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Abstract. We formalize and study the problem of optimal allocation strategies for a
(perfect) vaccine in the infinite-dimensional SIS model. The question may be viewed as a
bi-objective minimization problem, where one tries to minimize simultaneously the cost
of the vaccination, and a loss that may be either the effective reproduction number, or
the proportion of the infected population in the endemic state. We prove the existence of
Pareto optimal strategies, describe the corresponding Pareto frontier in both cases, and
study its convexity and stability properties. We also show that vaccinating according to
the profile of the endemic state is a critical allocation, in the sense that, if the initial
reproduction number is larger than 1, then this vaccination strategy yields an effective
reproduction number equal to 1.

1. Introduction

1.1. Motivation. Increasing the prevalence of immunity from contagious disease in a pop-
ulation limits the circulation of the infection among the individuals who lack immunity.
This so-called “herd effect” plays a fundamental role in epidemiology as it has had a major
impact in the eradication of smallpox and rinderpest or the near eradication of poliomyeli-
tis; see [18]. Targeted vaccination strategies, based on the heterogeneity of the infection
spreading in the population, are designed to increase the level of immunity of the population
with a limited quantity of vaccine. These strategies rely on identifying groups of individuals
that should be vaccinated in priority in order to slow down or eradicate the disease.

In this article, we establish a theoretical framework to study targeted vaccination strate-
gies for the deterministic infinite-dimensional SIS model introduced in [7], that encompasses
as particular cases the SIS model on graphs or stochastic block models. In the compan-
ion papers [8, 9], we provide a series of general and specific examples that complete and
illustrate the present work; see Section 1.5 for more detail.

1.2. Herd immunity and targeted vaccination strategies. Let us start by recallling
a few classical results in mathematical epidemiology; we refer to Keeling and Rohani’s
book [32] for an extensive introduction to this field, including details on the various classical
models (SIS, SIR, etc.)

In an homogeneous population, the basic reproduction number of an infection, denoted
by R0, is defined as the number of secondary cases one individual generates on average
over the course of its infectious period, in an otherwise uninfected (susceptible) population.
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This number plays a fundamental role in epidemiology as it provides a scale to measure
how difficult an infectious disease is to control. Intuitively, the disease should die out
if R0 < 1 and invade the population if R0 > 1. For many classical mathematical models of
epidemiology, such as SIS or S(E)IR, this intuition can be made rigorous: the quantity R0

may be computed from the parameters of the model, and the threshold phenomenon occurs.
AssumingR0 > 1 in an homogeneous population, suppose now that only a proportion ηuni

of the population can catch the disease, the remainder being immunized. An infected
individual will now only generate ηuniR0 new cases, since a proportion (1−ηuni) of previously
successful infections will be prevented. Therefore, the new effective reproduction number
is equal to Re(ηuni) = ηuniR0. This fact led to the recognition by Smith in 1970 [43] and
Dietz in 1975 [11] of a simple threshold theorem: the incidence of an infection declines if
the proportion of non-immune individuals is reduced below ηuni

crit = 1/R0. This effect is
called herd immunity, and the corresponding percentage 1− ηuni

crit of people that have to be
vaccinated is called herd immunity threshold ; see for instance [44, 45].

It is of course unrealistic to depict human populations as homogeneous, and many gen-
eralizations of the homogeneous model have been studied; see [32, Chapter 3] for examples
and further references. For most of these generalizations, it is still possible to define a mean-
ingful reproduction number R0, as the number of secondary cases generated by a typical
infectious individual when all other individuals are uninfected; see [10]. After a vaccina-
tion campaign, let the vaccination strategy η denote the (non necessarily homogeneous)
proportion of the non-vaccinated population, and let the effective reproduction number
Re(η) denote the corresponding reproduction number of the non-vaccinated population.
The choice of η naturally raises a question that may be expressed as the following informal
optimization problem:{

Minimize: the quantity of vaccine to administrate
subject to: herd immunity is reached, that is, Re ≤ 1.

If there is not enough vaccine available, one may also be interested in the closely related
problem: {

Minimize: the effective reproduction number Re
subject to: a given quantity of available vaccine.

Interestingly enough, the strategy ηuni
crit which consists in delivering the vaccine uniformly

to the population, without taking inhomogeneity into account, leaving a proportion ηuni
crit =

1/R0 of the population unprotected is admissible (in fact critical) for the optimization
problem (1.2) in the sense that Re(ηuni

crit) = 1.
However, herd immunity may be achieved even if the proportion of unprotected people

is greater than 1/R0, by targeting certain group(s) within the population; see Figure 3.3
in [32]. For example, the discussion of vaccination control of gonorrhea in [26, Section 4.5]
suggests that it may be better to prioritize the vaccination of people that have already
caught the disease: this strategy, guided by the equilibrium state, will be denoted by ηequi

and will be defined formally below. Let us mention here an observation in the same vein
made by Britton, Ball and Trapman in [4]. Recall that in the S(E)IR model, immunity
can be obtained through infection. Using parameters from real-world data, these authors
noticed that the disease-induced herd immunity level can, for some models, be substantially
lower than the classical herd immunity threshold 1 − 1/R0. This can be reformulated in
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term of targeted vaccination strategies that prioritize the individuals that are more likely to
get or stay infected in a S(E)IR epidemic may perfrom better than the uniform allocation
of vaccine.

The main goal of this paper is two-fold: formalize the optimization problems (1.2)
and (1.2) for a particular infinite dimensional SIS model, recasting them more generally
as a bi-objective optimization problem; and give existence and properties of solutions to
this bi-objective problem. We will also consider a closely related problem, where one wishes
to minimize the size of the epidemy rather than the reproduction number. We will in passing
provide insight on the efficiency of classical vaccination strategies such as ηuni

crit or ηequi.

1.3. Literature on targeted vaccination strategies. Targeted vaccination problems
have mainly been studied using two different mathematical frameworks.

1.3.1. On meta-populations models. Problems (1.2) and (1.2) have been examined in depth
for deterministic meta-population models, that is, models in which an heterogeneous pop-
ulation is stratified into a finite number of homogeneous sub-populations (by age group,
gender, . . . ). Such models are specified by choosing the sizes of the subpopulations and
quantifying the degree of interactions between them, in terms of various mixing parameters.
In this setting, R0 can often be identified as the spectral radius of a next-generation matrix
whose coefficients depend on the subpopulation sizes, and the mixing parameters. It turns
out that the next generation matrices take similar forms for many dynamics (SIS, SIR,
SEIR,...); see the discussion in [27, Section 10]. Vaccination strategies are defined as the
levels at which each sub-population is immunized. After vaccination, the next-generation
matrix is changed and its new spectral radius corresponds to the effective reproduction
number Re.

Problem (1.2) has been studied in this setting by Hill and Longini [27]. These authors
study the geometric properties of the so-called threshold hypersurface, that is the vaccina-
tion allocations for which Re = 1. They also compute the vaccination belonging to this
surface with minimal cost for an Influenza A model. Making structural assumptions on
the mixing parameters, Poghotayan, Feng, Glasser and Hill in [40] derive an analytical for-
mula for the solutions of Problem (1.2) in two-groups population and obtained interesting
properties in higher dimension such as the convexity of the function Re. Many papers also
contain numerical studies of the optimization problems (1.2) and (1.2) on real-world data
using gradient techniques or similar methods; see for example [21, 17, 12, 16, 49].

Finally, the effective reproduction number is not the only reasonable way of quantifying
a population’s vulnerability to an infection. For a SIR infection for example, the proportion
of individuals that eventually catch (and recover from) the disease, often referred to as the
attack rate, is broadly used. We refer to [12, 13] for further discussion on this topic.

1.3.2. On networks. Whereas the previously cited works typically consider a small number
of subpopulations, often with a “dense” structure of interaction (every subpopulation may
directly infect all the others), other research communities have looked into a similar problem
for graphs. Indeed, given a (large), possibly random graph, with epidemic dynamics on it,
and supposing that we are able to suppress vertices by vaccinating, one may ask for the
best way to choose the vertices to remove.

The importance of the spectral radius of the network has been rapidly identified as its
value determines if the epidemic dies out quickly or survives for a long time [20, 41]. Since
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Van Mieghem et al. proved in [47] that the problem of minimizing spectral radius of a graph
by removing a given number of vertices is NP-complete, and therefore unfeasible in practice.
Many computational heuristics have been put forward to give approximate solutions; see
for example [42] and references therein.

1.4. Main results. The differential equations governing the epidemic dynamics in meta-
population SIS models were developed by Lajmanovich and Yorke in their pioneer pa-
per [33]. In [7], we introduced a natural generalization of their equation, which can also
be viewed as the limit equation of the stochastic SIS dynamic on network, in an infinite-
dimensional space Ω, where x ∈ Ω represents a feature and the probability measure µ(dx)
represents the fraction of the population with feature x.

1.4.1. Regularity of the effective reproduction function Re. We define the function Re in
a general operator framework, which we call the kernel model. Let k : Ω × Ω → R+ be
some measurable non-negative kernel defined on a probability space (Ω,F , µ) and Tk the
corresponding integral operator:

Tk(h)(x) =

∫
Ω
k(x, y)h(y)µ(dy).

In the setting of [7] (see in particular Equation (11) therein), Tk is the so-called next
generation operator, where the kernel k is defined in terms of a transmission rate kernel
k(x, y) and a recovery rate function γ by the product k(x, y) = k(x, y)/γ(y). This setting
and the necessary technical assumptions on k and γ are formalized in Assumption 2 on
page 12.

Under a technical integrability assumption on the kernel k (formalized on page 11 as
Assumption 1), the operator Tk is compact from Lp(Ω, µ) to itself for some p ∈ (1,+∞).
The reproduction number R0 is then the spectral radius of Tk.

Following [7, Section 5], we represent a vaccination strategy by a function η : Ω →
[0, 1], where η(x) represents the fraction of non-vaccinated individuals with feature x;
the effective reproduction number associated to η is then given by

Re(η) = ρ(Tkη),

where ρ stands for the spectral radius and kη stands for the kernel (kη)(x, y) = k(x, y)η(y).
We will see below how to define similarly the proportion of infected population at the
endemic equilibrium; this quantity also depends on the vaccination and will be denoted
by I(η). A vaccination strategy η is called critical if it achieves the herd immunity threshold,
that is Re(η) ≤ 1, or equivalently I(η) = 0.

In particular, the “strategy” that consists in vaccinating no one corresponds to η ≡ 1,
and of course Re(1) = R0. As the spectral radius is positively homogeneous, we also get,
when R0 ≥ 1, that the uniform strategy that corresponds to the constant function:

ηuni
crit ≡

1

R0

is critical, as Re(ηuni
crit) = 1, and thus achieves the herd immunity threshold. This result is

consistent with the homogeneous population results given in Section 1.2

Let ∆ be the set of strategies, that is the set of [0, 1]-valued functions defined on Ω.
The usual technique to obtain the existence of solutions to optimization problems like (1.2)
or (1.2) is to prove that the function Re is continuous with respect to a topology for which
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the set of strategies ∆ is compact. It is natural to try and prove this continuity by writing Re
as the composition of the spectral radius ρ and the map η 7→ Tkη. The spectral radius is
indeed continuous at compact operators if we endow the set of bounded operators with
the operator norm topology; see [38, 5]. However, this would require choosing the uniform
topology on ∆, which would then not be compact.

We therefore endow ∆ with the weak topology, see Section 3.1.1, for which compactness
holds; see Lemma 3.1. This forces us to equip the space of bounded operators with the
strong topology, for which the spectral radius is in general not continuous; see [31, p. 431].
However, the family of operators (Tkη, η ∈ ∆) satisfies a nice property called collective
compactness which enables us to recover continuity, using results by Anselone [1]. This
leads to the following result, proved in Theorem 3.5 below. We recall that Assumption 1,
formulated on page 11, provides an integrability condition on the kernel k.

Theorem 1.1 (Continuity of the spectral radius). Under Assumption 1 on the kernel k,
the function Re : ∆→ R+ is continuous with respect to the weak topology on ∆.

In fact, we also prove the continuity of the spectrum with respect to the Hausdorff
distance on the set of compact subsets of C. We shall write Re[k] to stress the dependence
of the function Re in the kernel k. In Proposition 3.6, we prove the stability of Re, by
giving natural sufficient conditions on a sequence of kernels (kn, n ∈ N) converging to k
which imply that Re[kn] converges uniformly towards Re[k]. This result has both theoretical
and practical interest: the next-generation operator is unknown in practice, and has to be
estimated from data. Thanks to this result, the value of Re computed from the estimated
operator should converge to the true value.

We also prove the convexity of Re when k is a symmetric positive semi-definite kernel (or
even symmetrisable into a positive semi-definite kernel); see Proposition 3.8. This answers
partially a conjecture formulated by Hill and Longini in finite dimension [27, Conjecture 8.1];
see Section 1.5 for further results in this direction. Finally, we give in Section 5.5 conditions
on two kernels k and k′ to define the same function Re on ∆ (in the terminology of linear
algebra, this correspond to identify all the preservers of the map k 7→ Re[k]). In finite
dimension, these conditions essentially state that the kernels (encoded as matrices in this
case) are diagonally similar up to transposition; see Hartfiel and Loewy [24].

1.4.2. On the maximal endemic equilibrium in the SIS model. The parameters of the SIS
model considered in [7] are the probability state space (Ω,F , µ), the transmission ker-
nel k : Ω × Ω → R+ and the recovery rate γ : Ω → R∗+; we shall [(Ω,F , µ), k, γ] for the
parameters or [k, γ] in a more compact form when there is no ambiguity on the probability
state space. We suppose in the following that the technical Assumption 2, formulated on
page 12, holds, so that the SIS dynamical evolution may be defined.

This evolution is encoded as u = (ut, t ∈ R+), where ut ∈ ∆ for all t and ut(x) represents
the probability of an individual with feature x ∈ Ω to be infected at time t ≥ 0, and follows
the equation:

(1) ∂tut = F (ut) for t ∈ R+, where F (g) = (1− g)Tk(g)− γg for g ∈ ∆,

with an initial condition u0 ∈ ∆ and with Tk the integral operator corresponding to the
kernel k acting on the set of bounded measurable functions. It is proved in [7] that such a so-
lution u exists and is unique under Assumption 2 on the model parameters [(Ω,F , µ), k, γ].
An equilibrium of (1) is a function g ∈ ∆ such that F (g) = 0. According to [7], there
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exists a maximal equilibrium g, i.e., an equilibrium such that all other equilibria h ∈ ∆
are dominated by g: h ≤ g. Furthermore, we have R0 ≤ 1 if and only if g = 0. In the
connected case (for example if k > 0), then 0 and g are the only equilibria; furthermore g
is the long-time proportion of infected population: limt→+∞ ut = g as soon as the initial
condition is non-zero; see [7, Theorem 4.14].

As hinted in [26, Section 4.5] for vaccination control of gonorrhea, it is interesting to
consider vaccinating people with feature x with probability g(x); this corresponds to the
strategy based on the maximal equilibrium:

ηequi = 1− g.

The following result entails that this strategy is critical and thus achieves the herd immunity
threshold; see Proposition 7.2. Recall that Assumption 2, formulated page 12, provides
technical conditions on the parameters k and γ of the SIS model.

Theorem 1.2 (The maximal equilibrium yields a critical vaccination). Suppose Assump-
tion 2 holds. If R0 ≥ 1, then Re(ηequi) = 1.

Finally, let us describe informally another consequence of Proposition 7.2. We were
able to prove in [7, Theorem 4.14] that, in the connected case, if R0 > 1, the disease-free
equilibrium u = 0 is unstable. Proposition 7.2 gives spectral information on the formal
linearization of the dynamics (1) near any equilibrium h; in particular if h 6= g then h is
linearly unstable.

