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Abstract

We study the pruning process developed by Abraham and Delmas (2012) on the discrete Galton–Watson
sub-trees of the Lévy tree which are obtained by considering the minimal sub-tree connecting the root and
leaves chosen uniformly at rate λ, see Duquesne and Le Gall (2002). The tree-valued process, as λ increases,
has been studied by Duquesne and Winkel (2007). Notice that we have a tree-valued process indexed by two
parameters: the pruning parameter θ and the intensity λ. Our main results are: construction and marginals
of the pruning process, representation of the pruning process (forward in time that is as θ increases) and
description of the growing process (backward in time that is as θ decreases) and distribution of the ascension
time (or explosion time of the backward process) as well as the tree at the ascension time. A by-product of
our result is that the super-critical Lévy trees independently introduced by Abraham and Delmas (2012) and
Duquesne and Winkel (2007) coincide. This work is also related to the pruning of discrete Galton–Watson
trees studied by Abraham, Delmas and He (2012).
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1. Introduction

The study of pruning of Galton–Watson trees has been initiated by Aldous and Pitman [9].
Roughly speaking, it corresponds to the percolation on edges: an edge is uniformly chosen at
random in a Galton–Watson tree and is removed, and the connected component containing the
root is kept. This procedure is then iterated. This process can be extended backward in time. It
corresponds then to a non-decreasing tree-valued process. The ascension time A is then the first
time at which this tree-valued process reaches an unbounded tree. In [9], the authors give the
joint distribution of A as well as the tree just before the ascension time (in backward time).

The limits of Galton–Watson trees are the so called continuum Lévy trees, see [6,7,20,13];
they are characterized by a branching mechanism ψ which is also a Lévy exponent. The result
for the pruning process on Galton–Watson trees was then extended by Abraham and Delmas [1]
to a process indexed by time θ whose marginals are continuum Lévy trees. In the setting of the
Brownian continuum random tree, which corresponds to a quadratic branching mechanism, the
pruning procedure is uniform on the skeleton, see also Aldous and Pitman [8] for a fragmentation
point of view in this case. This is the analogue of [9]. However in the general Lévy case, one has
to take into account the pruning of nodes with a rate given by their “size” or “mass”, which is
defined as the asymptotic number of small trees attached to the node. This result in the continu-
ous setting motivated a new pruning procedure on the nodes of Galton–Watson trees, which was
developed by Abraham, Delmas and He [2]. In this case, the pruning happens on the nodes with
rate depending on the degree of the nodes.

In the present work, we study the pruning process developed in [1] on the discrete Galton–
Watson sub-trees of the Lévy tree. The discrete Galton–Watson sub-trees of the Lévy trees are
obtained by considering the minimal sub-tree connecting the root and leaves chosen uniformly
with rate λ ≥ 0, see Duquesne and Le Gall [13]. The tree-valued process, as λ increases, has been
studied by Duquesne and Winkel [14], in particular to construct super-critical Lévy trees. Notice
that super-critical Lévy trees have also been defined in [1]. One of the by-product of our results is
that the two definitions coincide, see Section 5. Notice that we have a tree-valued process indexed
by two parameters θ (as in [9,1]) and λ (as in [14]). The other main results are: construction and
marginals of the pruning process in Section 4, representation of the pruning process (forward
in time that is as θ increases) and description of the growing process (backward in time that is
as θ decreases) in Section 6, some remarks on martingales related to the number of leaves in
Section 7, distributions of the ascension time and of the tree at the ascension time in Section 8.

Now, we present more precisely our results. Let ψ be a branching mechanism satisfying the
Grey condition (see (6) in Section 2.6). A priori, the branching mechanism ψ is defined on
[0,+∞) but we may extend it on a part of (−∞, 0) using formula (5). For every θ such that
ψ(θ) exists, we define the branching mechanism ψθ by:

ψθ (q) = ψ(q + θ)− ψ(θ) for all q ≥ 0,

and denote by Θ the set of θ for which ψ(θ) exists. Note that ψθ satisfies the Grey condition (6).
We consider the tree-valued process (Tθ , θ ∈ Θ) introduced in [1], corresponding to a uniform
pruning on the skeleton and to a pruning at nodes with rate depending on its size. We recall
that Tθ is a Lévy tree with branching mechanism ψθ . Let mTθ be its mass measure, which is a
uniform measure on the set of leaves. Let τ0(λ) be the minimal sub-tree of T0 generated by the
root and leaves chosen before time λ according to a Poisson point measure P 0 on R+ × T0 with
intensity dt mT0 . Let Mλ be the number of chosen leaves: Mλ = P 0([0, λ]× T0), so that τ0(λ) is
well defined for Mλ ≥ 1. And we set τθ (λ) = Tθ


τ0(λ) for θ ≥ 0. So we get a two-parameter
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family of sub-trees (τθ (λ), λ ≥ 0, θ ≥ 0). Let Pψ,λ be the conditional probability given the event
{Mλ ≥ 1}. We will be interested in the process λ → τθ (λ) which was studied in [14] and in the
pruning process θ → τθ (λ) where the case of λ = +∞ was studied in [1].

Notice that the leaves of τθ (λ) correspond to marked leaves belonging to Tθ as well as
roots of sub-trees of T0 with marked leaves which are removed to get Tθ . If one is interested
only in τ̂θ (λ), the minimal sub-tree containing the root and the marked leaves belonging to
Tθ , then one would get a process such that τ̂θ (λ) has the same distribution as τθ (λθ ) with
λθ = ψ(ψ−1

θ (λ))). This would lead to another natural process indexed by the level-set of the
function (θ, λ) → ψθ (ψ

−1(λ)).
Theorem 3.2.1 in [12] in the sub-critical case and Corollary 4.5 in our paper in the general

case give that the sub-tree τθ (λ) is distributed as a Galton–Watson real tree; its reproduction
law has generating function g(ψθ ,ψθ (η)), see definition (32), with η = ψ−1(λ) and exponential
individual lifetime with parameter ψ ′

θ (η). If we endow Tθ with its mass measure and τθ (λ) with
a discrete mass measure defined by

mτθ (λ) =
1

ψθ (η)


x a leaf of τθ (λ)

δx ,

then we show in Theorem 5.1 the convergence for the Gromov–Hausdorff–Prohorov distance
defined in [4] of τθ (λ) to Tθ as λ goes to infinity. This result was already in [14] (with the
Gromov–Hausdorff distance instead of the Gromov–Hausdorff–Prohorov distance), and this
ensures that in the super-critical case the Lévy trees introduced in [14] and in [1] are the
same. We give in Theorems 6.1 and 6.6 a precise description of the process (τθ (λ), θ ≥ 0) in
forward (decreasing tree-valued process) and backward (increasing tree-valued process) times.
By considering the backward process, we see that it is possible to extend the process up to θλ
backward in time, with θλ defined roughly byψθλ(ψ

−1(λ)) = 0 (see (45) for a precise definition).
Usually θλ is not the lower bound of Θ . Intuitively, when θ decreases, the tree grows and in order
to balance the number of leaves, the intensity for choosing them has to decrease; this can be done
up to the lower bound θλ.

By considering Lθ (λ), the number of leaves of τθ (λ), we shall show that the process θ →

ψ ′(θ)Lθ (λ)/ψθ (ψ−1(λ)) is a backward martingale, see Proposition 7.2. By taking the limit as λ
goes to infinity, and since the total mass of mτθ (λ), that is Lθ (λ)/ψθ (ψ−1(λ)), converges to the
total mass of mTθ , say σθ , we get in Proposition 7.1 that ψ ′(θ)σθ is also a backward martingale.

Then we consider the process (τθ (λ), θ > θλ) backward in time and consider its ascension
time Aλ defined in (52) as the first time θ at which the tree τθ (λ) is unbounded. Of course, this
corresponds to the ascension time of (Tθ , θ ∈ Θ) when it is larger than θλ. We give in Proposi-
tion 8.1 the distribution of (τθ (λ), θ ≥ Aλ) and identify it in Proposition 8.11 using the pruning
of a tree τ ∗

0 (λ) with an infinite spine defined in Sections 8.2 and 8.3. We also prove the conver-
gence, as λ goes to infinity of the tree τ ∗

0 (λ) toward the CRT T ∗

0 with infinite spine introduced
in [1]. The latter can be seen as a sub-tree of Lévy trees with immigration, see [10] for a further
work in this direction.

2. Lévy trees and the forest obtained by pruning

2.1. Notations

Let (E, d) be a metric Polish space. We denote by M f (E) (resp. Mloc
f (E)) the space of all

finite (resp. locally finite) Borel measures on E , where a Borel measure µ is locally finite if
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for any x ∈ E, µ(B(x, r)) < ∞ for all sufficiently small r . For x ∈ E , let δx denote the
Dirac measure at point x . For µ ∈ Mloc

f (E) and f a non-negative measurable function, we set
⟨µ, f ⟩ =


f (x) µ(dx) = µ( f ).

2.2. Real trees

We refer to [15] or [19] for a general presentation of random real trees. A metric space (T, d)
is a real tree if the following properties are satisfied:

(1) For every s, t ∈ T , there is a unique isometric map fs,t from [0, d(s, t)] to T such that
fs,t (0) = s and fs,t (d(s, t)) = t .

(2) For every s, t ∈ T , if q is a continuous injective map from [0, 1] to T such that q(0) = s and
q(1) = t , then q([0, 1]) = fs,t ([0, d(s, t)]).

If s, t ∈ T , we will note [[s, t]] the range of the isometric map fs,t described above and [[s, t[[ for
[[s, t]] \ {t}.

We say that (T, d,∅) is a rooted real tree with root ∅ if (T, d) is a real tree and ∅ ∈ T is a
distinguished vertex.

Let (T, d,∅) be a rooted real tree. The degree n(x) of x ∈ T is the number of connected
components of T \ {x}. The number of children of x ≠ ∅ is κx = n(x) − 1 and the number of
children of the root is κ∅ = n(∅). We shall consider the set of leaves Lf(T ) = {x ∈ T, κx = 0},
the set of branching points Br(T ) = {x ∈ T, κx ≥ 2} and the set of infinite branching points
Br∞(T ) = {x ∈ T, κx = ∞}. We say that a tree is discrete if {x ∈ Lf(T )∪ Br(T ); d(∅, x) ≤ a}

is finite for all a. The skeleton of T is the set of points in the tree that are not leaves:
Sk(T ) = T \ Lf(T ). The trace of the Borel σ -field of T restricted to Sk(T ) is generated by
the sets [[s, s′

]]; s, s′
∈ Sk(T ). One uniquely defines a σ -finite Borel measure ℓT on T , called the

length measure of T , such that:

ℓT (Lf(T )) = 0 and ℓT ([[s, s′
]]) = d(s, s′).

For every x ∈ T, [[∅, x]] is interpreted as the ancestral line of vertex x in the tree. We define
a partial order on T by setting x 4 y (x is an ancestor of y) if x ∈ [[∅, y]]. If x, y ∈ T , there
exists a unique z ∈ T , called the Most Recent Common Ancestor (MRCA) of x and y, such that
[[∅, x]] ∩ [[∅, y]] = [[∅, z]].

2.3. Measured rooted real trees

A rooted measured metric space X = (X, d,∅, µ) is a metric space (X, d) with a distin-
guished element ∅ ∈ X and a locally finite Borel measure µ ∈ Mloc

f (E). Two rooted measured
metric spaces X = (X, d,∅, µ) and X ′

= (X ′, d ′,∅′, µ′) are called GHP-isometric if there ex-
ists an isometric bijection Φ : X → X ′ such that Φ(∅) = ∅

′ and Φ∗µ = µ′, where Φ∗µ is the
measure µ transported by Φ.

We will denote by T the set of (GHP-isometry classes of) measured rooted real trees (T, d,
∅,m) where (T, d,∅) is a locally compact rooted real tree and m ∈ Mloc

f (T ) is a locally finite

measure on T . Sometimes, we will write (T, dT ,∅T ,mT ) for (T, d,∅,m) to stress the depen-
dence in T . Sometimes, when there is no confusion, we will simply write T for (T, d,∅,m) and
T̃ for (T, d,∅).

The set T can be endowed with the so-called Gromov–Hausdorff–Prohorov metric which
first appeared in [22] for compact trees endowed with a probability measure (which leads to the
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same topology as in [16]) and which was extended to the set T in [3] (see also [17,21] for other
distances on the set of measured trees). This metric is defined as follows.

Let (X, d) be a Polish metric space. For A, B ∈ B(X), we set:

dH(A, B) = inf{ε > 0, A ⊂ Bε and B ⊂ Aε},

the Hausdorff distance between A and B, where Aε = {x ∈ X, infy∈A d(x, y) < ε} is the ε-halo
set of A. If µ, ν ∈ M f (X), we set:

dP(µ, ν) = inf{ε > 0, µ(A) ≤ ν(Aε)+ ε and ν(A) ≤ µ(Aε)+ ε for all closed set A},

the Prohorov distance between µ and ν.
Let X = (X, d,∅, µ) and X ′

= (X ′, d ′,∅′, µ′) be two compact rooted measured metric
spaces endowed with finite measures µ and µ′, and define:

dc
GHP(X ,X ′) = inf

Φ,Φ′,Z


d Z

H (Φ(X),Φ
′(X ′))+ d Z (Φ(∅),Φ′(∅

′))+ d Z
P (Φ∗µ,Φ′

∗µ
′)

,

where the infimum is taken over all isometric embeddings Φ : X ↩→ Z and Φ′
: X ′ ↩→ Z into

some common Polish metric space (Z , d Z ).
If X = (X, d,∅, µ) is a rooted measured metric space, then for r ≥ 0 we will consider its

restriction to the ball of radius r centered at ∅,X (r)
= (X (r), d(r),∅, µ(r)), where

X (r) = {x ∈ X; d(∅, x) ≤ r},

the metric d(r) is the restriction of d to X (r), and the measure µ(r)(dx) = 1X (r)(x) µ(dx) is the
restriction of µ to X (r).

