Reduced Basis method and Variational Inequalities

Bernard Haasdonk 1, Julien Salomon2 and Barbara Wohlmuth3

1IANS, SimTech, University of Stuttgart, Germany.
2CEREMADE, UMR CNRS 7534, Université Paris IX, France.
3Zentrum Mathematik, T.U. Müchen, Germany.
Variational inequalities
Optimization and saddle points

- Variational equalities:

\[
\min_{u \in V} \frac{1}{2} a(u, u) - f(u) \Rightarrow a(u, v) = f(v) \quad \forall v \in V.
\]

- Variational inequalities: Denote

\[
X = \{u \in V, \quad b(u, \eta) \leq g(\eta), \quad \eta \in M\}, \quad M \text{ closed convex set},
\]

\[
\min_{u \in X} \frac{1}{2} a(u, u) - f(u) \Rightarrow a(u, v - u) \geq f(v - u), \quad \forall v \in X,
\]

or equivalently:

\[
\begin{align*}
 a(u, v) + b(v, \lambda) & = f(v), \quad \forall v \in V, \\
 b(u, \eta - \lambda) & \leq g(\eta - \lambda), \quad \forall \eta \in M.
\end{align*}
\]
1. Problem setting
2. A reduced basis method for Variational Inequalities
 - The scheme
 - Analytical results
 - A posteriori estimators
3. Some numerical experiments
 - Setting
 - Results
4. Extension to time-dependent systems
 - Algorithms
 - Application to American Option Pricing
5. Conclusions and perspectives
Consider the saddle point problem:

Standard Variational inequality

Given $\mu \in \mathcal{P}$, V, W two Hilbert spaces and M a convex cone in W, find $(u(\mu), \lambda(\mu)) \in V \times M$ such that

$$a(u(\mu), v; \mu) + b(v, \lambda(\mu)) = f(v; \mu), \quad v \in V$$

$$b(u(\mu), \eta - \lambda(\mu)) \leq g(\eta - \lambda(\mu); \mu), \quad \eta \in M.$$

Equivalently, if a is symmetric:

$$\inf_{u \in X(\mu)} \frac{1}{2} a(u, u; \mu) - f(u; \mu)$$
Moreover, we assume that:

• a is uniformly coercive and continuous w.r. to μ,

$$a(u, v; \mu) \leq \gamma_a \|u\|_V \|v\|_V \quad \alpha \|u\|_V^2 \leq a(u, u; \mu),$$

• b is continuous and inf-sup stable,

$${\inf}_{\eta \in W} {\sup}_{v \in V} b(v, \eta)/(\|v\|_V \|\eta\|_W) \geq \beta > 0,$$

• f and g are continuous,

$$f(v) \leq \gamma_f \|v\|_V, \quad g(\eta) \leq \gamma_g \|\eta\|_W,$$

• a, f, g are Lipschitz with respect to μ.
Problem setting
Examples of applications

- Mechanics: obstacle problems
- Finance: pricing of American Options
1 Problem setting

2 A reduced basis method for Variational Inequalities
 The scheme
 Analytical results
 A posteriori estimators

3 Some numerical experiments
 Setting
 Results

4 Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing

5 Conclusions and perspectives
Now, consider the standard Galerkin approximation: let V_N and W_N some finite dimensional linear sub-space of V and W.

Galerkin Approximation

Find $(u_N(\mu), \lambda_N(\mu)) \in V_N \times M_N$ such that

\[
\begin{align*}
 a(u_N(\mu), v_N; \mu) + b(v_N, \lambda_N(\mu)) &= f(v_N; \mu), \quad v_N \in V_N \\
 b(u_N(\mu), \eta_N - \lambda_N(\mu)) &\leq g(\eta_N - \lambda_N(\mu); \mu), \quad \eta_N \in M_N
\end{align*}
\]
In the R-B setting, V_N and W_N are built thanks to "snapshots", i.e. fine solutions of the initial problem corresponding to a set of parameters $(\mu_1, ..., \mu_{N_S})$.