1.4.3. Regularity of the total proportion of infected population function I. According to [7,
Section 5.3.], the SIS equation with vaccination strategy η is given by (1), where F is
replaced by Fη defined by:

Fη(g) = (1− g)Tkη(g)− γg.
and ut now describes the proportion of infected among the non-vaccinated population. We
denote by gη the corresponding maximal equilibrium (thus considering η ≡ 1 gives g = g1),
so that Fη(gη) = 0. Since the probability for an individual x to be infected in the stationary
regime is gη(x) η(x), the fraction of infected individuals at equilibrium, I(η), is thus given
by:

I(η) =

∫
Ω
gη η dµ =

∫
Ω
gη(x) η(x)µ(dx).

As mentioned above, for a SIR model, distributing vaccine so as to minimize the attack rate
is at least as natural as trying to minimize the reproduction number, and this problem has
been studied for example in [12, 13]. In the SIS model the quantity I appears as a natural
analogue of the attack rate, and is therefore a natural optimization objective.

We obtain results on I that are very similar to the ones on Re. Recall that ∆ is endowed
with the weak topology of Lp(Ω, µ) with p ∈ (1,+∞). Assumption 2 on page 12, made about
the model parameters [(Ω,F , µ), k, γ], ensures that the infinite-dimensional SIS model,
given by equation (1), is well defined. The next theorem corresponds to Theorem 3.12.

Theorem 1.3 (Continuity of the equilibrium infection size). Under Assumption 2, the
function I : ∆→ R+ is continuous with respect to the weak topology on ∆.

In Proposition 3.13, we prove the stability of I, by giving natural sufficient condition
on a sequence of kernels and functions ((kn, γn), n ∈ N) converging to (k, γ) which imply
that I[kn, γn] converges uniformly towards I[k, γ]. We also prove that the loss functions L =
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Re and L = I are both non-decreasing (η ≤ η′ implies L(η) ≤ L(η′)), and sub-homogeneous
(L(λη) ≤ λL(η) for all λ ∈ [0, 1]); see Propositions 3.4 and 3.11.

1.4.4. Optimizing the protection of the population. Consider a cost function C : ∆→ [0, 1]
which measures the cost for the society of a vaccination strategy (production and diffusion).
Since the vaccination strategy η represents the non-vaccinated population, the cost func-
tion C should be decreasing (roughly speaking η < η′ implies C(η) > C(η′); see Definition
4.2). We shall also assume that C is continuous with respect to the weak topology on ∆,
and that doing nothing costs nothing, that is, C(1) = 0. A simple and natural choice is the
cost Cuni given by the overall proportion of vaccinated individuals:

Cuni(η) =

∫
Ω

(1− η) dµ = 1−
∫

Ω
η dµ.

See Section 4.1 for comments on other examples of cost functions.
Our problem may now be seen as a bi-objective minimization problem: we wish to mini-

mize both the loss L(η) and the cost C(η), subject to η ∈ ∆, with the loss function L being
either Re or I. Following classical terminology for multi-objective optimisation problems
[37], we call a strategy η? Pareto optimal if no other strategy is strictly better:

C(η) < C(η?) =⇒ L(η) > L(η?) and L(η) < L(η?) =⇒ C(η) > C(η?).

The set of Pareto optimal strategies will be denoted by PL, and we define the Pareto frontier
as the set of Pareto optimal outcomes:

FL = {(C(η?),L(η?)) : η? ∈ PL}.
Notice that, with this definition, the Pareto frontier is empty when there is no Pareto
optimal strategy.

For any strategy η, the cost and loss of η vary between the following bounds:

0 = C(1) ≤ C(η) ≤ C(0) = cost of vaccinating the whole population,
0 = L(0) ≤ L(η) ≤ L(1) = loss incurred in the absence of vaccination.

Let L? be the optimal loss function and C?L the optimal cost function defined by:

L?(c) = inf {L(η) : η ∈ ∆, C(η) ≤ c } for c ∈ [0, C(0)],

C?L(`) = inf {C(η) : η ∈ ∆, L(η) ≤ ` } for ` ∈ [0,L(1)].

Proposition 4.7 and Theorem 4.8 states that the Pareto frontier is non empty and has a
continuous parametrization, and that the functions L? and C?L are minima and not infima;
see Figure 1(b) below for a visualization of the frontier. Assumption 3 on page 21, gives
general regularity condition on the cost and loss functions, which are satisfied for the cost
Cuni and the loss Re and I.

Theorem 1.4 (Properties of the Pareto frontier). Under Assumption 3, the function C?L is
continuous and decreasing on [0,L(1)], the function L? is continuous on [0, C(0)] decreasing
on [0, C?L(0)] and zero on [C?L(0), C(0)]; furthermore the Pareto frontier is continuous and:

FL = {(c,L?(c)) : c ∈ [0, C?L(0)]} = {(C?L(`), `) : ` ∈ [0,L(1)]}.
We also establish that PL is compact in ∆ for the weak topology in Corollary 4.9; and

that the Pareto frontier is convex if C and L are convex in Proposition 4.14. We study in
Proposition 4.10 the stability of the Pareto frontier and the set of Pareto optima when the
parameters vary.
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Section 6 is devoted to the characterization of the quantity C?Re
(0), when the cost is the

uniform cost, which is the minimal cost which ensures that Re = 0, that is, no infection
occurs at all. In the case of a finite state space Ω, and when the support of k is symmetric,
this is related to maximal independent sets of the graph with vertices Ω and edges given
by the support of k; see Proposition 6.3.

Remark 1.5 (Eradication strategies do not depend on the loss). In [7], we proved that, for
all η ∈ ∆, the equilibrium infection size I(η) is non zero if and only if Re(η) > 1. First, this
implies that PI is a subset of {η ∈ ∆ : Re(η) ≥ 1}. Secondly, a vaccination strategy η ∈ ∆
is Pareto optimal for the objectives (Re, C) and satisfies Re(η) = 1 if and only if η is Pareto
optimal for the objectives (I, C) and satisfies I(η) = 0:

(2) η ∈ PRe and Re(η) = 1 ⇐⇒ η ∈ PI and I(η) = 0.

Remark 1.6 (Minimal cost of eradication). Assume R0 > 1. The equivalence (2) implies
directly that:

C?Re
(1) = C?I(0).

Thus, this latter quantity can be seen as the minimal cost (or minimum percentage of people
that shall be vaccinated) required to eradicate the infection. Recall the critical vaccination
strategies ηuni

crit ≡ 1/R0 and ηequi = 1−g (as Re(ηuni
crit) = Re(η

equi) = 1). Consider the simple
affine cost C = Cuni given by (31). Since C(ηuni

crit) = 1−1/R0 and C(ηequi) =
∫

Ω gdµ = I(1),
we obtain the following upper bounds of the minimal cost required to eradicate the infection:

C?Re
(1) = C?I(0) ≤ min

(
1− 1

R0
,

∫
Ω
gdµ

)
.

Let us illustrate some of our results on an example, which will be discussed in details in
a forthcoming companion paper.

Example 1.7 (Multipartite graphon). Graphs that can be colored with ` colors, so that no
two endpoints of an edge have the same color are known as `-partite graphs. In a biological
setting, this corresponds to a population of ` groups, such that individuals in a group can
not contaminate individuals of the same group. Let us generalize and assume there is an
infinity of groups, ` = ∞ of respective size (2−n, n ∈ N∗) and that the next generation
kernel k is equal to the constant κ > 0 between individuals of different groups and equal
to 0 between individuals of the same group (so there is no intra-group contamination). We
can represent this model by using a state space Ω = [0, 1], endowed with µ the Lebesgue
measure on Ω, the group n being represented by the interval In = [1 − 2−n+1, 1 − 2−n)
for n ∈ N∗. The kernel k is then given by k = κ(1 −∑n∈N∗ 1In×In); it is represented in
Figure 1(a).

Consider the loss L = Re and the cost C = Cuni giving the overall proportion of vacci-
nated individuals. Based on the results of [15, 46], we prove in [8] that the vaccination strate-
gies 1[0,1−c], with cost C(1[0,1−c]) = c ∈ [0, 1/2], are Pareto optimal. Remembering that the
natural definition of the degree in a continuous graph is given by deg(x) =

∫
Ω k(x, y)µ(dy),

we note that the vaccination strategy 1[0,1−c] corresponds to vaccinating individuals with
feature x ∈ (1−c, 1], that is, the individuals with the highest degree. In Figure 1(b), the cor-
responding Pareto frontier is drawn as the solid red line; the colored zone corresponds to all
the possible values of (C(η), Re(η)), where η ranges over ∆; the dotted line corresponds to
the outcome of the uniform vaccination strategy η ≡ c, that is (C(η), Re(η)) = (c, (1−c)R0)
where c ranges over [0, 1]; and the dashed curve corresponds to the outcome of the worst
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(a) Grayplot of the kernel k, with Ω = [0, 1]
and µ the Lebesgue measure (k is equal to the
constant κ > 0 on the black zone and to 0 on

the white zone).

0 C?
Re

(0) = 1/2 1
0

R0

C

R
e

(b) The Pareto frontier in solid red line
compared to the cost and loss of the uniform

vaccinations in dotted line and the worst
vaccination strategy in dashed line.

Figure 1. Example of optimization with L = Re.

vaccination strategies (for this model, those strategies correspond to the uniform vaccina-
tion of the nodes with the updated lower degree; see [8]). We conclude the discussion of
this example with a series of remarks:

• The value C?Re
(0) = 1/2 is the Lebesgue measure of the maximal independent set I1;

see Proposition 6.3.
• The Pareto frontier is not convex, thus the function Re is not convex on ∆.
• The path (1[0,1−c], c ∈ [0, 1/2]) is an increasing continuous (for the topology of the
simple convergence and thus the L1(µ) topology) path of Pareto optima which gives
a complete parametrization the Pareto frontier. The latter has been computed nu-
merically using the power iteration method. In particular, we obtained the following
value: R0 ' 0.697κ.

1.5. On the companion papers. In two companion papers, we illustrate the theoretical
framework exposed here and answer through examples some natural questions on the Pareto
optima and Pareto frontier.

The paper [9] is dedicated to the complete treatment of the two groups model, Ω = {1, 2},
when L = Re and C = Cuni is the overall proportion of vaccinated individuals. We also give
some partial results when the loss is L = I. Despite its apparent simplicity, the derivation
of formulae for the Pareto optimal strategies is non trivial. In addition, this model is rich
enough to give examples of many different behaviours.

• On the critical strategies ηuni
crit and ηequi. Depending on the parameters, the strate-

gies ηuni
crit and/or η

equi may or may not be Pareto optimal, and the cost C(ηuni
crit) may

be larger than, smaller than or equal to C(ηequi).
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• Vaccinating people with highest contacts. The intuitive idea of vaccinating the in-
dividuals with the highest number of contacts may or may not provide the optimal
strategies, depending on the parameters.
• Connectedness of the set of Pareto optima. The set PRe of optimal strategies for
the loss Re may be path-connected and ordered, so that there is a continuous
parametrization the Pareto frontier. However, for other parameters, this set is not
connected, and there is no continuous (for the topology of the simple convergence
and thus the L1(µ) topology) parametrization the Pareto frontier.
• Stability of the set of Pareto optima for the loss function Re. The extended Pareto
frontier {(c,Re[k]?(c)) : c ∈ [0, C(0)]} is a continuous function of the next genera-
tion matrix k; however the set of Pareto optima presents some discontinuities.
• Dependence of the Pareto optimum on the choice of the loss function. For examples
where R0 > 1, the optimal strategies for minimizing I and Re may coincide, so
that PI = PRe ∩{η ∈ ∆ : Re(η) ≥ 1}, or may be entirely different, PI ∩PRe ∩{η ∈
∆ : 1 < Re(η) < R0} = ∅, depending on the parameters.

In [8], with the uniform cost C = Cuni, we study kernels in infinite dimension for which
it is possible to derive the Pareto optimal strategies. In some natural examples such as
the configuration model (that is Tk/γ has rank one), which corresponds to proportionate
mixing in finite dimensional models, we prove that PI = PRe ∩ {η ∈ ∆ : Re(η) ≥ 1};
and C(ηequi) ≤ C(ηuni

crit), that is: the critical vaccination given by the maximal equilibrium
is more efficient than the critical uniform vaccination. This inequality is strict in some
cases, and is in the spirit of the observation made in [4] that we discussed at the end of
Section 1.3.1. In the configuration model, we prove that the function Re is convex. We also
provide non-trivial infinite dimensional examples for which the critical strategies ηuni

crit and
ηequi are equal and are Pareto optimal for the loss Re: C(ηuni

crit) = C(ηequi) = C?Re
(1).

1.6. Structure of the paper. Section 2 is dedicated to the presentation of the vaccination
model and the various assumptions on the parameters. We also define properly the so-called
loss functions Re and I. Their regularity is established in Section 3. We present the multi-
objective optimization problem in Section 4 under general condition on the loss function
L and cost function C and prove the results on the Pareto frontier. In Section 5, we
discuss the equivalent representation of models with different parameters. In particular,
we study the transformations on the next-generation operator k that keep the function Re
unchanged, with some more detailed results in the finite dimensional case. Section 6 is
devoted to the characterization of the Pareto-optimal vaccination strategies that prevent
any contamination and the computation of C?Re

(0). Proofs of a few technical results are
gathered Section 7.

2. Setting and notation

2.1. Spaces and operators. All metric spaces (S, d) are endowed with their Borel σ-field
denoted by B(S). The set K of compact subsets of C endowed with the Hausdorff distance
dH is a metric space, and the function rad from K to R+ defined by rad(K) = max{|λ| , λ ∈
K} is Lipschitz continuous from (K , dH) to R endowed with usual its Euclidean distance.

Let (Ω,F , µ) be a probability space. We denote by L∞, the Banach spaces of bounded
real-valued measurable functions defined on Ω equipped with the sup-norm, L∞

+ the sub-
set of L∞ of non-negative function, and ∆ = {f ∈ L∞ : 0 ≤ f ≤ 1} the subset of
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non-negative functions bounded by 1. For f and g real-valued functions defined on Ω,
we may write 〈f, g〉 or

∫
Ω fg dµ for

∫
Ω f(x)g(x)µ(dx) whenever the latter is meaningful.

For p ∈ [1,+∞], we denote by Lp = Lp(µ) = Lp(Ω, µ) the space of real-valued measurable
functions g defined Ω such that ‖g‖p =

(∫
|g|p dµ

)1/p (with the convention that ‖g‖∞ is
the µ-essential supremum of |g|) is finite, where functions which agree µ-a.s. are identified.
We denote by Lp+ the subset of Lp of non-negative functions.

Let (E, ‖·‖) be a Banach space. We denote by ‖·‖E the operator norm on L(E) the
Banach algebra of bounded operators. The spectrum Spec(T ) of T ∈ L(E) is the set
of λ ∈ C such that T − λId does not have a bounded inverse operator, where Id is the
identity operator on E. Recall that Spec(T ) is a compact subset of C, and that the spectral
radius of T is given by:

(3) ρ(T ) = rad(Spec(T )) = lim
n→∞

‖Tn‖1/nE .

If E is also a functional space, for g ∈ E, we denote by Mg the multiplication (possibly
unbounded) operator defined by Mg(h) = gh for all h ∈ E.

2.2. Kernels and operators. We define a kernel (resp. signed kernel) on Ω as a R+-
valued (resp. R-valued) measurable function defined on (Ω2,F⊗2). For f, g two non-
negative measurable functions defined on Ω and k a kernel on Ω, we denote by fkg the
kernel defined by:

(4) fkg : (x, y) 7→ f(x) k(x, y)g(y).

When γ is a positive measurable function defined on Ω, we write k/γ for kγ−1, and remark
that it may differ from γ−1k.

For p ∈ (1,+∞), we define the double norm of a signed kernel k by:

(5) ‖k‖p,q =

(∫
Ω

(∫
Ω
|k(x, y)|q µ(dy)

)p/q
µ(dx)

)1/p

with q given by
1

p
+

1

q
= 1.

Assumption 1 (On the kernel model [(Ω,F , µ), k]). Let (Ω,F , µ) be a probability space.
The kernel k on Ω has a finite double-norm, that is, ‖k‖p,q < +∞ for some p ∈ (1,+∞).

