond et al. (2012); Janson et al. (2014) or for branching processes Barbour and Reinert
(2013). In this literature, the graphs are very sparse with a degree distribution that does not
depend on the size n of the population.
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In the meantime, there has been also a growing interest in scaling limits for random graphs Borgs
et al. (2011); Lovász (2012). In the present paper, we model the social network by a graph and
obtain for the dense graph case (for a = 2 above), as limit when n tends to infinity, a dynamical
system propagating on a graphon. Limit theorems for dynamical systems on graphs converging to
graphons have been considered in Billiard et al. (2022); Keliger et al. (2022); Kuehn and Throm
(2019). In Kuehn and Throm (2019); Billiard et al. (2022), this is done for systems of ordinary
differential equations on the graph (or when the randomness of the individual-based model has
been averaged first, and the graph limit is considered in a second time). In Keliger et al. (2022),
starting from the stochastic individual-based dynamics on a random graph as in the present work,
it is proved that after a proper rescaling so that the graph converges to a graphon, the evolution
of the susceptible and infected populations converge to the integro-differential equation (1.3), first
introduced and studied in Delmas et al. (2022)-Delmas et al. (2023). We improve the results from
Keliger et al. (2022) by taking into account propagation rates depending on the features, considering
weaker assumptions on the parameters γ and w of the model, and most importantly identifying the
global condition (1.4) on the mean infection rate as sufficient to get this convergence, generalizing
in particular the possible range of the scaling parameters. We refer to Remark 2.10 for further
comments.

Eventually, our assumptions on the regularity of w allow for a large variety of random graphs
and of feature dependencies that include, for instance, geometric random graphs Penrose (2003) or
stochastic block models Abbe (2017), see Remark 2.1 below.

We also cite Aletti and Naldi (2022); Naldi and Patanè (2022); Vizuete et al. (2020) for deter-
ministic epidemic dynamics on graphons, and Aurell et al. (2022) for a finite agent model on the
graphon. See also van der Hofstad et al. (2010) for epidemic propagation on an Erdős-Rényi random
graph in the critical window.

Scaling limits of the SIS epidemic process for a large number of individuals with homogeneous
interactions are well-described, including the study of the dynamical system derived from the law
of large numbers, the deviations prescribed by the central limit theorem or by the large deviation
theory (see e.g. Andersson and Britton, 2000, Chapter 8.2 or Britton and Pardoux, 2019, Part
I). Taking into account features with finite possible values is a direct extension. To tackle a more
general feature dependency, we follow similar lines as in Fournier and Méléard (2004), where a
mean-field kernel is introduced to represent local effects of competition between plants.
Outline. In Section 2, we present the stochastic individual-based model of SIS epidemic spreading
on a random network. Two objects, both of random nature, are at the core of the study: a random
graph G(n) of size n ∈ N and a sequence of stochastic measure-valued processes (η(n))n∈N. We
discuss the sparsity of the random graph and state our main convergence result in Theorem 2.7.
The proof of the theorem, which is carried out in Section 3, follows a classical tightness-uniqueness
scheme. First, tightness is proved in Section 3.2, which implies that the sequence (η(n))n∈N is
relatively compact. Next, in Section 3.3, we show that the limiting values are solutions of a deter-
ministic integro-differential equation: proving this fact requires a careful coupling argument that is
developed in Appendix A. Finally, the uniqueness of the solution to the limiting equation, which
is established in Section 3.4, allows us to conclude. A detailed discussion on the scope of our re-
sults and numerical simulations, with an emphasis on the limit behavior for very sparse graphs, are
presented in Section 4.

2. Definition of the model and of the limiting equation

In this section we formally define the relevant mathematical objects and state our main result.
After defining some useful notation in Section 2.1, we define the stochastic individual-based model in
Section 2.2 and finally in Section 2.3 we define the limit graphon-based integro-differential equation
and we state the main convergence result.
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2.1. Notation.
We denote by N∗ the set of positive integers and N = N∗ ∪ {0}. We also set [[1, n]] = {k ∈ N : 1 ≤
k ≤ n} for n ∈ N∗. For a, b ∈ R, we write a ∧ b for the minimum between a and b and a ∨ b for the
maximum between a and b.

For a real-valued function defined on a set Ω, its supremum norm is:

∥f∥∞ = sup
Ω

|f |.

For a measurable space (Ω,F), we denote by M1(Ω) the set of probability measures on Ω. For
µ ∈ M1(Ω) and a real-valued measurable function f defined on Ω, we will sometimes denote the
integral of f with respect to the measure µ, if well-defined, by ⟨µ|f⟩ =

∫
Ω f(x)µ(dx) =

∫
f dµ. For

a bounded measurable real function F defined on R and a bounded real-valued measurable function
f on Ω, we define the real-valued measurable function Ff defined for µ ∈ M1(Ω) by:

Ff (µ) = F (⟨µ|f⟩). (2.1)

For a metric space Ω endowed with its Borel σ-field, we endow M1(Ω) with the topology of weak
convergence. We also denote by D(R+,Ω) the space of right-continuous left-limited (càd-làg) paths
from R+ to Ω. This space is endowed with the Skorokhod topology (see e.g. Billingsley, 1999,
Chapter 3).

In what follows (X, d) will denote a Polish metric space (complete and separable). We shall write
M1 = M1(X× {S, I}) (where X is endowed with its Borel σ-field) and D = D(R+,M1).

2.2. Individual-based model.
We consider a population of n ∈ N∗ individuals indexed by i ∈ [[1, n]] and each characterized by a
value x

(n)
i ∈ X (also called feature in what follows) and by an epidemiological state E

(n),i
t ∈ {S, I},

that varies over (continuous) time t ∈ R+ according to whether the individual i is susceptible or
infected. We also set X (n) = (x

(n)
i )i∈[[1,n]] ∈ Xn. To simplify notation, we shall write xi and Ei

t

for x
(n)
i and E

(n),i
t . For a time t ∈ R+, the population is represented by the empirical probability

measure η
(n)
t on X× {S, I} defined by:

η
(n)
t (dx, de) =

1

n

n∑
i=1

δ(xi,Ei
t)
(dx, de). (2.2)

This defines a process (η(n)t )t∈R+ taking values in the set M1 of probability measures on X×{S, I}
with initial condition:

η
(n)
0 (dx, de) =

1

n

n∑
i=1

δ(xi,Ei
0)
(dx, de). (2.3)

Note that the measure η
I,(n)
t defined in the introduction by Equation 1.1 corresponds to the

restriction of the measure η
(n)
t to the subset X × {I}. Since the individual features are kept fixed

in time, the restriction η
S,(n)
t of the measure η

(n)
t to the complementary subset X× {S} is actually

deduced as in the following equation:

η
S,(n)
t (dx) =

1

n

n∑
i=1

1{Ei
t=S}δxi(dx) = µ(n)(dx)− η

I,(n)
t (dx), (2.4)

where µ(n)(dx) is the marginal probability distribution in x ∈ X of η(n)0 (dx, de) (and thus of η(n)t for
all t ∈ R+):

µ(n)(dx) = η
(n)
0 (dx, {S, I}) = 1

n

n∑
i=1

δxi(dx). (2.5)
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Let us underline that the process η(n) is more suited than ηI,(n) to describe the convergence
because the empirical distribution µ(n) needs not be introduced as an additional parameter (in
addition to the initial condition), see for example Proposition 2.2.

The heterogeneity between individual contacts is modelled by an undirected random graph
G(n) = (V (n), E(n)) along which the disease is transmitted. The vertices V (n) = [[1, n]] repre-
sent the individuals and we assume that there is an edge between i and j, that is (i, j) ∈ E(n), with
probability w

(n)
E (xi, xj) ∈ [0, 1], and independently for any choice of 1 ≤ i < j ≤ n. The function

w
(n)
E will be called the connection density. For an undirected graph, the measurable function w

(n)
E

is necessarily symmetric, i.e., w(n)
E (x, y) = w

(n)
E (y, x) for all x, y ∈ X. When (i, j) is an edge of G(n),

we will write classically i ∼G(n) j or i ∼ j when there is no ambiguity.

Remark 2.1 (Examples of random graphs). As said in the introduction, the Polish metric space of
features (X,d) parametrizes the latent variable assumed to explain the connections in the social
network. In view of the graphons which will be considered, a classical choice is X = [0, 1] with
independent uniform random features X (n) = (xi) (the reference measure µ is then the Lebesgue
measure). However other choices are possible as well to cover several graph families.

(i) Complete graph. For any choice of X and individual features X (n), choosing w
(n)
E ≡ 1

(that is, w(n)
E constant equal to 1) provides the complete graph where every pair of vertices

is connected. The features X (n) then simply affect the infection rate in a mean-field setting.
(ii) Geometric random graphs. Choosing X = [0, 1]d, the (xi)i≤n independently and uni-

formly distributed over X (according to the Lebesgue measure which is exactly µ) and
w

(n)
E (x, y) = 1{|x−y|<r}, for a constant r > 0, provides an example of geometric random

graphs, see e.g. Penrose (2003). A direct generalization corresponds to w
(n)
E (x, y) = g(|x−y|)

with a measurable [0, 1]-valued function g.
(iii) Stochastic block models (SBM). The SBM with k ∈ N∗ classes corresponds to a popu-

lation divided in k classes and can be represented using a finite state space X = [[1, k]]. Up
to reordering, X (n) is then simply described by the proportion of individuals in each of the k
classes, proportions that are assumed to converge to a certain discrete probability measure
µ = (µ(i))i∈[[1,k]]. The symmetric function w

(n)
E then takes a finite number of values. See

e.g. Abbe (2017). The SBM is a very common model for heterogeneous population. The
particular case k = 1, where wE is simply a constant, yields the Erdős-Rényi random graph,
see e.g. Bollobás (1979); van der Hofstad (2017).

In what follows, it is possible to consider G(n) a directed graph, with a slight modification of the
arguments. However, for the sake of clarity and since undirected graphs are realistic for social
interactions, in this paper we will focus on the case where G(n) is undirected, and in particular
w

(n)
E (x, y) is symmetric for all n.

We now describe the dynamics of the epidemics along the graph using propagation and recovery:
(i) Propagation. Conditionally on i and j being connected and on i being susceptible and

j infected, the disease can be transmitted along the edge at rate w
(n)
I (xi, xj) ≥ 0. Each

edge transmits the infection independently, so for a given susceptible individual i, the rate
at which it becomes infected is:∑

j∼i

w
(n)
I (xi, xj)1{Ej

t=I}.

When the infection occurs, say at time t, the state of the population changes from η
(n)
t− to:

η
(n)
t = η

(n)
t− − 1

n
δ(xi,S) +

1

n
δ(xi,I).
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(ii) Recovery. An infected individual i recovers at rate γ(xi) > 0. When the recovery occurs,
say at time t, the state of the population changes from η

(n)
t− to:

η
(n)
t = η

(n)
t− − 1

n
δ(xi,I) +

1

n
δ(xi,S).