In our case, the construction is done as follows:

$$V_N = \text{span}\{u(\mu_i), B\lambda(\mu_i), \ i = 1, ..., N_S\},$$
$$W_N = \text{span}\{\lambda(\mu_i), \ i = 1, ..., N_S\},$$
$$M_N = \text{span}_+\{\lambda(\mu_i), \ i = 1, ..., N_S\},$$

where B is the operator defined through:

$$\langle B\lambda(\mu_i), v \rangle_V = b(v, \lambda(\mu_i)), \ v \in V.$$

This approach consists in enriching the primal basis with supremizers.

1. Problem setting
2. A reduced basis method for Variational Inequalities
 - The scheme
 - Analytical results
 - A posteriori estimators
3. Some numerical experiments
 - Setting
 - Results
4. Extension to time-dependent systems
 - Algorithms
 - Application to American Option Pricing
5. Conclusions and perspectives
Inf-sup stability:

\[\beta_N := \inf_{\eta_N \in W_N} \sup_{v_N \in V_N} \frac{b(v_N, \eta_N)}{\|v_N\|_V \|\eta_N\|_W} = \inf_{\eta_N \in W_N} \sup_{v_N \in V_N} \frac{\langle v_N, B\eta_N \rangle_V}{\|v_N\|_V \|\eta_N\|_W} \]

\[= \inf_{\eta_N \in W_N} \frac{\langle B\eta_N, B\eta_N \rangle_V}{\|B\eta_N\|_V \|\eta_N\|_W} \]

\[\geq \inf_{\eta \in W} \frac{\langle B\eta, B\eta \rangle_V}{\|B\eta\|_V \|\eta\|_W} = \inf_{\eta \in W} \sup_{v \in V} \frac{\langle v, B\eta \rangle_V}{\|v\|_V \|\eta\|_W} = \beta > 0. \]

Hence, existence and uniqueness of the reduced solution \((u_N, \lambda_N)\).
R-B method
Analytical results

Stability of the scheme:

\[\| u_N(\mu) \|_V \leq \frac{1}{2\alpha} \left(\gamma_f + \frac{\gamma_a}{\beta_N} \gamma_g \right) + \sqrt{\frac{1}{4\alpha^2} \left(\gamma_f + \frac{\gamma_a}{\beta_N} \gamma_g \right)^2 + \frac{\gamma_g \gamma_f}{\alpha \beta_N}} \]

:= \gamma_u,

\[\| \lambda_N(\mu) \|_W \leq \frac{1}{\beta_N} \left(\gamma_f + \gamma_a \gamma_u \right). \]
Lipschitz continuity:
For all μ, μ' there exist L_u, L_λ such that

\[
\|u_N(\mu) - u_N(\mu')\|_V \leq L_u \|\mu - \mu'\|_P,
\]
\[
\|\lambda_N(\mu) - \lambda_N(\mu')\|_W \leq L_\lambda \|\mu - \mu'\|_P.
\]
1 Problem setting

2 A reduced basis method for Variational Inequalities
 - The scheme
 - Analytical results
 - A posteriori estimators

3 Some numerical experiments
 - Setting
 - Results

4 Extension to time-dependent systems
 - Algorithms
 - Application to American Option Pricing

5 Conclusions and perspectives
First, we define the equality residual $r(\cdot; \mu) \in V'$ and $s(\cdot; \mu) \in W'$ by

$$r(v; \mu) := f(v; \mu) - a(u_N(\mu), v; \mu) - b(v, \lambda_N(\mu)),$$

$$s(\eta; \mu) := b(u_N(\mu), \eta) - g(\eta; \mu) =: \langle \eta, \eta_s(\mu) \rangle_W.$$