To a kernel k such that ‖k‖p,q < +∞, we associate the positive integral operator Tk
on Lp defined by:

(6) Tk(g)(x) =

∫
Ω
k(x, y)g(y)µ(dy) for g ∈ Lp and x ∈ Ω

According to [22, p. 293], Tk is compact. It is well known and easy to check that:

(7) ‖Tk‖Lp ≤ ‖k‖p,q.
For η ∈ ∆, the kernel kη has also a finite double norm on Lp and the operator Mη is
bounded, so that the operator Tkη = TkMη is compact. We can define the effective spectrum
function Spec[k] from ∆ to K by:

(8) Spec[k](η) = Spec(Tkη),

the effective reproduction number function Re[k] = rad ◦ Spec[k] from ∆ to R+ by:

(9) Re[k](η) = rad(Spec(Tkη)) = ρ(Tkη),
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and the corresponding reproduction number :

(10) R0[k] = Re[k](1) = ρ(Tk).

Following the framework of [7], for q ∈ (1,+∞), we also consider the following norm for
the kernel k:

‖k‖∞,q = sup
x∈Ω

(∫
Ω
k(x, y)q µ(dy)

)1/q

.

Clearly, we have that ‖k‖∞,q finite implies that ‖k‖p,q is also finite, with p such that
1/p + 1/q = 1. When ‖k‖∞,q < +∞, the corresponding positive bounded linear integral
operator Tk on L∞ is similarly defined by:

(11) Tk(g)(x) =

∫
Ω
k(x, y)g(y)µ(dy) for g ∈ L∞ and x ∈ Ω.

Notice that the integral operators Tk and Tk corresponds to the operators Tk and T̂k in [7].
According to [7, Lemma 3.7], the operator T 2

k on L∞ is compact and Tk has the same
spectral radius as Tk:

(12) ρ(Tk) = ρ(Tk).

Following [7], we consider the following assumption. Recall that k/γ = kγ−1.

Assumption 2 (On the SIS model [(Ω,F , µ), k, γ]). Let (Ω,F , µ) be a probability space.
The recovery rate function γ is a function which belongs to L∞

+ and the transmission rate
kernel k on Ω2 is such that ‖k/γ‖∞,q < +∞ for some q ∈ (1,+∞).

Assumption 2 implies Assumption 1 with k = k/γ. Under Assumption 2, we also consider
the bounded operators Tk/γ on L∞, as well as Tk/γ on Lp, which are the so called next-
generation operator.

2.3. Dynamics for the SIS model and equilibria. The SIS dynamics considered in [7]
(under Assumption 2) follows the vector field F defined on L∞ by:

(13) F (g) = (1− g)Tk(g)− γg.
More precisely, we consider u = (ut, t ∈ R), where ut ∈ ∆ for all t ∈ R+ such that:

(14) ∂tut = F (ut) for t ∈ R+,

with initial condition u0 ∈ ∆. The value ut(x) models the probability that an individual of
feature x is infected at time t; it is proved in [7] that such a solution u exists and is unique.

An equilibrium of (14) is a function g ∈ ∆ such that F (g) = 0. According to [7], there
exists a maximal equilibrium g, i.e., an equilibrium such that all other equilibria h ∈ ∆ are
dominated by g: h ≤ g. The reproduction number R0 associated to the SIS model given
by (14) is the spectral radius of the next-generation operator, so that using the definition
of the effective reproduction number (9), (12) and (10), this amounts to:

(15) R0 = ρ(Tk/γ) = R0[k/γ] = Re[k/γ](1).

If R0 ≤ 1 (sub-critical and critical case), then ut converges pointwise to 0 when t → ∞.
In particular, the maximal equilibrium g is equal to 0 everywhere. If R0 > 1 (super-
critical case), then 0 is still an equilibrium but different from the maximal equilibrium g,
as
∫

Ω gdµ > 0.
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2.4. Vaccination strategies. A vaccination strategy η of a vaccine with perfect efficiency
is an element of ∆, where η(x) represents the proportion of non-vaccinated individuals
with feature x. Notice that η dµ corresponds in a sense to the effective population.

Recall the definition of the kernel fkg from (4). For η ∈ ∆, the kernels kη/γ and kη
have finite norm ‖·‖∞,q under Assumption 2, so we can consider the bounded positive
operators Tkη/γ and Tkη on L∞. According to [7, Section 5.3.], the SIS equation with
vaccination strategy η is given by (14), where F is replaced by Fη defined by:

(16) Fη(g) = (1− g)Tkη(g)− γg.
We denote by uη = (uηt , t ≥ 0) the corresponding solution with initial condition uη0 ∈ ∆. We
recall that uηt (x) represents the probability for an unvaccinated individual of feature x to be
infected at time t. Since the effective reproduction number is the spectral radius of Tkη/γ ,
we recover (9) as ρ(Tkη/γ) = ρ(Tkη/γ) = Re[k/γ](η). We denote by gη the corresponding
maximal equilibrium (so that g = g1). In particular, we have:

(17) Fη(gη) = 0.

We will denote by I the fraction of infected individuals at equilibrium. Since the probability
for an individual with feature x to be infected in the stationary regime is gη(x) η(x), this
fraction is given by the following formula:

(18) I(η) =

∫
Ω
gη η dµ =

∫
Ω
gη(x) η(x)µ(dx).

We deduce from (16) and (17) that gηη = 0, µ a.s. is equivalent to gη = 0. Applying the
results of [7] to the kernel kη, we deduce that:

(19) I(η) > 0 ⇐⇒ Re(η) > 1.

We conclude this section with a result on the maximal equilibrium g that completes what
is known from [7]. Notice that, if R0 > 1, then Property (ii) implies that the strategy 1− g
is critical.

Proposition 2.1 (On the maximal equilibrium). Suppose Assumption 2 holds.
(i) For any h ∈ ∆, h = g if and only if F (h) = 0 and Re(1− h) ≤ 1.
(ii) If g 6= 0, then Re(1− g) = 1.

Proposition 2.1 is a consequence of Proposition 7.2 proved in Section 7.

3. Properties of the loss functions

3.1. Preliminaries.

3.1.1. On the weak topology. We first recall briefly some properties we shall use frequently.
We can see ∆ as a subset of L1, and consider the corresponding weak topology : a se-
quence (gn, n ∈ N) of elements of ∆ converges weakly to g if for all h ∈ L∞ we have:

(20) lim
n→∞

∫
Ω
hgn dµ =

∫
Ω
hg dµ.

Notice that (20) can easily be extended to any function h ∈ Lq for any q ∈ (1,+∞); so
that the weak-topology on ∆, seen as a subset of Lp with 1/p + 1/q = 1, can be seen as
the trace on ∆ of the weak topology on Lp. The main advantage of this topology is the
following compactness result.
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Lemma 3.1 (Topological properties of ∆). We have that:
(i) The set ∆ endowed with the weak topology is compact and sequentially compact.
(ii) A function from ∆ (endowed with the weak topology) to a metric space (endowed

with its metric topology) is continuous if and only if it is sequentially continuous.

Proof. Let p ∈ (1,+∞), and consider the weak topology on ∆ as the trace on ∆ of the weak
topology on Lp. We first prove (i). Since Lp is reflexive, by the Banach-Alaoglu theorem [6,
Theorem V.4.2], its unit ball is weakly compact. The set ∆ is closed and convex, therefore
it is weakly closed; see [6, Corollary V.1.5]. Thus, ∆ is weakly compact as a weakly closed
subset of the weakly compact unit ball. By the Eberlein–Šmulian theorem [6, Theorem
V.13.1], ∆ is also weakly sequentially compact.

We now prove (ii). A continuous function is sequentially continuous. Conversely, the
inverse image of a closed set by a sequentially continuous function is sequentially closed.
Besides, a sequentially closed subset of a sequentially compact set is sequentially compact.
Using the Eberlein–Šmulian theorem, we deduce that the inverse images of closed sets are
compact. In particular, they are closed which proves a sequentially continuous function is
continuous. �

3.1.2. On the continuity of the spectral radius. We recall some well known facts on opera-
tors. Let (E, ‖·‖) be a Banach space. Let A,B ∈ L(E). According to [39, Appendix A1],
we have:

(21) Spec(AB) ∪ {0} = Spec(BA) ∪ {0} and thus ρ(AB) = ρ(BA).

Furthermore, if A is compact then AB and BA are compact, thus 0 belongs to their
spectrum in infinite dimension, whereas in finite dimension, as det(AB) = det(A)det(B) =
det(BA) (where A and B denote also the matrix of the corresponding operator in a given
base), we get that 0 belongs to the spectrum of AB if and only if it belongs to the spectrum
of BA. In conclusion, we get:

(22) A,B ∈ L(E) and A compact =⇒ Spec(AB) = Spec(BA).

According to [36, Theorem 4.2], if A, B and A−B are positive operators, then:

(23) ρ(A) ≥ ρ(B).

Let (E′, ‖·‖′) be a Banach space such that E′ is continuously and densely embedded
in E. Let T ∈ L(E) such that T (E′) ⊂ E′, and denote by T ′ its restriction on E′ seen as
an operator on E′. According to [23, Corollary 1 and Section 6], we have:

(24) T and T ′ compact =⇒ Spec(T ) = Spec(T ′).

We recall some definitions. A sequence (Tn, n ∈ N) of elements of L(E) converges
strongly to T ∈ L(E) if limn→∞‖Tnx − Tx‖ = 0 for all x ∈ E. Following [1], a set of
operators A ⊂ L(E) is collectively compact if the set {Ax : A ∈ A , ‖x‖ ≤ 1} is relatively
compact.

Lemma 3.2 (Continuity of the spectrum and the spectral radius). Let (Tn, n ∈ N) and T
be elements of L(E). If one of the two following conditions holds:

(i) the operator T is compact and limn→∞‖Tn − T‖E = 0;
(ii) the sequence (Tn, n ∈ N) is collectively compact and converges strongly to T ;

then limn→∞ Spec(Tn) = Spec(T ) in (K , dH) and limn→ ρ(Tn) = ρ(T ).
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Notice that if the sequence (Tn, n ∈ N) is collectively compact and converges strongly
to T , then T is compact.

Proof. Since the spectrum of a compact operator is totally disconnected, we deduce from
[38, Theorem IV.3] that limn→∞ Spec(Tn) = Spec(T ) holds under Condition (i). See also
the survey [5].

Notice that T compact is a direct consequence of Condition (ii). We deduce from (d) and
(e) in [2, Section 3] (see also [1, Theorems 4.8 and 4.16]) that limn→∞ Spec(Tn) = Spec(T )
holds under Condition (ii). Then use that the function rad is continuous to deduce the
convergence of the spectral radius from the convergence of the spectra. �

If k is a kernel on Ω with finite double norm on Lp, recall Tk denotes the corresponding
integral compact operator on Lp. The next corollary is a direct consequence of Lemma 3.2
with Condition (i), as the convergence for the finite double norm on Lp implies the conver-
gence in operator norm of the corresponding integral operator; see (7).

Corollary 3.3. Let p ∈ (1,+∞). Let (kn, n ∈ N) and k be kernels on Ω with finite double
norms on Lp. If limn→∞‖kn − k‖p,q = 0, then limn→∞ Spec(Tkn) = Spec(Tk) in (K , dH)
and limn→ ρ(Tkn) = ρ(Tk).

3.2. First properties and continuity of the effective reproduction number Re.
Let k be a kernel on Ω with finite double norm. Recall the effective reproduction num-
ber function Re[k] defined on ∆ by (9): Re[k](η) = ρ(TkMη) and the reproduction num-
ber R0[k] = ρ(Tk). When there is no risk of confusion on the kernel k, we simply write Re
and R0 for Re[k] and R0[k].

Proposition 3.4. Suppose Assumption 1 holds. The function Re = Re[k] satisfies the
following properties:

(i) Re(η1) = Re(η2) if η1 = η2, µ a.s., and η1, η2 ∈ ∆,
(ii) Re(0) = 0 and Re(1) = R0,
(iii) Re(η1) ≤ Re(η2) for all η1, η2 ∈ ∆ such that η1 ≤ η2,
(iv) Re(λη) = λRe(η), for all η ∈ ∆ and λ ∈ [0, 1].

Proof. If η1 = η2 µ-a.s., then we have that Tkη1 = Tkη2 , and thus Re(η1) = Re(η2). This
gives point (i). Point (ii) is a direct consequence of the definition of Re. Since for any
fixed λ ∈ C and any operator A, the spectrum of λA is equal to {λs, s ∈ Spec(A)},
Point (iv) is clear. Finally, note that if η1 ≤ η2 ∈ ∆, then the operator Tkη2−Tkη1 is positive;
according to (23), we get: ρ(Tkη1) ≤ ρ(Tkη2). This concludes the proof of point (iii). �

We generalize a continuity property on the spectral radius originally stated in [7] by
weakening the topology.

Theorem 3.5 (Continuity of Re[k] and Spec[k]). Suppose Assumption 1 holds. Then,
the functions Spec[k] and Re[k] are continuous functions from ∆ (endowed with the weak-
topology) respectively to K (endowed with the Hausdorff distance) and to R+ (endowed with
the usual Euclidean distance).

Let us remark the proof holds even if k takes negative values.

Proof. Let B denote the unit ball in Lp, with p ∈ (1,+∞) from Assumption 1. Since the
operator Tk is compact, the set Tk(B) is relatively compact. For all η ∈ ∆, set ηB =
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{ηg : g ∈ B}. As ηB ⊂ B, we deduce that Tkη(B) = Tk(ηB) ⊂ Tk(B). This implies that
the family (Tkη, η ∈ ∆) is collectively compact.

Let (ηn, n ∈ N) be a sequence in ∆ converging weakly to some η ∈ ∆. Let g ∈ Lp.
The weak convergence of ηn to η implies that (Tkηn(g), n ∈ N) converges µ-a.s. to Tkη(g).
Consider the function K(x) =

(∫
Ω k(x, y)q µ(dy)

)1/q which belongs to Lp, thanks to (5).
Since for all x,

|Tkηn(g)(x)| = Tk(|ηng|)(x) ≤ K(x) ‖ηng‖p ≤ K(x) ‖g‖p,

we deduce, by dominated convergence, that the convergence holds also in Lp:

(25) lim
n→∞

‖Tkηn(g)− Tkη(g)‖p = 0,

so that Tkηn converges strongly to Tkη. Using Lemma 3.2 (ii) (with Tn = Tkηn and T =
Tkη) on the continuity of the spectrum, we get that limn→∞ Spec[k](ηn) = Spec[k](η).
The function Spec[k] is thus sequentially continuous, and, thanks to Lemma 3.1, it is
continuous from ∆ endowed with the weak topology to the metric space K (endowed
with the Hausdorff distance). The continuity of Re[k] then follows from its definition (3) as
the composition of the continuous functions rad and Spec[k]. �

We complete Corollary 3.3 on the stability property of the spectrum and spectral radius
with respect to the kernel k.

Proposition 3.6 (Stability of Re[k] and Spec[k]). Let p ∈ (1,+∞). Let (kn, n ∈ N) and k
be kernels on Ω with finite double norms on Lp. If limn→∞‖kn − k‖p,q = 0, then we have:
(26)

lim
n→∞

sup
η∈∆

∣∣∣Re[kn](η)−Re[k](η)
∣∣∣ = 0 and lim

n→∞
sup
η∈∆

dH

(
Spec[kn](η), Spec[k](η)

)
= 0.

Proof. We first prove that limn→∞ Spec[kn](ηn) = Spec[k](η), where the sequence (ηn, n ∈
N) is any sequence in ∆ which converges weakly to η ∈ ∆.

The operators A = {Tk} ∪ {Tkn : n ∈ N} are compact, and we deduce from (7) that:

lim
n→∞

‖Tkn − Tk‖Lp = 0.