In all the paper, we will assume that the recovery rate γ(n), infection rate w
(n)
I , and connection

density w
(n)
E are measurable functions (respectively from X to R+, X2 to R+ and X2 to [0, 1]). Note

that they depend only on the features of the individuals but not on time nor on times of infection
events. These functions are kept constant throughout the epidemic, but the global infection and
recovery rates, at the scale of the population, vary because the partition into susceptible and infected
individuals changes with time.

The above ingredients define a pure-jump Markov dynamics, see Section 3.1. For the process
η(n) = (η

(n)
t )t∈R+ to be itself Markov, one needs an identifiability property, that is, to be able to

recover the state of the individuals at time t from the measure η
(n)
t . Let us stress that we shall not

use that the process η(n) is Markov nor the identifiability property to prove our main result, see
Theorem 2.7. Nevertheless, we believe that the Markov property of η(n) deserves to be stated.

We say the model is identifiable if the elements of the sequence (xi)i∈[[1,n]] (with xi depending
also on n) are pairwise distinct, or equivalently that the measure µ(n) has exactly n atoms, all of
them with mass 1/n. When the model is not identifiable, there is always a natural way to obtain
an identifiable model by enriching the space X into X′ = X × [0, 1]: the feature of the individual i
can be described for example by either (xi, i/n) or (xi, Ui), where (Ui)i∈N∗ are independent uniform
random variables and independent of the initial condition.

Recall that D = D(R+,M1) denotes the space of càd-làg functions taking values in M1 =
M1(X×{S, I})) endowed with the Skorokhod topology. Recall also the notation Ff (η) = F (⟨η|f⟩)
from (2.1).

Proposition 2.2 (Markov property of the process η(n)). Let n ≥ 1 be fixed and assume the model
is identifiable. Conditionally on the sequence (xi)i∈[[1,n]] and on G(n), the process η(n) = (η

(n)
t )t∈R+

is a Markov pure-jump process on M1, and thus is D-valued. Its generator A(n) is characterized by
the following expression, which applies to any bounded real-valued measurable function F defined on
R, to any bounded real-valued measurable function f on X×{S, I} and to any point measure η with
marginal probability distribution given by (2.5):

A(n)(Ff ) (η) =

n∑
i=1

1{Ei=I}γ
(n)(xi)

(
Ff

(
η − 1

n
δ(xi,I) +

1

n
δ(xi,S)

)
− Ff (η)

)
+

n∑
i=1

1{Ei=S}
∑
j∼i

w
(n)
I (xi, xj)1{Ej=I}

(
Ff

(
η − 1

n
δ(xi,S) +

1

n
δ(xi,I)

)
− Ff (η)

)
, (2.6)

where xi and Ei denote the feature and epidemiological states of the i-th atom of η.

Proof : The process η(n) is of course constant between jump events given by infection or recovery
events. The proof is then an immediate consequence of the description of the epidemic dynamics
(see also the semi-martingale representation (3.5) below). Notice that in (2.6) the summation

∑
j∼i

between neighboring pairs (i, j) can indeed be seen as a functional of the probability measure η
with marginal probability distribution given by (2.5) thanks to the identifiability assumption. (The
two other summations

∑n
i=1 are functionals of the probability measure η without the identifiability

assumption.)
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Notice there is no accumulation of jump times for the process η(n) (conditionally on X (n)) as the
jump rates γ(n) and w

(n)
I are bounded on X̄ (n) = {xi : i ∈ [[1, n]]} and (X̄ (n))2, since the state space

for the process η(n) is in fact reduced to the probability measures on the finite set X̄ (n)×{S, I}. □

2.3. Convergence towards an epidemic spreading on a graphon.
We consider now the case of a large graph, i.e. when n is large and tends to infinity. The network
structure as well as the dynamics of the epidemic are suitably rescaled. We measure the overall
propagation rate of the epidemic through the function w(n) defined on X2 by:

w(n)(x, y) = nw
(n)
E (x, y)w

(n)
I (x, y), (2.7)

as described in the introduction. The function w(n) captures the effect on the number of contacts
(through nw

(n)
E ) weighted by the intensity of interactions (that is, w(n)

I ).
Let η0 ∈ M1 be a deterministic probability measure on X× {S, I} with marginal µ on X:

η0(dx, de) = µ(dx)
((

1− u0(x)
)
δS(de) + u0(x)δI(de)

)
, (2.8)

where µ ∈ M1(X) and u0 is a [0, 1]-valued measurable function defined on X. It is elementary
to generalize the results when u0 is also random, but we prefer to keep the result simple. The
probability measure µ on X will capture the asymptotic feature distribution of the individuals in
the population and will be seen as the limit of µ(n) introduced in (2.5). Let us set µ⊗2(dx, dy) =
µ(dx)µ(dy).

Assumption 2.3 (Structural conditions). We assume that:

(i) For n ∈ N∗, the process (η(n)t )t∈R+ is started from the initial condition η
(n)
0 of the form (2.3).

(ii) The sequence (η
(n)
0 )n∈N∗ converges in probability to η0 (in M1 endowed with the topology

of the weak convergence).
(iii) The sequence (w(n))n∈N∗ converges uniformly to a (non-negative) transmission density kernel

w which is bounded and µ⊗2-a.e. continuous.
(iv) The sequence (γ(n))n∈N∗ converges uniformly to a (non-negative) recovery function γ which

is bounded and µ-a.e. continuous.

Remark 2.4 (Transmission kernel w(x, y) = β(x)wE(x, y)θ(y)). In Delmas et al. (2022, Example
1.3), the authors propose to represent the transmission density kernel w(x, y) from Assumption 2.3-
(iii), as β(x)wE(x, y)θ(y), where β(x) captures the susceptibility of individuals with feature x, θ(y)
the infectiousness of individuals with feature y, while wE(x, y) relates to the contact rate between in-
dividuals with features respectively x and y. For example, using (2.7), this corresponds to the choice
of w(n)

E (x, y) = wE(x, y) and nw
(n)
I (x, y) = β(x)θ(y). In the general form nw

(n)
E (x, y)w

(n)
I (x, y), the

factor nw
(n)
I (x, y) may not only encompass effects that involve each member of the pair separately

(as the ones captured by θ(y) and β(x)), but also effects that are more specific to the interaction
between these pairs of individuals.

Remark 2.5 (Uniform scaling). Among the cases covered by Assumption 2.3-(iii), it is natural to
distinguish the situations where the density of the graph is uniform over the feature interactions.
Denoting by ϵn a scaling parameter, we consider next the cases where w

(n)
I = ϵnw̄I and w

(n)
E =

(nϵn)
−1w̄E for some functions w̄E , w̄I on X2, so that, thanks to (2.7), w(n) = w with w = w̄Ew̄I .

Among the different possibilities for the scaling parameter ϵn, the case where ϵn = n−a+1 for some
a ∈ [1, 2] appears as the most characteristic to describe the level of sparsity of the graph, as the
total number of edges in the graph is then of order na. As n gets large, the number of contacts
of an individual with feature x is well-described by the quantity n

∫
Xw

(n)
E (x, y)µ(dy). The three

interesting regimes are summed up in the following table.
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a Nb. of contacts Conn. density w
(n)
E Inf. rate w

(n)
I

Dense graph a = 2 n 1 n−1

Sparse graphs a ∈ (1, 2) na−1 na−2 n−(a−1)

Very sparse graphs a = 1 1 n−1 1

The most standard homogeneous case corresponds to the complete graph, corresponding to
w

(n)
E ≡ 1. Note that in the dense and sparse case, the infection rate w

(n)
I vanishes in the large n

limit, but it is not the case in the very sparse case.
Notice that the sequence of graph realizations (G(n))n∈N∗ converges to the graphon prescribed

by w̄E only in the dense graphs case. For the sparse graphs case, there is already a limiting
description of this sequence of graphs in terms of the subsampling of the graphon prescribed by w̄E ,
by expressing the graph as a kernel on a functional space (see Avella-Medina et al., 2020, Theorem
1). By contrast, in the limiting very sparse case, where a = 1, there is local convergence of the graph
towards a graph with finite degrees, whose realization brings an additional level of heterogeneity
(as introduced in Benjamini and Schramm (2001) see also Bordenave (2016, Chap. 3) or van der
Hofstad (2024, Chap. 2)).

Aside from the structural condition, we also consider a crucial condition which ensures the con-
vergence of the individual stochastic models to the same deterministic model as in the mean-field
case. In order to state it, let us denote by In(g) the empirical average of a function g over all pairs
of features:

In(g) =
1

n2
E

[ ∑
i,j∈[[1,n]]

g
(
x
(n)
i , x

(n)
j

)]
= E

[ ∫
g dµ(n) ⊗ dµ(n)

]
. (2.9)

Assumption 2.6 (On the infection rate). The average infection rate vanishes when n goes to
infinity:

lim
n→∞

In
(
w

(n)
I ∧ 1

)
= 0, with In defined by (2.9).

We are now ready to present our main result. Recall that D = D(R+,M1) denotes the space of
càd-làg paths from R+ to M1 = M1(X× {S, I}), and it is endowed with the Skorokhod topology.

Theorem 2.7 (Convergence of the stochastic individual-based model). Let γ(n), w(n)
E , w(n)

I , γ, w
and η

(n)
0 be such that Assumptions 2.3 and 2.6 are satisfied.

Then, the sequence (η(n))n∈N∗ converges in probability in the Skorokhod space D, to the continuous
process (ηt)t∈R+ with deterministic evolution defined by:

ηt(dx, de) = µ(dx) ((1− u(t, x)) δS(de) + u(t, x) δI(de)), (2.10)

where µ is the marginal of η0 on X, see (2.8), and where (u(t, x))t∈R+,x∈X is the unique solution of
the integro-differential equation:

∂tu(t, x) = (1− u(t, x))

∫
X
u(t, y)w(x, y)µ(dy)− γ(x)u(t, x), (2.11)

with initial condition u(0, ·) = u0, see (2.8).

Let us comment on the limit process. For t ∈ R+ and x ∈ X, the value of u(t, x) represents the
probability for an individual with feature x to be infected at time t. The non-negative recovery
rate function γ gives the rate at which individuals with feature x are recovering. The transmission
kernel density function w(x, y) captures in this expression the contribution to the infection rate of
(susceptible) individuals with feature x due to individuals with feature y, scaled by the proportion
of infected individuals with this feature, given by u(t, y)µ(dy). Properties of (2.11) have been
studied in Delmas et al. (2022), while here we provide an interpretation of this equation as the
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large-population limit of a stochastic individual-based model. We refer to Section 3.4 for further
comments.

Remark 2.8 (Examples of admissible uniform scaling). Consider the situation of Remark 2.5 where
w

(n)
I = ϵnw̄I and w

(n)
E = (nϵn)

−1w̄E with some bounded functions w̄E , w̄I on X2 and a uni-
form scaling parameter ϵn, so that Assumption 2.3-(iii) holds. Assumption 2.6 is then restated
as limn→∞ ϵn = 0, thus covering the cases of dense and sparse (but not very sparse) graphs.