We define the following function on T2, for T1, T2 ∈ T:

dGHP(T1, T2) =


∞

0
e−r


1 ∧ dc

GHP


T (r)1 , T (r)2


dr.

According to Corollary 2.8 in [3], the function dGHP is well defined and (T, dGHP) is a Polish
metric space.

Remark 2.1. In that paper, we always handle elements of T. However, our objects or transforma-
tions are a priori only defined on a tree T and not on an equivalence class. To be totally rigorous,
we should prove that everything is well defined on T, i.e., that given two representatives of the
same equivalence class, the construction leads to two trees that still belong to the same equiva-
lence class. This will be done once for the definition of the grafting procedure in the next section
as an example.

2.4. Grafting procedure

We will define in this section a procedure that consists in grafting measured rooted real trees
on an existing measured rooted real tree. More precisely, let T be a measured rooted real tree
and let ((Ti , xi ), i ∈ I ) be a finite or countable family of elements of T × T . We define the
real tree obtained by grafting the trees Ti on T at point xi . We set T̂ = T ⊔


i∈I Ti \ {∅

Ti }


where the symbol ⊔ means that we choose for the sets (Ti )i∈I representatives of GHP-isometry
classes in T which are disjoint subsets of some common set and that we perform the disjoint
union of all these sets. We set ∅

T̂
= ∅

T . The set T̂ is endowed with the following metric d T̂ :
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if s, t ∈ T̂ ,

d T̂ (s, t) =


dT (s, t) if s, t ∈ T,
dT (s, xi )+ dTi (∅

Ti , t) if s ∈ T, t ∈ Ti \ {∅
Ti },

dTi (s, t) if s, t ∈ Ti \ {∅
Ti },

dT (xi , x j )+ dT j (∅
T j , s)+ dTi (∅

Ti , t) if i ≠ j and s ∈ T j \ {∅
T j }, t ∈ Ti \ {∅

Ti }.

We define the mass measure on T̂ by:

mT̂
= mT

+


i∈I


1Ti \{∅

Ti }m
Ti + mTi ({∅

Ti })δxi


.

It is clear that the rooted metric space (T̂ , d T̂ ,∅T̂ ) is still a rooted real tree. (Notice that it is not
always true that T̂ remains locally compact or that mT̂ defines a locally finite measure on T̂ .) We
will use the following notation for the grafted tree:

T ~i∈I (Ti , xi ) = (T̂ , d T̂ ,∅
T̂ ,mT̂ ), (1)

where we make the convention that T ~i∈I (Ti , xi ) = T for I = ∅.

Remark 2.2. We detail here how to justify that this grafting procedure is well defined on T. Let
T and T ′ be two GHP-isometric trees and let ϕ be an isometry from T onto T ′. Let (Ti )i∈I and
(T ′

i )i∈I be two families of trees such that, for every i ∈ I, Ti and T ′

i are GHP-isometric and we
denote by ϕi an isometry that maps Ti onto T ′

i . Then T ~i∈I (Ti , xi ) and T ′ ~i∈I (T ′

i , ϕ(xi )) are
also isometric. It suffices to define ψ on T ~i∈I (Ti , xi ) by

ψ|Ti
= ϕi and ψ|T = ϕ.

In Section 3.2, we shall use the grafting procedure for rooted real trees but without mass
measure. Recall that T̃ = (T,∅T , dT ). We shall use the following notation:

T̃ ~̃i∈I (T̃i , xi ) = (T̂ , d T̂ ,∅
T̂ ), (2)

where we also make the convention that T̃ ~̃i∈I (T̃i , xi ) = T̃ for I = ∅.

2.5. Sub-trees above a given level

For T ∈ T we set Hmax(T ) = supx∈T dT (∅T , x) the height of T and for a ≥ 0:

T (a) = {x ∈ T, d(∅, x) ≤ a} and T (a) = {x ∈ T, d(∅, x) = a} (3)

the restriction of the tree T under level a and the set of vertices of T at level a respectively. We
denote by (T i,◦, i ∈ I ) the connected components of T \T (a). Let ∅i be the MRCA of all the ver-
tices of T i,◦. We consider the real tree T i

= T i,◦
∪{∅i } rooted at point ∅i with mass measure mT i

defined as the restriction of mT to T i,◦ (hence mT i
(∅i ) = 0). Notice that T = T (a)~i∈I (Ti ,∅i ).

We will consider the point measure on T × T:

N T
a =


i∈I

δ(∅i ,T i ). (4)
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2.6. Excursion measure of a Lévy tree

Let α ∈ R, β ≥ 0 and π be a σ -finite measure on (0,+∞) such that

(0,+∞)

(r ∧ r2)π(dr) <
+∞. The branching mechanism ψ with characteristic (α, β, π) is defined for every λ ≥ 0
by:

ψ(λ) = αλ+ βλ2
+


(0,+∞)


e−λr

− 1 + λr

π(dr). (5)

Notice that ψ ′(0) = α in this case. The branching mechanism ψ is said to be super-critical,
critical, sub-critical if α < 0, α = 0, α > 0. We say ψ is (sub)critical if α ≥ 0. We assume that
the Grey condition holds:

+∞ dλ

ψ(λ)
< +∞. (6)

This assumption is used to ensure that the corresponding Lévy tree is locally compact. The Grey
condition also implies that β > 0 or


(0,1) ℓπ(dℓ) = +∞ which is equivalent to the fact that the

Lévy process with index ψ is of infinite variation.
Let v be the unique non-negative solution of the equation:

+∞

v(a)

dλ

ψ(λ)
= a.

Results from [13] in the (sub)critical case, using the coding of compact real trees by height
function, can be extended to the super-critical case, see [3]. They can be stated in the following
form. There exists a σ -finite measure Nψ [d T ] on T, called the excursion measure or the
canonical measure of a Lévy tree, with the following properties.

(i) Height. For all a > 0,Nψ [Hmax(T ) > a] = v(a).
(ii) Mass measure. The mass measure mT is supported by Lf(T ),Nψ [d T ]-a.e.

(iii) Local time. There exists a T -measure valued process (Λa, a ≥ 0) càdlàg for the weak
topology on the set of finite measures on T such that Nψ [d T ]-a.e.:

mT (dx) =


∞

0
Λa(dx) da, (7)

Λ0 = 0, inf{a > 0;Λa = 0} = sup{a ≥ 0;Λa ≠ 0} = Hmax(T ) and for every fixed
a ≥ 0,Nψ [d T ]-a.e.:
• The measure Λa is supported on T (a).
• We have for every bounded continuous function φ on T :

⟨Λa, φ⟩ = lim
ε↓0

1
v(ε)


φ(x)1{Hmax(T ′)≥ε}N T

a (dx, d T ′)

= lim
ε↓0

1
v(ε)


φ(x)1{Hmax(T ′)≥ε}N T

a−ε(dx, d T ′), if a > 0.

Under Nψ , the real valued process (⟨Λa, 1⟩, a ≥ 0) is distributed as a CSBP with branching
mechanism ψ under its canonical measure (which intuitively represents the contributions to
the CSBP of the descendants of one single individual).

(iv) Branching property. For every a > 0, the conditional distribution of the point measure
N T

a (dx, d T ′) under Nψ [d T |Hmax(T ) > a], given T (a), is that of a Poisson point measure
on T (a)× T with intensity Λa(dx)Nψ [d T ′

].
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(v) Branching points.
• Nψ [d T ]-a.e., the branching points of T have 2 children or an infinite number of children.
• The set of binary branching points (i.e. with 2 children) is empty Nψ -a.e if β = 0 and is

a countable dense subset of T if β > 0.
• The set Br∞(T ) of infinite branching points is nonempty with Nψ -positive measure if

and only if π ≠ 0. If ⟨π, 1⟩ = +∞, the set Br∞(T ) is Nψ -a.e. a countable dense subset
of T .

(vi) Mass of the nodes. The set {d(∅, x), x ∈ Br∞(T )} coincides Nψ -a.e. with the set of dis-
continuity times of the mapping a → Λa . Moreover, Nψ -a.e., for every such discontinuity
time b, there is a unique xb ∈ Br∞(T ) ∩ T (b) and ∆b > 0, such that:

Λb = Λb− + ∆bδxb ,

where ∆b > 0 is called the mass of the node xb. Furthermore ∆b can be obtained by the
approximation:

∆b = lim
ε→0

1
v(ε)

n(xb, ε), (8)

where n(xb, ε) =


1{xb}(x)1{Hmax(T ′)>ε}N T
b (dx, d T ′) is the number of sub-trees with

MRCA xb and height larger than ε.

In order to stress the dependence in T , we may write Λa,T for Λa . We set σT or simply σ
when there is no confusion, for the total mass of the mass measure on T :

σ = mT (T ). (9)

Notice that (7) readily implies that mT ({x}) = 0 for all x ∈ T .

2.7. Related measure on Lévy trees

We define a probability measure on T as follows. Let r > 0 and


k∈K δT k be a Poisson point
measure on T with intensity rNψ . Consider ∅ as the trivial measured rooted real tree reduced to
the root with null mass measure. Define T = ∅~k∈K(T k,∅). Using Property (i) as well as (11),
one easily gets that T is a measured locally compact rooted real tree, and thus belongs to T. We
denote by Pψr its distribution. Its corresponding local time and mass measure are respectively
defined by Λa =


k∈K Λa,T k for a ≥ 0, and mT

=


k∈K mT k
. Furthermore, its total mass

is defined by σ =


k∈K σ
T k

. By construction, we have Pψr (d T )-a.s. ∅ ∈ Br∞(T ),∆∅ = r

(see Definition (8) with b = 0) and Λ0 = rδ∅. Under Pψr or under Nψ , we define the process
Z = (Za, a ≥ 0) by:

Za = ⟨Λa, 1⟩.

According to Property (iii), under Pψr , the real valued process Z is distributed as a CSBP with
branching mechanismψ with initial value r . This remark also holds under Nψ , the corresponding
measure for CSBPs being the canonical measure. Notice that (under Nψ or Pψr ):

σ =


+∞

0
Za da = mT (T ). (10)
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In particular, as σ is distributed as the total mass of a CSBP under its canonical measure, we have
that Nψ -a.s. σ > 0 and for q > 0 such that ψ(q) > 0:

Nψ

1 − e−ψ(q)σ


= q and Nψ


σe−ψ(q)σ


=

1
ψ ′(q)

. (11)

The last equation holds for q = 0 if ψ ′(0) > 0, i.e. α > 0.
We will consider the following measures on T:

N ψ
θ [d T ] = 2βθNψ [d T ] +


(0,+∞)

π(dr)(1 − e−θr )Pψr (d T ) (12)

and

Nψ [d T ] =
∂

∂θ
N ψ
θ [d T ]|θ=0 = 2βNψ [d T ] +


+∞

0
rπ(dr)Pψr (d T ). (13)

Elementary computations yield for q > 0 such that ψ(q) > 0:

N ψ
θ


1 − e−ψ(q)σ


= ψ(θ + q)− ψ(θ)− ψ(q) and

Nψ

1 − e−ψ(q)σ


= ψ ′(q)− ψ ′(0). (14)

2.8. Definition of ψ−1

Let θ∗ be the root of ψ ′ in [0,+∞) if it exists (as ψ is a convex function, there exists at
most one such root). Notice that θ∗

= 0 if ψ is critical and that θ∗ exists and is positive if ψ is
super-critical. If ψ ′ is everywhere positive, we set θ∗

= 0. The function ψ is then a one-to-one
mapping from [θ∗,+∞) onto ψ([θ∗,+∞)). We write ψ−1 for the inverse of the previous
mapping. In particular, if ψ ′(θ) ≥ 0 then we have ψ−1(ψ(θ)) = θ ; and if ψ ′(θ) < 0 then
we have θ < θ∗ < ψ−1(ψ(θ)). We set:

q0 = ψ−1(0). (15)

Note that ifψ is super-critical, then q0 > 0 and, thanks to (11), Nψ [σ = +∞] = ψ−1(0) > 0.

2.9. Girsanov transformation

In Eq. (5), the branching mechanism ψ is defined on [0,+∞). However, the definition may
remain valid for negative λ. Therefore we here extend the definition of ψ for such λ.

For θ such that ψ(θ) is well defined, we consider the branching mechanism

∀λ ≥ 0, ψθ (λ) = ψ(λ+ θ)− ψ(θ), (16)

with characteristic
ψ ′(θ), β, e−θrπ(dr)


. (17)

We denote by Θ the set of θ such that ψ(θ) is well defined and such that ψθ satisfies the Grey
condition (6).