The family A is then easily seen to be collectively compact. This implies, see [1, Proposi-
tion 4.1(2)] for details, that the family A ′ = {T ′Mη : , T ′ ∈ A and η ∈ ∆} is collectively
compact. We deduce the sequence (Tn = Tknηn = TknMηn , n ∈ N) of elements of A ′ is
collectively compact and that T = Tkη = TkMη is compact.

Let g ∈ Lp. We have:

‖Tn(g)− T (g)‖p ≤ ‖Tkn − Tk‖Lp ‖g‖p + ‖Tkηn(g)− Tkη(g)‖p.

Using limn→∞‖Tkn − Tk‖Lp = 0 and (25), we deduce that limn→∞‖Tn(g) − T (g)‖p, that
is (Tn, n ∈ N) converges strongly to T . With Lemma 3.2 (ii), we get that limn→∞ Spec(Tn) =
Spec(T ), that is limn→∞ Spec[kn](ηn) = Spec[k](η).

Then, as the function η 7→ dH

(
Spec[kn](η),Spec[k](η)

)
is continuous on the compact

set ∆, thanks to Theorem 3.5, it reaches its maximum say at ηn ∈ ∆ for n ∈ N. As ∆ is



TARGETED VACCINATION STRATEGIES FOR AN INFINITE DIMENSIONAL SIS MODEL 17

compact, consider a sub-sequence which converges weakly to a limit say η. Since

sup
η∈∆

dH

(
Spec[kn](η),Spec[k](η)

)
= dH

(
Spec[kn](ηn), Spec[k](ηn)

)
≤ dH

(
Spec[kn](ηn), Spec[k](η)

)
+ dH

(
Spec[k](ηn),Spec[k](η)

)
,

using the continuity of Spec[k], we deduce that along this sub-sequence the right hand side
converges to 0. Since this results holds for any converging sub-sequence, we get the second
part of (26). The first part then follows from the definition (3) of Re as a composition, and
the Lipschitz continuity of the function rad. �

3.3. A sufficient condition for the convexity of Re. Let M be a square real matrix.
The matrixM is diagonally similar to a matrixM ′ if there exists a non singular real diagonal
matrix D such that M = DM ′D−1. The matrix M is diagonally symmetrizable (resp.
diagonally positive semi-definite) if it is diagonally similar to a symmetric (resp. symmetric
positive semi-definite) matrix, or, equivalently, if M admits a decomposition M = DS
(or M = SD), where D is a diagonal matrix with positive diagonal entries and S is a
symmetric (resp. symmetric positive semi-definite) matrix.

We say a kernel k′ is an Hilbert-Schmidt symmetric positive semi-definite kernel if
‖k′‖2,2 < +∞ and the corresponding integral operator Tk′ on L2 is symmetric positive
definite. Following [48, Example A, p252] we give the analogue of diagonally positive semi-
definite for operators.

Definition 3.7 (Diagonally HS positive semi-definite kernel). A kernel k on Ω is said to
be diagonally HS positive semi-definite if there exist an Hilbert-Schmidt symmetric positive
semi-definite kernel k′ on Ω and two measurable [0,+∞)-valued functions f, g defined on Ω
such that k = fk′g, that is:

(27) k(x, y) = f(x) k′(x, y) g(y) for all x, y ∈ Ω.

Let us mention that in finite dimension (Ω finite), it is possible to take g = 1 (or f = 1)
and thus recover the decomposition M = DS (or M = SD). However, this is no more
possible in infinite dimension in general because of the integrability condition (5) with p =
q = 2 on the symmetric kernel.

In [27], Hill and Longini state a conjecture (Conjecture 8.1) that may be generalized in
our infinite dimensional setting as follows: if all the eigenvalues of Tk are non-negative, is
Re[k] necessarily convex? While we do not entirely settle this conjecture, we prove that
diagonally HS positive semi definite kernels give rise to a convex Re (Proposition 3.8) and
have necessarily non-negative eigenvalues (Lemma 3.9).

Proposition 3.8 (Convexity of Re). Suppose that Assumption 1 holds and that k is a
diagonally HS positive semi-definite kernel. Then, the function Re[k] defined on ∆ is convex.

Proof. The proof relies on an idea which appears in [19] just before Theorem 4.3.
By definition, there exists an Hilbert-Schmidt symmetric positive semi-definite kernel k′

on Ω and two measurable [0,+∞)-valued functions f, g defined on Ω such that k = fk′g.
Let T denote the integral operator on L2 with kernel k′. Recall that for a real-valued
function u defined on Ω, Mu denotes the multiplication by u operator.



18 JEAN-FRANÇOIS DELMAS, DYLAN DRONNIER, AND PIERRE-ANDRÉ ZITT

We first assume that f, g are bounded, and thus belongs to L∞
+ . By hypothesis, the

kernel k has finite double norm on Lp. It has also a finite double norm on L2; and thus the
corresponding integral operator T̃k on L2 is also compact. We have for η ∈ ∆:

Re[k](η) = ρ(TkMη) = ρ(T̃kMη) = ρ(Mf T Mgη),

where we used (24) (with E′ = Lp∨2 and E = Lp∧2) for the second equality. Since T
is a symmetric positive semi-definite operator on L2, there exists a symmetric positive
semi-definite operator Q on L2 such that Q2 = T . Using (21) twice, we get:

Re[k](η) = ρ
(
Mf Q

2Mgη

)
= ρ

(
Q2Mfgη

)
= ρ (QMfgη Q) .

Since the symmetric operator QMfgη Q (on L2) is also positive semi-definite, we deduce
from the Courant-Fischer-Weyl min-max principle that:

Re[k](η) = ρ (QMfgη Q) = sup
u∈L2\{ 0 }

〈u,QMfgη Qu〉
〈u, u〉 ·

Since the map η 7→ 〈u,QMfgη Qu〉 defined on ∆ is linear, we deduce that η 7→ Re[k](η) is
convex as a supremum of linear functions.

We then remove the bound condition on f, g using an approximation scheme. Let k′,
f, g and k = fk′g be as in Definition 3.7. For n ∈ N∗, set kn = fnk

′gn, where hn = h ∧ n
for h ∈ {f, g}. As k ≥ kn and limn→∞ kn = k pointwise, we get by dominated convergence
that limn→∞‖k− kn‖p,q = 0. We deduce from the first part of the proof that the functions
Re[kn], are convex. Then using the first part of (26) in Proposition 3.6, we deduce that
Re[k] is convex as limit of Re[kn]. �

Lemma 3.9. Suppose that Assumption 1 holds and that k is a diagonally HS positive semi-
definite kernel. Then, we have Spec(Tk) ⊂ R+.

Proof. In a first step, assume that the representation (27) from Definition 3.7 is such
that f and g are bounded and bounded away from 0. Then we have with h =

√
f/g

and k′′ =
√
fg k′

√
fg that k = hk′′h−1. Since k′ is an Hilbert-Schmidt symmetric positive

semi-definite kernel and
√
fg is bounded, we deduce that k′′ is also an Hilbert-Schmidt sym-

metric positive semi-definite kernel. Let T denote the corresponding operator on L2 with
kernel k′′. Since T is positive semi-definite, we deduce that Spec(T ) ⊂ R+. Notice that k has
finite double norm in L2, and denote by T̃k the corresponding integral operator in L2. Notice
that Mh and M1/h are bounded operators, and that T , and thus MhT , are compact opera-
tors. We deduce from (22) (with A = MhT and B = M1/h) that Spec(T̃k) = Spec(T ) ⊂ R+.
Then use (24) (with E′ = Lp∨2 and E = Lp∧2) to deduce that Spec(Tk) = Spec(T̃k) ⊂ R+.

We then remove the bound condition on f, g using a similar approximation scheme as
in the proof of Proposition 3.8. Let k′, f, g and k = fk′g be as in Definition 3.7. For
n ∈ N∗, set kn = fn (vnk

′vn) gn, where vn = 1{f≥1/n and g≥1/n} and hn = n−1 ∨ (h ∧ n) for
h ∈ {f, g}. As k ≥ kn and limn→∞ kn = k pointwise, we get by dominated convergence
that limn→∞‖k − kn‖p,q = 0. Finally, using Proposition 3.6, we obtain that Spec(Tk) =
limn→∞ Spec(Tkn) is thus a subset of R+. �
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3.4. Properties of the asymptotic proportion of the infected population I. Sup-
pose that Assumption 2 holds. Recall from (18) that the asymptotic proportion of infected
individuals I is given on ∆ by I(η) =

∫
Ω gη η dµ, where gη is the maximal solution in ∆ of

the equation Fη(h) = 0. The following preliminary result states informally that, starting
from a state higher than this maximal equilibrium, the epidemics must decrease everywhere.

Lemma 3.10. Let η, g ∈ ∆. If Fη(g) ≥ 0, then we have g ≤ gη.

Proof. According to [7, Proposition 2.10], the solution ut of the SIS model with vaccination
∂tut = Fη(ut) and initial condition u0 = g is non-decreasing since Fη(g) ≥ 0. According to
[7, Proposition 2.13], the pointwise limit of ut is an equilibrium. As this limit is dominated
by the maximal equilibrium gη and since ut is non-decreasing, this proves that g ≤ gη. �

We may now state the main properties of the function I.

Proposition 3.11 (Basic properties of I). Suppose that Assumption 2 holds. The func-
tion I has the following properties:

(i) I(η1) = I(η2) if η1 = η2 µ-a.s. and η1, η2 ∈ ∆.
(ii) I(η) = 0 if and only if Re(η) ≤ 1.
(iii) I(η1) ≤ I(η2) for all η1, η2 ∈ ∆ such that η1 ≤ η2.
(iv) I(λη) ≤ λI(η) for all η ∈ ∆ and λ ∈ [0, 1].

Proof. If η1 = η2 µ-a.s., then the operators Tkη1 and Tkη2 are equal. Thus, the equilibria
gη1 and gη2 are also equal which in turns implies that I(η1) = I(η2). Point (ii) is already
stated in Equation (19).

To prove the monotonicity (point (iii)), consider η1 ≤ η2. Since Tkη1 ≤ Tkη2 , we get
Fη1(g) ≤ Fη2(g) for all g ∈ ∆. In particular, taking g = gη1 and using (17), we get
Fη2(gη1) ≥ 0. By Lemma 3.10 this implies gη1 ≤ gη2 . To sum up,

(28) η1 ≤ η2 =⇒ gη1 ≤ gη2 .

This readily implies that I(η1) =
∫

Ω gη1 η1 dµ ≤
∫

Ω gη2 η2 dµ = I(η2).

We now consider point (iv). Since λ ∈ [0, 1], we deduce from (28) that gλη ≤ gη. This
implies that I(λη) =

∫
Ω gλη λη dµ ≤ λ

∫
Ω gη η dµ = λI(η). �

The proof of the following continuity results are both postponed to Section 7.

Theorem 3.12 (Continuity of I). Suppose that Assumption 2 holds. The function I defined
on ∆ is continuous with respect to the weak topology.

We write I[k, γ] for I to stress the dependence on the parameters k, γ of the SIS model.

Proposition 3.13 (Stability of I). Let ((kn, γn), n ∈ N) and (k, γ) be a sequence of kernels
and functions satisfying Assumption 2. Assume furthermore there exists p′ ∈ (1,+∞)

such that k = γ−1k and (kn = γ−1
n kn, n ∈ N) have finite double norm in Lp

′ and that
limn→∞‖kn − k‖p′,q′ = 0. Then we have:

(29) lim
n→∞

sup
η∈∆

∣∣∣I[kn, γn](η)− I[k, γ](η)
∣∣∣ = 0.
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4. The optimization problem

4.1. The setting. To any vaccination strategy η ∈ ∆ we associate a cost and a loss.
• The cost function . The cost C(η) measures all the costs of the vaccination
strategy (production and diffusion). The cost is expected to be a decreasing function
of η, since η encodes the non-vaccinated population. Since doing nothing costs
nothing, we also expect C(1) = 0. A simple cost model is the affine cost given by:

(30) Caff(η) =

∫
Ω

(1− η(x)) caff(x)µ(dx),

where caff(x) is the cost of vaccination of population of feature x, with caff ∈ L1

positive. Without loss of generality we can assume that
∫
caff dµ = 1, so that

Caff(0) = 1. The real cost of the vaccination may be a more complicated function
ψ(Caff(η)), for example if the marginal cost of producing a vaccine depends on the
quantity already produced. However, as long as ψ is strictly increasing, this will not
affect the optimal strategies. Furthermore, if we assume that caff is bounded and
bounded away from 0 (that is caff and 1/caff belongs to L∞

+ ), then replacing the
probability measure µ by µ0(dx) = caff(x)µ(dx) and the transmission rate kernel
k by k0 = k/caff will not affect the optimal strategies (notice that if Assumption 2
holds for the parameters [(Ω,F , µ), k, γ], then it also holds for [(Ω,F , µ0), k0, γ]).
Therefore, we will consider in the applications without any real loss of generality
the simple affine cost C = Cuni defined by:

(31) Cuni(η) =

∫
Ω

(1− η) dµ.

• The loss function . The loss L(η) measures the (non)-efficiency of the vaccination
strategy η. Different choices are possible here. We prove in this section general
results that only depend on a few natural assumptions for L; see below. These
assumptions are in particular satisfied if the loss is the effective reproduction number
Re, or if we choose L = I the asymptotic proportion of infected individuals.

We consider the following bi-objective minimization problem on vaccination strategies:{
Minimize: (C(η),L(η))

subject to: η ∈ ∆.

Multi-objective problems are in a sense ill-defined because in most cases, it is impossible
to find a single solution that would be optimal to all objectives simultaneously. Hence, we
recall the concept of Pareto optimality that we defined in the introduction.

Definition 4.1 (Pareto optimal strategy). A strategy η? ∈ ∆ is said to be Pareto optimal
for the bi-objective optimization problem (4.1) if no other strategy η is strictly better than
η?; in other words, for all η ∈ ∆ the following two conditions hold:

C(η) < C(η?) =⇒ L(η) > L(η?),(32a)
L(η) < L(η?) =⇒ C(η) > C(η?).(32b)

The set of Pareto optimal strategies for the loss L is denoted by PL. The Pareto frontier is
defined as the set of Pareto optimal outcomes:

(33) FL = {(C(η?),L(η?)) : η? ∈ PL}.
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From the definition, we see that a Pareto optimal strategy η? ∈ PL ⊂ ∆ necessarily
solves the following optimization problems, with ` = L(η?) and c = C(η?):

Minimize: L(η)(34a)
subject to: η ∈ ∆, C(η) ≤ c,(34b)

as well as

Minimize: C(η)(35a)
subject to: η ∈ ∆, L(η) ≤ `.(35b)

A converse statement will be given in Corollary 4.8.

4.2. Assumption and results. In order to state our assumptions on the cost and the loss
functions, let us first define a few terms.

Definition 4.2. We say that a real-valued function H defined on ∆ endowed with the weak
topology is:

• Weak-continuous: if H is continuous with respect to the weak topology on ∆.
• Non-decreasing: if for any η1, η2 ∈ ∆ such that η1 ≤ η2, we have H(η1) ≤ H(η2).
• Decreasing: if for any η1, η2 ∈ ∆ such that η1 ≤ η2 and

∫
Ω η1 dµ <

∫
Ω η2 dµ, we

have H(η1) > H(η2).
• Sub-homogeneous: if H(λη) ≤ λH(η) for all η ∈ ∆ and λ ∈ [0, 1].

Assumption 3 (On the cost function and loss function). The cost function C and the loss
function L are weak-continuous functions defined on ∆. The cost function is decreasing and
normalized such that C(1) = 0. The loss function is non-decreasing and sub-homogeneous
(in particular L(0) = 0).

Remark 4.3 (Good cost and loss functions). The cost functions Caff defined by (30) (recall
caff is positive), and thus Cuni as well, satisfy Assumption 3. We deduce from Propositions
3.4 and 3.11 and Theorems 3.5 and 3.12 that the functions Re and I are loss functions
satisfying Assumption 3.

Remark 4.4 (Equivalent vaccinations). Since ∆ in endowed with the weak topology, we will
consider the set of Pareto optimal vaccination modulo the µ-a.s. equality.