This is no longer the case for the very sparse graphs model where a = 1 and ϵn = 1. As we shall see
in Subsection 4.3, when the graph is too sparse, meaning that w(n)

I is too large, we cannot expect the
process η(n) to behave as the solution η to the problem (2.10). Let us mention that the very sparse
graphs models encompass for example the configuration models with fixed degree distributions in
large populations, which have been treated specifically in the case of SIR epidemics in various papers
(e.g. Andersson, 1999; Ball and Neal, 2008; Barbour and Reinert, 2013; Decreusefond et al., 2012;
Janson et al., 2014; Miller, 2011; Volz, 2008).

Remark 2.9 (Example of the SBM in the dense graphs setting). We cover in particular the dense
Stochastic Block Model (SBM) with finite feature space, see Remark 2.1-(iii) on the SBM and
Remark 2.8 for the uniform scaling with a = 2 and thus ϵn = 1/n. With the notation therein,
any individual with feature q ∈ [[1, k]] recovers at rate γ(n)(q) = γq and is linked to any individual
with feature r with probability w

(n)
E (q, r) = wq,r

E ≥ 0 (independently between the pairs), triggering
the transmission of the disease to the individuals with feature q at rate w

(n)
I (q, r) = wq,r

I /n ≥ 0.
Under the conditions of Theorem 2.7, the limiting process (ηt)t∈R+ has a density with respect to
the probability measure µ(dx) =

∑
q≤k µqδq(dx) on M1(X), where µq is the relative size of the

population with feature q. The measure ηt is thus captured through the proportion uqt of infected
individuals among the ones with feature q at time t, with the vector (uqt )q∈[[1,k]] satisfying the
following system of k ODEs:

∂tu
q
t = (1− uqt )

k∑
r=1

wq,r
I wq,r

E urt µr − γq uqt for t ≥ 0 and q ∈ [[1, k]].

Remark 2.10 (Comparison with Keliger et al. (2022)). In Keliger et al. (2022), it is clear that our
Assumptions 2.3 and 2.6 are satisfied. We also consider more general initial conditions and do
not restrict to X = [0, 1], which impacts the regularity conditions that one may consider for the
parameter functions. Contrary to Keliger et al. (2022), our framework allows to consider graphs
that strongly exploit the geometry of the latent space X, notably geometric graphs, see Remark 2.1-
(ii) where w(x, y) = g(|x − y|) with any function g : R+ 7→ R+ having at most countably many
discontinuities.

In Keliger et al. (2022), the infection rate (per edge) takes a constant value that only depends
on the population size n, and the recovery rate is constant γ(x) ≡ 1. This does not allow the
dependence on the individual features, which might be of practical interest and insightful concerning
the robustness of the results.

Lastly, it is assumed in Keliger et al. (2022) that, in our notation, w(n)
E (x, y) = κnw(x, y) for some

sequence κn, so that w(n)
I (x, y) ≡ 1/(nκn) and In(w(n)

I ∧ 1) = [(nκn)∨ 1]−1. Their assumption that
log(n)/(nκn) → 0 can, according to Assumption 2.6, be relaxed to 1/(nκn) → 0. Let us observe
that, based on our Theorem 2.7, w

(n)
I (and more precisely In(w(n)

I ∧ 1)) is the right quantity to
control the convergence. The importance of the crucial condition involving w

(n)
I is confirmed by the

simulations that we present in Section 4. □
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3. Proof of Theorem 2.7

The proof of Theorem 2.7 follows a classical scheme. We establish the uniform tightness of the
distributions of the processes (η(n))n∈N∗ in Section 3.2, see Proposition 3.2. By Prohorov’s theorem
Billingsley (1999, Theorems 5.1 and 5.2 p.59-60), this implies that this sequence of distributions
is relatively compact. We then show in Section 3.3 that any potential limit must be solution to a
measure-valued equation (3.15), see Proposition 3.5. This step requires a careful coupling between
the processes η(n) and auxiliary processes η̃(n) on the complete graph but with modified infection
rate. Using the uniqueness of the solution to Equation (3.15), see Lemma 3.7, we can conclude
that there exists a unique limiting value to the sequence (η(n))n∈N∗ and hence that it converges
to the unique solution to Equation (3.15), say η = (ηt)t∈R+ . From the uniqueness of the solution
to Equation (3.15), we will also establish in Lemma 3.7 that the measures ηt have densities with
respect to µ⊗ (δS + δI) that satisfy (2.10)-(2.11). This will conclude the proof of Theorem 2.7.

Before entering the proofs of Propositions 3.2-3.5 and Lemma 3.7, we provide some results on
the individual-based processes η(n) that will be used later. In particular, we will rely heavily on the
stochastic differential equation (SDE) satisfied by these processes.

3.1. Stochastic differential equation for the individual-based model.
In this section, we construct the graphs G(n) on a single probability space, and the processes η(n),
for any n ∈ N∗, as solutions of SDEs driven by Poisson point measures that do not depend on n
nor on the graphs G(n). This pathwise construction allows us on the one hand to use tools from
stochastic calculus for jump processes (see e.g. Ikeda and Watanabe, 1989, Chapter II), and on the
other hand to couple η(n) with η̃(n) by constructing them on the same probability space with the
same Poisson point measures.

Construction of the initial condition of the epidemic process. For n ∈ N∗, let X (n) = (x
(n)
i )i∈[[1,n]]

be a sequence of random variables taking values in X and let E(n) = (E
(n),i
0 )i∈[[1,n]] be a sequence

of random variables taking values in {S, I}. For simplicity, we shall write xi and Ei
0 for x

(n)
i and

E
(n),i
0 when there is no ambiguity. The initial condition η

(n)
0 is then given by (2.3).

Construction of the random graphs G(n). Let V = (V (i, j))1≤i<j be a family of independent uniform
random variables on [0, 1], and independent of X (n) and E(n). For convenience set V (j, i) = V (i, j)

and V (i, i) = 0. The graph G(n) = (V (n), E(n)) has vertices V (n) = [[1, n]] and the edge (i, j) belongs
to E(n) if V (i, j) ≤ w

(n)
E (xi, xj).

Definition of the Poisson point measures. The state transitions are encoded thanks to the two
following Poisson point measures, that are independent of V, X (n) and E(n). (For Poisson point
measures, we refer for example to Britton and Pardoux, 2019, Part I, Appendix A.2). Let n(di) be
the counting measure on N∗.

(1) For recovery events, we consider a Poisson point measure QR(ds, di, du) on R+ × N∗ × R+,
with intensity ds n(di) du. Each of its atom, say (s, i, u), is a possible recovery event for
the individual i at time s. The marker u allows to define whether the possible event really
occurs or not. On the event:

A(n)(i, u, s) = {i ≤ n} ∩ {u ≤ γ(n)(xi)} ∩ {Ei
s− = I}, (3.1)

the recovery of individual i occurs at time s, otherwise nothing happens. By this acceptance-
rejection method, we can ensure that recoveries for i occur at rate γ(n)(xi) as long as i is
infected.

(2) For infection events, we consider a Poisson point measure QI(ds, di, dj, du) on R+ × N∗ ×
N∗ × R+, with intensity ds n(di) n(dj) du. Each of its atom, say (s, i, j, u), is a possible
infection event of individual i by individual j at time s. The marker u serves for the
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acceptance-rejection method to ensure that infection happens at rate w
(n)
I (xi, xj) as long as

j is infected and i susceptible and connected. On the event:

B(n)(i, j, u, s) = {i, j ≤ n} ∩ C(n)(i, j, u, s) ∩ {Ei
s− = S;Ej

s− = I}, (3.2)

where
C(n)(i, j, u, s) = {i ∼ j} ∩ {u ≤ w

(n)
I (xi, xj)}, (3.3)

the individual i is infected by j, otherwise nothing happens. Notice the event {i ∼ j} can
also be written {V (i, j) ≤ w

(n)
E (xi, xj)}.

To simplify notation, the implicit parameters of the Poisson point measures are not recalled in
the notation and we will use the following abbreviations:

dQR = QR(ds, di, du) and dQI = QI(ds, di, dj, du).

Encoding of η(n). The evolution of η(n) is given by the following equation, for t ≥ 0:

η
(n)
t − η

(n)
0 = n−1

∫
1{s<t} (δ(xi,S) − δ(xi,I))1A(n)(i,u,s) dQR

+ n−1

∫
1{s<t} (δ(xi,I) − δ(xi,S))1B(n)(i,j,u,s) dQI . (3.4)

Semi-martingale decomposition. We denote by (F (n)
t )t∈R+ the natural filtration associated to the

Poisson point measures QR and QI , and the random variables V, X (n) and E(n), so that the
V(i,j)’s, the xi’s and the Ei

0’s are F (n)
0 -measurable. For any bounded measurable function f de-

fined on X×{S, I}, we have the following semi-martingale decomposition of the real-valued process
(⟨η(n)t

∣∣ f⟩)t∈R+ :

⟨η(n)t

∣∣ f⟩ − ⟨η(n)0

∣∣ f⟩ = V
(n)
t +M

(n)
t , (3.5)

where the predictable finite variation process V (n) = (V
(n)
t )t∈R+ is given by:

V
(n)
t =

∫ t

0
ds

∫
X
η(n)s (dx, I) γ(n)(x)(f(x, S)− f(x, I))

+ n−1

∫ t

0
ds

∑
i∼j; i,j∈[[1,n]]

w
(n)
I (xi, xj)1{Ei

s=S,Ej
s=I} (f(x, I)− f(x, S)). (3.6)

The square integrable martingale process M (n) = (M
(n)
t )t∈R+ is given by:

M
(n)
t = n−1

∫
1{s<t} (f(xi, S)− f(xi, I))1A(n)(i,u,s) dQ̃R

+ n−1

∫
1{s<t} (f(xi, I)− f(xi, S))1B(n)(i,j,u,s) dQ̃I , (3.7)

where Q̃R and Q̃I are the compensated measures of QR and QI respectively. Its quadratic variation
⟨M (n)⟩ = (⟨M (n)⟩t)t∈R+ is given by:

⟨M (n)⟩t = n−1

∫ t

0
ds

∫
X
η(n)s (dx, I) γ(n)(x) · (f(x, S)− f(x, I))2

+ n−2

∫ t

0
ds

∑
i∼j; i,j∈[[1,n]]

w
(n)
I (xi, xj)1{Ei

s=S,Ej
s=I} (f(xi, I)− f(xi, S))

2. (3.8)

For the complete graph, the above expressions can be simplified using (2.7) as follows.
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Lemma 3.1 (The particular case of the complete graph). When w
(n)
E ≡ 1 and using (2.7), Equa-

tions (3.6) and (3.8) become:

V
(n)
t =

∫ t

0
ds

∫
X
η(n)s (dx, I) γ(n)(x) · (f(x, S)− f(x, I))

+

∫ t

0
ds

∫
X
η(n)s (dx, S)

∫
X
η(n)s (dy, I)w(n)(x, y) · (f(x, I)− f(x, S)), (3.9)

and

⟨M (n)⟩t = n−1

∫ t

0
ds

∫
X
η(n)s (dx, I) γ(n)(x) · (f(x, S)− f(x, I))2

+ n−1

∫ t

0
ds

∫
X
η(n)s (dx, S)

∫
X
η(n)s (dy, I)w(n)(x, y) · (f(x, I)− f(x, S))2. (3.10)

3.2. Tightness.
The following tightness criterion relies on the semi-martingale decomposition given in the previous
section. Recall that a sequence of random elements of D is C-tight if it is tight with all the possible
limits being a.s. continuous.