The residual r represents the right hand side of the error-equation

$$a(u(\mu) - u_N(\mu), v; \mu) + b(v, \lambda(\mu) - \lambda_N(\mu)) = r(v; \mu).$$
Then define:

\[
\begin{align*}
\delta_r(\mu) & := \| r(\cdot; \mu) \|_{V'} \\
\delta_{s1}(\mu) & := \| \pi(\eta_s(\mu)) \|_W \\
\delta_{s2}(\mu) & := \langle \lambda_N(\mu), \pi(\eta_s(\mu)) - \eta_s(\mu) \rangle_W,
\end{align*}
\]

with \(\pi : W \rightarrow M \), the orthogonal projection on \(M \), and \(\eta_s \):

\[
\langle \eta, \eta_s(\mu) \rangle_W = s(\eta; \mu), \quad \eta \in W.
\]
Upper a posteriori Error Bound

For any μ, the reduced basis errors can be bounded by

$$\|u(\mu) - u_N(\mu)\|_V \leq \Delta u(\mu) := c_1(\mu) + \sqrt{c_1(\mu)^2 + c_2(\mu)},$$

$$\|\lambda(\mu) - \lambda_N(\mu)\|_W \leq \Delta \lambda(\mu) := \frac{1}{\beta_N} (\delta_r(\mu) + \gamma_a(\mu)\Delta u(\mu)), $$

with constants

$$c_1(\mu) := \frac{1}{2\alpha(\mu)} \left(\delta_r(\mu) + \frac{\delta_{s1}(\mu)\gamma_a(\mu)}{\beta_N} \right),$$

$$c_2(\mu) := \frac{1}{\alpha(\mu)} \left(\frac{\delta_{s1}(\mu)\delta_r(\mu)}{\beta_N} + \delta_{s2}(\mu) \right).$$
Sketch of the proof:

\[\alpha(\mu) \|e_u\|_V^2 \leq a(e_u, e_u) = r(e_u) + b(e_\lambda, e_u). \]

\[
\begin{align*}
b(e_\lambda, e_u) &= b(\lambda_N, u_N) - b(\lambda, u_N) - b(\lambda_N, u) + b(\lambda, u) \\
&\leq g(\lambda_N) - s(\lambda) - g(\lambda) - g(\lambda_N) + g(\lambda) \\
&= -s(\lambda) = s(e_\lambda) = \langle e_\lambda, \eta_s \rangle_W \\
&= \langle e_\lambda, \pi(\eta_s) \rangle_W + \langle e_\lambda, \eta_s - \pi(\eta_s) \rangle_W \\
&\leq \|e_\lambda\|_W \|\eta_s - \pi(\eta_s)\|_W + \langle e_\lambda, \pi(\eta_s) \rangle_W \\
&\leq \delta_{s1} \|e_\lambda\|_W + \delta_{s2}.
\end{align*}
\]
1 Problem setting

2 A reduced basis method for Variational Inequalities
 The scheme
 Analytical results
 A posteriori estimators

3 Some numerical experiments
 Setting
 Results

4 Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing

5 Conclusions and perspectives
Obstacle example: $\mu = (\mu_1, \mu_2)$

$$a(u, v; \mu) := \int_{\Omega} \nu(\mu)(x) \nabla u(x) \cdot \nabla v(x) \, dx, \quad v, u \in V$$

$$b(u, \eta) := -\eta(u), \quad u \in V, \eta \in W$$

with $\nu(\mu)(x) = \mu_1 \text{Ind}_{[0,1/2]}(x) + \nu_0 \text{Ind}_{[1/2,1]}(x)$. The obstacle is given by:

$$g(\eta; \mu) = \int \eta(x) h(x; \mu)$$

$$h(x; \mu) = -0.2(\sin(\pi x) - \sin(3\pi x)) - 0.5 + \mu_2 x.$$
Numerical methods:

- Snapshot computation (large problems): Primal-Dual Active Set Strategy.

