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Abstract

We consider an initial Eve-population and a population of neutral mutants, such that the total
population dies out in finite time. We describe the evolution of the Eve-population and the total population
with continuous state branching processes, and the neutral mutation procedure can be seen as an
immigration process with intensity proportional to the size of the population. First we establish a Williams’
decomposition of the genealogy of the total population given by a continuum random tree, according to the
ancestral lineage of the last individual alive. This allows us to give a closed formula for the probability of
simultaneous extinction of the Eve-population and the total population.
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1. Introduction

We consider an initial Eve-population whose size evolves as a continuous state branching
process (CB), Y 0

= (Y 0
t , t ≥ 0), with branching mechanism ψEve. We assume that this
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population gives birth to a population of irreversible mutants. The new mutants population can
be seen as an immigration process with rate proportional to the size of the Eve-population. We
assume that the mutations are neutral, so that this second population evolves according to the
same branching mechanism as the Eve-population. This population of mutants gives birth also
to a population of other irreversible mutants, with rate proportional to its size, and so on. In [2],
we proved that the distribution of the total population size Y = (Yt , t ≥ 0), which is a CB with
immigration (CBI) proportional to its own size, is in fact a CB, whose branching mechanism ψ

depends on the immigration intensity. The joint law of (Y 0, Y ) is characterized by its Laplace
transform, see Section 4.1.4. This model can also be viewed as a special case of multitype CB,
with two types 0 and 1, the individuals of type 0 giving birth to offsprings of type 0 or 1, whereas
individuals of type 1 only have type 1 offsprings, see [13,6] for recent related works.

In the particular case of Y being a subcritical or critical CB with quadratic branching
mechanism (ψ(u) = α0u + βu2, β > 0, α0 ≥ 0), the probability for the Eve-population to
disappear at the same time as the whole population is known, see [17] for the critical case,
α0 = 0, or Section 5 in [2] for the subcritical case, α0 > 0. Our aim is to extend those results for
the large class of CB with unbounded total variation and a.s. extinction. Formulas given in [2]
could certainly be extended to a general branching mechanism, but first computations seem to be
rather involved.

In fact, to compute those quantities, we choose here to rely on the description of the genealogy
of subcritical or critical CB introduced by Le Gall and Le Jan [12] and developed later by
Duquesne and Le Gall [7], see also Lambert [10] for the genealogy of CBI with constant
immigration rate. Le Gall and Le Jan defined via a Lévy process X the so-called height process
H = (Ht , t ≥ 0) which codes a continuum random tree (CRT) that describes the genealogy of
the CB (see the next section for the definition of H and the coding of the CRT). Initially, the CRT
was introduced by Aldous [4] in the quadratic case: ψ(λ) = λ2. Except in this quadratic case,
the height process H is not Markov and so is difficult to handle. That is why they also introduce
a measure-valued Markov process (ρt , t ≥ 0) called the exploration process and such that the
closed support of the measure ρt is [0, Ht ] (see also the next section for the definition of the
exploration process).

We shall be interested in the case where a.s. the extinction of the whole population holds in
finite time. The branching mechanism of the total population, Y , is given by: for λ ≥ 0,

ψ(λ) = α0λ+ βλ
2
+

∫
(0,∞)

π(d`)
(

e−λ` − 1+ λ`
)
, (1)

where α0 ≥ 0, β ≥ 0 and π is a Radon measure on (0,∞) such that
∫
(0,∞)(`∧ `

2) π(d`) <∞.
We shall assume that Y is of infinite variation, that is β > 0 or

∫
(0,1) `π(d`) = ∞. We shall

assume that a.s. the extinction of Y in finite time holds, that is, see Corollary 1.4.2 in [7], we
assume that∫

+∞ dv
ψ(v)

<∞. (2)

We suppose that the process Y is the canonical process on the Skorokhod space D(R+,R+) of
càdlàg paths and that the pair (Y, Y 0) is the canonical process on the space D(R+,R+)2. Let Px
denote the law of the pair (Y, Y 0) (see [2]) started at (Y0, Y 0

0 ) = (x, x). The probability measure
Px is infinitely divisible and hence admits a canonical measure N: it is a σ -finite measure on
D(R+,R+)2 such that
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(Y, Y 0)
(d)
=

∑
i∈I

(Y i , Y 0,i ),

where ((Y i , Y 0,i ), i ∈ I ) are the atoms of a Poisson measure on D(R+,R+)2 with intensity
xN(dY, dY 0). In particular, we have

Ex [e−λYt ] = exp(−xN[1− e−λYt ]) (3)

and u(λ, t) = N[1− e−λYt ] is the unique non-negative solution of∫ λ

u(λ,t)

dv
ψ(v)

= t, for t ≥ 0 and λ ≥ 0. (4)

Let τY = inf{t > 0; Yt = 0} be the extinction time of Y . Letting λ go to ∞ in the previous
equalities leads to

Px (τY < t) = exp−xN[τY ≥ t],

where the positive function c(t) = N[τY ≥ t] solves∫
∞

c(t)

dv
ψ(v)

= t, for t > 0. (5)

Let us consider the exploration process (ρt , t ≥ 0) associated with this CB. We denote by N
its excursion measure. Recall that the closed support of the measure ρt is [0, Ht ], where H is
the height process. Let La be the total local time at level a of the height process H (well defined
under N). Then, the process (La, a ≥ 0) under N has the same distribution as the CB Y under N.

We decompose the exploration process, under the excursion measure, according to the
maximum of the height process. In terms of the CRT, this means that we consider the longest
rooted branch of the CRT and describe how the different subtrees are grafted along that branch,
see Theorem 3.3. When the branching mechanism is quadratic, the height process H is a
Brownian excursion and the exploration process ρt is, up to a constant, the Lebesgue measure
on [0, Ht ]. In that case, this decomposition corresponds to Williams’ original decomposition of
the Brownian excursion (see [18]). This kind of tree decomposition with respect to a particular
branch (or a particular subtree) is not new, let us cite [9,14] for instance, or [16,15,8] for related
works on superprocesses.