Proposition 3.2 (Tightness). Under Assumption 2.3, the sequence of distributions of the processes
(η(n))n∈N∗ is C-tight on the Skorokhod space D.

In order to justify the tightness, we will have to specify global upper-bounds on the jump rate,
which we relate to the initial condition η

(n)
0 , and more precisely on its marginal on X given by

µ(n)(dx) = η
(n)
0 (dx, {S, I}), see (2.5). (Notice that the measure µ(n) is also the marginal on X of

η
(n)
t for all t ∈ R+).
We consider the following non-negative function of X (n):

J (n) =
1

n

∑
i,j∈[[1,n]]:i∼j

w
(n)
I (xi, xj). (3.11)

The terms J (n) are potentially of order n since there can be up to n2 terms in the sum. The
next lemma asserts that their distributions are tight. By Assumption 2.3-(iii), there exist a finite
positive constant Cw and an integer n0 ∈ N∗ large enough such that supn≥n0

∥w(n)∥∞ ≤ Cw and
∥w∥∞ ≤ Cw. Without loss of generality, we can assume that n0 = 1.

Lemma 3.3. Under Assumption 2.3-(iii), we have:

E[J (n)] ≤ Cw (3.12)

and the sequence of distributions of (J (n))n∈N∗ is tight on R.

Proof : According to the definition of the random graph of interactions, we have i ∼ j if V (i, j) ≤
w

(n)
E (xi, xj), where the V (i, j) are sampled independently. Thus, we get:

E
[
J (n) | X (n)

]
=

1

n

∑
i,j≤n

w
(n)
I (xi, xj)P

(
V (i, j) ≤ w

(n)
E (xi, xj)

)
=

1

n2

∑
i,j≤n

w(n)(xi, xj) ≤ Cw.

Thanks to the Markov inequality since J (n) is non-negative, we deduce that P
(
|J (n)| > Cw/ε

)
< ε

for all ε > 0 and n ∈ N∗. This gives the result. □

We are now ready to prove Proposition 3.2.



1388 Jean-François Delmas et al.

Proof of Proposition 3.2: Let D0 be a fixed set of real-valued continuous bounded functions defined
on X× {S, I}, containing the constant functions, and assume that D0 is separating, that is:(

∀f ∈ D0, ∀ν, ν ′ ∈ M1, ⟨ν, f⟩ = ⟨ν ′, f⟩
)

=⇒ ν = ν ′.

According to Theorem II.4.1 in Perkins (2002), the sequence of processes (η(n))n∈N∗ is C-tight in D
if and only if:

(a) Compact Containment Condition (CCC). For all ε > 0, T > 0, there exists a compact
set KT,ε in X× {S, I} such that:

sup
n∈N∗

P

(
sup
t≤T

η
(n)
t (Kc

T,ε) > ε

)
< ε.

(b) Tightness of the projections. For all f ∈ D0, the sequence (⟨η(n)· , f⟩)n∈N∗ is C-tight in
D(R+,R).

We first prove the compactness property (a). According to Assumption 2.3-(ii), the random
sequence (η

(n)
0 )n∈N∗ converges in distribution to η0 (in M1 endowed with the topology of the weak

convergence). Recall µ(n) is the marginal of η(n)0 on X, see (2.5); and µ is the marginal of η0 on
X, see (2.8). We deduce that the random sequence (µ(n))n∈N∗ converges weakly and in distribution
to µ (in M1(X)). Since M1(X) is a Polish space, Prohorov’s theorem implies that this sequence is
tight, and thus, for all ε > 0, there is a compact set Kε in X such that:

sup
n∈N∗

P

(
µ(n)(Kc

ε) > ε

)
< ε.

Since the marginal on X of η(n)t is also µ(n), we deduce (a) with the compact set Kε × {S, I}:

sup
n∈N∗

P
(
η
(n)
t (Kc

ε × {S, I}) > ε for all t ∈ R+

)
< ε.

We now prove (b) on the tightness of the projections. By Assumption 2.3-(iv), there exists a finite
positive constant Cγ and n0 ∈ N∗ large enough such that supn≥n0

∥γ(n)∥∞ ≤ Cγ and ∥γ∥∞ ≤ Cγ .
Without loss of generality, we can assume that n0 = 1.

We consider the processes Ṽ (n) = (Ṽ
(n)
t )t∈R+ and Ã(n) = (Ã

(n)
t )t∈R+ defined by:

Ṽ
(n)
t = 2∥f∥∞(Cγ + J (n)) t and Ã

(n)
t =

4

n
∥f∥2∞(Cγ + J (n)) t. (3.13)

Thanks to Lemma 3.3, we deduce that the sequences of processes (Ṽ (n))n∈N∗ and (Ã(n))n∈N∗ are C-
tight in D(R+,R) (as they are tight with all the possible limits being a.s. continuous). Following Ja-
cod and Shiryaev (1987, Section VI.3), we say that a non-negative non-decreasing, right-continuous
and null at 0 process is an “increasing process”. Let Var(V (n)) denote the variation process of V (n)

defined in (3.6). Since η(n) is a probability measure, we deduce that the process Ṽ (n)−Var(V (n)) is
an increasing process. Thanks to (3.8), the process Ã(n) − ⟨M (n)⟩ is also an increasing process. We
deduce from Propositions VI.3.35 in Jacod and Shiryaev (1987) that the sequences (Var(V (n)))n∈N∗

and (⟨M (n)⟩)n∈N∗ are C-tight. Then, we deduce from Propositions VI.3.36 therein that the se-
quence (V (n))n∈N∗ is C-tight. Since the sequence (η

(n)
0 )n∈N∗ is tight thanks to Assumption 2.3-(ii),

we also deduce from Theorem VI.4.13 therein that the sequence (η
(n)
0 +M (n))n∈N∗ is tight. Then

use Corollary VI.3.33 therein to deduce that the sequence (η(n) = η
(n)
0 + V (n) +M (n))n∈N∗ is tight.

Eventually, notice that the sequence (Ã(n))n∈N∗ converges to 0, which implies that the sequence
(⟨M (n)⟩)n∈N∗ and thus the sequence (M (n))n∈N∗ converge also to 0 a.s. and in L1 uniformly for
t ∈ [0, T ], T finite. Since (V (n))n∈N∗ is C-tight, we also deduce that (⟨η(n)· , f⟩)n∈N∗ is C-tight. Then
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take for D0 the set of bounded continuous measurable functions defined on X × {S, I} to deduce
that (b) holds.

We deduce from Perkins (2002, Theorem II.4.1) that the sequence (η(n))n∈N∗ is C-tight in D. □

As a by-product of the above proof, we get the following result.

Corollary 3.4. Suppose the assumptions of Proposition 3.2 hold. Let f be a bounded measurable
function defined on X × {S, I}. Then, the sequence of martingales (M (n))n∈N∗ defined by (3.7), is
such that for all T ∈ R+:

lim
n→∞

E

[
sup

t∈[0,T ]

(
M

(n)
t

)2]
= 0.

Proof : At the end of the proof of Proposition 3.2, we get that ⟨M (n)⟩ ≤ Ã
(n)
t , with Ã(n) defined

in (3.13). Then use Doob’s inequality for the square integrable martingale M (n) and (3.12) to
conclude. □

3.3. Identification of the equation characterizing the limiting values.
Under the hypotheses of Proposition 3.2, the sequence (η(n))n∈N∗ is C-tight in D. Let η̄ = (η̄t)t∈R+ ∈
D be a possible limit in distribution. In particular, the function t 7→ η̄t is continuous.

By construction, we have that η(n)t (dx×{S, I}) is equal to µ(n), see (2.5) for all t ∈ R+. According
to Assumption 2.3-(ii), the sequence (µ(n))n∈N∗ converges in distribution to µ. Since the map
ν 7→ ν(dx × {S, I}) from M1 to M1(X) is continuous, and since η̄ is continuous in D, we deduce
that a.s.:

η̄t(dx× {S, I}) = µ(dx) for all t ∈ R+. (3.14)
We state in the next proposition that η̄ ∈ D is a (continuous) solution to:

Ψf,t(ν) = 0 for all t ∈ R+, (3.15)

for any real-valued continuous bounded function f defined on X×{S, I}, where for ν = (νt)t∈R+ ∈ D:

Ψf,t(ν) = ⟨νt − ν0
∣∣ f⟩ − ∫ t

0
dr

∫
X
νr(dx, I) γ(x) · (f(x, S)− f(x, I))

−
∫ t

0
dr

∫
X
νr(dx, S)

∫
X
νr(dy, I)w(x, y) · (f(x, I)− f(x, S)). (3.16)

Proposition 3.5 (Property of the limiting process). Under Assumptions 2.3 and 2.6, any limiting
value η̄ of (η(n))n∈N∗ in D is a.s. continuous and solution of Equation (3.15).

The rest of the section is devoted to the proof of Proposition 3.5. It is divided into several steps:
first, we consider the case of a complete graph with w

(n)
E ≡ 1, second, in the heterogeneous case, we

construct a coupling between the epidemic process η(n) and an epidemic process η̃(n) defined on the
complete graph, but with a modified infection rate, third we end the proof.

Step 1: Limiting equation for the epidemic on the complete graph (w(n)
E ≡ 1). In this section, we

assume that w
(n)
E ≡ 1. Thanks to Lemma 3.1, we get from (3.5) and (3.9) that:

Ψf,t(η
(n)) = M

(n)
t +

∫ t

0
dr

∫
X
η(n)r (dx, S)

∫
X
η(n)r (dy, I) (w(n)(x, y)− w(x, y)) · (f(x, I)− f(x, S))

+

∫ t

0
dr

∫
X
η(n)r (dx, I) (γ(n)(x)− γ(x)) · (f(x, S)− f(x, I)).
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By Assumption 2.3-(iii),(iv), the following upper-bound holds:

|Ψf,t(η
(n))| ≤ |M (n)

t |+ 2t∥f∥∞
(
∥w(n) − w∥∞ + ∥γ(n) − γ∥∞

)
.

Then use Corollary 3.4 and the uniform convergence of γ(n) and w(n) to γ and w to conclude that
limn→∞ E

[
|Ψf,t(η

(n))|
]
= 0.

Since the functions w and γ are continuous µ⊗2-a.s. and µ-a.s. we deduce that the functional Ψf,t

is continuous at any ν ∈ D such that νs(dx× {S, I}) is absolutely continuous with respect to µ for
a.e. s ∈ [0, t]. Thanks to (3.14), a.s. for all t ≥ 0 the probability measure η̄t(dx×{S, I}) is absolutely
continuous with respect to µ(dx). We deduce that Ψf,t(η

(n)) converges in distribution to Ψf,t(η̄),
and since |Ψf,t(η

(n))| ≤ 2∥f∥∞·
(
1+tCw+tCγ

)
, see (3.16), we deduce that limn→∞ E

[
|Ψf,t(η

(n))|
]
=

E
[
|Ψf,t(η̄)|

]
. This concludes that E

[
|Ψf,t(η̄)|

]
= 0, that is, η̄ is a.s. solution of (3.15).