Notice that θ∗
∈ Θ and that ψθ∗ is a (sub)critical branching mechanism.
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We recall the Girsanov transformation from [1], which sums up the situation for any branching
mechanism ψ . Let ψ be a branching mechanism satisfying (6). Let θ ∈ Θ and a > 0. We set:

Mψ,θ
a = exp


θZ0 − θZa − ψ(θ)

 a

0
Zsds


.

Recall that Z0 = 0 under Nψ . For any non-negative measurable functional F defined on T, we
have for θ ∈ Θ and a ≥ 0:

Eψθr [F(T (a))] = Eψr


F(T (a))Mψ,θ
a


and Nψθ [F(T (a))] = Nψ


F(T (a))Mψ,θ

a


. (18)

Furthermore, if θ ≥ θ∗, then we have:

Eψθr [F(T )] = Eψr


F(T )eθr−ψ(θ)σ1{σ<+∞}


, (19)

Nψθ [F(T )] = Nψ


F(T )e−ψ(θ)σ1{σ<+∞}


, (20)

Nψθ [F(T )] = Nψ


F(T )e−ψ(θ)σ1{σ<+∞}


. (21)

We have that under Pψr (d T ), the random measure N T
0 (dx, d T ′), defined by (4) with a = 0,

is a Poisson point measure on {∅} × T with intensity rδ∅(dx)Nψ [d T ′
]. Then, using the first

equality in (18) with F = 1, we get that for θ ≥ θ∗ and a > 0,

Nψθ


1 − exp

θZa + ψ(θ)

 a

0
Zsds


= −θ. (22)

2.10. Pruning Lévy trees and CRT-valued processes

A general pruning of a Lévy tree has been defined in [5]. Under Nψ [d T ] and conditionally
on T , we consider a mark process M T (dθ, dy) on the tree which is a Poisson point measure on
R+ × T with intensity:

1[0,+∞)(θ)dθ

2βℓT (dy)+


x∈Br∞(T )

∆xδx (dy)

 .
The atoms (θi , yi )i∈I of this measure can be seen as marks that arrive on the tree, yi being the
location of the mark and θi the “time” at which it appears. There are two kinds of marks: some
are “uniformly” distributed on the skeleton of the tree (they correspond to the term 2βℓT in the
intensity) whereas the others lay on the infinite branching points of the tree: an infinite branching
point y being first marked after an exponential time with parameter ∆y .

We define the pruned tree at time q as:

Tq = {x ∈ T , M T ([0, q] × [[∅, x[[) = 0}

with the induced metric, root ∅ and mass measure the restriction of the mass measure mT . For
θi ≤ q , if one cuts the tree T at time θi at point yi , then Tq corresponds to the resulting sub-tree of
T containing the root at time q . According to [5, Theorem 1.1], for fixed q > 0, the distribution
of Tq under Nψ is Nψq . We set:

σq = mTq (Tq). (23)
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Because of the pruning procedure, we have Tθ ⊂ Tq for 0 ≤ q ≤ θ . The tree-valued process
(Tq , q ≥ 0) is a Markov process under Nψ , see [1]. The process (Tq , q ≥ 0) is a non-increasing
process (for the inclusion of trees), and is càdlàg. We recall the transition probabilities for the
time reversed process which are given by the so-called special Markov property (see [5, Theorem
4.2] or [1, Theorem 5.6]).

Theorem 2.3. Let ψ be a branching mechanism satisfying (6). Let 0 ≤ q ≤ θ and Tθ distributed
according to Nψθ . Conditionally on Tθ , let


i∈I θ,q δ(xi ,T i

q )
be a Poisson point measure on Tθ ×T

with intensity:

mTθ (dx)N ψq
θ−q [d T ].

Then, under Nψ , (Tθ , Tq) is distributed as:
Tθ , Tθ ~i∈I θ,q (T i

q , xi )

.

According to (17), the intensity N ψq
θ−q is given by (12) with ψ replaced by ψq and π(dr)

replaced by e−qrπ(dr), that is:

N ψq
θ−q [d T ] = 2β(θ − q)Nψq [d T ] +


(0,+∞)

e−qrπ(dr)(1 − e−(θ−q)r )Pψq
r (d T ). (24)

The time-reversed process is a Markov process and its infinitesimal transitions are described
in [3].

3. Sub-tree processes

3.1. Sub-trees of the Lévy tree

Following [14], we define a sub-tree process obtained from pruned CRTs and Poissonian se-
lection of leaves. Let ψ be a branching mechanism satisfying (6). Recall the definition of ψ−1 in
Section 2.8. We set:

η = ψ−1(λ) for λ ≥ 0. (25)

Notice that ψ(η) = λ and, with q0 defined by (15), η > q0 if λ > 0.
Conditionally on the tree-valued process (Tθ , θ ∈ Θ), let

P 0(dtdx) =


i∈I0

δ(ti ,xi )(dtdx) (26)

be a Poisson point measure on R+ × T0 with intensity measure dt mT0(dx). We shall refer to xi
as the marked leaves. We denote by

Mλ = P 0([0, λ] × T0), for λ > 0, and M0 = lim
λ→0

Mλ

the number of marked leaves in T0. Notice that M0 ∈ {0,+∞}. We shall be working on {Mλ ≥ 1}

and consider the probability measure:

Pψ,λ(d T ) = Nψ [d T | Mλ ≥ 1], λ > 0. (27)
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When ψ is super-critical, we define the probability measure

Pψ,0(d T ) = Nψ [d T | M0 = +∞]. (28)

Notice that η = Nψ [Mλ ≥ 1]. We might write Pθ (dt, dx) =


i∈Iθ δ(ti ,xi )(dt, dx) for the
restriction of P 0 to R+ × Tθ for θ ≥ 0. On {Mλ ≥ 1}, for θ ≥ 0, we define the pruned sub-tree
τθ (λ) containing the root and all the ancestors in Tθ of the marked leaves of T0:

τ0(λ) =


i∈I0,ti ≤λ

[[∅, xi ]] and τθ (λ) = τ0(λ) ∩ Tθ , if λ > 0, (29)

and if λ = 0, we set:

τθ (0) =


λ>0

τθ (λ) = τ0(0) ∩ Tθ . (30)

Notice that τθ (0) = ∅ if T0 has finite mass measure (and M0 = 0), whereas τθ (0) ≠ ∅ if T0 has
infinite mass (and M0 = +∞). By construction, we have a.s. that τθ (λ) is compact if and only
if Tθ is compact (that is Tθ has finite mass measure). The sub-tree τθ (λ) of Tθ and thus of T0 is
endowed with the obvious metric. We shall consider the following mass measure on τθ (λ):

mτθ (λ) =
1

ψθ (η)


x∈Lf(τθ (λ))

δx , (31)

where we make the convention that mτθ (λ) = 0 if ψθ (η) = 0. As θ varies, we obtain a sub-
tree process with parameter λ: τ(λ) = (τθ (λ), θ ≥ 0) which is a non-decreasing tree-valued
stochastic process, that is for q < θ, τθ (λ) ⊂ τq(λ).

Remark 3.1. One may want to define the subtree process on Θ . However, for our purpose, τθ (λ)
may not make sense for some θ ∈ Θ (ψθ (η) may be negative.) We will discuss this problem in
Section 6.2.

3.2. Reconstruction of the Lévy tree

Let g be the generating function of a distribution p = (p(n), n ∈ N) such that g′(0) = 0 (i.e.
p(1) = 0) and let c > 0. We shall define by recursion a Galton–Watson real tree with repro-
duction distribution p and branch length distributed according to an exponential random variable
with mean 1/c.

Recall Notation (2) for the grafting procedure of trees without mass measure.

Definition 3.2. We say that a discrete rooted real tree G is a (g, c)-Galton–Watson real tree if G
is distributed as:

[[∅, x]]~̃1≤k≤K (Gk, x),

with:

• [[∅, x]] a real tree rooted at ∅ with no branching point and such that E∅ = d(∅, x) is a random
exponential variable with parameter c,

• K has generating function g and is independent of E∅,
• (Gk, k ∈ N∗) is a sequence of independent rooted real trees which have the same distribution

as G and are independent of E∅ and K .
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Let λ ≥ 0 and η = ψ−1(λ) such that η > 0. We consider the following generating function:

g(ψ,λ)(r) = r +
ψ((1 − r)ψ−1(λ))

ψ−1(λ)ψ ′(ψ−1(λ))
= r +

ψ((1 − r)η)

ηψ ′(η)
· (32)

Notice that:

g′

(ψ,λ)(0) = 0 and g′

(ψ,λ)(1) = 1 −
ψ ′(0)
ψ ′(η)

· (33)

We write G(ψ, λ) for the (gψ,λ, ψ ′(η))-Galton–Watson real tree. According to Theorem
3.2.1 in [12], if ψ is (sub)critical, then the discrete tree τ0(λ) under Pψ,λ is distributed as a
Galton–Watson tree G(ψ, λ) with mass measure given by (31). Furthermore, we can reconstruct
the Lévy tree T from τ0(λ), thanks to [14]. For this, recall Definition (13) of Nψ and define the
following probability measure on R+:

Γψ
d,λ(dr) = 1{d=2}

2β
ψ ′′(η)

δ0(dr)+
rde−rη

|ψ (d)(η)|
π(dr). (34)

Theorem 3.3 (Theorem 5.6 of [14]). Assume that ψ is (sub)critical and (6) holds. Let λ > 0 and
η = ψ−1(λ). Under Pψ,λ and conditionally on τ0(λ), T0 is distributed as:

τ̃0(λ)~i∈I (Ti , xi )~x∈Br(τ0(λ))(T ′
x , x),

with:

• τ̃0(λ) as τ0(λ) but with 0 as mass measure,
•


i∈I δ(xi ,Ti ) is a Poisson point measure on τ0(λ)× T with intensity ℓτ0(λ)(dx)Nψη [d T ],
• conditionally on


i∈I δ(xi ,Ti ), the trees


T ′

x , x ∈ Br(τ0(λ))


are independent with T ′
x

distributed as
Γψ

κ(x),λ(dr) Pψηr [d T ].

Remark 3.4. In fact, in Theorem 5.6 of [14], ψ can be super-critical and λ ≥ 0 with η =

ψ−1(λ) > 0. But it is not obvious that in this case the super-critical Lévy tree distribution defined
in [14] and the super-critical Lévy tree distribution defined in [1] and recalled here in Section 2.6,
are in fact the same. However, we deduce from Remark 5.2 that this equality indeed holds.

4. Marginal distributions

The main goal of this section is to study the one-dimensional distribution of the sub-tree pro-
cess τ(λ) = (τθ (λ), θ ≥ 0), see Corollary 4.5. We first give an application of the special Markov
property.

Proposition 4.1. Let ψ be a branching mechanism satisfying (6). Let λ ≥ 0 and η = ψ−1(λ).
Under Nψ , the couple of trees (Tθ , τθ (λ)) on {Mλ ≥ 1} is distributed as (T0, τ0(ψθ (η))) under
Nψθ on {Mψθ (η) ≥ 1}.

Proof. We first assume λ > 0. From the special Markov property of Theorem 2.3 for the process
(T (θ), θ ≥ 0) under Nψ , we get:

T0 = Tθ ~ j∈J θ,0(T j
0 , y j ), (35)
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where


j∈J θ,0 δ(y j ,T j
0 )

is, conditionally on Tθ , a Poisson point measure on Tθ ×T with intensity

mTθ (dy)N ψ
θ [d T ].

Recall that P 0(dtdx) =


i∈I0
δ(ti ,xi )(dtdx) is a Poisson point measure on R+ × T0 defined

in (26) and Pθ is the restriction to R+ × Tθ of P 0. Thus Pθ
1 =


i∈Iθ δxi 1{ti ≤λ} is a Poisson point

measure on Tθ with intensity λmTθ (dx).
For j ∈ J θ,0, let s j = inf{ti ; xi ∈ T j

0 for i ∈ I0}. Notice that conditionally on T j
0 , s j has an

exponential distribution with parameter λmT0(T j
0 ). We deduce that, conditionally on Tθ ,Pθ

2 =
j∈J θ,0 δy j 1{s j ≤λ} is a Poisson point measure on Tθ × R+ with intensity:

mTθ (dx)N ψ
θ


1 − e−λσ


= [ψ(θ + η)− ψ(θ)− ψ(η)] mTθ (dx),

where we use (14) to get the equality. By construction Pθ
1 and Pθ

2 are independent Poisson point
measures. Therefore, Pθ

1 + Pθ
2 is a Poisson point measure with intensity:

mTθ (dx) [λ+ ψ(θ + η)− ψ(θ)− ψ(η)] = ψθ (η)mTθ (dx).

To conclude, notice that τθ (λ) is the sub-tree generated by the marked leaves before time λ of
Tθ , which are given by the atoms of Pθ

1 , and the roots x j of the trees T j
0 having marked leaves

before time λ, that is the atoms of Pθ
2 . Then use that Tθ under Nψ is distributed as T0 under Nψθ

to conclude.
If λ = 0, then η = q0. We have Pθ

1 = 0 and T j
0 contributes to τθ (0) if and only if it has

infinite mass. So, in the previous argument, one has to replace Pθ
2 by


j∈J θ,0 δy j 1

{σ
T j

0 =+∞}

which is a Poisson point measure with intensity:

mTθ (dx)N ψ
θ [σ = +∞] = ψθ (η)mTθ (dx).