We present in the introduction a Poisson decomposition for the CB only, and we refer to
Theorem 3.3 for the decomposition of the exploration process. Conditionally on the extinction
time τY equal to m, we can represent the process Y as the sum of the descendants of the ancestors
of the last individual alive. More precisely, let N ′(d`, dt) =

∑
i∈I δ(`i ,ti )(d`, dt) be a Poisson

point measure with intensity

1[0,m)(t)e−`c(m−t)`π(d`)dt,

and

κmax(dt) =
∑
i∈I

`iδti (dt)+ 2β1[0,m)(t)dt. (6)

Let Nt (dY ) denote the law of (Y (s − t), s ≥ t) under N and
∑

j∈J δ(t j ,Y j ) be, conditionally
on N ′, a Poisson point measure with intensity
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κmax(dt)Nt [dY, 1{τY≤m}],

where Nt [dY, 1{τY≤m}] denotes the restriction of the measure Nt to the event {τY ≤ m}.
The next result is a direct consequence of Theorem 3.3.

Proposition 1.1. The process
∑

j∈J Y j is distributed as Y under N, conditionally on {τY = m}.

Let τY 0 = inf{t > 0; Y 0
t = 0} be the extinction time of the Eve-population. In the particular

case where the branching mechanism of the Eve-population is given by a shift of ψ :

ψEve(·) = ψ(θ + ·)− ψ(θ), (7)

for some θ > 0 and β = 0, the pruning procedure developed in [1] gives that the nodes of width
`i correspond to a mutation with probability 1 − e−θ`i . As β = 0 there is no mutation on the
skeleton of the CRT outside the nodes. In particular, we see simultaneous extinction of the whole
population and the Eve-population if there is no mutation on the nodes in the ancestral lineage
of the last individual alive. This happens, conditionally on κmax, with probability

e
−θ

∑
i∈I
`i
.

Integrating w.r.t. the law of N gives that the probability of simultaneous extinction, conditionally
on {τY = m}, is under N, given by

N[τY 0 = m|τY = m] = exp−
∫

1[0,m)(t)e−`c(m−t)`π(d`)dt
[
1− e−θ`

]
= exp−

∫ m

0
[ψ ′(c(m − t)+ θ)− ψ ′(c(m − t))] dt

= exp−
∫ m

0
φ′(c(t)) dt,

where φ = ψEve − ψ . Now, using that the distribution of (Y 0, Y ) is infinitely divisible with
canonical measure N, standard computations for Poisson measure yield that Px (τY 0 = m|τY =

m) = N[τY 0 = m|τY = m] that is

Px (τY 0 = m|τY = m) = exp−
∫ m

0
φ′(c(t)) dt.

Notice that this formula is also valid for the quadratic branching mechanism (ψ(u) = α0u+βu2,
β > 0, α0 ≥ 0), see Remark 5.3 in [2].

In fact this formula is true in a general framework. Following [2], we consider the branching
mechanisms of the total population and Eve-population are given by

ψ(λ) = α0λ+ βλ
2
+

∫
(0,∞)

π(d`)[e−λ` − 1+ λ`],

ψEve(λ) = αEveλ+ βλ
2
+

∫
(0,∞)

πEve(d`)[e−λ` − 1+ λ`],

and the immigration function

φ(λ) = ψEve(λ)− ψ(λ) = αImmλ+

∫
(0,∞)

ν(d`)(1− e−λ`),
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where αImm = αEve − α0 −
∫
(0,∞) `ν(d`) ≥ 0 and π = πEve + ν, where πEve and ν are

Radon measures on (0,∞) with
∫
(0,∞) `ν(d`) <∞. Notice the condition

∫
(0,∞) `ν(d`) <∞ is

stronger than the usual condition on the immigration measure,
∫
(0,∞)(1 ∧ `) ν(d`) < ∞, but is

implied by the requirement that
∫
(1,∞) `ν(d`) <

∫
(1,∞) `π(d`) <∞.

Inspired by Theorem 3.3, we consider N (d`, dt, dz) =
∑

i∈I δ(`i ,ti ,zi )(d`, dt, dz) a Poisson
point measure with intensity

1[0,m)(t)e−`c(m−t)` [πEve(d`)δ0(dz)+ ν(d`)δ1(dz)] dt. (8)

Intuitively, the mark zi indicates if the ancestor (of the last individual alive) alive at time ti had a
new mutation (zi = 1) or not (zi = 0). Note however that if β > 0 we have to take into account
mutation on the skeleton. More precisely, let T1 = min{ti , zi = 1} be the first mutation on the
nodes in the ancestral lineage of the last individual alive and let T2 be an exponential random
time with parameter αImm independent of N . The time T2 corresponds to the first mutation on
the skeleton for the ancestral lineage of the last individual alive. We set{

T0 = min(T1, T2) if min(T1, T2) < m,
T0 = +∞ otherwise.

(9)

In particular there is simultaneous extinction if and only if T0 = +∞.
For t ≥ 0, let us denote by Nt (dY 0, dY ) the joint law of ((Y 0(s − t), Y (s − t)), s ≥ t) under

N. Recall κmax given by (6). Conditionally on N and T2, let
∑

j∈J δ(t j ,Y 0, j ,Y j ) be a Poisson point
measure, with intensity

κmax(dt)Nt [(dY 0, dY ), 1{τY≤m}].

We set

(Y ′0, Y ′) =
∑

t j<T0

(Y 0, j , Y j )+
∑

t j≥T0

(0, Y j ). (10)

We write Qm for the law of (Y ′0, Y ′) computed for a given value of m.

Theorem 1.2. Under Qm , (Y ′0, Y ′) is distributed as (Y 0, Y ) under N[·|τY = m], or equivalently,
under

∫
+∞

0 |c′(m)|Qm(·)dm, (Y ′0, Y ′) is distributed as (Y 0, Y ) under N.

Let us remark that this theorem is very close to Theorem 3.3 but only deals with CB and does
not specify the underlying genealogical structure. This is the purpose of a forthcoming paper [3]
where the genealogy of multitype CB is described.

Intuitively, conditionally on the last individual alive being at time m, until the first mutation
in the ancestral lineage (that is for t j < T0), its ancestors give birth to a population with initial
Eve type which has to die before time m, and after the first mutation on the ancestral lineage
(that is for t j ≥ T0), there is no Eve-population in the descendants which still have to die before
time m.

Now, using that the distribution of (Y 0, Y ) is infinitely divisible with canonical measure N,
standard computations for Poisson measure yield that Px (τY 0 = m|τY = m) = N[τY 0 = m|τY =

m]. As

N[τY 0 = m|τY = m] = Qm(T0 = +∞)

= Qm(T1 = +∞)Qm(T2 ≥ m)



R. Abraham, J.-F. Delmas / Stochastic Processes and their Applications 119 (2009) 1124–1143 1129

= e−
∫ m

0 dt
∫
(0,∞) e−`c(m−t)`ν(d`)e−αImmm

= e−
∫ m

0 dt φ′(c(t)),

we deduce the following corollary.