Step 2: Coupling for heterogeneous contact graphs (w(n)
E ̸= 1). Now we consider the general case of

the epidemic process η(n) associated to connection density w
(n)
E , infection rate w(n)

I and recovery rate
γ(n). We shall couple the process η(n) with an epidemic process η̃(n) on a complete graph associated
to connection density w̃

(n)
E ≡ 1, infection rate w̃

(n)
I = w

(n)
I w

(n)
E and same recovery rate γ̃(n) = γ(n).

The two epidemic processes shall also start with the same initial condition η
(n)
0 = η̃

(n)
0 . The next

proposition, whose technical proof is postponed to Section A, gives for a well chosen coupling an
upper bound on the distance in variation between the two epidemic processes.

We denote by ∥ν∥TV the total variation norm of a signed measure on X × {S, I}. Recall the
functional In in (2.9).

Proposition 3.6 (A control using coupling). Under Assumption 2.3, for all T ≥ 0, there exists a
finite constant CT (independent of n) and a sequence of epidemic processes (η̃(n))n∈N∗ on a complete
graph (with η̃(n) associated to connection density w̃

(n)
E ≡ 1, infection rate w̃

(n)
I = w

(n)
I w

(n)
E , recovery

rate γ̃(n) = γ(n) and initial condition η̃
(n)
0 = η

(n)
0 ) such that:

E

[
sup

t∈[0,T ]
∥η(n)t − η̃

(n)
t ∥TV

]
≤ CT In(w(n)

I ∧ 1).

We shortly explain how the auxiliary process η̃(n) is constructed. The graph G(n) on which the
epidemic described by η(n) spreads is encoded by the random variables (V (i, j))1≤i<j of Section 3.1.

The dynamics of η̃(n) can be interpreted as the one for which this graph structure is initially the
same (that is, encoded by the random variables (V (i, j))1≤i<j) but then each edge involved in an
infection event is resampled. This amounts to modifying the infection rate by multiplying it by the
probability to get the edge, that is w̃

(n)
I = w

(n)
I w

(n)
E , and considering that the propagation holds on

a complete graph.

Step 3: End of the proof. Suppose that the sequence (η(n))n∈N∗ , which is C-tight according to
Proposition 3.2, converges in distribution along a sub-sequence (nk)k∈N∗ towards a certain trajectory
η ∈ D. Thanks to Proposition 3.6 and Assumption 2.6, the sequence (η̃(nk))k∈N∗ (of epidemic
process on complete graphs) converges also in distribution towards η. By Step 1, the limit η is
solution to Equation (3.15). Thus, all the limiting values of the sequence (η(n))n∈N∗ are solutions
of Equation (3.15). This ends the proof of Proposition 3.5.
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3.4. Uniqueness of the limit.
We shall prove the existence and uniqueness of the solution of (3.15). The measurable non-negative
functions w and γ defined respectively on X2 and X are assumed to be bounded. We first comment
on the existence and uniqueness of solution to the ODE (2.11) in the Banach space (L∞, ∥ · ∥∞ of
bounded measurable functions defined on X endowed with the supremum norm. Let ∆ ⊂ L∞ be
the set of non-negative functions bounded by 1. Under the further assumption that γ is positive,
it is proved in Delmas et al. (2022, Section 2) that for an initial condition u0 ∈ ∆, the ODE (2.11)
admits a unique (maximal) solution; it is defined on R+ and takes values in ∆. A careful reading
of Delmas et al. (2022) provides that one can assume that γ is only non-negative without altering
the results nor the proofs of Section 2 therein. Thus the solution (ut = (u(t, x))x∈X)t∈R+ of (2.11)
with initial condition u0 ∈ ∆ exists and is unique.

The continuous M1-valued process η = (ηt)t∈R+ , with deterministic evolution, defined by (2.10) is
clearly a solution of (3.15) for any continuous function f defined on X×{S, I} with initial condition
η0 given by (2.8). We shall now prove the following uniqueness result.

Lemma 3.7 (Uniqueness for Equation (3.15)). Assume the measurable non-negative functions w
and γ defined respectively on X2 and X are bounded. If η̄ ∈ D is a.s. a continuous process solution
of (3.15) (for any real-valued continuous bounded function f defined on X × {S, I}) with initial
condition η0 given by (2.8), then a.s. η̄ = η.

Proof : Let η̄ ∈ D be continuous and a solution of (3.15) with initial condition η0 given by (2.8).
Taking f such that f(·, S) = f(·, I), we deduce from (3.15) that for all t ∈ R+ the marginals of
η̄t on X are constant equal to the marginal of η0 given by µ (see (2.8)). This implies that for all
t ∈ R+, the probability measure η̄t is absolutely continuous with respect to µ⊗ (δS + δI), and thus:

η̄(dx, de) = µ(dx) ((1− ū(t, x)) δS(de) + ū(t, x) δI(de)),

for some measurable function ū = (ūt = (u(t, x))x∈X)t∈R+ taking values in [0, 1]. Let g be a real-
valued continuous bounded function defined on X and t ∈ R+. Taking f(x, e) = g(x)1{e=I}, we
deduce from Ψf,t(η̄) = 0 that

∫
X g(x) Ūt(x)µ(dx) = 0 where:

Ūt(x) = ūt(x)− u0(x)−
∫ t

0
dr
(
(1− ūr(x))

∫
X
µ(dy) w(x, y) · ūr(y)− γ(x) · ūr(x)

)
.

Since g and t are arbitrary, we deduce that Ūt = 0 µ-a.e. for all t ∈ R+. Using (2.11), we obtain
that for all t ∈ R+:

∥ūt − ut∥1 ≤ (2Cw + Cγ)

∫ t

0
dr ∥ūr − ur∥1,

where ∥·∥1 denotes the usual norm on L1(X, µ). By Grönwall’s Lemma, we deduce that ∥ūt−ut∥1 = 0
for all t ∈ R+. This implies that for all t ∈ R+, µ-a.e. ūt = ut, that is η̄t = ηt for all t ∈ R+. □

4. Simulations and discussion

In this section, we will focus on the special case of an homogeneous population to illustrate our
main convergence result and to highlight the crucial role of Assumption 2.6.

4.1. Simulations setup: Erdős–Rényi graph and homogeneous infection rate.
We consider the Erdős–Rényi graph, which amounts to taking w

(n)
E homogeneous over the popula-

tion, and thus depending only on n, not on the feature. We consider an infection rate w
(n)
I which is

homogeneous over the population, too, so that w(n) = nw
(n)
E w

(n)
I is homogeneous and converges to a

constant transmission kernel w. For simplicity, the initial condition u0 is also taken to be constant.
In this case, Equation (1.3) prescribes the density (identified with the proportion) of the infected
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population, now uniform over the features. We thus recover the classical SIS model introduced by
Kermack and McKendrick (in Kermack and McKendrick (1932, 1933), as a special case):

∂tu(t) = w · (1− u(t)) · u(t)− γ · u(t). (4.1)

If w = 0, then there is asymptotically no propagation of the epidemics: our results also cover this
degenerate case, which will not be considered further. Assuming that the model is not degenerate,
that is w > 0, the most natural choice is setting w(n) = w. For the resulting Erdős–Rényi graph
G(n), edges in the graph of n vertices are thus kept with probability:

w
(n)
E =

w

nw
(n)
I

·

Assumption 2.6 corresponds to limn→∞w
(n)
I = 0, that is, limn→∞ nw

(n)
E = +∞. Notice that nw

(n)
E

is the expected number of neighbors (for any individual), which is purely a local quantity.

Remark 4.1 (Assumption 2.6 and connectivity). We compare the condition limn→∞ nw
(n)
E = +∞

with the well-known connectivity properties of Erdős–Rényi graphs, which have a sharp connectivity
threshold when nw

(n)
E is around log n (see e.g. van der Hofstad, 2017, Theorem 5.8). Erdős–Rényi

graphs may exhibit the so-called super-critical regime (see e.g. van der Hofstad, 2017, Section 4.4):
if nw

(n)
E ≥ c > 1, with a probability that converges to 1 as n tends to infinity, then there exists

a connected component, called the giant component, which contains a positive fraction of the
n vertices, while the second-largest component has at most O(log n) vertices. Furthermore, if
nw

(n)
E ≥ d log(n), with a probability that converges to 1 as n tends to infinity, then there are

only a giant component and isolated vertices if d > 1/2, and the graph is connected if d > 1 (see
van der Hofstad, 2017, Section 5.3, Proposition 5.10 and Theorem 5.8). Instead, in the super-critical
regime with bounded nw

(n)
E , the size of the second largest component is of order log(n) (see van der

Hofstad, 2017, Section 4.4).
Based on this description, we can observe that Assumption 2.6 does not imply the graph to be

connected. However, Assumption 2.6 implies that the graph is in the super-critical regime. At the
same time, the super-critical regime also includes some graphs which we qualify of ‘very sparse’,
where nw

(n)
E is constant and hence Assumption 2.6 fails. We will consider the latter case in Sect. 4.3,

and show that the mean-field approximation is not good in this regime. □

For the simulations, we shall consider the numerical values w = 3 and γ = 0.7. The reproduction
number is given by:

R0 =
w

γ
≃ 4.3.

Since R0 > 1, we get that
lim
t→∞

u(t) = 1− 1/R0 =: u∗

and that u(t) ≈ u∗+Ce−(R0−1)t for large t and some finite constant C, provided the initial condition
u(0) is positive. In particular, on the time-interval I0 = [20, 80], the function u is numerically
constant and equal to the equilibrium u∗.

Let u(n)(t) denote the proportion of the infected population at time t ≥ 0, that is, u(n)(t) =

η
(n)
t (X, I) in the terminology of Section 2.2. For the simulations, we use the Gillespie algorithm

to sample exact trajectories (up to numerical limitations), with the initial population completely
infected, that is, u(n)(0) = 1.

Remark 4.2. As in general the asymptotic equilibrium is not unique (notably when the graph is not
connected), starting from the initial condition u0 = 1 shall provide the estimation on the asymptotic
equilibrium that is maximal in terms of the infected proportion of individuals (cf Delmas et al.
(2022), provided the stochasticity does not move the process away from it). As starting simulations
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(a) Population size n = n0 = 2, 000 is fixed: for
t larger than 10, u(n)(t) is closer to u∗ = 1 − γ/w

when w
(n)
I is smaller.

(b) w
(n)
I ≍ n−α with α = 0.3, for different values

of n.

Figure 4.1. Evolution of t 7→ u(n)(t) for different choices of w(n)
I .

with any positive initial conditions does not change the results significantly, we shall only consider
u0 = 1 as initial condition.