Remark 4.5 (Not vaccinating is Pareto-optimal). As C is decreasing, we deduce from Re-
mark 4.4 that, under Assumption 3, the constant strategy η = 1 (which consists in no
vaccination) is Pareto optimal since it is the unique strategy that minimizes the cost func-
tion C. In particular, the set PL of Pareto optimal strategies is non-empty.

We have the following fundamental result.

Proposition 4.6 (Optimal solutions for fixed cost or fixed loss). Suppose that Assump-
tion 3 holds. For any cost c ∈ [0, C(0)], there exists a minimizer of the loss under the cost
constraint C(·) ≤ c, that is, a solution to Problem (34). Similarly, for any loss ` ∈ [0,L(1)],
there exists a minimizer of the cost under the loss constraint L(·) ≤ `, that is a solution to
Problem (35).

Proof. Let c ∈ [0, C(0)]. The set {η ∈ ∆ : C(η) ≤ c} is non-empty as it contains 1 since
C(1) = 0. It is also compact as C is continuous on the compact set ∆ (for the weak
topology). Therefore, since the loss function L is continuous (for the weak topology), we
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Figure 2. Graph of the functions L? and C? from Example 1.7, with the
uniform cost (C = Cuni) and the loss L = Re.

get that L restricted to this compact set reaches its minimum. Thus, Problem (34) has a
solution. The proof is similar for the existence of a solution to Problem (35), using that
L(0) = 0, which is a consequence of Assumption 3. �

According to Proposition 4.6, we can define the following optimal loss function L? and
optimal cost function C?L which are non-increasing functions corresponding to the value
functions of Problem (34) and (35) respectively:

L?(c) = min {L(η) : η ∈ ∆, C(η) ≤ c } for c ∈ [0, C(0)],(36)
C?L(`) = min {C(η) : η ∈ ∆, L(η) ≤ ` } for ` ∈ [0,L(1)].(37)

We shall write C? for C?L when there is no ambiguity on the loss function L. In Figure 2,
we represented the functions L? and C? corresponding to the loss L = Re and the uniform
cost C = Cuni (which satisfy Assumption 3) from Example 1.7.

We now study some regularity properties of L? and C? and prove that the constraints in
Problems (34) and (35) are binding. Recall that decreasing means strictly decreasing.

Proposition 4.7. Suppose that Assumption 3 holds. The functions C? and L? satisfy the
following properties:

(i) We have C?(0) ∈ [0, C(0)] and L?(C?(0)) = 0.
(ii) The optimal cost C? is continuous decreasing on [0,L(1)].
(iii) The optimal loss L? is continuous decreasing on [0, C?(0)] and 0 on [C?(0), C(0)].
(iv) We have L? ◦ C?(`) = ` for ` ∈ [0,L(1)] and C? ◦ L?(c) = c for c ∈ [0, C?(0)].

Furthermore, the constraints in Problem (34) and in Problem (35) are binding:
(v) If η solves Problem (34) for some c ∈ [0, C?(0)], then C(η) = c.
(vi) If η solves Problem (35) for some ` ∈ [0,L(1)], then L(η) = `.

Proof. The proof of (i) is immediate.
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We now prove point (vi) and the fact that C? is decreasing on [0,L(1)], which is part of
(ii). Let 0 ≤ ` < L(1) and let η ∈ ∆ be a solution of Problem (35), that is: L(η) ≤ ` and
C(η) = C?(`). Let us first note that, since L(η) ≤ ` < L(1), η cannot be equal to 1 µ-a.s. as
L is defined on ∆ endowed with the weak topology; we also have C?(`) = C(η) > C(1) = 0
as C is decreasing.

For any θ ∈ [0, 1), consider the strategy ηθ = θη + (1 − θ). Since η is not equal to 1
µ-a.s., we get ηθ ≥ η and

∫
Ω ηθ dµ >

∫
Ω η dµ. Since C is decreasing, we obtain:

C(ηθ) < C(η) = C?(`).

As L is weakly-continuous, the map φ : θ 7→ L(ηθ) is continuous with φ(0) = L(η0) = L(1)
and φ(1) = L(η) ≤ `. By the intermediate value theorem, for any `′ ∈ (L(η),L(1)), there
exists θ ∈ (0, 1) such that φ(θ) = L(ηθ) = `′. Since ηθ is admissible for Problem (35) with
loss constraint `′, we deduce that C?(`′) ≤ C(ηθ) < C?(`). This proves that L(η) = `, and
thus (vi) holds for ` ∈ [0,L(1)), and that C? is decreasing first on [0,L(1)) and then on
[0,L(1)]. Since η = 1 is Pareto optimal (see Remark 4.5), point (vi) also holds for ` = L(1).

We prove (v) and the fact that L? is 0 on [C?(0), C(0)] and decreasing on [0, C?(0)],
which is part of (iii). Since L? is non-increasing by definition, (i) implies that L? is 0 on
[C?(0), C(0)]. Let 0 ≤ c < C?(0) and let η ∈ ∆ be a solution of Problem (34), that is:
C(η) ≤ c and L(η) = L?(c). Since c < C?(0), we deduce from the definition of L? and C?
that L?(c) > 0. For any θ ∈ [0, 1), since the loss is sub-homogeneous, we get:

L(θη) ≤ θL(η) = θL?(c).

As the function C is weakly-continuous, the map ϕ : θ 7→ C(θη) is continuous with ϕ(0) =
C(0), and ϕ(1) = C(η) ≤ c. By the intermediate value theorem, for any c′ ∈ (C(η), C(0)),
there exists θ ∈ (0, 1) such that ϕ(θ) = C(θη) = c′. Since θη is admissible for Problem (34)
with cost constraint c′, we deduce that L?(c′) ≤ L(θη) ≤ θL?(c). This gives that L?(c′) <
L?(c) as L?(c) > 0. This proves that C(η) = c, and thus (v) holds for c ∈ [0, C?(0)), and
that L? is decreasing first on [0, C?(0)) and then on [0, C?(0)]. It is also immediate to check
that (v) also holds for c = C?(0), thanks to (i).

We now prove the first part of (iv), that is: L? ◦ C?(`) = ` for ` ∈ [0,L(1)]. Let
` ∈ [0,L(1)]. Let η be a solution to Problem (35). We have that C(η) = C?(`) and,
according to (vi), that L(η) = `. By definition of L?, we deduce that L? ◦C?(`) ≤ `. Let η′
be a solution to Problem (34) with c = C?(`). Then, we have L(η′) = L? ◦ C?(`) ≤ ` and,
thanks to (v), we get C(η′) = C?(`). Thus η′ also solves Problem (35), and thanks to (vi),
we have L(η′) = `. This gives L? ◦C?(`) = `. The proof of the second part of (iv) is similar
and left to the reader. This ends the proof of (iv).

To conclude the proof, it remains to check that C? and L? are continuous. The range
of the function C? is a subset of [0, C?(0)]. We deduce from (iv) and the definition of L
that [0, L(1)] = L?([0, C?(0)]). Since L? is decreasing on [0, C?(0)], we deduce that L? is
continuous on [0, C?(0)] and thus on [0, C(0)] thanks to (i). The proof of the continuity of
C? is similar and left to the reader. �

The main result of this section states that all the solutions of the optimization Prob-
lems (34) or (35) are Pareto optimal, and gives a description of the Pareto frontier FL as
a graph. In Figure 2, we have plotted the Pareto frontier from Example 1.7 which is given
in Figure 2(a) by the part of the graph of L? restricted to the interval [0, C?(0)], or in
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Figure 2(b) by the graph of C? up to the symmetry with respect to the diagonal, as L? is
a left-inverse of C?.

Theorem 4.8 (Pareto optimum and Pareto frontier). Suppose that Assumption 3 holds.
We have:

η ∈ PL ⇐⇒ η solves (34) for some c ∈ [0, C?(0)]

⇐⇒ η solves (35) for some ` ∈ [0,L(1)].

The Pareto frontier is given by:

(38) FL = {(C?(`), `) : ` ∈ [0,L(1)]} = {(c,L?(c)) : c ∈ [0, C?(0)]}.
Proof. Let ` ∈ [0,L(1)] and let η ∈ ∆ be solution of Problem (35), that is: L(η) ≤ ` and
C(η) = C?(`). Thanks to Proposition 4.7 (vi), we have L(η) = `. Since C? is decreasing,
thanks to Proposition 4.7 (ii), if η′ ∈ ∆ satisfies L(η′) < `, then we have:

C(η′) ≥ C?(L(η′)) > C?(`) = C(η).

Hence, Condition (32b) is satisfied. Condition (32a) is satisfied because η is solution of
Problem (35). This proves that η is Pareto optimal. The converse assertion is straightfor-
ward and has already been mentioned after Definition 4.1. The proof is similar when η ∈ ∆
is solution of Problem (34) with c ∈ [0, C?(0)]. �

We give an immediate consequence of the continuity of the functions L? and C?.

Corollary 4.9. Suppose that Assumption 3 holds. The set of Pareto optimal strategies PL

is compact (for the weak topology).

Proof. Since C? is continuous, we deduce that FL, which is given by (38), is compact and
thus closed. Since PL = f−1(FL), where the function f = (C,L) defined on ∆ is continuous,
we deduce that PL is closed and thus compact as ∆ is compact. �

We can consider the stability of the Pareto frontier and the set of Pareto optima. Recall
that, thanks to (38), the graph {(c,L?(c)) : c ∈ [0, C(0)]} of L? is the union of the Pareto
frontier and the straight line joining (0, C?(0)) to (0, C(0)) and can thus be seen as an
extended Pareto frontier. The proof of the following proposition is immediate. It implies
in particular the convergence of the extended Pareto frontier.

Proposition 4.10. Let C be a cost function and (Ln, n ∈ N) a sequence of loss functions
converging uniformly on ∆ to a loss function L. Assume that Assumption 3 holds for the
cost C and the loss functions Ln, n ∈ N, and L. Then L?n converges uniformly to L?. Let
η ∈ ∆ be the weak limit of a sequence (ηn, n ∈ N) of Pareto optima, that is ηn ∈ PLn for
all n ∈ N. If L(η) > 0, then we have η ∈ PL.

It might happen that some elements of PL are not weak limit of sequence of elements of
PLn ; see [9] for such discontinuity.

Remark 4.11 (On the continuity of the Pareto Frontier). It might also happen that a
sequence (ηn, n ∈ N) such that ηn ∈ PLn and Ln(ηn) > 0 converges to some η that does not
belong to PL if L(η) = 0. In particular, in this case, C?Ln

(0) does not converge to C?L(0).
This situation is represented in Figure 3. In Figure 3(a), we have plotted a perturbation
kε = k + ε

∑
n∈N? 1In×In of the multipartite kernel k defined in Example 1.7 for ε > 0

small. According to Proposition 3.6, Re[kε] converges uniformly to Re[k] when ε vanishes.
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(a) Grayplot of the kernel kε, with Ω = [0, 1]
and µ the Lebesgue measure (kε is equal to
the constant κ > 0 on the black zone and to
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(b) In red, the Pareto frontier of the kernel k
represented in Figure 1(a) compared to the
Pareto frontier of the kernel kε in blue line.

Figure 3. On the stability of the Pareto frontier

However, the Pareto optimal strategies for kε that cost more than 1/2 do not converge to
some Pareto optimal strategies for k. This can be seen in Figure 3(b), where the Pareto
frontier of kε (in blue) corresponding to costs larger than 1/2 does not have a counterpart
in the Pareto frontier of k (in red).

If the cost function is affine, then there is a nice geometric property of the Pareto frontier.

Lemma 4.12. Suppose that Assumption 3 holds and that the cost function is affine ( i.e.
C = Caff given by (30)). Then, we have L?(θc+ (1− θ)C(0)) ≤ θL?(c) for all c ∈ [0, C(0)]
and θ ∈ [0, 1].

Remark 4.13. Geometrically, Lemma 4.12 means that the graph of the loss L? : [0, C(0)]→
[0,L(1)] is below its chords with end point (1,L?(1)) = (1, 0). See Figures 1(b) or for a
typical representation of the Pareto frontier (red solid line).

Proof. Let c ∈ [0, C(0)] and θ ∈ [0, 1]. Let η ∈ PL with cost C(η) = c and thus L(η) = L?(c).
We have:

C(θη) = θC(η) + (1− θ)C(0) ≤ θc+ (1− θ)C(0).

Therefore, θη is admissible for Problem (34) with cost constraint C(·) ≤ θc+ (1− θ)C(0).
This implies that L?(θc + (1 − θ)C(0)) ≤ L(θη) ≤ θL?(c), thanks to the sub-homogeneity
of the loss function L. �

In some case, we shall prove that the considered loss function is convex. In this case,
choosing a convex cost function implies that the Pareto frontier is convex. We provide a
short proof of this result.

Proposition 4.14. Suppose that Assumption 3 holds. If the cost function C and the loss
function L are convex, then the Pareto frontier is convex, i.e., the function C? and L? are
convex.
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Proof. Since, according to Proposition 4.7, the functions C? and L? are continuous, de-
creasing on the segment where they are positive, and L? is the inverse of C? on [0,L(1)], it
is enough to prove that C? is convex.

Let `0, `1 ∈ [0,L(1)]. By Corollary 4.8, there exist η0, η1 such that L(ηi) = `i and
C(ηi) = C?(`i) for i ∈ {0, 1}. For θ ∈ [0, 1], let ` = (1 − θ)`0 + θ`1. Since C and L are
assumed to be convex, η = (1− θ)η0 + θη1 satisfies

C(η) ≤ (1− θ)C?(`0) + θC?(`1) and L(η) ≤ (1− θ)`0 + θ`1.

Therefore C?((1− θ)`0 + θ`1) ≤ C(η) ≤ (1− θ)C?(`0) + θC?(`1), and C? is convex. �

Remark 4.15. Using Propositions 3.8 and 4.14, we get that, when the next generation
operator k is a diagonally HS positive semi-definite kernel (see Definition 3.7) satisfying
Assumption 1, then the Pareto frontier for the loss Re and the cost C = Cuni given by (31)
(or the slightly more general cost Caff given by (30)) is convex.

See Example 1.7 where the Pareto frontier FRe (and thus Re) is not convex.

5. Two notions of equivalence between models

5.1. Motivation. The kernel model under Assumption 1, where only the functions Re
is considered, and the SIS model under Assumption 2, where the function Re and I are
considered, are completely characterized by their parameters respectively given by Param =
[(Ω,F , µ), k] and Param = [(Ω,F , µ), k, γ], where (Ω,F , µ) is a probability space, k and k
are non-negative kernels on Ω and γ is a non-negative function on Ω. In full generality, the
cost function, or its density caff in the affine case given in (30), should also be considered as
a parameter. For simplicity and following the comment at the beginning of Section 4.1, we
will only consider the uniform cost Cuni given in (31). The loss function L = I is defined
only in the SIS model, whereas the loss function L = Re, which can be considered in the SIS
model or the more general kernel model, will implicitly be considered in the more general
latter model.

In order to emphasize the dependence of a quantity H on the parameters Param of the
model, we shall write H[Param] for H. For example we write: ∆[Param] for the set of
functions {η ∈ L∞(Ω,F ) : 1 ≥ η ≥ 0} which clearly depends on the parameters Param =
[(Ω,F , µ), k] (or Param = [(Ω,F , µ), k, γ]); the effective reproduction function Re[Param],
the set of Pareto optimal strategies PL[Param] for the loss L ∈ {Re, I}, and the corresponding
Pareto frontier FL[Param]. For example, under Assumption 2, we have the equality of the
following functions: Re[(Ω,F , µ), k, γ] = Re[(Ω,F , µ), k/γ, 1] = Re[(Ω,F , µ), k/γ], where
for the last equality the left hand-side refers to the SIS model and the right hand-side
refers to the kernel model. Using (21), if inf γ > 0, then we also have Re[(Ω,F , µ), k/γ] =
Re[(Ω,F , µ), γ−1k].