Hence the conclusion follows. �

Remark 4.2. Assume λ > 0. Using the notation from the previous proof, for k ∈ N∗, we let:

Yk = Card { j ∈ J θ,0; Card


Lf(τ0(λ)) ∩ T j
0


= k}

be the number of trees grafted on Tθ having exactly k leaves marked at time λ and Y0 =

⟨Pθ
1 , 1⟩ = Card (Lf(τθ (λ)) ∩ Lf(T )) be the number of marked leaves on Tθ . We get that under

Nψ , conditionally on Tθ , the random variables (Yk, k ∈ N) are independent, Y0 is Poisson with
parameter λσθ , and for k ∈ N∗, Yk is Poisson with parameter σθN ψ

θ


(λσ)ke−λσ


/k!, where

σθ = mTθ (Tθ ).
Using the Girsanov transformation from Section 2.9, we will give a Girsanov transformation

for θ → τθ (λ).
Recall first Notation (3) for the truncated tree at height a. For T ∈ T, let L(T ) = Card Lf(T )

be the number of leaves of the tree T and let

L(a, T ) = L(a, T (a)) = Card {x ∈ T ; d T (∅, x) = a} (36)

be the number of elements of T at distance a from the root. Note that:

η = ψ−1(λ) = q0 + ψ−1
q0
(λ), and ψ ′(η) = ψ ′(ψ−1(λ)) = ψ ′

q0
(ψ−1

q0
(λ)). (37)

We first state a preliminary Lemma. Let Pψ,λ(d G) denote the distribution of the Galton–
Watson tree G(ψ, λ) defined in Section 3.2.
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Lemma 4.3. Let ψ be a branching mechanism satisfying (6). Let λ ≥ 0 and η = ψ−1(λ) > 0.
For any non-negative measurable function F on T and a ≥ 0, we have:

Eψ,λ[F(G(a))] = Eψq0 ,λ


F(G(a))


η

η − q0

L(a,G)−1

.

Proof. Let (p(ψ,λ)(n), n ∈ N) be the probability measure determined by g(ψ,λ) defined by (32).
Then p(ψ,λ)(1) = 0 and for n ≠ 1, we have:

p(ψ,λ)(n) =
g(n)(ψ,λ)(0)

n!
=

|ψ (n)(η)| ηn−1

ψ ′(η)n!
· (38)

Thanks to (37), we have ψ−1
q0
(λ) = η − q0 and for n ≥ 0, ψ (n)(η) = ψ

(n)
q0 (η − q0). Set

u = (η − q0)/η. Then, we have for n ∈ N:

p(ψq0 ,λ)
(n) =

|ψ
(n)
q0 (ψ

−1
q0
(λ))| (ψ−1

q0
(λ))n−1

ψ ′
q0
(ψ−1

q0 (λ))n!
1{n≠1}

= un−1 |ψ (n)(η)| ηn−1

ψ ′(η)n!
1{n≠1} = un−1 p(ψ,λ)(n). (39)

Pψq0 ,λ(d G)-a.s. for fixed a,Card(Lf(G(a)) ∩ Lf(G)) = Card{x ∈ Lf(G(a)); d G(∅, x) < a} =

L(G(a))− L(a,G). Thanks to (37), the individual lifetimes under Pψ,λ and Pψq0 ,λ have the same
distribution. Recall that κx is the number of children of x . Therefore, we have:

Eψ,λ[F(G(a))] = Eψq0 ,λ

F(G(a))


p(ψ,λ)(0)

p(ψq0 ,λ)
(0)

L(G(a))−L(a,G) 
x∈Br(G(a))

p(ψ,λ)(κx )

p(ψq0 ,λ)
(κx )


= Eψq0 ,λ


F(G(a))u

L(G(a))−L(a,G)−


x∈Br(G(a))
(κx −1)


= Eψq0 ,λ


F(G(a))u1−L(a,G)


,

where the last equality is a consequence of the following fact for finite discrete trees G:

1 +


x∈Br(G)

(κx − 1) = L(G). �

Recall (36). We shall consider the following processes:

τ
(a)
θ,λ = {τ

(a)
θ (z), z ≥ λ}, L(a, τθ,λ) = L(a, τ (a)θ,λ) = {L(a, τ (a)θ (z)), z ≥ λ}.

We have the following Girsanov theorem.

Theorem 4.4. Let ψ be a branching mechanism satisfying (6). Let λ > 0 and η = ψ−1(λ). If
ψ is super-critical, then for any non-negative measurable functional H on the Skorokhod space
D([λ,+∞),T), we have:

Nψ


H(τ (a)0,λ)1{Mλ≥1}


= Nψq0


η

η − q0

L(a,τ0(λ))

H(τ (a)0,λ)1{Mλ≥1}


. (40)
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Proof. Recall that the random measure N T
a defined in (4) which, according to the branching

property (iv), conditionally on T (a), is a Poisson point measure with intensity ℓa(dx)Nψ [dT ].
Since the sub-trees are determined by marked leaves of Lévy trees according to a Poisson
point measure, we will deduce the desired result by counting the number of marked leaves
and using Girsanov transformation (18). We deduce that, conditionally on T (a), L(a, τ0(λ)) =

L(a, τ (a)0 (λ)) is a Poisson random variable with parameter:

Nψ

1 − e−λσ


Za = ηZa .

Let Pψ be, conditionally on T (a) and τ (a)0 (λ), a Poisson point measure on [λ,+∞)with intensity

Za

ψ−1

′
(z) dz. We consider the family of random variables:

Pψ
λ = {Pψ ([λ, z]), z ≥ λ}.

Using again the branching property (iv), we get that, under Nψ and conditionally on T (a), L
a, τ0,λ


is distributed as L (a, τ0(λ))+ Pψ

λ := {L (a, τ0(λ))+ Pψ ([λ, z]), z ≥ λ}. Then notice

that the first equality of (37) implies that Pψ
λ under Nψ


· |T (a)


is distributed as Pψq0

λ under
Nψq0


· |T (a)


. We set:

F(T (a), L(a, τ (a)0,λ)) = Nψ


H(τ (a)0,λ)1{Mλ≥1} | T (a), L(a, τ (a)0,λ)

.

We deduce that:

Nψ


H(τ (a)0,λ)1{Mλ≥1}


= Nψ


F(T (a), L(a, τ (a)0,λ))


= Nψ


F(T (a), L(a, τ (a)0 (λ))+ Pψ

λ )


= Nψ


∞
k=0

F(T (a), k + Pψ
λ )
(ηZa)

k

k!
e−ηZa



= Nψq0


∞

k=0

F(T (a), k + Pψq0
λ )

(ηZa)
k

k!
e−(η−q0)Za


,

where we used the conditional independence of Pψ and τ (a)0 (λ) given T (a) for the third equality,
the Girsanov transformation (18) for the last equality (and that ψ(q0) = 0). Using ψ−1

q0
(λ)

= η − q0, we notice that L(a, τ0(λ)) is under Nψq0

· |T (a)


a Poisson random variable with

parameter:

Nψq0

1 − e−λσ


Za = (η − q0)Za .

Therefore, we obtain:

Nψ


H(τ (a)0,λ)1{Mλ≥1}


= Nψq0


∞

k=0


η

η − q0

k
F(T (a), k + P

ψq0
λ )

((η − q0)Za)
k

k!
e−(η−q0)Za



= Nψq0


η

η − q0

L(a,τ0(λ))
F(T (a), L(a, τ0(λ))+ P

ψq0
λ )



= Nψq0


η

η − q0

L(a,τ0(λ))
F(T (a), L(a, τ (0)0,λ))


,
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where we used for the last equality that under Nψq0 and conditionally on T (a), L


a, τ (a)0,λ


is

distributed as L (a, τ0(λ))+ Pψq0
λ .

By construction, the distribution of τ (a)0,λ conditionally on T (a) and L(a, τ (a)0,λ) is the same under
Nψ and Nψθ for any θ > 0 and in particular for θ = q0. We deduce (40). �

We immediately deduce the following corollary.

Corollary 4.5. Let ψ be a branching mechanism satisfying (6). Let λ > 0 and η = ψ−1(λ).
Under Pψ,λ, for each θ ≥ 0, the sub-tree τθ (λ) is distributed as the Galton–Watson real tree
G(ψθ , ψθ (η)) with mass measure given by (31).

Recall that Pψ,λ(d G) denotes the distribution of the Galton–Watson tree G(ψ, λ) defined in
Section 3.2.

Proof. If ψ is (sub)critical, then this is a consequence of Theorem 3.2.1 in [12] and Proposi-
tion 4.1. Now we assume that ψ is super-critical. Notice that:

η

η − q0
=

Nψ [Mλ ≥ 1]

Nψq0 [Mλ ≥ 1]
.

Using Theorem 4.4, this gives that for a > 0 and G a non-negative measurable functional defined
on T:

Eψ,λ

G(τ (a)0 (λ))


= Eψq0 ,λ


η

η − q0

L(a,τ0(λ))−1

G(τ (a)0 (λ))


.

Recall that if (T ,∅, d,m) is a measured rooted real tree, then we denote by T̃ the real
tree (T ,∅, d). Since ψq0 is sub-critical, thanks to Theorem 3.2.1 in [12], we get that under
Pψq0 ,λ, τ̃0(λ) has distribution Pψq0 ,λ. Then by Lemma 4.3, we get that under Pψ,λ, τ̃0(λ) has
distribution Pψ,λ. Then use Proposition 4.1 to get that for each θ ≥ 0, τ̃θ (λ) under Pψ,λ has
distribution Pψθ ,ψθ (η). �

The following corollary is another direct consequence of Theorem 4.4.

Corollary 4.6. Let λ > 0 and a > 0 be fixed. Under Nψq0 on {Mλ ≥ 1}, the process (Qz, z ≥ λ)

defined by:

Qz =


ψ−1(z)

ψ−1(z)− q0

L(a,τ0(z))

is a backward martingale with respect to the filtration (Qz, z ≥ λ) with Qz = σ(τ0(z′); z′
≥ z).

We present another Girsanov transformation for sub-trees.

Remark 4.7. Let ψ be a branching mechanism satisfying (6). For any q ≥ θ ≥ 0, a > 0 and F
a non-negative measurable functional, we have:

Eψ,λ


F(τ̃ (a)q (λ))


= Eψ,λ


F(τ̃ (a)θ (λ))N θ,q
a,λ (τθ (λ))


, (41)
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where N θ,q
a,λ is defined for discrete trees by:

N θ,q
a,λ (T ) =


ψq(η)

ψθ (η)

L(T (a))−L(a,T )

e(ψ
′(θ+η)−ψ ′(q+η))ℓT (T (a))


x∈Br(T (a))

ψ
(κx )
q (η)

ψ
(κx )
θ (η)

,

with the convention


x∈∅
= 1. Under Pψ,λ, the process N θ,q

λ =


N θ,q

a,λ (τ̃θ (λ)), a ≥ 0


is a

martingale with respect to the filtration

σ(τ̃

(a)
θ (λ)), a ≥ 0


.

5. Convergence of the sub-tree processes

We provide an alternative proof of the convergence of the sub-trees to the Lévy tree from
[14] using the Gromov–Hausdorff–Prohorov distance on T which relies on the Girsanov
transformation. Recall that for simplicity, we identify T and (T, dT ,∅T ,mT ) ∈ T. And, under
Pψr or Nψ , the mass measure on τ0(λ) is given by (31).

Theorem 5.1. Let ψ be a branching mechanism satisfying (6). We have Nψ -a.e. or Pψr -a.s.:

lim
λ→+∞

dGHP(T , τ0(λ)) = 0. (42)

Proof. Under Nψ , the convergence (42) is a consequence of Lemma 5.4 (see also Proposition
2.8 in [4] to get the dGHP convergence from the dc

GHP convergence) for the (sub)critical case and

Lemma 5.5 for the super-critical case. Then the Pψr -a.s. convergence is a consequence of the
representation of Pψr from Section 2.7. �

Remark 5.2. Notice in particular that Theorem 5.1 asserts that (F, (F(λ), λ ≥ 0)) in [14] and
(T , (τ0(λ), λ ≥ 0)) have the same distribution. In particular, this implies that the distribution for
super-critical Lévy trees defined in [14] based on a coloring leaves process and the one defined
in [3] based on a Girsanov transformation are the same. Therefore, Theorem 3.3 is also valid for
ψ super-critical and λ > 0 with ψ−1(λ) > 0.

Lemma 5.4 is stated in Section 5.2 and Lemma 5.5 is proved in Section 5.3. Section 5.1
presents preliminaries on approximation of trees by discrete sub-trees.

5.1. Distance between trees and discrete sub-trees

In this section, we present an immediate convergence result from sub-trees to trees which
could be coded by functions.