In the simulations we will either consider a fixed population size n0 = 2000, or show plots
for growing values of n. When studying the different sparsity regimes as in Remark 2.5, we will
consider w

(n)
E ≍ na−2, which corresponds to w

(n)
I ≍ n−a+1; for ease of notation, we will rather use

the following parameter instead of a:

α = a− 1 ≥ 0 so that w
(n)
E ≍ nα−1 and w

(n)
I ≍ n−α,

in order to focus on the difference between the case α > 0 (Assumption 2.6 holds) and the very
sparse case α = 0 (Assumption 2.6 fails). More precisely, in all plots concerning the asymptotic
behavior w

(n)
I ≍ n−α we will use the values

w
(n)
I = 1.2 (n/n0)

−α.

4.2. Numerical observation of the convergence.
In this section, we illustrate how the solution u of (4.1) (or rather its equilibrium value u∗ =
limt→∞ u(t), which is attained by u(t) within numerical precision for time t ≥ 20) is a good approx-
imation of u(n) whenever w

(n)
I is small enough, consistently with the convergence of u(n) to u, for

n → ∞, if w(n)
I → 0 (i.e., Assumption 2.6 holds).

4.2.1. The proportion u(n)(t) of infected population and the limit u∗.

In Fig. 4.1, we represent the evolution of u(n)(t) for t ∈ [0, 80]: each curve corresponds to a
single run on one sampled graph. In the left panel, we consider a population of size n = n0, with
n0 = 2000, and different values of w(n)

I : as expected, one can clearly see that the deviation of u(n)

from u∗ is small, compared to the temporal fluctuations, when w
(n)
I is close to 0.1 and increases

to much higher values as w
(n)
I grows closer to 2. In the right panel, we consider w

(n)
I ≍ n−α for

α = 0.3 and different values of n: one can clearly see that the discrepancy is reduced as w
(n)
I gets

closer to 0. For n = 105, the temporal fluctuations are almost not visible on the plot, while the
discrepancy with u∗ is small but still noticeable.



1394 Jean-François Delmas et al.

(a) α = 0.3. (b) α = 0.

Figure 4.2. Temporal fluctuations: temporal standard deviation σ̂n of the propor-
tion of infected individuals (defined in (4.2)), and comparison with the decay 1/

√
n,

when w
(n)
I ≍ n−α. Each star point is obtained from a single run.

Fig. 4.1 shows that, for large population size n, the trajectory of u(n) has small fluctuations,
which seem much smaller than the discrepancy between u(n) and u∗. For this reason, we choose
to investigate the temporal fluctuations of u(n), which can be interpreted as an internal variance
term, in Section 4.2.2 and the discrepancy between a temporal average of u(n) and u∗, which can
be interpreted as a bias term, in Section 4.2.3.

4.2.2. An internal noise: the temporal fluctuations of u(n) for large population size n.

In order to measure the temporal fluctuations of the proportion of infected individuals, we com-
pute the standard deviation of the data points in the time-interval I0 = [20, 80]. More precisely, the
random temporal average û

(n)
∗ and the corresponding standard deviation σ̂n of u(n) over the time

interval I0 of length |I0| = 60 are given by:

û
(n)
∗ =

1

|I0|

∫
I0

u(n)(t) dt and σ̂2
n =

1

|I0|

∫
I0

(
u(n)(t)− û

(n)
∗

)2
dt. (4.2)

This computation is motivated by the Orstein-Uhlenbeck description of the fluctuations in the
compartmental SIS model, corresponding to w

(n)
E = 1, which are known to be of order 1/

√
n (see

Britton and Pardoux, 2019, Theorem 2.3.2). In Fig. 4.2, we plot the temporal standard deviation
σ̂n as a function of the population size n. The resulting relation is compared to the prediction of the
central limit theorem for mean-field interactions, that is a decay as 1/

√
n. We consider the sparse

case α = 0.3 in the left panel, and the very sparse case α = 0 (so that w
(n)
I = 1.2 for all n) in the

right panel. The prediction of a decay as 1/
√
n is clearly confirmed, even in the very sparse case.

4.2.3. The bias of the temporal average of u(n) for different sparsity levels.

To obtain more reliable estimations of the decay in the discrepancy between the random process
u(n) and the equilibrium u∗, we focus in Fig. 4.3 on the discrepancy between the random temporal
average û

(n)
∗ and u∗. In the left panel of Fig. 4.3, we thus plot the deviation |û(n)∗ − u∗| in a log-log

scale as a function of population size n, for α = 0.3. Each of the N = 100 points is obtained from
a single run (with the same relation for w

(n)
I as in Fig. 4.2). We then find the regression slope of

such points, which turns out to be -0.28, not far from −α = −0.3.
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(a) |û(n)
∗ −u∗| for growing population size n (in log-

log scale) and regression slope, for α = 0.3.
R2 ≈ 0.38 is the coefficient of determination corre-
sponding to the proportion of variance captured by
the prediction with a slope of −0.3 (and adjusted
averages).

(b) Slopes of the log-log regressions of |û(n)
∗ − u∗|

vs. n, for different values of α.
R2 ≈ 0.97 is the coefficient of determination corre-
sponding to the proportion of variance captured by
the prediction of slopes given by exactly −α.

Figure 4.3. Bias term: |û(n)∗ − u∗| and its decay rate for growing population size
when w

(n)
I ≍ n−α, and comparison with the decay rate of log |û(n)∗ −u∗| as −α log(n).

In the right panel, we plot these decay slopes for different values of α. Each point in the right
panel is an empirical regression slope of |û(n)∗ −u∗| in n with a log-log scale, obtained with the same
procedure used in left panel for α = 0.3, requiring N = 100 runs. Based on our analysis, we expect
that n−α is the maximal level of deviation that can be due to the graph structure, in view of the
bias term in the coupling argument (see Proposition 3.6); whereas 1/

√
n is the internal fluctuations

level in the martingale term (see Equation 3.5) that dominates the deviations in the mean-field case
(see Fig. 4.2). Provided α < 0.5, the bias term n−α is large against the fluctuation term 1/

√
n.

This intuition is confirmed in the right panel of Fig. 4.3 where the empirical slopes are very close
to a linear growth in α, so long as α ≤ 0.5. The quality of this approximation of linear growth is
also quantified, as indicated in the legend, by the coefficient of determination R2 ≈ 0.97, very close
to 1.

Regression slopes for values of α larger than 0.5 have also been computed and their values suggest
that this linear curve should be extended. This observation is still compatible with the conjectured
order of variation of the bias and of the fluctuations due to the presence of multiplying factors, so
that the values of n in the simulations are presumably too small to observe the predominance of
the latter. For this reason, we restrict the right panel to α ≤ 0.5.

4.3. The very sparse case.
We consider the very sparse case α = 0 (and a = 1), where the number of edges in the graph is of the
same order as the size of the population: nw

(n)
E ≍ 1, and thus w(n)

I ≍ 1 (since n·w(n)
E ·w(n)

I = w = 3).
In particular Assumption 2.6 fails. By means of simulations, we observe that the integro-differential
equation (2.11) is not a reliable description of the dynamics for n large in this case, thus highlighting
the importance of Assumption 2.6.

More precisely, we consider constant w
(n)
I (and hence constant nw

(n)
E = w/w

(n)
I ), for values of

w
(n)
I that will be specified below but remain smaller than w = 3. Notice that this falls in the

very sparse case, where Assumption 2.6 fails; the corresponding Erdős-Rényi graph is below the
connectivity threshold and in the super-critical regime nw

(n)
E ≥ c > 1, where there is a unique giant
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(a) Temporal average of the proportion of infected
individuals for growing population size n (in log-
scale), with w

(n)
I = 1.2 and n · w(n)

E = 2.5.

(b) Temporal average of the proportion of infected
individuals as a function of w(n0)

I , with fixed popu-
lation size n0 and w

(n0)
E · w(n0)

I = 3/n0.

Figure 4.4. Very sparse yet super-critical regime: n · w(n)
E = c, with c > 1. Tem-

poral averages û
(n)
∗ of the proportion of infected individuals w.r.t. the total popula-

tion and v̂
(n)
∗ w.r.t. population of the giant component (each with whiskers for the

±2-standard-deviation intervals, with temporal standard deviation as in (4.2)), and
comparison with the equilibrium u∗.

component containing a fraction of the population, and all other components have a size growing
at most as log n.

The intuition suggests that the infection dies out rapidly rapidly on all components other than
the giant one (due to their small size), so that the effective population is rather given by the size of
the giant component and not the size of the whole population. For this reason, we also study the
proportion of infected individuals at time t in the giant component, which we will denote by v(n)(t)

to avoid confusion with u(n)(t). To remove the fluctuations, we consider the temporal averages û(n)∗

as in (4.2) and v̂
(n)
∗ with analogous definition, replacing u(n) by v(n). We compare both û

(n)
∗ and

v̂
(n)
∗ with u∗.
Our simulation results are shown in Fig. 4.4. Each point in Fig. 4.4 is derived from the average in

time, either û(n)∗ in purple or v̂(n)∗ in red, over a single run of epidemic. Intervals of fluctuations that
account for twice the temporal standard deviations (either 2σ̂n or the analogous value estimated
only over the individuals belonging to the giant component) are displayed with whiskers of the
corresponding color. These intervals of fluctuations demonstrate that these temporal fluctuations
play a negligible role in the trends.

In the left panel of Fig. 4.4, we present the temporal average of the proportion of infected
individuals for the total population (that is, û(n)∗ ) and the population in the giant component (that
is, v̂(n)∗ ), as a function of n, in the very sparse regime α = 0 (with w

(n)
I = 1.2). Recall that w = 3,

so that nw
(n)
E = 2.5 corresponds indeed to the supercritical regime, but the graph is not connected.

We observe a convergence of the quantities û(n)∗ and v̂
(n)
∗ as n goes to infinity, but to a smaller value

than the equilibrium u∗ predicted by the model when the graph is dense or merely sparse. The
restriction to the giant component entails a smaller discrepancy, implying that this effect is indeed
contributing; however the discrepancy remains significant. This is all the more noticeable as the
restriction to the giant component corresponds to a conditioning of the graph structure towards
individuals having more contacts between each other.
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In the right panel of Fig. 4.4, the size of the population is fixed to n = n0, and we study the
effect of nw

(n)
E getting close to the transition phase c = 1, where the giant component disappears,

by letting w
(n)
I grow near 3. Similarly to the left panel, we plot the temporal average of the

proportion of infected individuals for the total population (that is, û(n)∗ ) and the population in the
giant component (that is, v̂

(n)
∗ ), but here as a function of w

(n)
I , for fixed n = n0. When w

(n)
I is

close to 0, the coupling approximation is valid, that is, Assumption 2.6 holds, and almost all the
population is in the giant component: thus we can apply our result and as expected the values of
û
(n)
∗ , v̂(n)∗ and u∗ coincide. When we start increasing w

(n)
I , as already observed in the left panel, a

discrepancy starts appearing between û
(n)
∗ and u∗, and between v̂

(n)
∗ and u∗, the latter being smaller.

When increasing w
(n)
I further, the effect of restricting the attention to the giant component becomes

stronger: the discrepancy between û
(n)
∗ and u∗ keeps increasing, while the one between v̂

(n)
∗ and u∗

remains small, and also changes sign when w
(n)
I is larger than 2. The increase in the discrepancy

when considering the whole population is largely due to a larger proportion of individuals outside
of the giant component, among which the epidemic is not able to sustain itself.

