
Inference and Inverse Problems for Multiscale

Diffusions

G.A. Pavliotis

Department of Mathematics Imperial College London

03/10/2014

Stochastic and Multiscale Inverse Problems

Paris

Research supported by the EPSRC through grants EP/H034587/1

and EP/J009636/1

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 1 / 74



We are given data (a time-series) from a high-dimensional,

multiscale deterministic or stochastic system.

We want to fit the data to a "simple" low-dimensional,

coarse-grained stochastic system.

The available data is incompatible with the desired model at small

scales.

Many applied statistical techniques use the data at small scales.

This might lead to inconsistencies between the data and the

desired model fit.

Additional sources of error (measurement error, high frequency

noise) might also be present.

Problems of this form arise in, e.g.
◮ Molecular dynamics.
◮ Econometrics.
◮ Atmosphere/Ocean Science.
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Consider a dynamical system Zt with phase space Z that evolves

according to the dynamics

dZt

dt
= F(Zt) (1)

dim(Z) ≫ 1 and F(·) might be only partially known or unknown.

Our basic modeling assumption is that we are only interested in

the evolution of only a few selected degrees of freedom. We

separate between the resolved degrees of freedom (RDoF) and

unresolved degrees of freedom (UDoF):

Z = X ⊕ Y, (2)

with dim(X ) ≪ dim(Y).
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We postulate the existence of a stochastic coarse-grained

equation for the RDoF:

dXt = F(Xt) dt + σ(Xt) dWt, (3)

where Wt denotes standard Brownian motion in R
d.

We assume that we are given discrete noisy observations of Zt,

projected onto the space of the RDoF X :

X̂tj = PẐtj + ηj, j = 1, . . .N. (4)

Our goal is the derivation of the coarse-grained dynamics (3) from

the noisy observations (4).

Consider the problem in both a parametric and a nonparametric

framework.

F = F(x; θ), σ = σ(x;ϑ). (5)
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Data-Driven Coarse Graining

We want to use the available data to obtain information on how to

parameterize small scales and obtain accurate reduced,

coarse-grained models.

We want to develop techniques for filtering out observation error,

high frequency noise from the data.

More generally: study the following problems for multiscale
systems

◮ Inference
◮ Filtering
◮ Control (W. Zhang, J.C. Latorre, G.P., C. Hartmann, to Appear,

2014)
◮ Inverse problems

We investigate these issues for some simple models.
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Thermal Motion in a Two-Scale Potential

A.M. Stuart and G.P., J. Stat. Phys. 127(4) 741-781, (2007).

Consider the SDE

dxε(t) = −V ′

(
xε(t),

xε(t)

ε
;α

)
dt +

√
2σ dW(t), (6)

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T];Rd), the solution of the

homogenized equation:

dX(t) = −AV ′(X(t))dt +
√

2ΣdW(t).
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Figure : Bistable potential with periodic fluctuations
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The coefficients A, Σ are given by the standard homogenization

formulas.

Goal: fit a time series of xε(t), the solution of (6), to the

homogenized SDE.

Problem: the data is not compatible with the homogenized

equation at small scales.

Model misspecification.

Similar difficulties when studying inverse problems for PDEs with a

multiscale structure.
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Deriving dynamical models from paleoclimatic records

F. Kwasniok, and G. Lohmann, Phys. Rev. E, 80, 6, 066104 (2009)

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 9 / 74



Fit this data to a bistable SDE

dx = −V ′(x; a) dt + σ dW, V(x) =

4∑

j=1

ajx
j. (7)

Estimate the coefficients in the drift from the palecolimatic data

using the unscented Kalman filter.

the resulting potential is highly asymmetric.
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Estimation of the Eddy Diffusivity from Noisy

Lagrangian Observations

C.J. Cotter and G.P. Comm. Math. Sci. 7(4), pp. 805-838 (2009).