- Reduced problems (small problems): Standard QP-solver.
1 Problem setting

2 A reduced basis method for Variational Inequalities
 The scheme
 Analytical results
 A posteriori estimators

3 Some numerical experiments
 Setting
 Results

4 Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing

5 Conclusions and perspectives
Numerical experiments

Obstacle problem

Figure: Left-middle: Primal solutions and obstacle. Right column: Exact and reduced solutions for a particular parameter. Solid line: exact solutions, dashed line: reduced solutions.
Numerical experiments
Obstacle problem

Figure: Left-middle: Dual solutions. Right column: Exact and reduced solutions for a particular parameter. Solid line: exact solutions, dashed line: reduced solutions.
Numerical experiments
Obstacle problem

Figure: Eight first vectors of the reduced basis \(\{ \varphi_i \}_{i=1}^{N_V} \) forming \(V_N \) (left), of the dual reduced family \(\{ \lambda(\mu_i) \}_{i=1}^{N_S} \) (middle), and the corresponding supremizers \(\{ B \lambda(\mu_i) \}_{i=1}^{N_S} \) (right).
Numerical experiments

Results

\[
N_S \quad \beta_N \text{ for } V_N^{(2)} \quad \log_{10}(\beta_N) \text{ for } V_N^{(1)}
\]

<table>
<thead>
<tr>
<th>(N_S)</th>
<th>(\beta_N) for (V_N^{(2)})</th>
<th>(\log_{10}(\beta_N)) for (V_N^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.000000</td>
<td>-2.566240</td>
</tr>
<tr>
<td>10</td>
<td>1.000000</td>
<td>-5.647559</td>
</tr>
<tr>
<td>15</td>
<td>1.000000</td>
<td>-8.562338</td>
</tr>
<tr>
<td>20</td>
<td>1.000000</td>
<td>-11.410636</td>
</tr>
<tr>
<td>25</td>
<td>1.000000</td>
<td>-14.680717</td>
</tr>
</tbody>
</table>

Figure: Effect of the inclusion of supremizers. Inf-sup stability constants (left) and number of iterations (right) required to solve the reduced problem. Dots: \(V_N = V_N^{(2)}\) with supremizers; crosses: \(V_N = V_N^{(1)}\) without supremizers.
Basis generation via Greedy Algorithm.

Figure: Numerical values of the error $\varepsilon_N(\mu) = e_u(\mu) + e_\lambda(\mu)$ when selecting the parameters on an uniform grid (left) or thanks to the a posteriori estimators (middle).
"A Reduced Basis Method for Parametrized Variational Inequalities",
1 Problem setting

2 A reduced basis method for Variational Inequalities
 The scheme
 Analytical results
 A posteriori estimators

3 Some numerical experiments
 Setting
 Results

4 Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing

5 Conclusions and perspectives
We now consider:

\[\langle \partial_t u, v \rangle_V + a(u, v; \mu) - b(\lambda, v) = f(v; \mu), \]
\[b(\eta - \lambda, u) \geq g(\eta - \lambda; \mu). \]

Required adaptations:

- **Time solver:** Crank-Nicholson
- **Primal Basis construction:** POD-greedy algorithm.

- **Dual Basis construction:** Angle-greedy algorithm.
Angle-greedy algorithm:
Given N_W, $\mathcal{P}_{train} \subset \mathcal{P}$, choose arbitrarily $0 \leq n_1 \leq L$ and $\mu_1 \in \mathcal{P}_{train}$ and do

1. set $\Xi^1_N = \left\{ \frac{\lambda^{n_1}(\mu_1)}{\|\lambda^{n_1}(\mu_1)\|_W} \right\}$, $W^1_N := \text{span}(\Xi^1_N)$,
2. for $k = 1, \ldots, N_W - 1$, do
 1. find $(n_{k+1}, \mu_{k+1}) := \arg\max_{n=0,\ldots,L, \mu \in \mathcal{P}_{train}} \left(\angle (\lambda^n(\mu), W^k_N) \right)$,
 2. set $\xi_{k+1} := \frac{\lambda^{n_{k+1}}(\mu_{k+1})}{\|\lambda^{n_{k+1}}(\mu_{k+1})\|_W}$,
 3. define $\Xi^{k+1}_N := \Xi^k_N \cup \{\xi_{k+1}\}$, $W^{k+1}_N := \text{span}(\Xi^{k+1}_N)$,
3. define $\Xi_N := \Xi^W_N$, $W_N := \text{span}(\Xi_N)$.
1. Problem setting