The aim of this section is to provide examples of different set of parameters for which
the models are “equivalent” in the intuitive sense that is: the Pareto frontiers (as subset of
R2

+) are the same and it is possible to map nicely the Pareto optimum from one model to
the another.

5.2. On measurability. We recall some well-known facts on measurability. Let (E,E )
and (E′,E ′) be two measurable spaces. If E′ = R, then we take E ′ = B(R) the Borel σ-
field. Let f be a function from E to E′. We denote by σ(f) = {f−1(A) : A ∈ E ′}
the σ-field generated by f . In particular f is measurable from (E,E ) to (E′,E ′) if and
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only if σ(f) ⊂ E . Let ϕ be a measurable function from (E,E ) to (E′,E ′). For ν a measure
on (E,E ), we write ϕ#ν for the for the push-forward measure on (E′,E ′) of the measure ν
by the function ϕ (that is ϕ#ν(A) = ν(ϕ−1(A)) for all A ∈ E ′). By definition of the
push-forward measure, for a measurable function g from (E′,E ′) to (R,B(R)), we have :

(39)
∫
E′
g dϕ#ν =

∫
E
g ◦ ϕdν.

Let f be a measurable function from (E,E ) to (R,B(R)). We have:

(40) σ(f) ⊂ σ(ϕ) =⇒ f = g ◦ ϕ,
for some measurable function g from (E′,E ′) to (R,B(R)).

The random variables we shall consider, will be defined on a probability space, say
(Ω0,F0,P). Let A , B and H be σ-fields subsets of F0, such that H ⊂ A ∩B. Then,
according to [30, Theorem 8.9], we have for any integrable real-valued random variable X
which is B-measurable:

(41) A and B are conditionally independent given H =⇒ E [X|A ] = E [X|H ] .

5.3. Coupled models. In this section, we only consider the SIS model; the adaptation the
kernel model is immediate. We refer the reader to [29] for a similar developpment in the
graphon setting. Let Parami = [(Ωi,Fi, µi), ki, γi] for i ∈ {1, 2} be two sets of parameters
for the SIS model. In particular, Assumption 2 holds for each model. In what follows, we
simply write ∆i the set of functions ∆ for the model with parameters Parami.

A measure π on (Ω1 × Ω2,F1 ⊗F2) is a coupling if its marginals are µ1 and µ2.

Definition 5.1 (Coupled models). Two sets of parameters Param1 and Param2 are coupled
if there exists two independent random vectors (X1, X2) and (Y1, Y2) (defined on a probability
space (Ω0,F0,P)) with the same distribution given by a coupling such that, P-a.s.:

γ1(X1) = γ2(X2) and k1(X1, Y1) = k2(X2, Y2).

In this case, two real-valued measurable functions v1 and v2 defined respectively on Ω1 and
Ω2 are coupled (through V ) if there exists a real-valued σ(X1, X2)-measurable integrable
random variable V such that P-a.s.:

E [V |Xi] = vi(Xi) for i ∈ {1, 2}.
Remark 5.2. In the previous definition, since V is real-valued and σ(X1, X2)-measurable,
we deduce from (40) there exits a measurable function v defined on Ω1 × Ω2 such that
V = v(X1, X2). And, thus, we get that P-a.s.:

E [v(Y1, Y2)|Yi] = vi(Yi) for i ∈ {1, 2}.
Remark 5.3. If V is a real-valued integrable σ(X1) ∩ σ(X2)-measurable random variable,
then setting vi(Xi) = E [V |Xi] = V , we get that a.s. v1(X1) = v2(X2), so that v1 and v2

are coupled (through V ).

Remark 5.4. Let η1 ∈ ∆1. According to (40) there exists η2 ∈ ∆2 such that E [η1(X1)|X2] =
η2(X2). Thus, by definition η1 and η2 are coupled (through V = η1(X1)).

Lemma 5.5 (Measurability). Let Param1 and Param2 be coupled parameters set with inde-
pendent coupling (X1, X2) and (Y1, Y2). Then the random variable γ1(X1) is σ(X1)∩σ(X2)-
measurable. And for any measurable function v : Ω1 → R, such that k(X1, Y1)v(Y1) is
integrable, the random variable E [k(X1, Y1)v(Y1)|X1] is also σ(X1) ∩ σ(X2)-measurable.
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Proof. The σ(X1) ∩ σ(X2)-measurability of γ1(X1) is an immediate consequence of the
almost-sure equality γ1(X1) = γ2(X2). Since E [k(X1, Y1)v(Y1)|X1] is σ(X1)-measurable,
it remains to prove that it is also σ(X2)-measurable. Since (X1, X2) is independent from
(Y1, Y2), the σ-fields A = σ(X1, X2) and B = σ(X1, Y1) are conditionally independent
with respect to H = σ(X1). Using (41), we deduce that:

E [k(X1, Y1)v(Y1)|X1] = E [k(X1, Y1)v(Y1)|X1, X2] .

Since k(X1, Y1) = k2(X2, Y2) P-a.s., we get:

E [k(X1, Y1)v(Y1)|X1] = E [k(X2, Y2)v(Y1)|X1, X2]

= E [k(X2, Y2)v(Y1)|X2] ,

where the last equality follows from another application of (41) with A = σ(X1, X2), B =
σ(X2, Y1, Y2) which are conditionally independent given H = σ(X2). The last expression
is σ(X2) measurable, so the proof is complete. �

The main result of this section state that coupled models have coupled Pareto optimal
strategies.

Proposition 5.6 (Coupling and Pareto optimality). If Param1 and Param2 are coupled
and if the functions η1 ∈ ∆1 and η2 ∈ ∆2 are coupled, then:

η1 is Pareto optimal (for Param1) ⇐⇒ η2 is Pareto optimal (for Param2).

Furthermore, if η1 ∈ ∆1 is Pareto optimal (for Param1), then there exists a Pareto optimal
(for Param2) strategy η2 ∈ ∆2 such that η1 and η2 are coupled.

Before going into the proof of Proposition 5.6, we derive an important example.

Example 5.7 (Deterministic coupling, model reduction). Let Param1 = [(Ω1,F1, µ1), k1, γ1].
Let ϕ be a measurable function from (Ω1,F1) to (Ω2,F2), let X1 and Y1 be independent
µ1 distributed random elements of Ω1, and set (X2, Y2) = (ϕ(X1), ϕ(Y1)). Notice that
σ(X2) ⊂ σ(X1) so that σ(X1) ∩ σ(X2) = σ(X2).

Assume that σ(γ1) ⊂ σ(ϕ) and σ(k1) ⊂ σ(ϕ)⊗σ(ϕ). This implies that γ1(X1) is σ(X2)-
measurable and k1(X1, Y1) is σ(X2, Y2)-measurable. According to (40) there exists two
measurable functions γ2 : Ω2 → R and k2 : Ω2 × Ω2 → R such that γ1 = γ2 ◦ ϕ and
k1(x, y) = k2 ◦ (ϕ⊗ ϕ) that is a.s.:

γ1(X1) = γ2(X2) and k1(X1, Y1) = k2(X2, Y2).

Let µ2 = ϕ#µ1 be the push-forward measure of µ1 by ϕ. Using (39) it is easy to check that
the integrability condition from Assumption 2 is fulfilled, so we can consider the parameter
set Param2 = [(Ω2,F2, µ2), k2, γ2]. By Definition 5.1, Param1 is coupled with Param2

through the (deterministic) coupling π given by the distribution of (X1, ϕ(X1)).

Let η1 ∈ ∆1 be a vaccination strategy. According to Remark 5.4, there exists η2 ∈ ∆2

such that η1 and η2 are coupled, and:

η2(X2) = E [η1(X1)|X2] = η2(X2).

Notice that η̃1 = η2 ◦ ϕ = E [η|ϕ] and η2 are also coupled, thanks to Remark 5.3 (take
V = η̃1(X1) = η2(X2)). We deduce from Proposition 5.6, that for η ∈ ∆1:

(42) η is Pareto optimal ⇐⇒ E [η|ϕ] is Pareto optimal ,
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where the Pareto optimum are for the parameter set Param1. Notice we only require that
that σ(γ1) ⊂ σ(ϕ) and σ(k1) ⊂ σ(ϕ)⊗ σ(ϕ).

Remark 5.8. As a consequence of the previous example, if one consider the smallest σ-field
G ⊂ F such that γ is G -measurable and k is G ⊗ G measurable, then η ∈ ∆ for the model
[(Ω,F , µ), k, γ] is Pareto optimal if and only if E[η|G ] is also Pareto optimal, with E the
expectation corresponding to the probability measure P = µ on (Ω,F ). This could be
formalized through a coupling between the initial model [(Ω,F , µ), k, γ] and the reduced
model [(Ω,G , µ), k′, γ′], where γ′ = E [γ|G ] and k′ = E [k|G ⊗ G ].

The first part of Proposition 5.6 is an elementary consequence of the following key lemma;
and the second part is a direct consequence of Remark 5.4. Their proofs are left to the
reader. In what follows, we simply write Hi for H[Parami] for H the loss functions Re and
I, the cost function C and the spectrum Spec.

Lemma 5.9. If Param1 and Param2 are coupled parameters, and if the functions η1 ∈ ∆1

and η2 ∈ ∆2 are coupled, then Spec1(η1)∪ {0} = Spec2(η2)∪ {0} and for H any one of the
mappings Cuni, Re or I:

(43) H1(η1) = H2(η2).

Proof. Let (X1, X2) and (Y1, Y2) be two independent couplings, and assume that η1 and η2

are coupled through the function η, see Remark 5.2:

(44) E [η(X1, X2)|Xi] = ηi(Xi) for i ∈ {1, 2}.
Step 1: The cost function (H = Cuni). We directly have:

C1(η1) = 1− E [η1(X1)] = 1− E [η(X1, X2)] = 1− E [η2(X2)] = C2(η2).

Step 2: The spectrum and the effective reproduction function (H = Re). Set ki = ki/γi
for i ∈ {1, 2}. Let λ be a non-zero eigenvalue of Tk1η1 associated with an eigenvector
v1. Notice that k(X1, Y1)η1(Y1)v(Y1) is integrable thanks to the integrability condition
from Assumption 2. By definition of eigenvectors, v1(X1) is a version of the conditional
expectation

λ−1E [k1(X1, Y1) η1(Y1)v1(Y1)|X1] .

By Lemma 5.5 applied to the function v = v1η1, the real-valued random variable v1(X1)
is σ(X1) ∩ σ(X2)-measurable and thus σ(X2)-measurable. Thanks to (40), there exists v2

such that a.s. v2(X2) = v1(X1). Since (Y1, Y2) is distributed as (X1, X2), we deduce that
(44) holds also with (X1, X2) replaced by (Y1, Y2) and that a.s. v2(Y2) = v1(Y1). We may
now compute:

(45)

λv2(X2) = λv1(X1)

= E [k1(X1, Y1) η1(Y1)v1(Y1)|X1]

= E [k1(X1, Y1) η1(Y1)v1(Y1)|X2] (Lemma 5.5)
= E [k1(X1, Y1) η(Y1, Y2)v1(Y1)|X2] (de-conditioning on Y1)
= E [k2(X2, Y2) η(Y1, Y2)v2(Y2)|X2] (a.s. equality)
= E [k2(X2, Y2) η2(Y2)v2(Y2)|X2] (conditioning on Y2)
= Tk2η2v2(X2).
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Since the distribution of X2 is µ2, we have µ2-a.s. that λv2(x2) = Tk2η2v2(x2). Therefore λ
is also an eigenvalue for Tk2η2 . By symmetry we deduce that the spectrum up to {0} of Tk1η1
and Tk2η2 coincide, that is Spec1(η1)∪{0} = Spec2(η2)∪{0}, and in particular the spectral
radius coincide.

Step 3: The total proportion of infected population function (H = I). We assume
without loss of generality that ρ(Tk1/γ1) > 1, which is equivalent to ρ(Tk2/γ2) > 1, thanks
to (43) with H = Re and η1 = η2 = 1. Let g1 = gη1 be the maximal equilibrium for the
model Param1. Since Fη1(g1) = 0, see (17), we have:

(46) g1 =
Tk1(η1g1)

γ1 + Tk1(η1g1)
·

By Lemma 5.5, this implies that g1(X1) is σ(X1)∩σ(X2) measurable. Thus, there exists g′2
such that P-a.s. g′2(X2) = g1(X1). Therefore, by the same computation as in (45), P-a.s.:

Tk1(η1g1)(X1) = Tk2(η2g
′
2)(X2).

We set:

(47) g2 =
Tk2(η2g

′
2)

γ2 + Tk2(η2g′2)
·

Then, we deduce from (46) that P-a.s. g2(X2) = g′2(X2), that is, µ2-a.s., g2 = g′2. Thus
(47) holds with g′2 replaced by g2. In other words, g2 satisfies (17): it is an equilibrium for
the model given by Param2.

Let us now prove that g2 is in fact the maximal equilibrium. Since P-a.s. g2(X2) =
g1(X1) and g1(X1) is σ(X1)∩σ(X2)-measurable, we deduce from Remark 5.3, that (1−g1)
and (1 − g2) are coupled, so Re[Param1](1 − g1) = Re[Param2](1 − g2), by Property (43)
applied to H = Re. Since R0 > 1 and g1 is the maximal equilibrium for Param1, we deduce
from Proposition 7.2 that Re[Param1](1− g1) = 1. Using again Proposition 7.2, this gives
that g2 is the maximal equilibrium for Param2.

We may now compute:

I1(η1) = E [η1(X1) g1(X1)]

= E [η(X1, X2) g1(X1)] (deconditioning on X1)
= E [η(X1, X2) g2(X2)] ( a.s. equality)
= E [η2(X2) g2(X2)] (conditioning on X2)
= I2(η2),

thus (43) holds for H = I, and the proof is complete. �

5.4. Examples of couplings. In this section, we consider the kernel model when describ-
ing the parameters to fix the notations, but the SIS can be handled in the same way. We
denote by Leb the Lebesgue measure.

5.4.1. Measure preserving function. This section is motivated by the theory of graphon,
which are indistinguishable by measure preserving transformation, see [35, Sections 7.3
and 10.7]. Let (Ω,F , µ) be a measurable space. We say a measurable function ϕ from
(Ω,F ) to itself is measure preserving if µ = ϕ#µ. For example the function ϕ : x 7→ 2x
mod (1) defined on the probability space ([0, 1],B([0, 1],Leb) is measure preserving.
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Let ϕ be measure preserving, and k be an arbitrary kernel with a finite double norm. Let
X1 be with probability distribution µ and let X2 = ϕ(X1), so that (X1, X2) is a coupling
of (Ω,F , µ) and itself. Then for

k1(x, y) = k(x, y) and k2(x, y) = k(ϕ(x), ϕ(y)),

the models Param1 = [(Ω,F , µ), k1] and Param2 = [(Ω,F , µ), k2] are coupled. Roughly
speaking, we can give different label to the features of the population without altering the
Pareto frontier.

5.4.2. Discrete and continuous models. We now formalize how finite population models can
be seen as particular cases of models with a continuous population. Let Ω1 ⊂ N, F1 the
set of subsets of Ω1 and µ1 a probability measure on Ω1. Without loss of generality, we
can assume that µ1({`}) > 0 for all ` ∈ Ω1. We set Ω2 = [0, 1), with F2 its Borel σ-
field and µ2 = Leb. Let (B`, ` ∈ Ω1) be a partition of [0, 1) in measurable sets such that
Leb(B`) = µ1({`}) for all ` ∈ Ω1. The measure π on Ω1 × Ω2 uniquely defined by:

π({`} ×A) = Leb(B` ∩A)

for all measurable A ⊂ [0, 1) is clearly a coupling of µ1 and µ2. If the kernels k1 on Ω1 and
k2 on Ω2 are related through the formula

k2(x, y) = k1(`, j), for x ∈ B`, y ∈ Bj ,
then Param1 = [(Ω1,F1, µ1), k1] and Param2 = [([0, 1),F2,Leb), k2] are coupled. Roughly
speaking, we can blow up the atomic part of the measure µ1 into a continuous part, or,
conversely, merge all points that behave similarly for k2 into an atom, without altering the
Pareto frontier.