Consider the dynamics of a passive tracer

dx

dt
= v(x, t), (8)

where v(x, t) is the velocity field. We expect that at sufficiently long

length and time scales the dynamics of the passive tracer

becomes diffusive:
dX

dt
=

√
2KdW

dt
(9)

We are given a time series of noisy observations:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (10)

Goal: estimate the Eddy Diffusivity K from the noisy Lagrangian

data (10).
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Econometrics: Market Microstructure Noise

S. Olhede, A. Sykulski, G.P. SIAM J. MMS, 8(2), pp. 393-427 (2009)

Observed process Yt:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (11)

Where Xt is the solution of

dXt = (µ− νt/2) dt + σtdBt, dνt = κ (α− νt) dt + γν
1/2
t dWt, (12)

Goal: Estimate the integrated stochastic volatility of Xt from the

noisy observations Yt.

Work of Ait-Sahalia et al: Estimator fails without subsampling.

Subsampling at an optimal rate+averaging+bias correction leads

to an efficient estimator.

We have developed an estimator for the integrated stochastic

volatility in the frequency domain.
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Homogenization for SPDEs with Quadratic

Nonlinearities

D. Blomker, M. Hairer, G.P., Nonlinearity 20 1721-1744 (2007),

M. Pradas Gene, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, G.P. Phys. Rev. Lett 106, 060602 (2011).

Consider the noisy KS equation

∂tu = −(∂2
x + ν∂4

x )u − u∂xu + σ̃ξ, (13)

on 2π-domains with either homogeneous Dirichlet or Periodic

Boundary Bonditions. We study the long time dynamics of (13)

close to the instability threshold ν = 1 − ε2.

assume that noise acts only on the stable modes (i.e on Ker(L)⊥).

Define u(x, t) = εv(x, ε2t).

For ε≪ 1, PN v ≈ X(t) · e(x) where X(t) is the solution of the

amplitude (homogenized) equation

dXt = (AXt − BX3
t ) dt +

√
σ2

a + σ2
b X2

t dWt. (14)
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There exist formulas for the constants A, B, σ2
a , σ

2
b but they involve

knowledge of the spectrum of L = −(∂2
x + ∂4

x ) and the covariance

operator of the noise.

The form of the amplitude equation (14) is universal for all SPDEs

with quadratic nonlinearities.

Goal: assuming knowledge of the functional form of the amplitude

equation, estimate the coefficients A, B, σ2
a, σ

2
b from a time series

of PNu.

Can combine ideas from numerical analysis and statistics to

develop a numerical method for solving SPDEs of the form (13):

Numerical Methods for Stochastic Partial Differential

Equations with Multiple Scales (with A. Abdulle). J. Comp.

Phys, 231(6) pp. 2482-2497 (2012).
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Figure : Flow chart of the data-driven modeling framework: Given

observations (data) we postulate a coarse-grained stochastic parametric

model which is fitted (via statistical inference and time series analysis tools)
to the data and refined via a model selection process.
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Thermal Motion in a Two-Scale Potential

Consider the SDE

dxε(t) = −∇V

(
xε(t),

xε(t)

ε
;α

)
dt +

√
2σ dW(t),

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T];Rd), the solution of the

homogenized equation:

dX(t) = −αK∇V(X(t))dt +
√

2σKdW(t).
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In one dimension

dxε(t) = −αV ′(xε(t))dt − 1

ε
p′
(

xε(t)

ε

)
dt +

√
2σ dW(t).

The homogenized equation is

dX(t) = −AV ′(X(t))dt +
√

2Σ dW(t).

(A,Σ) are given by

A =
αL2

ZẐ
, Σ =

σL2

ZẐ
Z =

∫ L

0

e−
p(y)
σ dy, Ẑ =

∫ L

0

e
p(y)
σ dy.

A and Σ decay to 0 exponentially fast in σ → 0.

The homogenized coefficients satisfy (detailed balance):

A

α
=

Σ

σ
.
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We are given a path of

dxε(t) = −αV ′(xε(t)) dt − 1

ε
p′
(

xε(t)

ε

)
dt +

√
2σ dβ(t).