Corollary 1.3 (Probability of Simultaneous Extinction). We have for almost every m > 0

Px (τY 0 = m|τY = m) = exp−
∫ m

0
φ′(c(t)) dt,

where c is the unique (non-negative) solution of (5).

The paper is organized as follows. In Section 2, we recall some facts on the genealogy of the
CRT associated with a Lévy process. We prove a Williams’ decomposition for the exploration
process associated with the CRT in Section 3. We prove Theorem 1.2 in Section 4. Notice that
Proposition 1.1 is a direct consequence of Theorem 1.2.

2. Notations

We recall here the construction of the Lévy continuum random tree (CRT) introduced in [12,
11] and developed later in [7]. We will emphasize on the height process and the exploration
process which are the key tools to handle this tree. The results of this section are mainly extracted
from [7].

2.1. The underlying Lévy process

We consider an R-valued Lévy process (X t , t ≥ 0) with Laplace exponent ψ (for λ ≥ 0
E
[
e−λX t

]
= etψ(λ)) satisfying (1) and (2). Let I = (It , t ≥ 0) be the infimum process of X ,

It = inf0≤s≤t Xs , and let S = (St , t ≥ 0) be the supremum process, St = sup0≤s≤t Xs . We will
also consider for every 0 ≤ s ≤ t the infimum of X over [s, t]:

I s
t = inf

s≤r≤t
Xr .

The point 0 is regular for the Markov process X − I , and −I is the local time of X − I at 0
(see [5], chap. VII). Let N be the associated excursion measure of the process X − I away from
0, and σ = inf{t > 0; X t− It = 0} the length of the excursion of X− I under N. We will assume
that under N, X0 = I0 = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S− X . The local time,
L = (L t , t ≥ 0), of S − X at 0 will be normalized so that

E[e
−βS

L−1
t ] = e−tψ(β)/β ,

where L−1
t = inf{s ≥ 0; Ls ≥ t} (see also [5] Theorem VII.4(ii)).

2.2. The height process and the Lévy CRT

For each t ≥ 0, we consider the reversed process at time t , X̂ (t) = (X̂ (t)s , 0 ≤ s ≤ t) by:

X̂ (t)s = X t − X(t−s)− if 0 ≤ s < t,

and X̂ (t)t = X t . The two processes (X̂ (t)s , 0 ≤ s ≤ t) and (Xs, 0 ≤ s ≤ t) have the same law. Let
Ŝ(t) be the supremum process of X̂ (t) and L̂(t) be the local time at 0 of Ŝ(t) − X̂ (t) with the same
normalization as L .
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Definition 2.1 ([7], Definition 1.2.1 and Theorem 1.4.3). There exists a process H = (Ht , t ≥
0), called the height process, such that for all t ≥ 0, a.s. Ht = L̂(t)t , and H0 = 0. Because of
hypothesis (2), the height process H is continuous.

The height process (Ht , t ∈ [0, σ ]) under N codes a continuous genealogical structure, the
Lévy CRT, via the following procedure.

(i) To each t ∈ [0, σ ] corresponds a vertex at generation Ht .
(ii) Vertex t is an ancestor of vertex t ′ if Ht = H[t,t ′], where

H[t,t ′] = inf{Hu, u ∈ [t ∧ t ′, t ∨ t ′]}. (11)

In general H[t,t ′] is the generation of the last common ancestor to t and t ′.
(iii) We put d(t, t ′) = Ht + Ht ′ − 2H[t,t ′] and identify t and t ′ (t ∼ t ′) if d(t, t ′) = 0.

The Lévy CRT coded by H is then the quotient set [0, σ ]/ ∼, equipped with the distance d
and the genealogical relation specified in (ii).

Let (τs, s ≥ 0) be the right-continuous inverse of −I : τs = inf{t > 0;−It > s}. Recall that
−I is the local time of X − I at 0. Let La

t denote the local time at level a of H until time t , see
Section 1.3 in [7].

Theorem 2.2 ([7], Theorem 1.4.1). The process (La
τx
, a ≥ 0) is under P (resp. N) defined as Y

under Px (resp. N).

In what follows, we will use the notation N instead of N for the excursion measure to stress
that we consider the genealogical structure of the branching process.

2.3. The exploration process

The height process is not Markov. But it is a simple function of a measure-valued Markov
process, the so-called exploration process.

If E is a Polish space, let B(E) (resp. B+(E)) be the set of real-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel σ -field, and let M(E) (resp.
M f (E)) be the set of σ -finite (resp. finite) measures on E , endowed with the topology of vague
(resp. weak) convergence. For any measure µ ∈ M(E) and f ∈ B+(E), we write

〈µ, f 〉 =
∫

f (x) µ(dx).

The exploration process ρ = (ρt , t ≥ 0) is a M f (R+)-valued process defined as follows: for
every f ∈ B+(R+),

〈ρt , f 〉 =
∫
[0,t]

ds I s
t f (Hs),

or equivalently

ρt (dr) =
∑
0<s≤t

Xs−<I s
t

(I s
t − Xs−)δHs (dr)+ β1[0,Ht ](r)dr. (12)

In particular, the total mass of ρt is 〈ρt , 1〉 = X t − It .
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For µ ∈ M(R+), we set

H(µ) = sup Supp µ, (13)

where Supp µ is the closed support of µ, with the convention H(0) = 0. We have

Proposition 2.3 ([7], Lemma 1.2.2). Almost surely, for every t > 0,

• H(ρt ) = Ht ,
• ρt = 0 if and only if Ht = 0,
• if ρt 6= 0, then Supp ρt = [0, Ht ].

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0 a.s. To
state the Markov property of ρ, we must first define the process ρ started at any initial measure
µ ∈ M f (R+).

For a ∈ [0, 〈µ, 1〉], we define the erased measure kaµ by

kaµ([0, r ]) = µ([0, r ]) ∧ (〈µ, 1〉 − a), for r ≥ 0.

If a > 〈µ, 1〉, we set kaµ = 0. In other words, the measure kaµ is the measure µ erased by a
mass a from the top of [0, H(µ)].