5. Summary of contributions

Starting from a stochastic individual-based model of a finite population on a general state space
of interactions, we established limit theorems showing that in large populations, the complex com-
bination of randomness coming both from the graph structure and from the infection events can be
treated as a small perturbation of a deterministic process. This deterministic process is described by
an integro-differential equation, see (1.3) introduced in Delmas et al. (2022). This integro-differential
equation is ruled by a bounded recovery rate γ and a bounded transmission kernel w that combines
these two aspects: the connection density and the infection rate.

Due to possible compensations between these two aspects, we do not rely on any form of con-
vergence of the random graph sequence by itself. Instead, we propose an efficient coupling of the
dynamics on a random graph structure (fixed in time) with a dynamics on a complete graph, in
which there is no persistent graph structure and only the infections are random. By averaging
over the proportion of individuals whose state can disagree between the two dynamics, we justify
that their limits necessarily coincide as the size n of the population tends to infinity. The crucial
condition for the coupling to provide a good approximation is that the average rate of infection over
the population goes down to 0 as n tends to infinity (1.4).

We rely on very mild assumptions on the recovery rate function γ and the transmission kernel
w. This allows to consider for w a wide variety of potential interactions networks (see Remark 2.1
and Assumption 2.3), such as discontinuous geometric kernels, continuous features on a multidi-
mensional setting, and stochastic block models. Let us also stress that there is no assumption on
the connectivity of the random graph G(n) of the population of size n: connectivity is not a relevant
property for our convergence result.

Our convergence result holds in the case of dense and sparse graphs, where the total number
of edges is, for a large population of size n, of order n/ϵn with limn→∞ ϵn = 0, thus for example
of order na with a = 2 (dense) and a ∈ (1, 2) (sparse); see Remark 2.8. Assumption 2.6 fails in
the case of very sparse graphs a = 0, for which the number of edges is of order O(n) and thus the
average rate of infection over the population is of order 1. It appears that Assumption 2.6 is crucial
to ensure convergence as it is shown in simulations in Section 4.3.

Notice that the model could be easily generalized to allow the inclusion of non-Markovian descrip-
tion of the disease propagation, see Clémençon et al. (2008); Barbour and Reinert (2013); Forien
et al. (2021, 2022); Foutel-Rodier et al. (2022) in these directions. Also, there is no motion nor
addition or deletion of individuals. For epidemics on moving particles, we can refer to Bowong et al.
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(2023); Durrett and Yao (2022) for instance. Another important direction that could be included
would be to relax the consideration of a static (in time) graph. When the epidemic spreads, the
social network can be affected: either by preventive measure performed by separate individuals, who
may drop edges and/or rewire connections depending on how the diseases progresses (e.g. Ball and
Britton, 2022), or by public health measures such as lockdowns or contact-tracing (e.g. Charpentier
et al., 2020; Kryven and Stegehuis, 2021). This direction is also very important for future research.

Codes. All the codes and files necessary to reproduce the results presented in this document are avail-
able in the GitHub repository: https://forgemia.inra.fr/aurelien.velleret/simulations_
containment_strategies_and_city_size_heterogeneity

Simulations and figures have been created in Python (v3.8.10) and many associated simulation
outcomes are saved as csv files. Please refer to the Readme file for further information.

Appendix A. Appendix: Proof of Proposition 3.6

We assume in this section that the hypotheses of Proposition 3.6 hold.

A.1. The epidemic process η̃(n) coupled to η(n).
Recall the notations of Section 3. Following the classical graphical approach for defining interacting
particle systems, see Liggett (2005, Section III.6) for reference, let us define a graphical model for
the coupling as follows. Let (Vℓ(i, j))1≤i<j,ℓ∈N∗ be a family of independent uniform random variables
on [0, 1], and independent of X (n) and E(n). We let V1(i, j) be equal to V (i, j) from Section 3.1.
Similarly to Section 3.1, we set Vℓ(j, i) = Vℓ(i, j) and Vℓ(i, i) = 0 for convenience.

For each atom (s, i, j, u) of the Poisson measure QI , we draw an arrow from j to i at time s if
u ≤ w

(n)
I (i, j), and denote the corresponding event by {u ≤ w

(n)
I (i, j)}. Let us denote by N

(n)
t (i, j)

the number of arrows from j to i or vice-versa up to time t:

N
(n)
t (i0, j0) =

∫
1{s≤t} 1{{i,j}={i0,j0}}1{u≤w

(n)
I (i,j)} dQI . (A.1)

For any atom of QI that leads to an arrow, we define the connection events:

C(n)(i, j, u, s) = {u ≤ w
(n)
I (i, j)} ∩ {V1(i, j) ≤ w

(n)
E (i, j)} = {u ≤ w

(n)
I (i, j)} ∩ {i ∼ j}, (A.2)

C̃(n)(i, j, u, s) = {u ≤ w
(n)
I (i, j)} ∩ {V

N
(n)
s (i,j)

(i, j) ≤ w
(n)
E (i, j)}. (A.3)

On C (resp. C̃), we say that the arrow is activated for the original process (resp. for the coupled
process). As usual for graphical models, η(n) (resp. η̃(n) = (η̃

(n)
t )t∈R+) is then constructed by

following the activated arrows defined by C(n) (resp. C̃(n)). Compared to (3.2), the dynamics of
η̃(n) is the same as the one of η(n) except that the event {i ∼ j} ∩ {u ≤ w

(n)
I (xi, xj)} is replaced

by the connection event C̃(n)(i, j, u, s). If the arrow is the first to occur between i and j, then
N

(n)
s (i, j) = 1 and the events are the same, if not, the use of an independent Vℓ(i, j) in the definition

of C̃(n) corresponds to a resampling of the connection between i and j.

Thus, the epidemic process η̃(n) = (η̃
(n)
t )t∈R+ ∈ D on the n individuals X (n) = (xi)i∈[[1,n]] is

defined by:

η̃
(n)
t (dx, de) =

1

n

n∑
i=1

δ
(xi,Ẽi

t)
(dx, de), (A.4)

https://forgemia.inra.fr/aurelien.velleret/simulations_containment_strategies_and_city_size_heterogeneity
https://forgemia.inra.fr/aurelien.velleret/simulations_containment_strategies_and_city_size_heterogeneity
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with η̃
(n)
0 = η

(n)
0 and, similarly to (3.4), for t > 0:

η̃
(n)
t − η̃

(n)
0 = n−1

∫
1{s<t} (δ(xi,S) − δ(xi,I))1Ã(n)(i,u,s)

dQR

+ n−1

∫
1{s<t} (δ(xi,I) − δ(xi,S))1B̃(n)(i,j,u,s)

dQI , (A.5)

where Ã(n)(i, u, s) and B̃(n)(i, j, u, s) are defined similarly to (3.1) and (3.2):

Ã(n)(i, u, s) = {i ≤ n} ∩ {u ≤ γ(n)(xi)} ∩ {Ẽi
s− = I},

and
B̃(n)(i, j, u, s) = {i, j ≤ n} ∩ C̃(n)(i, j, u, s) ∩ {Ẽi

s− = S, Ẽj
s− = I}.

From this description, we get that η̃(n) is an epidemic process on a complete graph (so the
corresponding connection density is w̃

(n)
E ≡ 1) with the infection rate w̃

(n)
I = w

(n)
I w

(n)
E = n−1w(n)

and recovery rate γ̃(n) = γ(n).

A.2. The fog process.
To study the coupling between η(n) and η̃(n), we introduce a process that we call the fog process,
that we first describe informally. At time t, each vertex i is either in or out of the fog: ξ

(n)
t (i) = 1

or 0. At the beginning there is no fog (ξ(n)0 (i) = 0). Once a vertex enters the fog it stays foggy
forever. The rules for creating the fog or propagating it will ensure the following key property:

If ξ(n)t (i) = 0, then the processes η(n) and η̃(n) coincide at vertex i on the time interval [0, t].

In other words, the fog is an upper bound on the vertices where the processes η(n) and η̃(n) may
have decoupled. The fog process is formally a family of pure-jump processes ξ(n)(i) = (ξ

(n)
t (i))t∈R+ ,

that start at 0 and jump at most once, to the value 1. Consider the following conditions:

a) The vertex i is not currently in the fog: ξ
(n)
t− (i) = 0.

b) There is an arrow at time t from some j to i.
c) The vertex j is in the fog, and the arrow is activated for the coupled process.
c’) The arrow is activated for exactly one of the two processes.

If a), b) and c) are satisfied, we say that the fog propagates from j to i, and that i is the child of j;
otherwise, if a), b) and c’) hold, we say that i is a root for the fog process. In both cases i enters
the fog at time t : ξ

(n)
t (i) = 1. Formally the propagation of the fog, that is conditions a), b) and

c), corresponds to the event:

H(n)
prop(i, j, u, s) = {i, j ≤ n} ∩ {ξ(n)s− (i) = 0} ∩ C̃(n)(i, j, u, s) ∩ {ξ(n)s− (j) = 1}, (A.6)

and the conditions a), b) and c’) to the event:

H(n)
xor(i, j, u, s) = {i, j ≤ n} ∩ {ξ(n)s− (i) = 0} ∩

(
C(n)(i, j, u, s)△C̃(n)(i, j, u, s)

)
,

where A△B = (A ∩Bc) ∪ (Ac ∩B). In particular becoming a root corresponds to the event:

H
(n)
root(i, j, u, s) = H(n)

prop(i, j, u, s)
c ∩H(n)

xor(i, j, u, s). (A.7)

In particular, notice that if at time s, j is in the fog, the arrow from j to i is activated and i was
not previously in the fog (that is we are on the event C(n)(i, j, u, s) ∪ C̃(n)(i, j, u, s)), then i is now
in the fog (this corresponds to the events a), b) and c) or c’)).

We can formalize the evolution of ξ(n) as follow, for i ∈ [[1, n]]:

ξ
(n)
t (i′) =

∫
1{s≤t} 1H(n)(i,j,u,s) 1{i=i′} dQ

(n)
I , (A.8)
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where H(n)(i, j, u, s) specifies that i enters the fog at time s:

H(n)(i, j, u, s) = H(n)
prop(i, j, u, s) ∪H

(n)
root(i, j, u, s).

Let us denote the number of vertices in the fog at time t by:

Ξ
(n)
t =

∑
i∈[[1,n]]

ξ
(n)
t (i). (A.9)

The fog process is designed to ensure the following upper bound.

Lemma A.1 (Control of the coupling by the fog process). The following upper-bound holds a.s. for
all T ≥ 0:

sup{t≤T} ∥η
(n)
t − η̃

(n)
t ∥TV ≤ 1

n Ξ
(n)
T .

Proof : Since by definition η
(n)
0 = η̃

(n)
0 and ξ

(n)
0 = 0 and that the same individuals in the two

epidemic processes when infected recover at the same time (the recovery procedure is driven by the
same Poisson point measure QR), we get by construction that the number of points in the support
of ξ(n)t is then, after careful consideration, an upper bound of the number of vertices with different
states in η

(n)
t and η̃

(n)
t . More precisely, the following upper-bound holds a.s. for all t ≥ 0 and all

i ∈ [[1, n]]:
1{Ei

t ̸=Ẽi
t}

≤ ξ
(n)
t (i) ∈ {0, 1}.