Let f be a non-negative continuous function with compact support s.t. f (0) = 0. We set σ =

sup{t; f (t) > 0}. We define:

d f (x, y) = f (x)+ f (y)− 2 inf
u∈[x∧y,x∨y]

f (u)

and the equivalence relation: x ∼ y if d f (x, y) = 0. We set T f
= [0, σ ]/ ∼. Let p f be the

projection from [0, σ ] to T f , with p f (x) the equivalent class of x in T f . Let m f be the image
of the Lebesgue measure on [0, σ ] by the projection p f . Set ∅

f
= p f (0) and we still denote by

d f the distance on T , image of d f by p f . It is well known that (T f , d f ,∅ f ,m f ) is a measured
rooted compact real tree.
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Let ∆ = {y0, . . . , yN∆}, with 1 ≤ N∆ < +∞ and 0 = y0 < · · · < yN∆ ≤ σ , be a
finite subdivision of [0, σ ]. Let |∆| = sup0≤i<N∆

yi+1 − yi be the mesh of the subdivision. For
0 ≤ i < N∆, let ȳi ∈ [yi , yi+1] such that f (ȳi ) = infu∈[yi ,yi+1] f (u). We consider f∆ the linear
interpolation of the points {(yi , f (yi )), (ȳi , f (ȳi )); 0 ≤ i < N∆} ∪ {(yN∆ , f (yN∆))}.

Denote T f∆ , the tree coded by f∆. Let a∆ ≥ 0 and m f,∆ be the image of the measure
µ∆ = a∆


y∈∆,y≠0 δy by the projection p f . We consider the measured rooted real tree

T f,∆
= (T f∆ , d f∆ ,∅ f ,m f,∆). Then we have

Lemma 5.3.

dc
GHP(T

f , T f,∆) ≤ sup
|x−y|≤|∆|

| f (x)− f (y)| + d[0,σ ]

P (Leb, µ∆), (43)

where Leb is the Lebesgue measure on [0, σ ], and the space [0, σ ] is endowed with the usual
distance.

Proof. By construction T f∆ is the smallest sub-tree of T f containing {p f (yi ), 0 ≤ i ≤ N∆}.
That is T f∆ =


yi ∈∆[[∅

f , p f (yi )]]. Note that f (t) > 0 for t ∈ (0, σ ). Then

dT f

H (T f , T f∆) ≤ max
0<i<N∆

sup{d f (p f (yi ), x), p f (yi ) ∈ [[∅
f , x]]}

≤ sup
|x−y|≤|∆|

| f (x)− f (y)|.

On the other hand, let A be a Borel set of T f . We can also regard m f,∆ as a measure on T f by
m f,∆(A) = m f,∆(A ∩ T f∆). Set I = {t ∈ [0, σ ], p f (t) ∈ A}. By definition of m f , we have
m f (A) = Leb(I ). Set A∆

= p f∆(I ). We have A∆
= A ∩ T f∆ and m f,∆(A∆) = m f,∆(A) =

µ∆(I ). Thus dT f

P (m f ,m f,∆) = d[0,σ ]

P (Leb, µ∆). Then the desired result follows from the def-
inition of dc

G H P . �

5.2. The (sub)critical case

The main result of this section is the following lemma.

Lemma 5.4. Let ψ be a (sub)critical branching mechanism satisfying (6). We have Nψ -a.e. for
all a0 ≥ 0:

lim
λ→+∞

dc
GHP(T , τ0(λ)) = 0 and lim

λ→+∞
sup
a≤a0

dc
GHP(T (a), τ

(a)
0 (λ)) = 0. (44)

Proof. According to [12], there exists a continuous stochastic process h, called the height
process, such that under its excursion measure it has compact support [0, σ h

] and (T h, σ h) is
distributed at (T , σ ) under Nψ . Notice that the continuity of the height process is a consequence
of (6).

Conditionally on h, let P =


i∈I δ(yi ,ti ) be a Poisson point measure on [0, σ ] × R+ with
intensity dydt . For λ > 0, we set:

∆λ = {yi ; i ∈ I and ti ≤ λ} ∪ {0} and µ∆λ
=

1
λ


y∈∆λ,y≠0

δy .

By construction, we get the following equality in distribution:

(T h, (T h,∆λ , λ ≥ 0))
(d)
= (T , (τ0(λ), λ ≥ 0)).
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The properties of the Poisson point measures imply that a.e. under the excursion measure of

h, limλ→+∞ |∆λ| = 0 and limλ→+∞ d[0,σ h
]

P (Leb, µ∆λ
) = 0. Thus, we deduce from Section 5.1

and (43) that a.e. under the excursion measure of h,

lim
λ→+∞

dc
GHP(T

h, T h,∆λ) = 0.

Thus, we obtain the first part of (44).
We set ελ = dc

GHP(T , τ0(λ)). According to the proof of Proposition 2.8 in [4], we have, for
a ≥ 0:

dc
GHP(T (a), τ

(a)
0 (λ)) ≤ 3ελ + mT


T (a+2ελ) \ T (a−ελ)


.

Using (7) and the definition of Z , we deduce that for a0 ≥ 0:

sup
a≤a0

dc
GHP(T (a), τ

(a)
0 (λ)) ≤ 3


1 + sup

a≤a0+2ελ
Za


ελ.

We deduce then the second part of (44) from the first part of (44). This ends the proof of the
Lemma. �

5.3. The super-critical case

The main result of this section is the following lemma.

Lemma 5.5. Let ψ be a super-critical branching mechanism satisfying (6). We have Nψ -a.e.:

lim
λ→+∞

dGHP(T , τ0(λ)) = 0.

Proof. Recall that ψq0 is (sub)critical. We deduce from Theorem 4.4 that for a > 0:

Nψ


lim inf
λ→+∞

 a

0
e−r


1 ∧ dc

GHP


T (r), τ

(r)
0 (λ)


dr > 0, Mλ ≥ 1


= Nψq0


ψ−1(1)

ψ−1(1)− q0

L(a,τ0(1))

, lim inf
λ→+∞

 a

0
e−r

×


1 ∧ dc

GHP


T (r), τ

(r)
0 (λ)


dr > 0,Mλ ≥ 1


.

Then use (44) to get that the right hand-side in the previous equality is 0 for all a > 0. This
implies that Nψ


lim infλ→+∞ dGHP(T , τ0(λ)) > 0, Mλ ≥ 1


= 0. �

6. Pruning and growth of the discrete sub-trees

6.1. The pruning process

Recall that η = ψ−1(λ) and ψ−1(0) = q0 which is the largest root of ψ(s) = 0. We assume
that η > 0 which is equivalent to λ > q0.
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We define the following pruning procedure for the discrete sub-trees. Under Pψ,λ, let T be
distributed as τ0(λ). Conditionally on T, we consider a Poisson point measure MSk(dθ, dy) on
R+ × T with intensity:

ψ ′′(η + θ)1[0,+∞)(θ)dθ ℓ
T(dy)

and an independent family of independent random variables (ξx , x ∈ Br(T)), such that the
distribution of ξx has density:

−
ψ (κx +1)(η + z)

ψ (κx )(η)
1{z>0}dz.

Recall that MSk(dθ, dy) is defined above. We define the following random measure:

MT(dθ, dy) = MSk(dθ, dy)+


x∈Br(T)

δ(ξx ,x)(dθ, dy).

We define the pruned tree at time q ≥ 0 as:

Tq = {x ∈ T, MT([0, q] × [[∅, x[[) = 0}

equipped with the induced metric, with the root ∅ and with the measure

mTq =
1

ψq(η)


x∈Lf(Tq )

δx ,

where we make the convention that mTq = 0 if ψq(η) = 0. Then we have the following theorem.

Theorem 6.1. Let ψ be a branching mechanism satisfying (6). Let λ ≥ 0. We assume that
ψ−1(λ) = η > 0. Then under Pψ,λ, the two processes (τθ (λ), θ ≥ 0) and (Tθ , θ ≥ 0) have
the same distribution.

Proof. The proof is based on Theorem 3.3 and Remark 5.2. Notice that the processes (τθ (λ), θ ≥

0) and (Tθ , θ ≥ 0) are by construction Markov and right continuous. Therefore, it is enough to
check that the two-dimensional marginals have the same distribution.

Let θ ≥ q ≥ 0. Recall the pruning procedure defined in Section 2.10. On one hand, a mark
appears on the skeleton of τq(λ) before time θ is either on the skeleton of Tq or at a branching
point of Tq . Those marks appearing before time θ that are on the skeleton of Tq are distributed as
a Poisson point process with intensity 2β(θ−q)ℓτq (λ)(dy). A node of Tq with mass r has a mark
before time θ with probability 1 − e−(θ−q)r . And the nodes of Tq with mass r which lie on the
skeleton of τq(λ) are, thanks to Theorem 3.3, distributed on τq(λ) according to a Poisson point
measure with intensity re−rη−rqπ(dr) ℓτq (λ)(dy). This implies that the marks on the skeleton of
τq(λ) before time θ are distributed according to a Poisson point measure with intensity:

2β(θ − q)+


(0,+∞)

(1 − e−(θ−q)r )re−rη−rqπ(dr)


ℓτq (λ)(dy)

=


ψ ′
θ (η)− ψ ′

q(η)

ℓτq (λ)(dy)

=

 θ

q
ψ ′′(η + z)dz


ℓτq (λ)(dy).
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On the other hand, if x is a branching point of τq(λ) with number of children κx , then a
mark appears on it before time θ , if it appears before time θ on Tq . Recall Pψ,λ from (27) and
(28). Also recall that we assume η = ψ−1(λ) > 0. Proposition 4.1 applied to θ = q entails
that (Tq , τq(λ)) under Pψ,λ has the same distribution as (T0, τ0(ψq(η))) under Pψq ,ψq (η). By
Remark 5.2, Theorem 3.3 is also valid for ψ super-critical and λ ≥ 0 with ψ−1(λ) > 0. Then we
apply Theorem 3.3 under Pψq ,ψq (η) with ψ and λ replaced by ψq and ψq(η), respectively. This

implies that conditionally on τ0(ψq(η)) the mass ∆x is distributed according to Γψq
κx ,ψq (η)

defined
by (34). Therefore a mark appears on the node x of τq(λ) before time θ with probability:

Γψq
κx ,ψq (η)

(dr)(1 − e−(θ−q)r ) = 1 −
ψ
(κx )
θ (η)

ψ
(κx )
q (η)

= P(ξx < θ |ξx > q).

By construction of Tθ from Tq , we deduce that if Tq has the same distribution as τq(λ), then
(Tq ,Tθ ) has the same distribution as (τq(λ), τθ (λ)). Use that T0 is distributed as τ0(λ), to deduce
that Tθ has the same distribution as τθ (λ). Thus, we get that the processes (τθ (λ), θ ≥ 0) and
(Tθ , θ ≥ 0) have the same two-dimensional marginals distribution. �

Remark 6.2. Recall the definition of Pψ,λ (27) and (28). Assume that η = ψ−1(λ) > 0. By
construction of T and thanks to Proposition 4.1, we get that (τθ+q(λ), θ ≥ 0) under Pψ,λ is
distributed as (τθ (λ), θ ≥ 0) under Pψq ,ψq (η).

6.2. The growth process

Let λ > 0. Theorem 6.1 gives the pruning procedure of the sub-tree process. Conversely, we
will also give a growth procedure for the time reversed sub-tree process. The process θ → Tθ
can be defined on Θ . However, this is no more the case for τθ (λ) (ψθ (η) may be negative). Note
that θ → ψθ (λ) is increasing for all λ > 0. Recall that ψθ (η) ≥ λ > 0 for θ ≥ 0. We define:

θλ = inf{θ ∈ Θ;ψθ (η) ≥ 0} and Θψ,λ
= [θλ,+∞) ∩ Θ . (45)

Notice that θλ ≤ 0.

Remark 6.3. If θλ ∈ Θψ,λ, then we have ψθλ(η) = 0. And since η > 0, we further have that
ψθλ is super-critical. Then Theorem 6.1 and Remark 6.2 are applicable with ψ and λ replaced by
ψθλ and ψθλ(η), respectively. Typically, under Pψθλ ,0, (τθ (0), θ ≥ 0) is well defined.

Recall Definition 3.2 and (32). Then Theorem 6.1, Remark 6.2, Corollary 4.5 and the
Kolmogorov extension theorem ensure the following proposition.

Proposition 6.4. Let λ > 0 and let ψ be a branching mechanism satisfying (6). There exists a
process (τθ (λ), θ ∈ Θψ,λ) under Pψ,λ, such that for all q ∈ Θψ,λ the process (τθ+q(λ), θ ≥ 0)
is distributed as (τθ (ψq(η)), θ ≥ 0) under Pψq ,ψq (η). Furthermore, under Pψ,λ, for each
θ ∈ Θψ,λ, τθ (λ) is distributed as the (gψθ ,ψθ (λ), ψ

′
θ (η))-Galton–Watson real tree with mass

measure given by (31).

Remark 6.5. Note that Θψ,λ
= [θλ,+∞) or (θλ,+∞). In the first case we could define the

process {τθ (λ), θ ∈ Θψ,λ
} under Pψθλ ,0 according to the arguments in Section 3.1 (we need to

shift the time by θ − θλ, θ ∈ Θψ,λ). However in the second case, Nψθλ does not make sense. We
have to use the Kolmogorov extension theorem to show the existence of a tree-valued Markov
process {τθ (λ), θ ∈ Θψ,λ

}.
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We consider the function gq,θ
(ψ,λ) defined for q ∈ Θψ,λ and θ > q by:

gq,θ
(ψ,λ)(r) = 1 −

ψθ (η(1 − r))− ψq(η(1 − r))

ψθ (η)
· (46)

Notice that ψθ (η) > 0 for θ > q and thus gq,θ
(ψ,λ)(1) = 1, gq,θ

(ψ,λ)(0) = ψq(η)/ψθ (η) and for
k ∈ N∗:

gq,θ
(ψ,λ)

(k)
(0) =

(−1)k+1ηk

ψθ (η)
(ψ (k)(θ + η)− ψ (k)(q + η)) ≥ 0.