We want to fit the data to

dX(t) = −ÂV ′(X(t))dt +
√

2Σ̂ dβ(t).

It is reasonable to assume that we have some information on the

large–scale structure of the potential V(x).

We do not assume that we know anything about the small scale

fluctuations.
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We fit the drift and diffusion coefficients via maximum likelihood

and quadratic variation, respectively.

For simplicity we fit scalars A,Σ in

dx(t) = −A∇V(x(t))dt +
√

2ΣdW(t).

The Radon–Nikodym derivative of the law of this SDE wrt Wiener

measure is

L = exp

(
− 1

Σ

∫ T

0

A∇V(x) dx(s) − 1

2Σ

∫ T

0

|A∇V(x(s))|2 ds

)
.

This is the maximum likelihood function.
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Let x denote {x(t)}t∈[0,T] or {x(nδ)}N
n=0 with nδ = T.

Diffusion coefficient estimated from the quadratic variation:

Σ̂N,δ(x)) =
1

dNδ

N−1∑

n=0

|xn+1 − xn|2,

Choose Â to maximize logL :

Â(x) = −
∫ T

0
〈∇V(x(s)), dx(s)〉

∫ T

0
|∇V(x(s))|2 ds
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In practice we use the estimators on discrete time data and use

the following discretisations:

Σ̂N,δ(x) =
1

Nδ

N−1∑

n=0

|xn+1 − xn|2,

ÂN,δ(x) = −
∑N−1

n=0 〈∇V(xn), (xn+1 − xn)〉∑N−1
n=0 |∇V(xn)|2 δ

,

ÃN,δ(x) = Σ̂N,δ

∑N−1
n=0 ∆V(xn)δ∑N−1

n=0 |∇V(xn)|2 δ
,
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No Subsampling

Generate data from the unhomogenized equation (quadratic or

bistable potential, simple trigonometric perturbation).

Solve the SDE numerically using Euler–Marayama for a single

realization of the noise. Time step is sufficiently small so that

errors due to discretization are negligible.

Fit to the homogenized equation.

Use data on a fine scale δ ≪ ε2 (i.e. use all data).

Parameter estimation fails.
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Figure : Â, Σ̂ vs ε for quadratic potential.
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Figure : Â, Σ̂ vs σ for quadratic potential with ε = 0.1.
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Subsampling

Generate data from the unhomogenized equation.

Fit to the homogenized equation.

Use data on a coarse scale ε2 ≪ δ ≪ 1.

More precisely

δ := ∆tsam = 2k∆t, k = 0, 1, . . . .

Study the estimators as a function of ∆tsam.

Parameter Estimation Succeeds.
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Figure : Â, Σ̂ vs ∆tsam for quadratic potential with ε = 0.1.

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 27 / 74



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

∆ t
sam

A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

∆ t
sam

B

Figure : Â, B̂ vs ∆tsam for bistable potential with σ = 0.5, ε = 0.1.
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Figure : B̂ij, i, j = 1, 2 vs ∆tsam for 2d quadratic potential with σ = 0.5, ε = 0.1.

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 29 / 74



Conclusions From Numerical Experiments

Parameter estimation fails when we take the small–scale (high

frequency) data into account.

Â, Σ̂ become exponentially wrong in σ → 0.

Â, Σ̂ do not improve as ε→ 0.

Parameter estimation succeeds when we subsample (use only

data on a coarse scale).

There is an optimal sampling rate which depends on σ.

Optimal sampling rate is different in different directions in higher

dimensions.
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Theorem (No Subsampling)

Let xε(t) : R+ 7→ R
d be generated by the unhomogenized equation.

Then

lim
ε→0

lim
T→∞

Â(xε(t)) = α, a.s.

Fix T = Nδ. Then for every ε > 0

lim
N→∞

ΣN,δ(x
ε(t)) = σ, a.s.