For ν, µ ∈ M f (R+), and µ with compact support, we define the concatenation [µ, ν] ∈
M f (R+) of the two measures by:

〈[µ, ν], f 〉 = 〈µ, f 〉 + 〈ν, f (H(µ)+ ·)〉 , f ∈ B+(R+).

Finally, we set for every µ ∈ M f (R+) and every t > 0ρµt = [k−Itµ, ρt ]. We say that
(ρ
µ
t , t ≥ 0) is the process ρ started at ρµ0 = µ, and write Pµ for its law. Unless there is an

ambiguity, we shall write ρt for ρµt .

Proposition 2.4 ([7], Proposition 1.2.3). The process (ρt , t ≥ 0) is a càd-làg strong Markov
process in M f (R+).

Notice that N is also the excursion measure of the process ρ away from 0, and that σ , the
length of the excursion, is N-a.e. equal to inf{t > 0; ρt = 0}.

2.4. The dual process and representation formula

We shall need the M f (R+)-valued process η = (ηt , t ≥ 0) defined by

ηt (dr) =
∑
0<s≤t

Xs−<I s
t

(Xs − I s
t )δHs (dr)+ β1[0,Ht ](r)dr.

The process η is the dual process of ρ under N thanks to the following time reversal property:
recall σ denotes the length of the excursion under N.

Proposition 2.5 ([7], Corollary 3.1.6). The processes ((ρs, ηs); s ≥ 0) and ((η(σ−s)−, ρ(σ−s)−);

s ≥ 0) have the same distribution under N.

It also enjoys the snake property: for all t ≥ 0, s ≥ 0

(ρt , ηt )[0,H[t,s]) = (ρs, ηs)[0,H[t,s]),
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that is the measures ρ and η between two instants coincide up to the minimum of the height
process between those two instants.

We recall the Poisson representation of (ρ, η) under N. Let N∗(dx d` du) be a Poisson point
measure on [0,+∞)3 with intensity

dx `π(d`)1[0,1](u)du.

For every a > 0, let us denote by Ma the law of the pair (µa, νa) of finite measures on R+
defined by: for f ∈ B+(R+)

〈µa, f 〉 =
∫

N∗(dx d` du)1[0,a](x)u` f (x),

〈νa, f 〉 =
∫

N∗(dx d` du)1[0,a](x)`(1− u) f (x).

We finally set M =
∫
+∞

0 da e−α0aMa .

Proposition 2.6 ([7], Proposition 3.1.3). For every non-negative measurable function F on
M f (R+)2,

N
[∫ σ

0
F(ρt , ηt ) dt

]
=

∫
M(dµ dν)F(µ, ν),

where σ = inf{s > 0; ρs = 0} denotes the length of the excursion.

We can then deduce the following proposition.

Proposition 2.7. For every non-negative measurable function F on M f (R+)2,

N
[∫ σ

0
F(ρt , ηt ) dLa

t

]
= e−α0a

∫
Ma(dµ dν)F(µ, ν),

where σ = inf{s > 0; ρs = 0} denotes the length of the excursion.

3. Williams’ decomposition

We work under the excursion measure. As the height process is continuous, its supremum
Hmax = sup{Hr ; r ∈ [0, σ ]} is attained. Let Tmax = inf{s ≥ 0; Hs = Hmax}.

For every m > 0, we set Tm(ρ) = inf{s > 0, Hs(ρ) = m} the first hitting time of m for the
height process. When there is no need to stress the dependence in ρ, we shall write Tm for Tm(ρ).
Recall the function c defined by (5) is equal to

c(m) = N[Tm <∞] = N[Hmax ≤ m]. (14)

We set ρd = (ρTmax+s, s ≥ 0) and ρg = (ρ(Tmax−s)+, s ≥ 0), where x+ = max(x, 0).
For every finite measure with compact support µ, we write P∗µ for the law of the exploration

process ρ starting at µ and killed when it first reaches 0. We also set

P̂∗µ := lim
ε→0

P∗µ( · | H(µ) ≤ Hmax ≤ H(µ)+ ε).

We now describe the probability measure P̂∗µ via a Poisson decomposition. Let (αi , βi ), i ∈ I be

the excursion intervals of the process X − I away from 0 (well defined under P∗µ or under P̂∗µ).
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For every i ∈ I , we define hi = Hαi and the measure-valued process ρi by the formula

〈ρi
t , f 〉 =

∫
(hi ,+∞)

f (x − hi )ρ(αi+t)∧βi (dx).

We then have the following result.

Lemma 3.1. Under the probability P̂∗µ, the point measure
∑

i∈I δ(hi ,ρ
i ) is a Poisson point

measure with intensity µ(dr)N[·, Hmax ≤ m − r ].

Proof. We know (cf. Lemma 4.2.4 of [7]) that the point measure
∑

i∈I δ(hi ,ρ
i ) is under P∗µ a

Poisson point measure with intensity µ(dr)N(dρ). The result follows then easily from standard
results on Poisson point measures. �

Remark 3.2. Lemma 3.1 gives also that, for every finite measure with compact support µ, if we
write µa = µ(· ∩ [0, a]),

P̂∗µ = lim
a→H(µ)

P∗µa
( · | Hmax ≤ H(µ)).

Theorem 3.3 (Williams’ Decomposition).

(i) The law of Hmax is characterized by N[Hmax ≤ m] = c(m), where c is the unique non-
negative solution of (5).

(ii) Conditionally on Hmax = m, the law of (ρTmax , ηTmax) is under N the law of(∑
i∈I

viriδti + β1[0,m](t)dt,
∑
i∈I

(1− vi )riδti + β1[0,m](t)dt

)
,

where
∑
δ(vi ,ri ,ti ) is a Poisson measure with intensity

1[0,1](v)1[0,m](t)e−rc(m−t)dv rπ(dr) dt.

(iii) Under N, conditionally on Hmax = m, and (ρTmax , ηTmax), (ρd , ρg) are independent and ρd

(resp. ρg) is distributed as ρ (resp. η) under P̂∗ρTmax
(resp. P̂∗ηTmax

).

Notice (i) is a consequence of (14). Point (ii) is reminiscent of Theorem 4.6.2 in [7] which
gives the description of the exploration process at a first hitting time of the Lévy snake.

The end of this section is devoted to the proof of (ii) and (iii) of this theorem.
Let m > a > 0 be fixed. Let ε > 0. Recall Tm = inf{t > 0; Ht = m} is the first hitting

time of m for the height process, and set Lm = sup{t < σ ; Ht = m} for the last hitting time
of m, with the convention that inf ∅ = +∞ and sup∅ = +∞. We consider the minimum of H
between Tm and Lm : H[Tm ,Lm ] = min{Ht ; t ∈ [Tm, Lm]}.