Since ψ is analytic at least on (θλ,+∞), we deduce that gq,θ
(ψ,λ)(r) is the generating function of a

random variable K taking values in N. Let (τ k, k ∈ N∗) be independent random trees distributed
as τq(λ) under Pψ,λ and independent of K . We set:

Gq,θ (ψ, λ) = ∅~1≤k≤K (τ
k,∅),

with the convention that ∅ ~1≤k≤K (τ
k,∅) = ∅ if K = 0.

Theorem 6.6. Let ψ be a branching mechanism satisfying (6). Let λ > 0 and η = ψ−1(λ). Let
θ > q with q ∈ Θψ,λ. Then under Pψ,λ, conditionally on τθ (λ), τq(λ) is distributed as

τθ (λ)~x∈Lf(τθ (λ))(G x
q , x),

with mass measure given by (31) (with θ replaced by q) and where (G x
q , x ∈ Lf(τθ (λ))) are

independent and distributed according to Gq,θ (ψ, λ).

We first state a preliminary lemma.

Lemma 6.7. Under the Hypothesis of Theorem 6.6, the sub-tree τ0(ψq(η)) is distributed under

N ψq
θ−q [ · |Mψq (η) ≥ 1] as Gq,θ (ψ, λ) conditionally on Gq,θ (ψ, λ) ≠ ∅.

Proof. By construction of Gq,θ (ψ, λ), the lemma will be proved as soon as we check that the

degree of the root of τ0(ψq(η)) under N ψq
θ−q


· | Mψq (η) ≥ 1


is distributed as K conditionally on

{K ≥ 1}.
We only need to prove the lemma for (sub)critical ψ, λ > 0 and θ ≥ 0, which therefore

applies to ψq , ψq(η) and θ − q . Let N∅ be the degree of the root ∅ in τ0(λ). Notice that

{Mλ ≥ 1} = {N∅ ≥ 1}. We set h(u) = N ψ
θ


uN∅1{N∅≥1}


. Notice that, under Nψ , N∅ is 0

or 1 and that, under Pψr , N∅ is a Poisson random variable with mean rNψ [Mλ ≥ 1] = rη. We
deduce that for u ∈ [0, 1]:

h(u) = 2βθuNψ [Mλ ≥ 1] +


(0,+∞)

π(dr)(1 − e−θr )Eψr

uN∅1{N∅≥1}


= 2βθηu +


(0,+∞)

π(dr)(1 − e−θr )(e−rη(1−u)
− e−rη).

Let g0 = g0,θ
(ψ,λ) be the generating function of K and g1 be the generating function of K condi-

tionally on {K ≥ 1}. Elementary computations yield g0(u) = g0(0) + h(u)/ψθ (η). We deduce
that g1(u) = h(u)/h(1). This readily implies that N∅ under N ψ

θ [ · | Mλ ≥ 1] is distributed as K
conditionally on {K ≥ 1}. �
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Proof of Theorem 6.6. The proof is very similar to the proof of Proposition 4.1. From the special
Markov property Theorem 2.3, we get:

Tq = Tθ ~ j∈J θ,q (T j
q , x j ),

where


j∈J θ,q δ(x j ,T j
q )

is, conditionally on Tθ , a Poisson point measure on Tθ ×T with intensity

mTθ (dx)N ψq
θ−q [d T ]. Notice that T j

q gives a contribution to τq(λ) (that is T j
q ∩ τq(λ) ≠ ∅) if

there is at least one marked leaf on T j
q . Furthermore, if there is a contribution, then T j

q ∩ τq(λ)

is distributed as τ0(ψq(η)) under N ψq
θ−q [ · |Mψq (η) ≥ 1] (note that the root of T j

q ∩ τq(λ) is x j ).
This distribution is given in Lemma 6.7. Thanks to (14), we have:

N ψq
θ−q [Mψq (η) ≥ 1] = N ψq

θ−q [1 − e−ψq (η)σ ]

= ψ(θ + η)− ψ(θ)− ψq(η) = ψθ (η)− ψq(η). (47)

Standard results on marked Poisson point process imply that the point measure on the
leaves of τq(λ) which are still in τθ (λ), that is


x∈Lf(τθ (λ))∩Lf(τq (λ))

δx (dy), is, conditionally

on Tθ , a Poisson point process on Tθ with intensity ψq(η)mTθ (dy), and is also independent of
j∈J θ,q δ(x j ,T j

q )
.

Using standard results on marked Poisson point measures, we get that τq(λ) can be recovered
from τθ (λ) by grafting independently on each leaf x ∈ Lf(τθ (λ)):

• Nothing with probability ψq(η)/ψθ (η).
• A sub-tree distributed as Gq,θ (ψ, λ) conditionally on Gq,θ (ψ, λ) ≠ ∅ with probability

1 − ψq(η)/ψθ (η).

Then use that P(Gq,θ (ψ, λ) = ∅) = P(K = 0) = ψq(η)/ψθ (η) and that the mass measure of
τq(λ) is given by (31) (with θ replaced by q) to end the proof. �

Remark 6.8. We deduce from Theorem 6.6 that the transition rate (for the backward process) at
time θ from τθ (λ) to τθ (λ)~1≤k≤k0(τ

k, x), with x a leaf of τθ (λ), is given by:

(−1)k0+1ηk0

k0!

ψ (k0+1)(θ + η)

ψθ (η)
µθ (dτ

1) · · ·µθ (dτ
k0),

withµθ the distribution of τθ (λ) under Pψ,λ. The mass measure process is always defined by (31).

7. Study of leaves

Recall the definition of σθ from (23). We first present a martingale based on the total mass of
the pruned process.

Proposition 7.1. Let ψ be a branching mechanism satisfying (6). Then under Pψr and Nψ , the
process (Rθ , θ > q0), with:

Rθ = ψ ′(θ)σθ ,

is a backward martingale with respect to the filtration (Fθ , θ > q0) where Fθ = σ(Tq , q ≥ θ).
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Proof. Let q0 < q ≤ θ . According to the special Markov property, we have:

(Tθ , σq)
(d)
=


Tθ , σθ +


i∈I

σT i


,

where


i∈I δT i is conditionally on Tθ a Poisson point measure on T with intensity:

mTθ (dx)N ψq
θ−q [d T ].

Using (14) with ψq and θ − q instead of ψ and q , respectively, we have:

Eψr [σq |Fθ ] = Eψr


σθ +


i∈I

σT i
Fθ


= σθ + σθN ψq

θ−q [σ ] =
ψ ′(θ)

ψ ′(q)
σθ .

This gives the result under Pψr . The proof is similar under Nψ . �

Notice that Proposition 7.1 is also a direct consequence of the infinitesimal transitions of the
time-reversed process (Tθ , θ ∈ Θ) given in [3].

Now we present a result on the number of leaves for the sub-tree process. Let λ ≥ 0. We
consider the leaves process of the sub-trees L(λ) = {Lθ (λ), θ ∈ Θψ,λ

}:

Lθ (λ) = L(τθ (λ)) = Card (Lf(τθ (λ))).

Proposition 7.2. Let ψ be a branching mechanism satisfying (6). Let λ ≥ 0 and η = ψ−1(λ) >

0. Under Pψ,λ, the process (Rθ (λ), θ > q0) with:

Rθ (λ) =
ψ ′(θ)

ψθ (η)
Lθ (λ),

is a backward martingale with respect to the filtration (Hθ , θ > q0), where Hθ = σ(τq(λ),

q ≥ θ).

Remark 7.3. Notice that Lθ (λ)/ψθ (η) is the total mass of mτθ (λ) which converges to the total
mass of mTθ that is σθ as λ goes to infinity. Thus Proposition 7.1 appears as a consequence of
Proposition 7.2.

Recall the definition of g(ψ,λ) (32) and of gq,θ
(ψ,λ) (46). For θ ≥ q and q ∈ Θψ,λ, we set:

gq(r) = g(ψq ,ψq (η))(r) and g(r) = gq,θ
(ψ,λ)(r). (48)

Proof of Proposition 7.2. We write Lθ for Lθ (λ). Let q0 < q ≤ θ . By Theorem 6.6, we have:

Eψ,λ

Lq |τθ (λ)


= Lθg(0)+ Lθg′(1)Eψ,λ


Lq

. (49)

Thanks to Corollary 4.5 and the branching property, we have:

Eψ,λ

Lq


= gq(0)+ Eψ,λ

Lq


g′
q(1). (50)

This gives:

Pψ,λ

Lq


=
gq(0)

1 − g′
q(1)

=
ψq(η)

ηψ ′(q)
·
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Then use that:

g(0) =
ψq(η)

ψθ (η)
, g′(1) =

η

ψθ (η)


ψ ′(θ)− ψ ′(q)


,

and (49) to get that:

Eψ,λ

Lq |τθ (λ)


=
ψq(η)

ψ ′(q)

ψ ′(θ)

ψθ (η)
Lθ .

This gives the result. �

Remark 7.4. A similar result for the leaves process of the discrete time Galton–Watson tree-
valued process was proved in Corollary 3.4 of [2] using a quantity similar to (1 − g′

q(1))/gq(0)
which comes from (50).

For θ > θλ, the function gθ is convex positive with gθ (0) > 0 and gθ (1) = 1. Hence, for
ζ ∈ [0, 1), the equation:

x = gθ (x)+ gθ (0)(ζ − 1)

has a unique solution x ∈ [0, 1], which we denote by hθ (ζ ). By construction the backward
process (Lθ (λ), θ > θλ) is Markov under Pψ,λ. The next proposition gives its one and two-
dimensional marginals.

Proposition 7.5. Let ψ be a branching mechanism satisfying (6). For θ ≥ q > θλ and ζ, z ∈

[0, 1), we have:

Eψ,λ

ζ Lθ (λ)


= hθ (ζ ), and Eψ,λ


ζ Lθ (λ)zLq (λ)


= hθ (ζw

q,θ (z)), (51)

with wq,θ (z) = g(hq(z))+ g(0)(z − 1).

Proof. We write Lθ for Lθ (λ). Conditioning on the number of children of the lowest branching
point and using the branching property of the Galton–Watson trees τθ (λ), we get:

Eψ,λ

ζ Lθ


= gθ (0)ζ +

∞
k=1

Eψ,λ

ζ Lθ

k g(k)θ (0)

k!
= gθ


Eψ,λ


ζ Lθ


+ gθ (0)(ζ − 1).

This gives the first part of (51). Recall Gq,θ (ψ, λ) defined in Section 6. Using again the branching
property, we have:

E

zL(Gq,θ (ψ,λ))


= g(0)z + g(hq(z))− g(0).

Then, by Theorem 6.6, we have:

Eψ,λ

ζ Lθ zLq


= Eψ,λ


ζ Lθ z


x∈Lf(τθ (λ))

L(G x
q,θ (ψ,λ))


= Eψ,λ


ζ Lθ (g(hq(z))+ g(0)(z − 1))Lθ


= hθ


ζ(g(hq(z))+ g(0)(z − 1))


.

This ends the proof. �
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Example 7.6. Assume ψ(u) = βu2, with β > 0, so that Θ = R and q0 = 0. Let λ > 0. We
have η =

√
λ/β, θλ = −η/2 and Θψ,λ

= [θλ,+∞). For θ > θλ and ζ ∈ [0, 1), we have:

Eψ,λ

ζ Lθ (λ)


=
η + θ −


θ2ζ + (1 − ζ )(θ + η)2

η

and for θ > 0:

Eψ,λ [Lθ (λ)] =
η + 2θ

2|θ |
·

When θλ < θ < 0,Pψ,λ (Lθ (λ) = +∞) > 0. Then we deduce in (59) below for a related result.
For θ = θλ, we have gθλ(0) = 0, and the tree τθλ(λ) is a Yule tree which has no leaf (formally,

we have Eψ,λ

ζ Lθλ (λ)


= 0).

8. Ascension time and tree at the ascension time

For convenience, we assume in this section thatψ is a critical branching mechanism satisfying
(6). Then τθ (λ) (or Tθ ) is super-critical, critical or subcritical for θ < 0, θ = 0 or θ > 0,
respectively.