Thus the unhomogenized parameters are estimated – the wrong

answer.
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Theorem (With Subsampling)

Fix T = Nδ with δ = εα with α ∈ (0, 1). Then

lim
ε→0

Σ̂N,δ(x
ε) = Σ in distribution.

Let δ = εα with α ∈ (0, 1), N = [ε−γ ], γ > α. Then

lim
ε→0

ÂN,δ(x
ε) = A in distribution.

Thus we get the right answer provided subsampling is used.
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A Fast-Slow System of SDEs

A. Papavasiliou, G.P. A.M. Stuart, Stoch. Proc. Appl. 119(10) 3173-3210

(2009).

Let (x, y) in X × Y. and consider the following coupled systems of

SDEs:

dx

dt
=

1

ε
f0(x, y) + f1(x, y) + α0(x, y)

dU

dt

+α1(x, y)
dV

dt
, (15a)

dy

dt
=

1

ε2
g0(x, y) +

1

ε
g1(x, y) +

1

ε
β(x, y)

dV

dt
. (15b)
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Here fi : X × Y → R
l, α0 : X × Y → R

l×n, α1 : X × Y → R
l×m,

g1 : X × Y → R
d−l and g0, β and U, V are independent standard

Brownian motions in R
n.

We will refer to (15) as the homogenization problem.

We assume that the coefficients of SDEs (15) are such that, in the

limit as ε→ 0, the slow process x converges weakly in C([0,T],X )
to X, the solution of

dX

dt
= F(X) + K(X)

dW

dt
. (16)

This can be proved for very general classes of SDEs and formulas

for F(x) and K(x) can be obtained ( G.P. and A.M. Stuart

Multiscale Methods: Averaging and Homogenization, Springer

2008).

Our aim it to estimate parameters in (16) given {x(t)}t∈[0,T].
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We want to fit data {x(t)}t∈[0,T] to a limiting (homogenized or

averaged) equation, but with an unknown parameter θ in the drift:

dX

dt
= F(X; θ) + K(X)

dW

dt
. (17)

We assume that the actual drift that is compatible with the data is

given by F(X) = F(X; θ0).

We want to correctly identify θ = θ0 by finding the maximum

likelihood estimator (MLE) when using a statistical model of the

form (17), but using data from the slow-fast system.
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Given data {z(t)}t∈[0,T], the log likelihood for θ satisfying (17) is

given by

L(θ; z) =

∫ T

0

〈F(z; θ), dz〉a(z) −
1

2

∫ T

0

|F(z; θ)|2a(z)dt, (18)

where

〈p, q〉a(z) = 〈K(z)−1p,K(z)−1q〉.
We can define the MLE through

dP

dP0

= exp (−L(θ;X))

where P is the path space measure for (17) and P0 the path pace

measure for
dX

dt
= K(X)

dW

dt
.

The MLE is

θ̂ = argmaxθL(θ; z).
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Assume that we are given data {x(t)}t∈[0,T] from (15) and we want

to fit it to the equation (17). In this case the MLE is

asymptotically biased, in the limit as ε→ 0 and T → ∞. The

MLE does not converge to the correct value θ0.

Theorem

Assume that the slow-fast system (15) as well as the averaged

equation (17) are ergodic. Let {x(t)}t∈[0,T] be a sample path of (15)

and X(t) a sample path of (17) at θ = θ0. Then the following limits, to

be interpreted in L2(Ω) and L2(Ω0) respectively, are identical:

lim
ε→0

lim
T→∞

1

T
L(θ; x) = lim

T→∞

1

T
L(θ;X) + E∞(θ),

with an explicit expression for E∞(θ).
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In order to estimate the the parameter in the drift correctly, we

need to subsample, i.e. use only a (small) portion of the data that

is available to us.

Assume that we are given observation of x(t) at equidistant

discrete points {xn}N
n=1 where xn = x(nδ), Nδ = T.