Example 5.10. We consider the so called stochastic block model with 2 populations in
the setting of the SIS model in order to stick to the discrete model developed in [33] by
Lajmanovich and Yorke.

The discrete SIS model is defined on Ωd = {1, 2} with the probability measure µd defined
by µd(1) = 1 − µd(2) = p with p ∈ (0, 1), and a kernel kd and recovery function γd given
by the matrix and the vector:

kd =

(
k11 k12

k21 k22

)
and γd =

(
γ1

γ2

)
.

The corresponding model is Paramd = [({1, 2},Fd, µd), kd, γd]; see Figure 4(b).
The continuous model is defined on the state space Ωc = [0, 1) is endowed with its

Borel σ-field, Fc, and the Lebesgue measure µc = Leb. The segment [0, 1) is partitioned
into two intervals B1 = [0, p) and B2 = [p, 1), the transmission kernel kc and recovery rate
γc are given by:

kc(x, y) = kij and γc(x) = γi for x ∈ Bi, y ∈ Bj .
The corresponding model is Paramc = [([0, 1),Fc,Leb), kc, γc]; see Figure 4(a). By the
general discussion above, the discrete and continuous models are coupled, and in particular
they have the same Pareto frontier.

Furthermore, in this simple example, it is easily checked that a discrete vaccination
ηd = (η1, η2) and a continuous vaccination ηc = (ηc(x), x ∈ [0, 1)) are coupled if and only if
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(a) Continuous model: kernel kc
on Ωc = [0, 1] with the Lebesgue measure

p

1

1− p

2

k11

k22

k21

k12

(b) Discrete model: kernel kd on Ωd = {1, 2}
with the measure pδ1 + (1− p)δ2

Figure 4. Coupled continuous model (left) and discrete model (right).

there exists a function η defined on Ωc × Ωd = [0, 1)× {1, 2} such that: ηi =
1

Leb(Bi)

∫
Bi

η(x, i) dx, i ∈ {1, 2},

ηc(x) = η(x, 1)1B1(x) + η(x, 2)1B2(x), Leb-a.s.,

which occurs if and only if:

ηi =
1

Leb(Bi)

∫
ηc(x)1Bi(x) dx, i ∈ {1, 2}.

Therefore, in this case, the Pareto optimal strategies of the continuous model are easily
deduced from the optimal strategies of the discrete model.

To conclude this example, we also give the next-generation matrix K in the setting of [33]
which is defined on the discrete model Ωd, and the effective next-generation matrix Ke(η)
when the vaccination strategy η is in force (recall ηi is the proportion of population with
feature i which is not vaccinated):

K =

(
k11 p k12 (1− p)
k21 p k22 (1− p)

)
and Ke(η) =

(
k11 p η1 k12 (1− p) η2

k21 p η1 k22 (1− p) η2

)
,

with kd = kd/γd, that is:

kd =

(
k11 k12

k21 k22

)
=

(
k11/γ1 k12/γ2

k21/γ1 k22/γ2

)
.

5.5. Diagonal similarity and transposition.

5.5.1. The operator case. In this section, we consider the kernel model with a given prob-
ability state space (Ω,F , µ), and we discuss two operations on the kernel k that leave the
functions Spec[k] and Re[k] defined on ∆, and thus the set of Pareto optima unchanged.
Recall the convention (4) for the kernel fkg defined from the kernel k and the non-negative
functions f and g.
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Lemma 5.11. Let k be a kernel on Ω and h be a non-negative measurable function on Ω.

(i) If hk and kh have finite double norm (with possibly different p), then we have:

Spec[hk] = Spec[hk1{h>0 }] = Spec[1{h>0 }kh] = Spec[kh]

Re[hk] = Re[hk1{h>0 }] = Re[1{h>0 }kh] = Re[kh].

(ii) If h is positive and if k and hk/h have finite double norm (with possibly different
p), then we have:

Spec[k] = Spec[hk/h] and Re[k] = Re[hk/h].

(iii) If k has finite double norm (with p ∈ (1,+∞)), then its transpose k> : (x, y) 7→
k(y, x) has finite double norm (with p replaced by its conjugate q), and we have:

Spec[k] = Spec[k>] and Re[k] = Re[k
>].

Even if (ii) is a consequence of (i), we state it separately, since (ii) and (iii) describe two
modifications of k that leave the function Re invariant.

Proof. We give the detailed proof of (ii), in the spirit of the proof of Lemma 3.9, and leave
the proof of (i), which is very similar, to the reader. We first assume that k, h and 1/h are
bounded. The operators Tkη and Thkη/h and the multiplication operators Mh and M1/h are
bounded operators on Lp for p ∈ (1,+∞). We have, using that Tkη/h = TkMη/h is compact
and (22) for the second equality:

Spec(Tkη) = Spec(Tkη/hMh) = Spec(MhTkη/h) = Spec(Thkη/h).

Since η ∈ ∆ is arbitrary, this gives that Spec[k] = Spec[hk/h].
In the general case, we use an approximation scheme. Define the kernel kn = (vnkvn)∧n

with vn = 1{h≥1/n} and the function hn = n−1 ∨ (h ∧ n) for n ∈ N∗. From the first part of
the proof, we get Spec[kn] = Spec[k′n], with k′n = hnkn/hn. Since ‖k‖p,q is finite for some
p ∈ (1,+∞), we get by dominated convergence that limn→∞‖k−kn‖p,q = 0, and we deduce
from Proposition 3.6 that limn→∞ Spec[kn] = Spec[k]. Similarly, setting k′ = hk/h, the
norm ‖k′‖p′,q′ is finite for some p′ ∈ (1,+∞), and thus limn→∞‖k′ − k′n‖p′,q′ = 0, so that
limn→∞ Spec[k′n] = Spec[k′]. This proves that Spec[k] = Spec[k′], and thus (ii).

We now prove (iii). For any η ∈ ∆, the kernel k>η defines a bounded integral operator
in Lq, whose adjoint is Tηk. Since the spectrum of an operator and its adjoint are the same,
we get Spec[k>](η) = Spec(Tk>η) = Spec(Tηk) = Spec(MηTk) = Spec(TkMh) = Spec[k](η),
where the fourth equality follows once more from (22). Since this is true for any η ∈ ∆,
this gives Spec[k>] = Spec[k]. �

Remark 5.12. A case of particular interest is the SIS model defined under Assumption 2
where inf γ > 0. Indeed, taking h = 1/γ in Lemma 5.11 (i), we get the models with
parameters [(Ω,F , µ), k, γ], [(Ω,F , µ), k/γ, 1] and [(Ω,F , µ), γ−1k, 1] are equivalent, as
far as the optimization of the loss Re is concerned, as they have the same Pareto optima
and Pareto frontier. Notice the operator Tγ−1k, which is the next generation operator for
the model [γ−1k, 1] appears naturally in the definition of the maximal equilibrium, see (13).
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5.5.2. The matrix case. It is then natural to ask if the invariance properties stated in
Lemma 5.11 describe all possible cases. In other words, does Spec[k] = Spec[k̃] or even the
weaker condition Re[k] = Re[k̃] imply that k and k̃, or k and k̃>, are diagonally similar?
Building on results from [25, 34], we give a partial answer in the matrix case.

For clarity’s sake let us describe how our general notation adapts to the matrix case.
Let K be an n × n matrix, let ∆ = [0, 1]n. For η ∈ ∆, let Kη denote the square matrix
K ·Diag(η), defined by (Kη)ij = Kijηj . We define two maps:

Spec[K] : ∆→ K and Re[K] : ∆→ R+,

where for all η ∈ ∆, Spec[K](η) (resp. Re[K](η)) is the spectrum (resp. the spectral radius)
of the square matrix Kη. We denote by E(∆) = {0, 1}n the extreme points of ∆.

For α and β non-empty subsets of {1, ..., n} we denote by K[α, β] the submatrix of K
obtained by keeping the lines in α and the columns in β, and let K[α] = K[α, α]. The
determinant of K[α] is called a principal minor of K. It is elementary to check that the
characteristic polynomial of K may be written as:

(48) χK(t) =

n∑
k=0

(−1)kcn−kt
k,

where c0 = 1 and, for j ≥ 1, cj is the sum of all principal minors of size j of K.

Definition 5.13. Let K be a square matrix of size n. A (non-empty) subset α of {1, ..., n}
is a clan if K[α, αc] and K[αc, α] have rank at most 1. The matrix K is clan-free if there
exists no clan.

Assume that α = {1, ...,m} is a clan for K. There exists vectors v, w of size m, and b, c
of size n−m such that K may be written in block form as:

(49) K =

(
A vb>

cw> D

)
Let us then say that:

(50) K̃ =

(
A> wb>

cv> D

)
is a partial transpose of K (note that the partial transpose is not unique).

Remark 5.14. Such transformations have been considered in the special case where v = w in
[34, Lemma 5]; see also [3] where a similar transformation called clan reversal is introduced
for skew symmetric matrices.

Our main result in this direction is summarized in the following proposition. Recall the
matrix K is diagonally similar to a matrix K̃ if there exists a non singular real diagonal
matrix D such that K = DK̃D−1. The matrix K is irreducible if K[α, β] 6= 0 for all
non-empty subsets α and β. The matrix K is completely reducible if K[α, αc] = 0 implies
K[αc, α] = 0 whenever α and αc are non-empty. We have the following graph interpretation:
consider the oriented graph G = (V,E) with V = {1, . . . , n} and ij ∈ E, that is ij is an
oriented edge of G, if and only if K(i, j) > 0. Then K is irreducible if there is an oriented
path from i to j for any choice of vertices i, j ∈ V ; K is completely reducible if for any
vertices i, j ∈ V there is an oriented path from i to j if and only if there is an oriented path
from j to i.
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Proposition 5.15 (Matrix case). Let K and K̃ be square matrices of the same size with
non-negative entries.

(i) Assume K is symmetric and Re[K] = Re[K̃]. If K̃ is competely reducible then K̃

is diagonally similar to K; if K̃ is symmetric then K̃ = K.
(ii) Assume that K is irreducible, clan-free and Re[K] = Re[K̃]. Then K̃ is diagonally

similar to K or to K>.
(iii) If K is not clan-free, then Re[K] = Re[K̃] for any partial transpose K̃ of K.

The proof of this proposition, which is postponed to the end of this section, hinges on
the following characterization of matrices whose functions Re coincide.

Lemma 5.16. Let K and K̃ be square matrices of the same size with non-negative entries.
The following are equivalent:

(i) The functions Re[K] and Re[K̃] coincide on ∆.
(ii) The functions Re[K] and Re[K̃] coincide on E(∆).
(iii) The functions Spec[K] and Spec[K̃] coincide on ∆.
(iv) The functions Spec[K] and Spec[K̃] coincide on E(∆).
(v) All principal minors of K and K̃ coincide.

Remark 5.17. Property (ii) from Lemma 5.16 does not imply (i) nor (v) if the entries of
the matrices are signed. Indeed, consider the following two matrices:

K =

(
1 β
β 1

)
and K̃ =

(
1 −γ
γ 1

)
,

where γ > 0 and β =
√

1 + γ2 − 1. We have det(K) 6= det(K̃), so that all the principal
minors of size 1 coincide but the principal minor of size two is different. The eigenvalues of
K are

√
1 + γ2 and 2 −

√
1 + γ2; the eigenvalues of K̃ are 1 ± γi. In particular, the two

matrices have the same spectral radius
√

1 + γ2. The functions Re[K] and Re[K̃] clearly
coincide on E(∆) = {(1, 1), (1, 0), (0, 1) (0, 0)} even if Re[K] 6= Re[K̃].

According to the the proof of Lemma 5.16, we have that (v) implies (i). Mimicking the
proof by induction of (ii) =⇒ (v) from Lemma 5.16, it is not difficult to check that if K
and K̃ are square matrices of the same size with at least one non-zero diagonal entry, then
(i) implies (v). This result is however not true if all the diagonal entries are zero. Indeed,
consider the following two matrices:

K =

(
0 1
1 0

)
and K̃ =

(
0 −1
1 0

)
.

We have Re[K] = Re[K̃] on ∆ = [0, 1]2, but, even if all the principal minors of size 1
coincide, the principal minor of size two is different.

Proof of Lemma 5.16. Clearly (iii) =⇒ (i) =⇒ (ii), and (iii) =⇒ (iv) =⇒ (ii).
Let us check that (v) implies (iii). Assume that all principal minors of K and K̃ coincide.

Recall that any vector η, Kη denotes the square matrix K ·Diag(η). For any vector η and
any set of indices α, by multilinearity of the determinant,

det
(

(Kη)[α]
)

=
(∏
i∈α

ηi

)
det (K[α]) .
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Consequently, all principal minors of (Kη) and (K̃η) coincide. By (48) this implies that
Kη and K̃η have the same spectrum. Thus, (iii) holds.

Therefore, it is enough to prove that (ii) implies (v). The proof is an induction on the
dimension. The result is clear in dimension 1. Assume that it holds for any matrix of
dimension smaller than n. Let K and K̃ be two matrices of dimension n+ 1, and assume
that Re[K] and Re[K̃] coincide on E(∆). For any non-empty α ⊂ {1, ..., n + 1}, let ηα be
the column vector (1α(i), 1 ≤ i ≤ n+ 1). Notice that for any matrix K ′:

Re[K
′](ηα) = ρ(K ′ηα) = ρ(K ′[α]).

Fix α ⊂ {1, ..., n+ 1} nonempty, with α 6= {1, ..., n+ 1}. Let β ⊂ α and set η̃β = (1β(i), i ∈
α). We have:

(51) Re[K
′[α]](η̃β) = ρ(K ′[α]η̃β) = ρ(K ′ηαηβ) = ρ(K ′ηβ) = Re[K

′](ηβ).

Since the vector ηβ is extremal in ∆, we get Re[K](ηβ) = Re[K̃](ηβ) for all β ⊂ α. We
deduce from (51) that Re[K[α]] = Re[K̃[α]] on the extremal points. By the induction
hypothesis the principal minors of K[α] and K̃[α] are equal, and in particular they have
the same determinant. Therefore, all principal minors of size less than or equal to n of K
and K̃ coincide. It remains to check that the determinants are the same. Since all principal
minors of size less than or equal to n coincide, we deduce from (48) that:

χK(t)− det(K) = χK̃(t)− det(K̃),

Since K and K ′ have non-negative entries, by Perron-Frobenius theorem, their spectral
radius is also an eigenvalue, and thus a root of their characteristic polynomial. We deduce
that det(K) = det(K̃). This concludes the proof of the induction step. �

Proof of Proposition 5.15. To prove the first two points (i) and (ii), note that thanks to
Lemma 5.16, the principal minors of K and K̃ coincide. The results then follow directly
from [14, Theorem 3.5], for the symmetric case, and [34, Theorem 1] for the clan-free case.

To prove the last point (iii), suppose thatK has a clan α, and let K̃ be a partial transpose
of K, so that K and K̃ may be given by (49) and (50). For any λ /∈ Spec(D), using a
classical formula for determinants of block matrices,

det(K − λI) = det(A− λI − vb>(D − λI)−1cw>) det(D − λI)

det(K̃ − λI) = det(A> − λI − wb>(D − λI)−1cv>) det(D − λI)

= det(A− λI − vc>((D − λI)−1)>bw>) det(D − λI).

Since b>(D − λI)−1c is a one-dimensional matrix, it is equal to its transpose, so that
det(K − λI) = det(K̃ − λI) are equal for all λ /∈ Spec(D), and thus for all λ ∈ C by
continuity. Consequently, the matrices K and K̃ have the same spectrum. For any β, it is
easily seen that K[β] and K̃[β] are partial transposes of each other, so that K[β] and K̃[β]
also have the same spectrum, and in particular the same spectral radius. Therefore Re[K]

and Re[K̃] coincide. �
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6. A characterization of C?Re
(0) when the support of k is symmetric

We have seen in Remark 4.5 that the vaccination strategy η = 1 (i.e. nobody is vacci-
nated) is Pareto optimal. This is the unique strategy (modulo µ-a.e. equality) that mini-
mizes C on ∆. When the kernel k has a symmetric support, the Pareto optimal strategies
which minimize Re can also be characterized.