8.1. Ascension process and ascension time

Let λ > 0. Recall θλ and Θψ,λ defined in Section 6.2. From now on, we shall always assume
that

θλ < 0,

which implies that inf Θ < 0. Define the ascension time on {Mλ ≥ 1}:

Aλ = inf{θ ∈ Θψ,λ
; τθ (λ) is a compact tree}. (52)

Pψ,λ-a.s., we have Aλ ≤ 0. Since, by construction, τθ (λ) is a compact tree if and only if Tθ is a
compact tree, we have Aλ = inf{θ ∈ Θψ,λ

: σθ < ∞}. For θ ∈ Θ , we set θ̄ = ψ−1(ψ(θ)), so
that θ̄ is the unique positive number such that:

ψ(θ̄) = ψ(θ). (53)

By Theorem 6.5 of [1] and its proof, we have for all θ ∈ Θ :

θ̄ − θ = ψ−1
θ (0). (54)

Recall gθ (r) from (32) and (48). Notice that 1 −
θ̄−θ
η

is the minimal solution of the equation

r = gθ (r). Since τθ (λ) is under Pψ,λ a Galton–Watson tree whose reproduction law has gener-
ating function gθ , we deduce that for θ ∈ (θλ, 0):

Pψ,λ(Aλ < θ) = Pψ,λ(τθ (λ) is compact) = 1 −
θ̄ − θ

η
· (55)

Since d θ̄/dθ = ψ ′(θ)/ψ ′(θ̄), we have for θλ < θ < 0:

Pψ,λ(Aλ ∈ dθ) =
1
η


1 −

ψ ′(θ)

ψ ′(θ̄)


dθ. (56)
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Thanks to Corollary 4.5 and Theorem 6.1, for θ ∈ Θψ,λ, the process (τθ+q(λ), q ≥ 0) under
Pψ,λ is distributed as the process (τq(ψθ (η)), q ≥ 0) under Pψθ ,ψθ (η).

The next proposition gives the distribution of the sub-tree process starting from the ascension
time. The result will be used to deduce the representation of the ascension process whose
conditional law given {Aλ = θ} is absolutely continuous with respect to the law of the initial
process starting from τθ (λ).

Recall that Lθ (λ) denotes the number of leaves of the tree τθ (λ) and that Aλ is the ascension
time of the process (τθ (λ), θ ∈ Θψ,λ).

Proposition 8.1. Assume that ψ is a critical branching mechanism satisfying (6). Let λ > 0 and
η = ψ−1(λ). Suppose that θλ < 0. Then for θλ < θ < 0 and any non-negative measurable
function F, we have:

Eψ,λ[F(τAλ+q(λ), q ≥ 0)|Aλ = θ ]

=
ηψ ′(θ̄)

ψθ (η)
Eψ,λ


F(τθ+q(λ), q ≥ 0) Lθ (λ) 1{Lθ (λ)<∞}


.

Proof. By considering Eψ,λ

F(τθ+q(λ), q ≥ 0)|τθ (λ)


instead of F(τθ+q(λ), q ≥ 0), one can

assume that F is a measurable functional defined on T (instead of the set of T-valued processes).
Assume that F(T ) = 0 if T is non compact. For θλ < q < θ < 0, we have:

Eψ,λ

F(τθ (λ))1{Aλ≥q}


= Eψ,λ


F(τθ (λ))Pψ,λ


τq(λ) is non compact|τθ (λ)


. (57)

We write Lθ for Lθ (λ). On {τθ (λ) is compact} that is {Lθ < ∞}, we get that τq(λ) is compact
if and only if the trees grafted on τθ (λ) to get τq(λ) are compact, see Theorem 6.6. Using (55),
(46) and Notation (48), we get on {Lθ < ∞}:

Pψ,λ(τq(λ) is non compact|τθ (λ)) = 1 − g


1 −

q̄ − q

η

Lθ
. (58)

A simple calculation (recall that g depends on q) based on the computation of (56) yields on
{Lθ < ∞}:

d

dq
g


1 −

q̄ − q

η

Lθ

|q=θ

= Lθ g


1 −

q̄ − q

η

Lθ−1

|q=θ

d

dq
g


1 −

q̄ − q

η


|q=θ

= Lθ


dg

dq


1 −

q̄ − q

η


− g′


1 −

q̄ − q

η


1
η


1 −

ψ ′(q)

ψ ′(q̄)


|q=θ

= Lθ
ψ ′(θ̄)

ψθ (η)
·

Then by (57) and (58) and thanks to the regularity of g and q̄ in q, we have:

Eψ,λ[F(τθ (λ)), Aλ ∈ dθ ]

dθ
= −

d

dq
Eψ,λ[F(τθ (λ))1{Aλ≥q}]|q=θ

= Eψ,λ


F(τθ (λ))Lθ
ψ ′(θ̄)

ψθ (η)
1{Lθ<∞}


.

Meanwhile, by Proposition 7.5, we have:

Eψ,λ[Lθ1{Lθ<∞}] = lim
ζ→1−

∂

∂ζ
hθ (ζ ) =

gθ (η)(0)
1 − g′

θ (hθ (1−))
=
ψθ (η)

ηψ ′(θ̄)
, (59)
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where we use the fact that hθ (1−) = 1 −
θ̄−θ
η

which is the minimal solution of the equation
r = gθ (r). Thus, we get:

Eψ,λ[F(τθ (λ))|Aλ ∈ dθ ] =
Eψ,λ[F(τθ (λ)), Aλ ∈ dθ ]

Pψ,λ(Aλ ∈ dθ)

=
Eψ,λ[F(τθ (λ))Lθ1{Lθ<+∞}]

Eψ,λ[Lθ1{Lθ<+∞}]

=
ηψ ′(θ̄)

ψθ (η)
Eψ,λ


F(τθ (λ))Lθ1{Lθ<∞}


.

This ends the proof. �

We give an immediate corollary.

Corollary 8.2. Assume that ψ is a critical branching mechanism satisfying (6). Let λ > 0 and
η = ψ−1(λ). Suppose that θλ < 0. For θλ < θ < 0 and any non-negative measurable function
F, we have, with ηθ = η − θ̄ + θ :

Eψ,λ[F(τAλ+q(λ), q ≥ 0)|Aλ = θ ]

=
ηθψ

′(θ̄)

ψθ̄ (ηθ )
Eψ,λ


F(τθ̄+q(ψ(ηθ )), q ≥ 0)L θ̄ (ψ(ηθ ))


.

Proof. Let us denote Sθ (λ) = (τθ+q(λ), q ≥ 0). Then similarly to Proposition 4.6 of [2], we
have:

Eψ,λ[F(S Aλ(λ))|Aλ = θ ] =
ηψ ′(θ̄)

ψθ (η)
Eψ,λ


F(Sθ (λ))Lθ (λ)1{Lθ (λ)<∞}


=
ψ ′(θ̄)

ψθ (η)
Nψ


F(Sθ (λ))Lθ (λ)1{1≤Lθ (λ)<∞}


=
ψ ′(θ̄)

ψθ (η)
Nψθ


F(S0(ψθ (η)))L0(ψθ (η))1{1≤L0(ψθ (η))<∞}


=
ψ ′(θ̄)

ψθ (η)
Nψθ̄


F(S0(ψθ (η)))L0(ψθ (η))1{L0(ψθ (η))≥1}


=
ψ ′(θ̄)

ψθ (η)
Nψ


F(Sθ̄ (ψ(η − θ̄ + θ)))L θ̄ (ψ(η − θ̄ + θ))1

{L θ̄ (ψ(η−θ̄+θ))≥1}


=
(η − θ̄ + θ)ψ ′(θ̄)

ψθ̄ (η − θ̄ + θ)
Eψ,λ


F(Sθ̄ (ψ(η − θ̄ + θ)))L θ̄ (ψ(η − θ̄ + θ))


,

where we used Proposition 8.1 for the first equality; definition (27) of Pψ,λ and {Mλ ≥ 1} =

{Lθ (λ) ≥ 1} for the second; Proposition 4.1 for the third; Girsanov transformation (20) and
ψθ (θ̄ − θ) = 0 as well as the fact that the number of the leaves are finite under Nψθ̄ as ψθ̄ is
sub-critical for the fourth; Proposition 4.1 as well as the equality ψθ̄ (η− θ̄ + θ) = ψθ (η) for the
fifth and sixth equalities. �

8.2. An infinite CRT and its pruning

Kesten in [18] constructed an infinite Galton–Watson tree which arises as a (sub)-critical
Galton–Watson tree conditioned to be infinite; see also [9]. Inspired by the structure of the
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infinite Galton–Watson tree in [18], Abraham and Delmas constructed an infinite CRT T ∗ in [1]
which could be regarded as a (sub)critical Lévy CRT conditioned to have infinite height. It can
also be obtained as the genealogical tree associated with a CSBP with immigration, see [11].
Furthermore, in [1], motivated by the result on Galton–Watson trees in [9], Abraham and Delmas
showed that, under a mild condition on ψ , the law of the process {Tθ , θ ∈ Θ} after the ascension
time can be represented by another tree-valued process obtained by pruning T ∗. In the following
part of this work, we are devoted to proving that a similar result also holds for {τθ (λ), θ ∈ Θψ,λ

}

and the subtree process obtained from T ∗.
We first recall the construction of T ∗. Assume thatψ is critical satisfying (6). Notice that since

ψ is critical the event of infinite height is of measure zero. Before recalling its construction, we
stress that under Pψr , the root ∅ belongs to Br∞ and has mass ∆∅ = r . We identify the half real
line [0,+∞) with a real tree denoted by [[0,∞[[ with the null mass measure. We denote by dx
the length measure on [[0,∞[[. Let


i∈I ∗ δ(x∗

i ,T
∗,i ) be a Poisson point measure on [[0,∞[[×T

with intensity dx Nψ [d T ], with Nψ [d T ] defined in (13). The infinite CRT from [1] is defined
as:

T ∗
= [[∅,∞[[~i∈I ∗(T ∗,i , x∗

i ). (60)

We denote by P∗,ψ (d T ∗) the distribution of T ∗. Following [1] and similarly to the setting in
Section 2.10, we consider on T ∗ a mark process M T ∗

(dθ, dy) which is a Poisson point measure
on R+ × T ∗ with intensity:

1[∅,+∞)(θ)dθ

2βℓT ∗

(dy)+


i∈I ∗


x∈Br∞(T ∗,i )

∆xδx (dy)

 ,
with the identification of x∗

i as the root of T ∗,i . In particular nodes in [[∅,∞[[ with infinite degree
will be charged by M T ∗

. Then we define the pruned tree at time q as

T ∗
q = {x ∈ T ∗,M T ∗

([0, q] × [[∅, x[[) = 0}

with the induced metric, root ∅ and mass measure the restriction to T ∗
q of the mass measure mT ∗

.

Since {T ∗,i
} are all compact trees and for any q > 0,Pψ,∗


M T ∗

([0, q] × [[∅,∞[[) = 0


= 0,

then for any q > 0, T ∗
q is compact.

Given T ∗, let P ∗(dtdx) =


j∈J∗ δ(t∗j ,y
∗
j )

be a Poisson point measure on [0,∞) × T ∗ with

intensity dt mT ∗

(dx). For θ ≥ 0 and λ > 0, define the pruned sub-tree τ ∗
θ (λ) containing the root

and all the ancestors in T ∗
θ of the marked leaves of T ∗:

τ ∗

0 (λ) =


j∈J∗,t∗j ≤λ

[[∅, y∗

j ]] and τ ∗
θ (λ) = τ ∗

0 (λ)


T ∗
θ , λ > 0. (61)

We define τ ∗
θ (0) =


λ>0 τ

∗
θ (λ), and since ψ is critical, we have that τ ∗

0 (0) = [[∅,∞[[ which has
no leaf. Similarly to (31), we define the mass measure of τ ∗

θ (λ) by:

mτ∗
θ (λ) =

1
ψθ (η)


x∈Lf(τ∗

θ (λ))

δx , (62)

with η = ψ−1(λ) and the convention the mass measure is zero if λ = 0.
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We have a similar convergence result as Theorem 5.1.

Theorem 8.3. Assume that ψ is critical satisfying (6). Then for all θ ≥ 0, we have P∗,ψ -a.s.:

lim
λ→+∞

dGHP(T ∗
θ , τ

∗
θ (λ)) = 0.

Proof. According to [1], there exists a family of random continuous functions (H (a), a > 0)with
compact support such that: H (a) takes values in [0, a]; for all 0 < b < a and t ≥ 0, we have:

H (b)(t) = H (a)(C−1
b,a(t)) with Cb,a(s) =

 s

0
1{H (a)(r)≤b} dr;

and


T ∗
θ

(a)
, a > 0


under P∗,ψ is distributed as


T H (a)

, a > 0


. Following the proof of

Lemma 5.4, we get that for all a > 0,P∗,ψ a.s.

lim
λ→+∞

dc
GHP


T ∗
θ

(a)
,

τ ∗
θ (λ)

(a)
= 0.

This and the definition of dGHP give the result. �

Remark 8.4. Similarly to Theorem 3.3, according to the argument in Section 3.2.2 in [10], we
could reconstruct T ∗ from τ ∗

0 (λ). Recall (34). Conditionally on τ ∗

0 (λ), T ∗

0 is distributed as:

τ̃ ∗

0 (λ)~i∈I (T ∗

i , x∗

i )~x∈Br(τ̃∗

0 (λ))
(T ∗

x , x),

with:

• τ̃ ∗

0 (λ) as τ ∗

0 (λ) but with 0 as mass measure,
•


i∈I δ(x∗
i ,T ∗

i )
is a random Poisson point measure on τ̃ ∗

0 (λ) × T with intensity given by

ℓτ̃
∗

0 (λ)(dx)Nψη [d T ],
• conditionally on


i∈I δ(x∗

i ,T ∗
i )

, the trees


T ∗
x , x ∈ Br(τ̃ ∗

0 (λ))


are independent with T ∗
x

distributed as:
Γψ

κ(x),λ(dr) Pψηr [d T ].