The log Likelihood function has the form

L
δ,N(z) =

N−1∑

n=0

〈F(zn; θ), zn+1 − zn〉a(zn) −
1

2

N−1∑

n=0

|F(zn; θ)|2a(zn)
δ.

If we choose δ = εα appropriately, then we can estimate the drift

parameter correctly.
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Theorem

Let {x(t)}t∈[0,T] be a sample path of (15) and X(t) a sample path of (17)

at θ = θ0. Let δ = εα with α ∈ (0, 1) and let N = [ε−γ ] with γ > α. Then

(under appropriate assumptions) the following limits, to be interpreted

in L2(Ω′) and L2(Ω0) respectively, and almost surely with respect to

X(0), are identical:

lim
ε→0

1

Nδ
L

N,δ(θ; x) = lim
T→∞

1

T
L(θ;X). (19)

Define

θ̂(x; ε) := arg max
θ

L
N,δ(θ; x).

Then, under additional assumptions,

lim
ε→0

θ̂(x; ε) = θ0, in probability.
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Thermal motion in a two-scale potential

dx

dt
= −∇Vε(x) +

√
2β−1

dW

dt
(20)

where

Vε(x) = V(x) + p(x/ε),

where p(·) is a smooth 1-periodic function. The coarse-grained

equation is The homogenized equation is

dX

dt
= −K∇V(X) +

√
2β−1K

dW

dt
(21)

where

K =

∫

Td

(I +∇yΦ(y))(I +∇yΦ(y))
Tρ(y) dy.
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Suppose there is a set of parameters θ ∈ Θ in the large-scale part

of the potential

dX

dt
= −K∇V(X; θ) +

√
2β−1K

dW

dt

using data from (20).

The error in the asymptotic log Likelihood function is:

E∞(θ) =
(
− 1 + Ẑ−1

p Z−1
p

)βZ−1
V

2

∫

R

|∂xV|2e−βV(x;θ) dx. (22)

where ZV =
∫
R

e−βV(q;θ) dq, Zp =
∫ 1

0
e−βp(y) dy, Ẑp =

∫ 1

0
eβp(y) dy. In

particular, E∞ < 0.
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Semiparametric Drift and Diffusion Estimation
S. Krumscheid, S. Kalliadasis, G.P., SIAM J. MMS, 11(2), 442-473 (2013).

Optimal subsampling rate and estimator curves generally

unknown

MLE only feasible for drift parameters.

QVP only applicable for constant diffusion coefficients.

We propose new estimators that are applicable in a

semiparametric framework and for non-constant diffusion

coefficients.
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The Estimators

Scalar-valued Itô SDE

dxt = f (xt) dt +
√

g(xt) dWt , x(0) = x0

Parameterization of drift and diffusion coefficient

f (x) ≡ f (x;ϑ) :=
∑

j∈Jf

ϑjx
j and g(x) ≡ g(x; θ) :=

∑

j∈Jg

θjx
j

Goal

Determine ϑ ≡ (ϑj)j∈Jf
∈ R

p and θ ≡ (θj)j∈Jg
∈ R

q, with Jf , Jg ⊂ N0
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By the Martingale property of the stochastic integral we find

E(xt − x0) = E

(∫ t

0

f (xs) ds
)
=

∑

j∈Jf

ϑj

∫ t

0

E(xs
j) ds , for t > 0 fixed

This can be rewritten as

b1(x0) = a1(x0)
Tϑ

with b1(ξ) := Eξ(xt − ξ) ∈ R and a1(ξ) :=
(∫ t

0
Eξ(xs

j) ds
)

j∈Jf

∈ R
p

Equation a1(x0)
Tϑ = b1(x0) is ill-posed

Since the equation is valid for each initial condition, we can

overcome this shortcoming by considering multiple initial

conditions (x0,i)16i6m
, m > p, and obtain

A1ϑ = b1

with A1 :=
(
a1(x0,i)

T
)

16i6m
∈ R

m×p, b1 :=
(
b1(x0,i)

)
16i6m

∈ R
m

Define estimator to be the best approximation

ϑ̂ := A+
1 b1
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Assume now that drift f is already estimated, hence known

By Itô Isometry and the parameterization of g we find

E

((
xt − x0 −

∫ t

0

f̂ (xs) ds
)2
)
= E

(∫ t

0

g(xs) ds
)
=

∑

j∈Jg

θj

∫ t

0

E(xs
j) ds

Provides the same structure as for ϑ.