We set ρ(d) = (ρTmax,a+t , t ≥ 0), with

Tmax,a = inf{t > Tmax, Hs = a},

the path of the exploration process on the right of Tmax after the hitting time of a, and
ρ(g) = (ρ(Lmax,a−t)−, t ≥ 0), with Lmax,a = sup{t < Tmax; Ht = a}, the returned path of
the exploration process on the left of Tmax before its last hitting time of a. Let us note that, by
time reversal (see Proposition 2.5), the process ρ(g) is of the same type as η. This remark will be
used later.



1134 R. Abraham, J.-F. Delmas / Stochastic Processes and their Applications 119 (2009) 1124–1143

To prove the theorem, we shall compute

A0 = N
[

F1(ρ
(g))F2(ρ

(d))F3(ρTmax |[0,a])F4(ηTmax |[0,a])1{m≤Hmax<m+ε}

]
and let ε go down to 0. We shall see in Lemma 3.4, that adding 1{H[Tm ,Lm ]>a} in the integrand
does not change the asymptotic behavior as ε goes down to 0. Intuitively, if the maximum of the
height process is between m and m + ε, outside a set of small measure, the height process does
not reach level a between the first and last hitting time of m. So that we shall compute first

A = N
[

F1(ρ
(g))F2(ρ

(d))F3(ρTmax |[0,a])F4(ηTmax |[0,a])1{H[Tm ,Lm ]>a,m≤Hmax<m+ε}

]
. (15)

Notice that on {H[Tm ,Lm ] > a}, we have Tmax,a = Tm,a := inf{s > Tm, Hs(ρ) = a} and, from
the snake property, ρTmax |[0,a] = ρTm |[0,a] and ηTmax |[0,a] = ηTm |[0,a], so that

A = N
[

F1(ρ
(g))F2((ρTm,a+t , t ≥ 0))F3(ρTm |[0,a])F4(ηTm |[0,a])

× 1{H[Tm ,Lm ]>a,m≤Hmax<m+ε}

]
.

Let us remark that, we have

1{H[Tm ,Lm ]>a,m≤Hmax<m+ε} = 1{m≤sup{Hu ,0≤u≤Tm,a}<m+ε}1{sup{Hu ,u≥Tm,a}<m}.

By using the strong Markov property of the exploration process at time Tm,a , we get

A = N
[

F1(ρ
(g))F4(ηTm |[0,a])1{m≤sup{Hu ,0≤u≤Tm,a}<m+ε}F3(ρTm |[0,a])

× E∗ρTm |[0,a]

[
F2(ρ)1{Hmax<m}

]]
and so, by conditioning, we get

A = N
[

F1(ρ
(g))F4(ηTm |[0,a])G2(ρTm |[0,a])1{H[Tm ,Lm ]>a,m≤Hmax<m+ε}

]
,

where G2(µ) = F3(µ)E∗µ[F2(ρ)|Hmax < m]. Using time reversibility (see Proposition 2.5) and
the strong Markov property at time Tm,a again, we have

A = N
[

F1(ρ
(d))F4(ρTm |[0,a])G2(ηTm |[0,a])1{H[Tm ,Lm ]>a,m≤Hmax<m+ε}

]
= N

[
G1(ρTm |[0,a])G2(ηTm |[0,a])1{H[Tm ,Lm ]>a,m≤Hmax<m+ε}

]
,

where G1(µ) = F4(µ)E∗µ[F1(ρ)|Hmax < m].
Now, we use ideas from the proof of Theorem 4.6.2 of [7]. Let us recall the excursion

decomposition of the exploration process above level a. We set τ a
s = inf

{
r,
∫ r

0 du 1{Hu≤a} > s
}
.

Let Ea be the σ -field generated by the process (ρ̃s, s ≥ 0) := (ρτa
s
, s ≥ 0). We also set η̃s = ητa

s
.

Let (αi , βi ), i ∈ I be the excursion intervals of H above level a. For every i ∈ I we define
the measure-valued process ρi by setting〈ρi

s, ϕ〉 =

∫
(a,+∞)

ραi+s(dr)ϕ(r − a) if 0 < s < βi − αi ,

ρs = 0 if s = 0 or s ≥ βi − αi ,
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and the process ηi similarly. We also define the local time at the beginning of excursion ρi by
`i = La

αi
. Then, under N, conditionally on Ea , the point measure∑

i∈I

δ(`i ,ρ
i ,ηi )

is a Poisson measure with intensity 1[0,La
σ ]
(`)d`N[dρ dη].

In particular, we have

A = N

[∑
i∈I

∏
j 6=i

1{Tm (ρ j )=+∞}G1(ραi )G2(ηαi )1{m≤Hmax(ρi )<m+ε}

]
.

Let us denote by (τ a
` , ` ≥ 0) the right-continuous inverse of (La

s , s ≥ 0). Palm formula for
Poisson point measures yields

A = N

[
N

[∑
i∈I

∏
j 6=i

1{Tm (ρ j )=+∞}G1(ραi )G2(ηαi )1{m≤Hmax(ρi )<m+ε}|Ea

]]

= N

[∫ La
σ

0
d`G1(ρτa

`
)G2(ητa

`
)N[m ≤ Hmax < m + ε]N

[∏
j∈I

1{Tm (ρ j )=+∞}|Ea

]]
.

A time-change then gives

A = v(m − a, ε)N
[∫ σ

0
dLa

s G1(ρs)G2(ηs)e−c(m−a)La
σ

]
, (16)

where v(x, ε) = c(x)− c(x + ε) = N[x ≤ Hmax < x + ε]. We have

A = v(m − a, ε)N
[∫ σ

0
dLa

s G1(ρs)G2(ηs)e−c(m−a)La
s e−c(m−a)(La

σ−La
s )

]
= v(m − a, ε)N

[∫ σ

0
dLa

s G1(ρs)G2(ηs)e−c(m−a)La
s e−〈ρs ,N[1−e−c(m−a)La−·

σ ]〉

]
,

where we used for the last equality that the predictable projection of e−λ(L
a
σ−La

s ) is given by

e−〈ρs ,N[1−e−λLa−·
σ ]〉. Notice that by using the excursion decomposition above level 0 < r < m,

we have

c(m) = N[Tm <∞] = N[1− e−c(m−r)Lr
σ ].