8.3. Distribution of the sub-tree of the infinite CRT

Recall that Pψ,λ is defined before Lemma 4.3 and recall that τ̃0(λ) is defined in Theorem 3.3.
Note that τ̃0(λ) is under Pψ,λ, a Galton–Watson tree with distribution Pψ,λ. We shall now describe
the distribution of τ̃ ∗

0 (λ) under Pψ,λ, which can be seen as a Galton–Watson tree with distribution
Pψ,λ conditionally on the non extinction event.

Let K be an integer-valued random variable with generating function g(ψ,λ) defined by (32).
Since ψ is critical, we have g′

(ψ,λ)(1) = 1, which implies that g′

(ψ,λ) itself is the generating
function of an integer-valued random variable, say K ∗. Since g′

(ψ,λ)(0) = 0, K ∗ is a.s. positive.

Notice that the distribution of K ∗
+ 1 is the size-biased distribution of K . Let (τ k,∗, k ∈ N∗)

be independent random trees distributed as τ0(λ) under Pψ,λ (that is with distribution Pψ,λ and
mass measure given by (31)) independent of K ∗. We set:

G∗
= ∅~1≤k≤K ∗(τ k,∗,∅).
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Theorem 8.5. Assume that ψ is critical satisfying (6). Let λ > 0 and η = ψ−1(λ). Under
P∗,ψ , τ ∗

0 (λ) is a rooted real tree distributed as:

[[∅,∞[[~i∈I ∗

0
(G∗,i , x∗

i ),

where


i∈I ∗

0
δx∗

i
is a Poisson point measure on [[∅,∞[[ with intensity ψ ′(η)dx and conditionally

on this Poisson point measure, the real trees (G∗,i , i ∈ I ∗

0 ) are independent and distributed as
G∗.

Remark 8.6. If we do not consider the edge-lengths of τ ∗

0 (λ) and τ0(λ), then τ ∗

0 (λ) is just τ0(λ)

conditioned to be infinite; see Proposition 2 in [9] for related results on discrete Galton–Watson
trees.

Proof. By construction, thanks to (60), we have:

τ ∗

0 (λ) = [[∅,∞[[~i∈I ∗(τ ∗,i (λ), x∗

i ),

with τ ∗,i (λ) =


j∈J∗,t∗j ≤λ,x
∗
i 4y∗

j
[[x∗

i , y∗

j ]] distributed as τ0(λ) under Nψ [d T ]. The marked

Poisson point measure


i∈I ∗ 1{τ∗,i (λ)≠∅}δx∗
i

is a Poisson point measure on [[∅,∞[[ with intensity

Nψ [Mλ ≥ 1] dx = ψ ′(η) dx .
Let I ∗

0 = {i ∈ I ∗
; τ ∗,i (λ) ≠ ∅}. The sub-trees (τ ∗,i (λ), i ∈ I ∗

0 ) are independent and
distributed as τ0(λ) under Nψ [ · |Mλ ≥ 1]. Let N∅ be the degree of the root of τ0(λ). The theorem
will be proved once we check that N∅ under Nψ [ · |Mλ ≥ 1] is distributed as K ∗. Following the
proof of Lemma 6.7, we set h∗(u) = Nψ


uN∅1{N∅≥1}


, and we have for u ∈ [0, 1]:

h∗(u) = 2βNψ [Mλ ≥ 1]u +


(0,+∞)

rπ(dr)Eψr

uN∅1{N∅≥1}


= 2βηu +


(0,+∞)

rπ(dr)


e−rη(1−u)
− e−rη


.

Elementary computations yield g′

(ψ,λ)(u) = h∗(u)/h∗(1). Thus N∅ under Nψ [ · |Mλ ≥ 1] is
distributed as K ∗. This ends the proof. �

We give a similar representation formula for τ ∗
θ (λ). Let K ∗

θ be an integer-valued random
variable with generating function g′

θ/g′
θ (1), see definitions (48) and (32). Since g′

θ (0) = 0, K ∗
θ

is a.s. positive. Notice that the distribution of K ∗
θ + 1 is the size-biased distribution of Kθ with

generating function gθ . Let (τ k,∗
θ , k ∈ N∗) be independent random trees distributed as τθ (λ)

under Pψ,λ (that is with distribution Pψθ ,ψθ (η) and mass measure given by (31)) independent of
K ∗
θ . We set:

G∗
θ = ∅~1≤k≤K ∗

θ
(τ

k,∗
θ ,∅).

Theorem 8.7. Assume that ψ is critical satisfying (6). Let λ > 0 and η = ψ−1(λ). For θ > 0,
under P∗,ψ , τ ∗

θ (λ) is a rooted real tree distributed as:

[[∅, Eθ ]] ~i∈I ∗
θ
(G∗,i
θ , x∗

i ),

where

• [[∅, Eθ ]] is a real tree rooted at ∅ with no branching point and zero mass measure and such
that d(∅, Eθ ) is an exponential random variable with parameter ψ ′

θ (0),
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•


i∈I ∗
θ
δx∗

i
is an independent Poisson point measure on [[∅, Eθ ]] with intensity [ψ ′

θ (η) −

ψ ′
θ (0)] dx,

• conditionally on Eθ and


i∈I ∗
θ
δx∗

i
, the real trees (G∗,i , i ∈ I ∗

0 ) are independent and
distributed as G∗

θ .

Proof. Recall notations of the proof of Theorem 8.5. The distribution of d(∅, Eθ ) is given in [1].
By construction, thanks to (60), we have:

τ ∗

0 (λ) = [[∅, Eθ ]] ~i∈I ∗(τ
∗,i
θ (λ), x∗

i ),

with τ ∗,i
θ (λ) = τ ∗,i (λ)


T ∗
θ . Let N∅,θ (resp. N ′

∅
) be the degree of the root of τθ (λ) (resp.

τ0(ψθ (η))). Notice that τ ∗,i
θ (λ) is distributed as τθ (λ) under Nψ [d T , N∅ ≥ 1] that is as τ0(ψθ

(η)) under Nψθ [d T ]. The rate at which sub-trees are grafted on the spine [[∅, Eθ ]] is given by:

Nψθ

N ′

∅
≥ 1


= ψ ′

θ (η)− ψ ′
θ (0).

Then to end the proof, it is enough to check that N ′

∅
under Nψθ [ · | N∅ ≥ 1] is distributed as K ∗

θ .
Elementary computations give:

h∗
θ (u) = Nψθ


uN ′

∅1{N ′

∅
≥1}


= ψθ (η)− ψ ′

θ (η(1 − u)),

so that h∗
θ (u)/h∗

θ (1) = g′
θ (u)/g′

θ (1). Thus, N ′

∅
under Nψθ [ · | N∅ ≥ 1] is distributed as K ∗

θ . �

We also provide a recursive distribution of the tree τ ∗
θ (λ). Let aθ (λ) = ψ ′

θ (0)/ψ
′
θ (η) =

1 − g′
θ (1).

Corollary 8.8. Assume that ψ is critical satisfying (6). Let λ > 0 and η = ψ−1(λ). For θ > 0,
under P∗,ψ , τ ∗

θ (λ) is a rooted real tree distributed as [[∅, Eθ (λ)]] with probability aθ (λ) and with
probability 1 − aθ (λ) as:

[[∅, Eθ (λ)]] ~0≤i≤1(G∗,i
θ , Eθ (λ)),

where

• [[∅, Eθ (λ)]] is a real tree rooted at ∅ with no branching point and zero mass measure and such
that d(∅, Eθ (λ)) is an exponential random variable with parameter ψ ′

θ (η),

• conditionally on Eλ(θ),G∗,0
θ and G∗,1 are independent and distributed respectively as G∗

θ and
τ ∗
θ (λ).

Notice that the number of children of Eθ (λ) has generating function 1 − g′
θ (1)+ ug′

θ (u).

Proof. This is a direct consequence of Theorem 8.7, when considering the decomposition of
τ ∗
θ (λ) with respect to the lowest branching point and using the branching property. Notice that

there is no such branching point (and then τ ∗
θ (λ) is reduced to a spine) if the point measure

i∈I ∗
θ
δx∗

i
defined in Theorem 8.7 is zero. This happens with probability aθ (λ). �

Remark 8.9. Notice that τ ∗
θ (λ) could be obtained from τ ∗

0 (λ) by a similar pruning procedure as
the one defined in Section 6.1.
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8.4. Sub-tree process from the ascension time

We prove in this subsection that the ascension process can be represented using the process
obtained by pruning the infinite CRT.

We first need an absolute continuity property between the laws of the processes (τθ+q , q ≥ 0)
and (τ ∗

θ+q , q ≥ 0).

Proposition 8.10. Assume that ψ is a critical branching mechanism satisfying (6). For θ >

0, λ > 0 and non-negative measurable functionals F, we have:

ηψ ′(θ)

ψθ (η)
Eψ,λ[F(τθ+q(λ), q ≥ 0)Lθ (λ)] = E∗,ψ

[F(τ ∗
θ+q(λ), q ≥ 0)]. (63)

Proof. We denote S ∗
θ (λ) = (τ ∗

θ+q(λ), q ≥ 0). Recall that for θ ∈ Θψ,λ,Sθ (λ) = (τθ+q(λ),

q ≥ 0).
By considering Eψ,λ [F(Sθ )|τθ (λ)] instead of F(Sθ (λ)) and E∗,ψ


F(S ∗

θ (λ))|τ
∗
θ (λ)


instead

of F(S ∗
θ (λ)), one can assume that F is a measurable functional defined on T. Since the life

times of all individuals in τθ (λ) and τ ∗
θ (λ) have the same distribution, we only need to consider

the distribution of the number of offsprings. This is equivalent to considering the corresponding
discrete (or size-biased) Galton–Watson tree described below.

Let G be a discrete sub-critical Galton–Watson tree starting with one root and with g as
the generating function of the reproduction law. Let L be the number of leaves of G. We have
E[L] = g(0)/[1 − g′(1)]. Let G∗ be distributed as the size-biased distribution of G with respect
to L , that is for any non-negative measurable function:

E[F(G∗)] =
E[L F(G)]

E[L]
·

The distribution of G∗ is characterized as follows:

G∗ (d)
={∅} ~1≤i<N (Gi ,∅)~ (G̃∗,∅)

where N has generating function u → 1 − g′(1) + ug′(u) (N is the number of children of the
root, if N = 0, then G∗ is reduced to the root), the trees (G∗

i ) are i.i.d., independent of N , and
distributed as G, and G̃∗ is a tree independent of the previous variables and distributed as G∗. This
result can be proved inductively by decomposing the tree with respect to the children of the root.

The result follows then directly from this description. �

Recall that the function θ → θ̄ is defined by (53). If θλ ∈ Θ , then we deduce from (54) that:

θ̄λ − θλ = η.

In particular the function f defined by:

fλ(r) =
1
η


1 −

ψ ′(r)

ψ ′(r̄)


1{r∈(θλ,0)}

is a probability density. The corresponding cumulative distribution is Fλ defined on [θλ, 0) by:

Fλ(r) = 1 −
r̄ − r

η
= Pψ,λ(Aλ < r).
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Proposition 8.11. Assume that ψ is critical satisfying (6). Let λ > 0 and η = ψ−1(λ). Assume
that θλ ∈ Θ and θλ < 0. Under P∗,ψ , let U be a random variable with density fλ and inde-
pendent of S ∗

0 (λ). Recall the notation Ū = ψ−1(ψ(U )). Then the process (τAλ+q(λ), q ≥ 0)

under Pψ,λ has the same distribution as the process

(τ ∗

Ū+q
(ψ (ηFλ(U ))) , q ≥ 0


under P∗,ψ .

Remark 8.12. This proposition can be viewed as a counterpart on Galton–Watson real trees of
Corollary 8.2 in [1]. It implies that the law of {τAλ+θ (λ) : θ ≥ 0} can be represented in terms of
{τ ∗
θ (λ), θ ≥ 0}. Similar results for discrete Galton–Watson tree-valued processes have also been

explored in [9,2] for different pruning procedures.

Proof. Using Corollary 8.2, with ηθ = η − θ̄ + θ , we get for any non-negative measurable
functionals F ,

Eψ,λ[F(S Aλ(λ))|Aλ = θ ] =
ηθψ

′(θ̄)

ψθ̄ (ηθ )
Eψ,λ


F(Sθ̄ (ψ(ηθ )))L θ̄ (ψ(ηθ ))


= E∗,ψ

[F(S ∗

θ̄
(ψ(ηθ )))].

Then by (56) and ηθ = ηFλ(θ), we have

Eψ,λ[F(S Aλ(λ))] =

 0

θλ

Eψ,λ[F(S Aλ(λ))|Aλ = θ ] Pψ,λ(Aλ ∈ dθ)

=

 0

θλ

E∗,ψ
[F(S ∗

θ̄
(ψ(ηθ )))] fλ(θ) dθ

=

 0

θλ

E∗,ψ
[F(S ∗

θ̄
(ψ(ηFλ(θ))))] fλ(θ) dθ

= E∗λ
[F(S ∗

Ū
(ψ(ηFλ(U ))))].

We have completed the proof. �
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