2. A reduced basis method for Variational Inequalities
 - The scheme
 - Analytical results
 - A posteriori estimators

3. Some numerical experiments
 - Setting
 - Results

4. Extension to time-dependent systems
 - Algorithms
 - Application to American Option Pricing

5. Conclusions and perspectives
Extension to time-dependent systems
Application to American Option Pricing

\[\partial_t P - \frac{1}{2} \sigma^2 s^2 \partial^2_{ss} P - (r - q) s \partial_s P + r P \geq 0, \quad P - \psi \geq 0, \]

\[\left(\partial_t P - \frac{1}{2} \sigma^2 s^2 \partial^2_{ss} P - (r - q) s \partial_s P + r P \right) \cdot (P - \psi) = 0, \]

where

- \(P = P(s, t) \) is the price of an American put,
- \(s \in \mathbb{R}_+ \) the asset’s value,
- \(\sigma, r, q \) are the volatility, the interest rate and the dividend payment,
- \(\psi = \psi(s, t) \) is the payoff function.
The boundary and initial conditions are as follows: \(P(s, 0) = \psi(s) \), \(P(0, t) = K \), \(\lim_{s \to +\infty} P(s, t) = 0 \), where \(K > 0 \) is a fixed strike price that satisfies \(K = \psi(0, 0) \). In what follows, we use \(\psi(s, t) = (K - s)_+ \) with \((\cdot)_+ = \max(0, \cdot)\).
Extension to time-dependent systems
Application to American Option Pricing

Figure: Eight first vectors of the reduced basis Ψ_N, Ξ_N and the corresponding supremizers.
Extension to time-dependent systems
Application to American Option Pricing

\[\varepsilon^u_N := \max_{\mu \in \mathcal{P}_{\text{train}}} \sqrt{\sum_{n=0}^{L} \|u^n(\mu) - \Pi_{V^k_N}(u^n(\mu))\|^2_V},\]

\[\varepsilon^\lambda_N := \max_{n = 0, \ldots, L, \mu \in \mathcal{P}_{\text{train}}} \left(\angle (\lambda^n(\mu), W^k_N)\right)\]

\[\text{err}_N(\mu) = \sqrt{\Delta t \sum_{n=0}^{L} \|u^n(\mu) - u^n_N(\mu)\|^2_V}, \quad \text{Err}^L_\infty = \max_{\mu \in \mathcal{P}_{\text{test}}} (\text{err}_N(\mu)).\]
Figure: Values of ε^u_N and ε^λ_N during the iterations of POD-greedy Algorithm (left) and Angle-greedy (middle). Right: Values of Err_N^∞ with respect to N_V and N_W.

Extension to time-dependent systems
Application to American Option Pricing
"A Reduced Basis Method for the Simulation of American Options",
B. Haasdonk, J. Salomon, B. Wohlmuth,
Proceedings of ENUMATH Conference

Preprint HAL : hal-00660385.
Conclusions and perspectives

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

Perspectives:

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case
Conclusions and perspectives

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

Perspectives:

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case
Conclusions and perspectives

Conclusions:
- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

Perspectives:
- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case
Conclusions and perspectives

Conclusions:

• Theoretical and numerical improvement when using supremizers
• Better accuracy for the primal variable as for the dual
• Adaptation to time dependent systems

Perspectives:

• Better dual cone generation
• Full decomposition of a posteriori estimators
• A posteriori estimators for the time-dependent case
Conclusions and perspectives

Conclusions:
- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

Perspectives:
- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case
Conclusions and perspectives

Conclusions:
- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

Perspectives:
- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case
Also: Another approach this morning, see the work of K. Veroy et al
→ primal-dual approach.
Conclusions and perspectives

Also: Another approach tomorrow, see the talk of K. Urban → time-space setting.