In particular, we get

A = v(m − a, ε)N
[∫ σ

0
dLa

s G1(ρs)G2(ηs)e−c(m−a)La
s e−〈ρs ,c(m−·)〉

]
.

Using time reversibility, we have

A = v(m − a, ε)N
[∫ σ

0
dLa

s G1(ηs)G2(ρs)e−c(m−a)(La
σ−La

s )e−〈ηs ,c(m−·)〉
]
.
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Similar computations as those previously done give

A = v(m − a, ε)N
[∫ σ

0
dLa

s G1(ηs)G2(ρs)e−〈ηs+ρs ,c(m−·)〉
]

= v(m − a, ε)N
[∫ σ

0
dLa

s G1(ρs)G2(ηs)e−〈ρs+ηs ,c(m−·)〉
]
.

Using Proposition 2.7, we get

A = v(m − a, ε)e−α0a
∫

Ma(dµ dν)G1(µ)G2(ν)e−〈µ+ν,c(m−·)〉.

We can give a first consequence of the previous computation.

Lemma 3.4. We have

N[H[Tm ,Lm ] > a,m ≤ Hmax < m + ε] = c′(m)
c(m − a)− c(m − a + ε)

c′(m − a)
.

Proof. Taking F1 = F2 = F3 = F4 = 1 in (16), we deduce that

N[H[Tm ,Lm ] > a,m ≤ Hmax < m + ε] = v(m − a, ε)N
[

La
σ e−c(m−a)La

σ

]
.

Let a0 > 0 and let us compute B(a0, a) = N
[
La
σ e−c(a0)La

σ
]
. Thanks to Theorem 2.2, notice that

B(a0, a) = N
[
Yae−c(a0)Ya

]
=
∂a0N[1− e−c(a0)Ya ]

c′(a0)
.

On the other hand, we have

c(a + a0) = N[Ya+a0 > 0] = N[1− EYa [Ya0 = 0]] = N
[
1− e−Yac(a0)

]
,

where we used the Markov property of Y at time a under N for the second equality and (3) with
λ going to infinity for the last. Thus, we get B(a0, a) = c′(a0+a)

c′(a0)
. We deduce that

N[H[Tm ,Lm ] > a,m ≤ Hmax < m + ε] = v(m − a, ε)B(a − m, a)

= c′(m)
c(m − a)− c(m − a + ε)

c′(m − a)
. �

Since F1, F2, F3 and F4 are bounded, say by C , we have |A−A0| ≤ C4N[H[Tm ,Lm ] < a,m ≤
Hmax < m + ε]. From Lemma 3.4, we deduce that

lim
ε→0

|A − A0|

N[m ≤ Hmax < m + ε]
≤ C4

[
1− lim

ε→0

N[H[Tm ,Lm ] > a,m ≤ Hmax < m + ε]

N[m ≤ Hmax < m + ε]

]
= 0.

We deduce that

lim
ε→0

N
[

F1(ρ
(g))F2(ρ

(d))F3(ρTmax |[0,a])F4(ηTmax |[0,a])1{m≤Hmax<m+ε}

]
N[m ≤ Hmax < m + ε]

=
c′(m − a)

c′(m)
e−α0a

∫
Ma(dµ dν)G1(µ)G2(ν)e−〈µ+ν,c(m−·)〉
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=

∫
Ma(dµ dν)G1(µ)G2(ν)e−〈µ+ν,c(m−·)〉∫

Ma(dµ dν)e−〈µ+ν,c(m−·)〉

=

∫
M̃a(dµ dν)G1(µ)G2(ν)

=

∫
M̃a(dµ dν)F4(ν)E∗ν[F1(ρ

(d))|Hmax < m]F3(µ)E∗µ[F2(ρ
(d))|Hmax < m],

where

µ(dt) =
∑
i∈I

ui`iδti + β1[0,a](t)dt

ν(dt) =
∑
i∈I

(1− ui )`iδti + β1[0,a](t)dt,

and
∑

i∈I δ(xi ,`i ,ti ) is under M̃a a Poisson point measure on [0,+∞)3 with intensity

1[0,a](t)dt `e−`c(m−t)π(d`)1[0,1](u)du.

Standard results on measure decomposition imply that there exists a regular version of the
probability measure N[ · |Hmax = m] and that, for almost every non-negative m,

N[ · |Hmax = m] = lim
ε→0

N[ · |m ≤ Hmax < m + ε].

This gives (ii) and (iii) of Theorem 3.3 since F1, F2, F3, F4 are arbitrary continuous functionals
and by Remark 3.2.

4. Proof of Theorem 1.2

The proof of this theorem relies on the computation of the Laplace transform for (Y ′0, Y ′) and
is given in the next three paragraphs. The next paragraph gives some preliminary computations.

4.1. Preliminary computations

4.1.1. Law of T0

Recall the definition of Qm as the law of (Y ′0, Y ′) defined by (10) and T0 defined by (9) as
the first mutation undergone by the last individual alive.

For r < m, we have

Qm(T0 ∈ [r, r + dr ], T0 = T2) = Qm(T2 ∈ [r, r + dr ])Qm(T1 > r)

= dr αImme−αImmr exp−
∫ r

0
dt
∫
(0,∞)

e−`c(m−t)`ν(d`)

= dr αImme−
∫ r

0 φ
′(c(m−t)) dt ,

and, with the notation φ0(λ) = φ(λ)− αImmλ,

Qm(T0 ∈ [r, r + dr ], T0 = T1)

= Qm(T2 > r)Qm(T1 ∈ [r, r + dr ])

= dr φ′0(c(m − r))e−αImmr exp−
∫ r

0
dt
∫
(0,∞)

e−`c(m−t)`ν(d`)

= dr φ′0(c(m − r))e−
∫ r

0 φ
′(c(m−t)) dt .



1138 R. Abraham, J.-F. Delmas / Stochastic Processes and their Applications 119 (2009) 1124–1143

In particular, we have for r < m

Qm(T0 ∈ [r, r + dr ]) = dr φ′(c(m − r))e−
∫ r

0 φ
′(c(m−t)) dt

and

Qm(T0 > r) = e−
∫ r

0 φ
′(c(m−t)) dt . (17)

Notice we have Qm(T0 = ∞) = exp−
∫ m

0 φ′(c(t)) dt .