Let us first recall a notion from graph theory. If G = (V,E) is an non-oriented graph
with vertices set V and edge set E, an independent set of G is a subset A ⊂ V of vertices
which are pairwise not adjacent, that is, i, j ∈ A implies ij 6∈ E. The independence number
of a graph G, denoted by α(G), is the maximum of ]A/]G, over all the independent sets A
of G. Following [28], we generalize this definition to kernels.

Definition 6.1 (Independent sets for kernels). Let k be a kernel on Ω. A measurable set
A ∈ F is an independent set of k if k = 0 µ⊗2-a.s. on A × A. The independence number
α(k) of the kernel k is:

α(k) = sup{µ(A) : A is an independent set of k}.
A compactness argument will show that the supremum defining α is reached.

Proposition 6.2 (Existence of a maximal independent set). For any kernel k on Ω, there
exists an independent set A of k that is maximal, in the sense that µ(A) = α(k).

Proof. First, notice that the independent sets and maximal independent sets of a kernel k
depends only on the support { k > 0 } of k. Therefore, the maximal independent sets of the
kernel k and of the kernel 1{ k>0 } are the same. In particular, we can assume without loss
of generality that k is bounded.

Let (An, n ∈ N) be a sequence of independent sets for k such that:

lim
n→∞

µ(An) = α(k).

Since ∆ is compact for the weak topology, up to taking a sub-sequence, we may assume that
the sequence (1An , n ∈ N) converges weakly to some function g ∈ ∆. Since k is bounded,
the operator Tk is well defined. We deduce that Tk(1An) belongs to ∆ and converges
pointwise towards Tk(g). This implies that 1AnTk(1An) converges weakly towards gTk(g).
We deduce that: ∫

Ω
gTk(g) dµ = lim

n→∞

∫
Ω
1AnTk(1An) dµ = 0.

As g ∈ ∆, this implies that { g > 0 } is an independent set of k and thus µ (g > 0) ≤ α(k).
Besides, since (1An , n ∈ N) converges weakly to g, we get:∫

Ω
g dµ = lim

n→∞
µ(An) = α(k).

This implies that µ (g > 0) ≥
∫

Ω g dµ = α(k). We deduce that µ (g > 0) = α(k), and since
{ g > 0 } is an independent set, it is also maximal. �

In the following result, we prove that maximum independent sets provides an optimal
Pareto strategy for the loss function Re and the cost function Cuni given by (31) corre-
sponding to the cost C?Re

(0). See Example 1.7 for an example where C?Re
(0) < 1, that is,

where it is possible to prevent infections without vaccinating the whole population.
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Proposition 6.3. Suppose Assumption 1 holds and that {k > 0}, the support of the kernel
k, is a symmetric subset of Ω2. We consider the cost C = Cuni given by (31). For any
maximal independent set A of k, the strategy 1A is Pareto optimal for the loss L = Re[k]
and we have:

(52) C?Re[k](0) = C(1A) = 1− α(k).

Proof. The existence of a maximum independent set A is given by Proposition 6.2. The
basic reproduction number obviously vanishes for the strategy 1A with cost 1 − α(k) as
(Tk1A

)2 = Tk T1Ak1A
= 0. Now, let η ∈ ∆ be a strategy such that Re[k](η) = 0. To

complete the proof of the proposition, it is enough to prove that C(η) ≥ 1− α(k).
Since Re[k](η) = 0, the spectral radius of Tkη is equal to 0. Let ε > 0 and consider the

kernel kε defined on Ω by:
kε(x, y) = 1{ k(x,y)>ε }.

Since Tkη − εTkεη is a positive operator, we deduce from (23) that ερ(Tkεη) = ρ(εTkεη) ≤
ρ(Tkη) = 0 and thus ρ(Tkεη) = 0. Set k′ = 1{ k>0 }. Since limε→0+‖kε−k′‖p,q = 0, we deduce
from Proposition 3.6 on the stability of Re that ρ(Tk′η) = Re[k

′](η) = limε→0+Re[kε](η) =
limε→0+ ρ(Tkεη) = 0. As the support of k is symmetric, we deduce that the kernel k′ is
symmetric. According to (21), we have:

ρ(Tk′′) = ρ(Tk′η) = 0,

with k′′ =
√
η k′
√
η =
√
η 1{ k>0 }

√
η. Since the kernel k′′ is symmetric, non-negative and

bounded by 1, this implies that k′′ = 0 dµ⊗2-a.s., and thus { η > 0 } is an independent set
for k. This gives µ (η > 0) ≤ α(k). Therefore, we have the following lower bound for the
cost C(η):

C(η) = 1−
∫

Ω
η dµ ≥ 1− µ (η > 0) ≥ 1− α(k).

This ends the proof of the proposition. �

7. Proofs of Theorem 3.12 and Proposition 3.13, and properties of the
maximal equilibrium

For the convenience of the reader, we only use references to the results recalled in [7] for
positive operators on Banach spaces. For an operator T , we denote by T > its adjoint. We
first give a preliminary lemma.

Lemma 7.1. Let T be a positive bounded operator on L∞. If there exists g ∈ L∞
+ , with∫

Ω g dµ > 0 and λ > 0 satisfying:

T (g)(x) > λg(x), for all x such that g(x) > 0,

then we have ρ(T ) > λ.

Proof. Let A = { g > 0 } be the support of the function g. Let T ′ be the bounded operator
defined by T ′(f) = 1AT (1Af). Since T ′(g) = 1AT (1Ag) = 1AT (g) > λg, we deduce from
the Collatz-Wielandt formula, see [7, Proposition 3.6], that ρ(T ′) ≥ λ > 0. According to
[7, Lemma 3.7 (v)], there exists v ∈ Lq+ \ {0}, seen as an element of the topological dual of
L∞, a left Perron eigenfunction of T ′, that is such that (T ′)>(v) = ρ(T ′)v. In particular,
we have v = 1A v and thus

∫
A v dµ > 0 and

∫
Ω vg dµ > 0. We obtain:

(ρ(T ′)− λ) 〈v, g〉 = 〈v, T ′(g)− λg〉 > 0.
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This implies that ρ(T ′) > λ. Since T −T ′ is a positive operator, we deduce from (23) that
ρ(T ) ≥ ρ(T ′) > λ. �

We now state an interesting result on the characterization of the maximal equilibrium.
We keep notations from Sections 2.3 and 2.4 and write Re for Re[k/γ]. Recall that R0 =
Re(1). Let DF [h] denote the bounded linear operator on L∞ of the derivative of the map
f 7→ F (f) defined on L∞ at point h:

DF [h](g) = (1− h)Tk(g)− (γ + Tk(h))g for h, g ∈ L∞.

Recall s(A) denotes the spectral bound of the bounded operator A, see (33) in [7].

Proposition 7.2. Suppose Assumption 2 holds and write Re for Re[k/γ]. Let h in ∆ be
an equilibrium, that is F (h) = 0. The following properties are equivalent:

(i) h = g,
(ii) s(DF [h]) ≤ 0,
(iii) Re((1− h)2) ≤ 1.
(iv) Re(1− h) ≤ 1.

We also have: g = 0⇐⇒ R0 ≤ 1; as well as: g 6= 0 =⇒ Re(1− g) = 1.

Proof. Let h ∈ ∆ be an equilibrium, that is F (h) = 0.

Let us show the equivalence between (ii) and (iii). According to [7, Proposition 4.2],
s(DF [h]) ≤ 0 if and only if:

ρ (Tk) ≤ 1 with k(x, y) = (1− h(x))
k(x, y)

γ(y) + Tk(h)(y)
·

Since F (h) = 0, we have (1− h)/γ = 1/(γ + Tk(h)). This gives:

(53) k(x, y) = (1− h(x))
k(x, y)(1− h(y))

γ(y)

and thus Tk = M1−h Tk/γM1−h, where Mf the multiplication operator by f . Recall the
definition (9) of Re. According to (21), we have:

(54) ρ (Tk) = ρ
(
Tk/γM(1−h)2

)
= Re((1− h)2).

This gives the equivalence between (ii) and (iii).

We prove that (i) implies (iv). Suppose that Re(1 − h) > 1. Thanks to (21), we have
ρ(M1−hTk/γ) = ρ(Tk/γM1−h) = Re(1−h) > 1. According to [7, Lemma 3.7 (v)], there exists
v ∈ Lq+ \ {0} a left Perron eigenfunction of T(1−h)k/γ , that is T >(1−h)k/γ(v) = Re(1 − h)v.
Using F (h) = 0, and thus (1− h)Tk(h) = γh, for the last equality, we have:

Re(1− h) 〈v, γh〉 = 〈v, (1− h)Tk/γ(γh)〉 = 〈v, γh〉 .
We get 〈v, γh〉 = 0 and thus 〈v,1A〉 = 0, where A = {h > 0 } denote the support of the
function h. Since T >(1−h)k/γ(v) = Re(1 − h)v and setting v′ = (1 − h)v (so that v′ = v

µ-a.s.), we deduce that:
T >k′/γ(v′) = Re(1− h)v′,

where k′ = 1Ac k 1Ac . This implies that ρ(Tk′/γ) ≥ Re(1 − h). Since k′ = (1 − h)k′ and
Tk/γ − Tk′/γ is a positive operator as k − k′ ≥ 0, we get, using (23) for the inequality, that
ρ(Tk′/γ) = ρ(M1−hTk′/γ) ≤ ρ(M1−hTk/γ) = Re(1 − h). Thus, the spectral radius of Tk′/γ



40 JEAN-FRANÇOIS DELMAS, DYLAN DRONNIER, AND PIERRE-ANDRÉ ZITT

is equal to Re(1 − h). According to [7, Proposition 4.2], since ρ(Tk′/γ) > 1, there exists
w ∈ L∞

+ \ {0} and λ > 0 such that:

Tk′(w)− γw = λw.

This also implies that w = 0 on A = {h > 0 }, that is wh = 0 and thus wTk(h) = 0 as
Tk(h) = γh/(1− h). Using that F (h) = 0, Tk′(w) = Tk(w) and hTk(w) = 0, we obtain:

F (h+ w) = w(λ− Tk(w)).

Taking ε > 0 small enough so that εTk(w) ≤ λ/2 and εw ≤ 1, we get h + εw ∈ ∆ and
F (h+ εw) ≥ 0. Then use Lemma 3.10 to deduce that h+ εw ≤ g and thus h 6= g.

To see that (iv) implies (iii), notice that (1 − h)2 ≤ (1 − h), and then deduce from
Proposition 3.4 (iii) that Re((1− h)2) ≤ Re(1− h).

We prove that (iii) implies (i). Notice that F (g) = 0 and g ∈ ∆ implies that g < 1.
Assume that h 6= g. Notice that γ/(1 − h) = γ + Tk(h), so that γ(g − h)/(1 − h) ∈ L∞

+ .
An elementary computation, using F (h) = F (g) = 0 and (53), gives:

Tk
(
γ
g− h
1− h

)
= (1− h)Tk (g− h) = γ

g− h
1− g

=
1− h
1− g

γ
g− h
1− h ·

Since h 6= g and h ≤ g, we deduce that (1 − h)/(1 − g) ≥ 1, with strict inequality on
{ g− h > 0 } which is a set of positive measure. We deduce from Lemma 7.1 that ρ (Tk) > 1.
Then use (54) to conclude.

To conclude notice that g = 0 ⇐⇒ R0 ≤ 1 is a consequence of the equivalence between
(i) and (iv) with h = 0 and R0 = Re(1).

Using that F (g) = 0, we get Tk(g) = γg/(1−g). We deduce that Tk(1−g)/γ(Tk(g)) = Tk(g).
If g 6= 0, we get Tk(g) 6= 0 (on a set of positive µ-measure). This implies that Re(1−g) ≥ 1.
Then use (iv) to deduce that Re(1− g) = 1 if g 6= 0. �

In the SIS model, in order to stress, if necessary, the dependence of a quantity H, such
as Fη, Re or gη, in the parameters k and γ (which satisfy Assumption 2) of the model, we
shall write H[k, γ]. Recall that if k and γ satisfy Assumption 2, then the kernel k/γ has a
finite double norm on Lp for some p ∈ (1,+∞). We now consider the continuity property
of the maps η 7→ gη[k, γ] and (k, γ, η) 7→ gη[k, γ].

Lemma 7.3. Let ((kn, γn), n ∈ N) and (k, γ) be kernels and functions satisfying Assump-
tion 2 and (ηn, n ∈ N) be a sequence of elements of ∆ converging weakly to η.

(i) We have µ-a.s. limn→∞ gηn [k, γ] = gη[k, γ].
(ii) Assume furthermore there exists p′ ∈ (1,+∞) such that k = γ−1k and (kn =

γ−1
n kn, n ∈ N) have finite double norm on Lp

′ and that limn→∞‖kn − k‖p′,q′ = 0.
Then, we have µ-a.s. limn→∞ gηn [kn, γn] = gη[k, γ].

Proof. The proof of (i) and (ii) being rather similar, we only provide the latter and indicate
the difference when necessary. To simplify, we write gn = gηn [kn, γn]. We set hn = ηngn ∈ ∆
for n ∈ N. Since ∆ is sequentially weakly compact, up to extracting a subsequence, we can
assume that hn converges weakly to a limit h ∈ ∆. Since Fηn [kn, γn](gn) = 0 for all n ∈ N,
see (17), we have:

(55) gn =
Tkn(ηngn)

1 + Tkn(ηngn)
=

Tkn(hn)

1 + Tkn(hn)
·
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We set g = Tk(h)/(1 + Tk(h)). Notice that Tkn(hn) = (Tkn − Tk)(hn) + Tk(hn). We have
limn→∞ Tk(hn) = Tk(h) pointwise. Since ‖(Tkn − Tk)(hn)‖p′ ≤ ‖kn − k‖p′,q′ , up to taking
a sub-sequence, we deduce that a.s. limn→∞(Tkn − Tk)(hn) = 0. (Notice the previous
step is not used in the proof of (i) as kn = k and limn→∞ Tk(hn) = Tk(h) pointwise.)
This implies that gn converges a.s. to g. By the dominated convergence theorem, we
deduce that gn converges also in Lp to g. This proves that h is actually equal a.s. to
ηg. This gives g = Tk(ηg)/(1 + Tk(ηg)) and thus Fη[k, γ](g) = 0: g is an equilibrium
for Fη[k, γ]. We deduce from the weak-continuity and the stability of Re, see Theorem
3.5 and Proposition 3.6, that Re[k](η(1 − g)) = limn→∞Re[kn](ηn(1 − gn)) ≤ 1. Using
Lemma 5.11 (i) with h = 1/γ, we get that Re[k/γ](η(1−g) = Re[k](η(1−g)) ≤ 1. (Only the
weak-continuity of η′ 7→ Re[k/γ](η′) is used in the proof of (i) to get Re[k/γ](η(1−g)) ≤ 1.)
We deduce that property (iv) of Proposition 7.2 holds with k replaced by kη, and thus
property (i) implies that g = gη[k, γ]. �

Proofs of Theorem 3.12 and Proposition 3.13. Under the assumption of Lemma 7.3, taking
(kn, γn) = (k, n) in the case (i) therein, we deduce that (ηn gηn [kn, γn], n ∈ N) converges
weakly to η gη[k, γ]. This implies that:

lim
n→∞

I[kn, γn](ηn) = lim
n→∞

∫
Ω
ηn gη[kn, γn] dµ =

∫
Ω
ηn gη[k, γ] dµ = I[k, γ](η).

Taking (kn, γn) = (k, γ) provides the continuity of I[k, γ] and thus Theorem 3.12. Then,
arguing as in the end of the proof of Proposition 3.6, we get Proposition 3.13. �
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