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An introduction to homogenization
Setting

Least square formulation
Multiscale materials
Truncation

Multiscale materials often leads to very expensive
computations, and practical difficulties.
We consider a simple (linear) problem for a complex materials:{

−div [Aε(x)∇uε(x)] = f (x) x ∈ D ⊂⊂ Rd ,
uε = 0 ∂D.

Airplane wing.
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−div (Aε(x)∇uε) = f in D, uε = 0 on ∂D

Application Aε uε f

Elasticity elastic moduli displacement mechanical load
Thermal conductivity thermal conductivity temperature heat source

Electrostatics permittivity electric potential charge density
Darcy flow flow conductivity pressure sources
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Consider A(y) a Zd-periodic matrix field.

−div
(

A
(x

ε

)
∇uε

)
= f in D, uε = 0 on ∂D (1)

This difficult oscillatory problem homogenizes to:

− div (A?∇u?) = f in D, u? = 0 on ∂D, (2)

The homogenized matrix A? is defined by an average in the unit cell
Q = (0, 1)d involving so-called correctors functions w:

A?ej =
∫

Q
A(x) (∇wej (x) + ej) dx, (3)

and the (easy) corrector equation reads:
−div [A(∇wp + p)] = 0 on Rd ,

∇wp periodic,
∫

Q
∇wp = 0.

(4)
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Consider A(y, ω) a stationary matrix field.

− div
(

A
(x

ε
, ω
)
∇uε

)
= f in D, uε = 0 on ∂D.

This difficult oscillatory problem homogenizes to:

− div (A?∇u?) = f in D, u? = 0 on ∂D,

where A? is defined by:

A?ej =
∫

Q
E
[
A(y, ·) (∇wej (y, ·) + ej)

]
dy,

and the corrector equation, in Rd , reads, for any p ∈ Rd :
−div [A(∇wp + p)] = 0 in Rd a.s.,

∇wp stationary,
∫

Q
E[∇wp] = 0.

Note that A? (and hence u?) is deterministic.
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In practice, truncate over QN := (0, N )d :
− div

[
A(∇wN

p + p)
]

= 0 in QN a.s., wN
p QN − periodic.

A?
N (ω)ej := 1

|QN |

∫
QN

A(y, ω)(ej +∇wN
ej (y, ω))dy.

For that reason alone, randomness comes again in the picture.

In the sequel, we focus on computing E[A?
N ].

Introduce the estimator IMC
M := 1

M

M∑
m=1

A?
N (ωm), where (ωm) are i.i.d.

A? − IMC
M = A? − E[A?

N ] + E[A?
N ]− IMC

M (5)

The bias error is often small. The statistical error is controlled by the
variance. Variance reduction approaches are useful to reduce the error.∣∣E[A?

N ]− IMC
M
∣∣ ≤ 1.96

√
Var[A?

N ]
√

M
F. Legoll and WM A control variate approach based on a defect-type theory for variance reduction

in stochastic homogenization, 2014, Submitted. ArXiv 1407.8029
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An inverse problem
in stochastic homogenization

joint work with

F. Legoll, A. Obliger, M. Simon.

F. Legoll, W.M., A. Obliger, M. Simon. A parameter identification problem in stochastic

homogenization, 2014, arXiv 1402.0982. Accepted in ESAIM:ProcS.
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Subsurface modeling (Courtesy PECSA, Paris VI)
Diffusion in clay modeled by the so-called Pore Network Model.

e2

e1

x y
e

Discrete elliptic equation −div [A( x
ε , ω)∇uε] = f
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Can we recover some microscopic quantities

on the basis of

a few macroscopic quantities?
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Modelling:
I Diameters of channel: Weibull law de ∼W (λ, k) i.i.d.
I Conductance: A(x, ω) = diag((d4

x,x+ej (ω))j∈{1,...,d}).

Figure 1 : Weibull distributions.

Forward problem: given A(·, ω), compute
I Macroscopic permeability A?

N (ω).
I Macroscopic variance Var[A?

N ].

Inverse problem: given observed A?
N and Var[A?

N ], find λ, k.
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Figure 1 : For two choices of (λ, k), convergence of E[A?
N ] wrt |QN |

Continuous line: empirical mean.
Dashed line: confidence intervals.

∣∣∣E[A?
N ]− IMC

M

∣∣∣ ≤ 1.96

√
Var[A?

N ]
√

M
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A minimization problem

Aobs: observed macroscopic permeability.
Vobs: observed relative variance ⇒ VarR[X ] := Var[X ]/E[X ]2

Fix M realizations ω = (ωm)m∈{1,...,M}.

Problem: Find (λ, k) which minimizes FM :

FM (λ, k;ω) :=
(
IMC

M (ω)
Aobs

− 1
)2

+
(

V MC
M (ω)
Vobs

− 1
)2

,

where IMC
M (ω) := 1

M

M∑
m=1

A?
N (ωm), V MC

M (ω) := VarRM [A?
N ](ω).

Newton algorithm (Derivatives of FM ⇒ OK!)
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,
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M (ω) := 1

M
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m=1

A?
N (ωm), V MC

M (ω) := VarRM [A?
N ](ω).

with VarRM [A?
N ](ω) :=

1
M

∑M
m=1

(
A?

N (ωm)− IMC
M (ω)

)2

IMC
M (ω)2

Newton algorithm (Derivatives of FM ⇒ OK!)
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Numerical results

1D
I Homogenization ⇒ OK!
I Minimization problem ⇒ Well posed!
I Numerics ⇒ Easy!

2D
I Homogenization ⇒ OK.
I Minimization problem ⇒ Theoretically unknown
I Numerics ⇒ More difficult
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Landscape - Overview

Figure 2 : F(λ, k) for λ ∈ [1± 50%], k ∈ [15± 50%].
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Landscape - Close-up

Figure 3 : F(λ, k) for λ ∈ [1± 10%], k ∈ [15± 10%].
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Forward problem: statistical error

Figure 4 : Left: A?
N , right: VarR[A?

N ] (k? = 15; λ? = 1).
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Random environment
- Compute a numerical target Aobs,Vobs with λ = 1, k = 15
- Run Newton

I Starting from an initial guess 10% off,
I Using a different environment.

Figure 5 : Absolute error (k? = 15; λ? = 1).
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I Forward problem statistical error:

VarR [A?
N (λ?, k?)] ≈ 1.4 10−6 VarR

[
V MC

M (λ?, k?)
]
≈ 10−3,

I Inverse problem error:

VarR[λopt] ≈ 7.9 10−7 VarR[kopt] ≈ 1.7 10−4.

Accurate determination of the best λ, k.
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2D Preliminary results

Figure 6 : Relative error (k? = 15; λ? = 1).

With low values of N ,M (N = 10, M = 30 !) we still get
meaningful values of λ, k.
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2D Preliminary results

Figure 6 : Relative error (k? = 15; λ? = 1).

With low values of N ,M (N = 10, M = 30 !) we still get
meaningful values of λ, k.
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Conclusion

Future work: extension to the 2D case
I Homogenization with unbounded coefficients:

without c ≤ A(x, ω) ≤ C ∀x, ω.
I Numerical computations.

Modeling issues
I Robustness of the best (λ, k) with respect to the observed

values Aobs,Vobs ?

Numerical issues
I Tradeoff between N (RVE size) and M (# realizations)?
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