4.1.2. Conditional law of N given T0

Recall N is under Qm a Poisson point measure with intensity given by (8). Conditionally on
{T0 = r, T0 = T2}, with m > r > 0, N is under Qm a point Poisson measure with intensity

1[0,r)(t)e−`c(m−t)`πEve(d`)δ0(dz)dt

+ 1(r,m)(t)e−`c(m−t)` [πEve(d`)δ0(dz)+ ν(d`)δ1(dz)] dt.

Conditionally on {T0 = r, T0 = T1}, with r < m, N is distributed under Qm as Ñ + δ(L ,r,1)
where Ñ is a point Poisson measure with intensity

1[0,r)(t)e−`c(m−t)`πEve(d`)δ0(dz)dt

+ 1(r,m)(t)e−`c(m−t)` [πEve(d`)δ0(dz)+ ν(d`)δ1(dz)] dt,

and L is a random variable independent of Ñ with distribution

e−`c(m−r)`ν(d`)∫
(0,∞) e−`′c(m−r)`′ν(d`′)

.

Conditionally on {T0 = ∞}, N is under Qm a point Poisson measure with intensity

1[0,m)(t)e−`c(m−t)`πEve(d`)δ0(dz)dt.

4.1.3. Formulas
The following two formulas are straightforward: for all x, γ ≥ 0,

ψ ′Eve(x + γ )− ψ
′

Eve(γ ) = 2βx +
∫
(0,∞)

e−`γ `πEve(d`)[1− e−`x
], (18)

ψ ′(x + γ )− ψ ′(γ ) = 2βx +
∫
(0,∞)

e−`γ `π(d`)[1− e−`x
], (19)

Finally we deduce from (5) that ψ(c) = −c′, ψ ′(c)c′ = −c′′ and∫
ψ ′(c) = − log(c′). (20)

4.1.4. Laplace transform
Recall that τY = inf{t > 0; Yt = 0} is the extinction time of Y . Let µEve and µTotal be two

finite measures with support a subset of a finite set A = {a1, . . . , an} with 0 = a0 < a1 < · · · <

an < an+1 = ∞. For m ∈ (0,+∞) \ A, we consider
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wm(t) = N[1− e−
∫

Y 0
r−t µEve(dr)−

∫
Yr−t µTotal(dr)1{τY<m−t}],

w∗m(t) = N[1− e−
∫

Yr−t µTotal(dr)1{τY<m−t}].

By noticing that N-a.e. 1{τY<m−t} = limλ→∞ exp−
∫

Yr−t µ
λ(dr), where µλ(dr) = λδm(dr),

we deduce from Lemma 3.1 in [2] that (wm, w
∗
m) are right continuous and are the unique non-

negative solutions of : for k ∈ {0, . . . , n}, m ∈ (ak, ak+1), t ∈ (−∞,m),

w∗m(t)+
∫
[t,ak ]

ψ(w∗m(r))dr =
∫
[t,ak ]

µTotal(dr)+ c(m − ak), (21)

wm(t)+
∫
[t,ak ]

ψEve(wm(r))dr

=

∫
[t,ak ]

µEve(dr)+
∫
[t,ak ]

µTotal(dr)+ c(m − ak)+

∫
[t,ak ]

φ(w∗m(r))dr. (22)

We define

ām = max{ak; ak < m, k ∈ {0, . . . , n}}. (23)

Notice that wm(t) = w∗m(t) = c(m − t) for t ∈ (ām,m).

4.2. Proof of Theorem 1.2

4.2.1. Aim
Theorem 1.2 will be proved as soon as we check that the following equality

w(0) =
∫
∞

0
−c′(m)Qm[1− e−

∫
Y ′0r µEve(dr)−

∫
Y ′r µTotal(dr)

]dm

holds for all the possible choices of measures µEve and µTotal satisfying the assumptions of
Section 4.1.4, with w = w∞ defined by (22).

Notice the integrand of the right-hand side is null for m < a1. Let ∆ denote the right-hand
side. We have for 0 < ε ≤ a1:

∆ =
∫
∞

ε

dm (−c′(m))Qm[1− e−
∫

Y ′0r µEve(dr)−
∫

Y ′r µTotal(dr)
]

= c(ε)+
∫
∞

ε

dm 1Ac (m)c′(m)Qm[Z ],

with, thanks to the definition (6) of κmax,

Z = exp−
∫ ām

0
κmax(dt) [nt 1{t<T0} + n∗t 1{t≥T0}]

and

nt = N[(1− e−
∫

Y 0
r−t µEve(dr)−

∫
Yr−t µTotal(dr))1{τY≤m−t}] = wm(t)− c(m − t)

n∗t = N[(1− e−
∫

Yr−t µTotal(dr))1{τY≤m−t}] = w
∗
m(t)− c(m − t),

with (wm, w
∗
m) the non-negative solutions of (21) and (22). Notice that wm(t) = w∗m(t) =

c(m − t) for t ∈ (ām,m) and thus nt = n∗t = 0 when t ∈ (ām,m).
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We set ∆ = c(ε)+
∫
∞

ε
1Ac (m)(∆1 +∆2 +∆3) dm with

∆1 = c′(m)Qm[Z |T0 > ām]Qm(T0 > ām),

∆2 = c′(m)
∫ ām

0
Qm[Z |T0 = r, T0 = T1]Qm(T0 ∈ [r, r + dr ], T0 = T1),

∆3 = c′(m)
∫ ām

0
Qm[Z |T0 = r, T0 = T2]Qm(T0 ∈ [r, r + dr ], T0 = T2).

We shall assume that m 6∈ A.