Using that the process (ξ
(n)
t (i))t∈R+ is non-decreasing, and the expressions (2.2) for η

(n)
t and (A.4)

for η̃
(n)
t , we deduce that:

sup
t∈[0,T ]

∥η(n)t − η̃
(n)
t ∥TV ≤ 1

n
sup{t≤T} Ξ

(n)
t = 1

n Ξ
(n)
T .

□

A.3. Upper bound on the expected size of the fog.
We follow ideas from Britton and Pardoux (2019, Section 1.2) where “ghost infections” are introduced
to associate the SIR infection process with a branching infection process (the first being included
in the second for the chosen coupling). Using the construction of (ξ(n)t )t∈R+ , we can represent its
support in terms of random forests. More precisely, recall that each time a vertex enters the fog, it
is either as a root or as a child of another vertex that is already in the fog at that time.

We denote by Si the jumping time of ξ(n)(i) (with the convention that Si = +∞ if ξ(n)∞ (i) = 0),
by R(n) the set of roots and by R(n)

t ⊂ [[1, n]] the set of roots born up to time t:

R(n)
t = {i ∈ R(n) : Si ≤ t}. (A.10)

For a given root i, let ξi,(n) denote the process of its descendants, for t ≥ 0 and i′ ∈ [[1, n]]:

ξ
i,(n)
t (i′) = 1{i is a root} 1{i′ is a descendant of i} ξ

(n)
t (i′).

Let Ξi,(n)
t =

∑
i′∈[[1,n]] ξ

i,(n)
t (i′) be the total population up to time t fathered by the root i, and notice

that Ξ
i,(n)
t = 0 on {t < Si}. The total size of the fog is therefore:

Ξ
(n)
t =

n∑
i=1

Ξ
i,(n)
t 1{i∈R(n)

t }. (A.11)

We now give an upper bound on E
[
Ξ
i,(n)
t 1{i∈R(n)

t }

]
. Recall Cw = supn∈N∗ ∥w(n)∥∞.
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Lemma A.2. The following upper-bound holds for all t ≥ 0 and i ∈ [[1, n]]:

E
[
Ξ
i,(n)
t 1{i∈R(n)

t }

]
≤ eCw t P

(
i ∈ R(n)

t

)
.

Proof : To avoid any confusion with the notation dQI = QI(ds, di, dj, du), we shall prove the lemma
with i replaced by i0. By construction (recalling (A.8), (A.14), (A.11) and (A.12)), the evolution of
ξi0,(n) is given by the following formula, for i′ ∈ [[1, n]]:

ξ
i0,(n)
t (i′) = 1{i0∈R(n)

t }1{i′=i0} + 1{t≥Si0
}

∫
1{s≤t} 1Di0,(n)(i,j,u,s)1{i′=i} dQ

(n)
I , (A.12)

where Di0,(n)(i, j, u, s) specifies that, at time s, i enters the fog as a child of a vertex j which, itself,
descends from i0 (compare with H

(n)
prop from (A.6)):

Di0,(n)(i, j, u, s) = {i, j ≤ n} ∩ {ξi0,(n)s− (i) = 0} ∩ {ξi0,(n)s− (j) = 1} ∩ C̃(n)(i, j, u, s).

On the event {i0 ∈ R(n)}, since n ·w(n)
E (x, y) ·w(n)

I (x, y) ≤ Cw holds for any x, y ∈ X, the process
(ξ

i0,(n)
Si0

+t)t∈R+ jumps with an additional Dirac Mass at location i′ with a rate upper-bounded at time
t by ∑

j∈[[1,n]]

1{ξi0,(n)
Si0

+t−(j)≥1}w
(n)
E (xi′ , xj) · w

(n)
I (xi′ , xj) ≤

Cw

n

∑
j∈[[1,n]]

1{ξi0,(n)
Si0

+t−(j)≥1}.

Thus, this process is stochastically dominated by the pure-jump process ζ(n) = (ζ
(n)
t )t∈R+ on [[1, n]]

defined by:

ζ
(n)
t (i′) = 1{i′=i0} +

∫
1{s≤t} 1G(n)(i,j,k,z,s)1{i′=i}Q(ds, di, dj, dk, dz),

where Q is a Poisson point measure on R+×N∗×N∗×N∗×R+ with intensity ds n(di) n(dj) n(dk) dz

and G(n)(i, j, k, z, s) specifies that, at time s, an individual is added at vertex i as a descendant of
an already added individual at vertex j (the parameter k being introduced to cope with the allowed
multiplicity of individuals at position j):

G(n)(i, j, k, z, s) = {i, j ≤ n} ∩ {k ≤ ζ
(n)
s− (j)} ∩ {z ≤ Cw/n}.

Let Z(n) = (Z
(n)
t )t∈R+ be the size of the population at time t defined by Z

(n)
t =

∑
i∈[[1,n]] ζ

(n)
t (i).

Z(n) is expressed as follows for any t ≥ 0:

Z
(n)
t = 1 +

∫
1{s≤t} 1G(n)(i,j,k,z,s) dQ = 1 +

Cw

n

∫
1{s≤t} nZ

(n)
s ds+W

(n)
t ,

where W (n) = (W
(n)
t )t∈R+ is a square integrable martingale with quadratic variation:

⟨W (n)⟩t =
Cw

n

∫ t

0
nZ(n)

s ds = Cw

∫ t

0
Z(n)
s ds.

We recognize the semi-martingale decomposition of a birth process with birth rate Cw, started at
1. Thus, we have E[Z(n)

t ] = exp(Cw t).

We deduce that on the event {i0 ∈ R(n)}, the total mass Ξ
i0,(n)
Si0

+t is stochastically dominated by

Z
(n)
t . Since the process Ξi0,(n) is non-decreasing and 0 on {Si0 > t}, we deduce that:

E
[
Ξ
i0,(n)
t 1{i0∈R(n)

t }

]
≤ E

[
Ξ
i0,(n)
Si0

+t 1{i0∈R(n)
t }

]
≤ P

(
i0 ∈ R(n)

t

)
E[Z(n)

t ].

This concludes the proof. □

The following lemma gives a bound on the probability for a given vertex to be a root before a
given time t.
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Lemma A.3. The following upper-bound holds for all t ≥ 0 and all i ∈ [[1, n]]:

P
(
i ∈ R(n)

t

∣∣X (n)
)
≤ 2t(t ∨ 1)Cw

n

∑
j∈[[1,n]], j ̸=i

{(
w

(n)
I (xi, xj) ∧ 1

)
+
(
w

(n)
I (xj , xi) ∧ 1

)}
.

Proof : Let t > 0, n ≥ 2 and i ∈ [[1, n]] be fixed. By construction, the number of activations
(N

(n)
t (i, j))j∈N∗,i ̸=j are independent Poisson random variable with respective parameter tW (n)

I (xi, xj)
where:

W
(n)
I (x, y) = w

(n)
I (x, y) + w

(n)
I (y, x). (A.13)

If i ∈ R(n) is a root born at (finite) time Si, we denote by (Si, i, Ji, Ui) the unique atom of the
random measure QI at time Si, and let Ci = C(i, Ji, Ui, Si) (resp. C̃i = C̃(i, Ji, Ui, Si)) be the event
that the arrow that leads to the creation of the root i is activated for the original process (resp.
for the coupled process). By the definition of roots, see (A.7), the following inclusion holds for all
i ∈ [[1, n]] and all t ∈ R+:

{i ∈ R(n)
t } ⊂ {Si ≤ t} ∩ (Ci△C̃i). (A.14)

By construction, see (A.2) and (A.3), on the symmetric difference Ci△C̃i, the number of arrows
between {i, j} up to time Si, that is Li := N

(n)
Si

(i, Ji) must be larger than 2. Thus, the following
sequence of inclusions holds:

{i ∈ R(n)
t } ⊂ {Si ≤ t} ∩ {Li ≥ 2} ∩ (Ci ∪ C̃i)

⊂ {Si ≤ t} ∩ {Li ≥ 2} ∩
(
{VLi(i, Ji) ≤ w

(n)
E (xi, xJi)} ∪ {V1(i, Ji) ≤ w

(n)
E (xi, xJi)}

)
⊂ {N (n)

t (i, Ji) ≥ 2} ∩ {∃ℓ ∈ [[1, N
(n)
t (i, Ji)]] such that Vℓ(i, Ji) ≤ w

(n)
E (xi, xJi)}.

By construction, for j ̸= i, the random variables N(n)
t (i, j) and Vℓ(i, j) for ℓ ∈ N∗ are independent

and the latter are uniformly distributed on [0, 1]. We deduce that:

P
(
i ∈ R(n)

t

∣∣X (n)
)

≤
∑

j∈[[1,n]], j ̸=i

P
(
N

(n)
t (i, j) ≥ 2, ∃ℓ ∈ [[1, N

(n)
t (i, j)]] such that Vℓ(i, j) ≤ w

(n)
E (xi, xj)

∣∣X (n)
)

=
∑

j∈[[1,n]], j ̸=i

g
(
tW

(n)
I (xi, xj), w

(n)
E (xi, xj)

)
,

with:
g(θ, r) = Pθ

(
L ≥ 2, ∃ℓ ∈ [[1, L]] such that Vℓ ≤ r

)
,

where under Pθ, L is distributed as a Poisson random variable with parameter θ and (Vℓ)ℓ∈N∗ as
independent random variables uniformly distributed on [0, 1] and independent of L. Elementary
computations give:

g(θ, r) = Pθ

(
L ≥ 2, ∃ℓ ∈ [[1, L]] such that Vℓ ≤ r

)
=

∞∑
k=2

θk

k!
e−θ
(
1− (1− r)k

)
= 1− e−θr − θr e−θ

≤ θr (θ ∧ 1),

where for the inequality, we used that 1− e−x is less than x and x ∧ 1. Since w(n) = nw
(n)
I w

(n)
E is

bounded by Cw, we get that tW
(n)
I w

(n)
E ≤ 2 t Cw/n (recall also the link between W

(n)
I and w

(n)
I in
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(A.13) and the symmetry of w(n)
E ). We obtain that:

P
(
i ∈ R(n)

∣∣X (n)
)
≤ 2t Cw

n

∑
j∈[[1,n]], j ̸=i

(
(tw

(n)
I (xi, xj)) ∧ 1

)
+
(
(tw

(n)
I (xj , xi)) ∧ 1

)
.

This concludes the proof. □

A.4. Conclusion.
Using Lemma A.1, Equation (A.11), Lemmas A.2 and A.3, as well as the definition of In in (2.9),
we deduce that:

E
[
sup{t≤T} ∥η

(n)
t − η̃

(n)
t ∥TV

]
≤ 1

nE
[
Ξ
(n)
T

]
= 1

n

∑n
i=1 E

[
Ξ
i,(n)
T

]
≤ CT In(w(n)

I ∧ 1),

with CT = 4T (T ∨ 1)Cw eCw T . This concludes the proof of Proposition 3.6.
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