4.2.2. Computation of ∆1

We have, using formula (6),

∆1 = c′(m)Qm(T0 > ām)Qm[e−
∫ ām

0 κmax(dt)nt |T0 > ām]

= c′(m)e−
∫ ām

0 φ′(c(m−t))dt exp
{
−2β

∫ ām

0
(wm(t)− c(m − t)) dt

−

∫ ām

0
dte−`c(m−t)`πEve(d`)[1− e−`(wm (t)−c(m−t))

]

}
= c′(m)e−

∫ ām
0 φ′(c(m−t))dt exp

{
−

∫ ām

0
dt[ψ ′Eve(wm(t))− ψ

′

Eve(c(m − t))]

}
= c′(m)e

∫ m
m−ām

ψ ′(c(t))dt e−
∫ ām

0 dt ψ ′Eve(wm (t))

= c′(m − ām)e−
∫ ām

0 dt ψ ′Eve(wm (t)),

where we used (20) for the last equality to get

e
∫ m

m−ām
ψ ′(c(t))dt

= e−[log(c′(t))]mm−ām =
c′(m − ām)

c′(m)
. (24)

4.2.3. Computation of ∆2

Using Section 4.1.2, we get

Qm[Z |T0 = r, T0 = T1]

= e−2β
∫ r

0 (wm (t)−c(m−t)) dt−2β
∫ ām

r (w∗m (t)−c(m−t)) dt

× exp
(
−

∫ r

0
dte−`c(m−t)`πEve(d`)

[
1− e−`nt

])
× exp

(
−

∫ ām

r
dte−`c(m−t)`π(d`)

[
1− e−`n

∗
t

]) ∫
(0,∞)

ν(d`′)
e−`

′c(m−r)`′e−`
′n∗r

φ′0(c(m − r))

= exp
(
−

∫ r

0
dt
[
ψ ′Eve(wm(t))− ψ

′

Eve(c(m − t))
])

× exp
(
−

∫ ām

r
dt
[
ψ ′(w∗m(t))− ψ

′(c(m − t))
]) φ′0(w

∗
m(r))

φ′0(c(m − r))
.

We deduce from Section 4.1.1

∆2 = c′(m)
∫ ām

0
Qm[Z |T0 = r, T0 = T1]Qm(T0 ∈ [r, r + dr ], T0 = T1),
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= c′(m)
∫ ām

0
dr φ′0(w

∗
m(r))e

−
∫ r

0 φ
′(c(m−t)) dt

× exp
(
−

∫ r

0
dt[ψ ′Eve(wm(t))− ψ

′

Eve(c(m − t))]

)
× exp

(
−

∫ ām

r
dt
[
ψ ′(w∗m(t))− ψ

′(c(m − t))
])

= c′(m)e
∫ ām

0 ψ ′(c(m−t)) dt
∫ ām

0
dr φ′0(w

∗
m(r))e

−
∫ r

0 dt ψ ′Eve(wm (t))−
∫ ām

r dt ψ ′(w∗m (t))

= c′(m − ām)

∫ ām

0
dr φ′0(w

∗
m(r))e

−
∫ r

0 dt ψ ′Eve(wm (t))−
∫ ām

r dt ψ ′(w∗m (t)),

where we used (24) for the last equality.

4.2.4. Computation of ∆3

Using Section 4.1.2, we get

Qm[Z |T0 = r, T0 = T2] = e−2β
∫ r

0 (wm (t)−c(m−t)) dt−2β
∫ ām

r (w∗m (t)−c(m−t)) dt

× exp
{
−

∫ r

0
dte−`c(m−t)`πEve(d`)[1− e−`nt ]

}
× exp

{
−

∫ ām

r
dte−`c(m−t)`π(d`)[1− e−`n

∗
t ]

}
= exp

(
−

∫ r

0
dt
[
ψ ′Eve(wm(t))− ψ

′

Eve(c(m − t))
])

× exp
(
−

∫ ām

r
dt
[
ψ ′(w∗m(t))− ψ

′(c(m − t))
])
.

We deduce from Section 4.1.1

∆3 = c′(m)
∫ ām

0
Qm[Z |T0 = r, T0 = T2]Qm(T0 ∈ [r, r + dr ], T0 = T2),

= c′(m)
∫ ām

0
dr αImme−

∫ r
0 φ
′(c(m−t)) dt

× exp
(
−

∫ r

0
dt[ψ ′Eve(wm(t))− ψ

′

Eve(c(m − t))]

)
× exp

(
−

∫ ām

r
dt[ψ ′(w∗m(t))− ψ

′(c(m − t))]

)
= c′(m)e

∫ ām
0 ψ ′(c(m−t)) dt

∫ ām

0
dr αImme−

∫ r
0 dt ψ ′Eve(wm (t))−

∫ ām
r dt ψ ′(w∗m (t))

= c′(m − ām)

∫ ām

0
dr αImme−

∫ r
0 dt ψ ′Eve(wm (t))−

∫ ām
r dt ψ ′(w∗m (t)),

where we used (24) for the last equality.
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4.2.5. Computation of ∆2 +∆3

We have

∆2 +∆3 = c′(m − ām)

∫ ām

0
dr φ′(w∗m(r))e

−
∫ r

0 dt ψ ′Eve(wm (t))−
∫ ām

r dt ψ ′(w∗m (t)).

Differentiating (21) w.r.t. time and m, we get for t < m

∂m(w
∗
m)
′(t)− ∂mw

∗
m(t)ψ

′(w∗m(t)) = 0.

Notice also that for m > t ≥ ām , we have ∂mw
∗(t) = c′(m − t) and thus

∂mw
∗(ām) = c′(m − ām).

We get

exp
(
−

∫ ām

r
dtψ ′(w∗m(t))

)
=

∂mw
∗
m(r)

∂mw∗m(ām)
=

∂mw
∗
m(r)

c′(m − ām)
.

Differentiating (22) w.r.t. time and m, we get for t < m

∂mw
′
m(t)− ∂mwm(t)ψ

′

Eve(wm(t)) = −∂mw
∗
m(t)φ

′(w∗m(t)).

We deduce that

∆2 +∆3 =

∫ ām

0
dr∂mw

∗
m(t)φ

′(w∗m(r))e
−
∫ r

0 dt ψ ′Eve(wm (t))

= −

∫ ām

0
dr [∂mw

′
m(r)− ∂mwm(r)ψ

′

Eve(wm(r))]e−
∫ r

0 dt ψ ′Eve(wm (t))

= −

[
∂mwm(r)e−

∫ r
0 dt ψ ′Eve(wm (t))

]ām

0

= ∂mwm(0)− ∂mwm(ām)e−
∫ ām

0 dt ψ ′Eve(wm (t)).

Notice also that for m > t ≥ ām one has ∂mw(t) = c′(m − t), in particular ∂mw(ām) =

c′(m − ām). This implies that

∆2 +∆3 = ∂mwm(0)− c′(m − ām)e−
∫ ām

0 dt ψ ′Eve(wm (t)).

4.3. Conclusion

Thus, for m 6∈ A, we have

∆1 +∆2 +∆3 = ∂mwm(0),

and

∆ = c(ε)+
∫
∞

ε

∂mwm(0) = c(ε)+ w∞(0)− wε(0) = w(0).

This ends the proof of the theorem.
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