Thus, we can follow the same steps as before: Rewriting,

considering multiple initial conditions, and taking the best

approximation to obtain

θ̂ := A+
2 b2

with A2 and b2 defined appropriately
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Summary: Two Step Estimation Procedure

1 Estimate drift coefficient via ϑ̂ := A+
1 b1

2 Based on ϑ̂ estimate diffusion coefficient via θ̂ := A+
2 b2

Further Approximations

Discrete Time Data: Approximate integrals via trapezoidal rule

Approximate expectations via Monte Carlo experiments
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Fast OU Process Revisited

Fast/Slow System

dxt =
(σ
ε

yt + Axt

)
dt ,

dyt = − 1

ε2
yt dt +

√
2

ε
dVt

Effective Dynamics

dXt = AXt dt +
√

2σ dWt
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Fast OU Process Revisited

Fast/Slow System

dxt =
(σ
ε

yt + Axt

)
dt ,

dyt = − 1

ε2
yt dt +

√
2

ε
dVt

Effective Dynamics

dXt = AXt dt +
√

2σ dWt
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Fast OU Process II
Fast/slow system:

dxt =
(yt

ε

√
σa + σbx2

t + (A − σb)xt − Bxt
3
)

dt ,

dyt = − 1

ε2
yt dt +

√
2

ε
dVt

Effective Dynamics:

dXt = (AXt − BXt
3) dt +

√
2(σa + σbXt

2) dWt

True values:

A = 1 , σa = 0.81

B = 2 , σb = 0.49

ε = 0.1

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 48 / 74



Brownian Motion in two-scale Potential

Fast/slow system:

dxt = − d

dx
Vα

(
xt,

xt

ε

)
dt +

√
2σ dUt

Two-scale potential: Vα(x, y) = αV(x) + p(y), with p(·) periodic

Effective Dynamics:
dXt = −AV ′(Xt) dt +

√
2Σ dWt

with:

V(x) = x2/2

p(y) = cos (y)

True values:

α = 1 , A ≈ 0.192

σ =
1

2
, Σ ≈ 0.096

ε = 0.1

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 49 / 74



Fast Chaotic Noise

Fast/slow system:

dx

dt
= x − x3 +

λ

ε
y2 ,

dy1

dt
=

10

ε2
(y2 − y1) ,

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3) ,

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3)

Effective Dynamics: [Melbourne, Stuart ’11]

dXt = A
(
Xt − Xt

3
)

dt +
√
σ dWt

true values:

A = 1 , λ =
2

45
, σ = 2λ2

∫ ∞

0

lim
T→∞

1

T

∫ T

0

ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators

Values for σ reported in the literature (ε = 10−3/2)
◮ 0.126 ± 0.003 via Gaussian moment approx.
◮ 0.13 ± 0.01 via HMM

here: ε = 10−1 → σ̂ ≈ 0.121 and ε = 10−3/2 → σ̂ ≈ 0.124

But we estimate also Â
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Truncated Burgers Equation

Diffusively time rescaled variant of Burgers’ equation

dut =
( 1

ε2
(∂2

x + 1)ut +
1

2ε
∂xu2

t + νut

)
dt +

1

ε
Q dWt

on an open interval equipped with homogeneous Dirichlet

boundary conditions

Effective dynamics for dominant mode

dXt =
(
AXt − BXt

3
)

dt +
√
σa + σbXt

2 dWt

For the three-term truncated representation the true values are:

A = ν +
q1

2

396
+

q2
2

352
, B =

1

12
, σa =

q1
2q2

2

2112
, and σb =

q1
2

36
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Truncated Burgers Equation
Estimators

ν = 1, q1 = 1 = q2 and ε = 0.1
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Fast Chaotic Noise II

Fast/slow system:
dx

dt
= x − x3 +

λ

ε
(1 + x2)y2 ,

dy1

dt
=

10

ε2
(y2 − y1) ,

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3) ,

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3)

Effective Dynamics:

dXt =
(
AXt + BXt

3 + CXt
5
)

dt +
√
σa + σbXt

2 + σcXt
4 dWt

true values (λ = 2/45):

A = 1 + σ , B = σ − 1 , C = 0 , σa = σ , σb = 2σ , σc = σ ,

σ = 2λ2

∫ ∞

0

lim
T→∞

1

T

∫ T

0

ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators

ε = 0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2

t = nh (h = 10−3)

σ̂a
σ̂b
σ̂c
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It is possible to use a single long trajectory rather than many short

ones (S. Kalliadasis, S. Krumscheid, G.P. preprint, 2014).

Consistency, stability and convergence of the estimators can be

studied (S. Krumscheid, preprint 2014).

This methodology can be used to analyze data from

measurements, observations (S. Kalliadasis, S. Krumscheid, G.P.,

M. Pradas, preprint, 2014).
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Climate transitions during the last glacial period

Climate transitions during the last glacial period.

Records covering the last glacial period, approximately from 70 ky

until 20 ky before present, are dominated by repeated rapid

climate shifts, the so-called Dansgaard–Oeschger (DO) events.

It is believed that DO events are transitions between two

metastable climate states, a cold stadial and a warm interstadial

state.

We want to calculate how long it takes (on average) between DO

events.
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We consider the δ18O isotope record (as a proxy for Northern

Hemisphere temperature) during the last glacial period which was

obtained from the NGRIP see Fig. 8(a).

We observe a noisy temporal signal where the temperature

increases up to a warm state until it abruptly goes down to a

colder state (corresponding to the DO events), giving rise to a

bimodal histogram, see Fig. 8(b).

We consider two different parametrizations in our SDE model (drift
and diffusion coefficients):

M1: f (X; θ) =
∑3

j=0 θjX
j; g(X; θ) = θ4.

M2: f (X; θ) =
∑3

j=0 θjX
j; g(X; θ) =

{
θ4 if X < θ6

θ5 if X > θ6

.
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Figure : (a) Paleoclimatic record time series. (b) PDF of the experimental

observations (histogram in gray) and the numerical ones obtained from model
M1 and M2. (c) Time series of the fitted coarse-grained process X computed

by using model M2. (d) and (e) PDF of the residence times τw at the cooler

state and PDF of the durations τd of the DO events, normalized to their mean
values and for different values of the threshold (Xth ∈ [−42.5,−42]). The solid

lines correspond to P(z) = exp (−z).
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Multiscale modeling and inverse problems

J. Nolen, A.M Stuart, G.P., in Numerical Analysis of Multiscale Problems,

Lecture Notes in Computational Science and Engineering, Vol. 83, Springer,

2012

In many applications we need to blend observational data and

mathematical models.

Parameters appearing in the model, such as constitutive tensors,

initial conditions, boundary conditions, and forcing can be

estimated on the basis of observed data.

The resulting inverse problems are usually ill-posed and some

form of regularization is required.

We are interested in problems where the unknown parameters

vary across scales.
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We study inverse problems for PDEs with rapidly oscillating

coefficients for which a homogenized equation exists.

We want to estimate unknown parameters u ∈ X from noisy data

y ∈ Y (usually Y = R
N).

z is the solution of the PDE.

The map G : X → R
N denotes the mapping from the unknown

parameter to the data (observation operator)

The map F : X → Z denotes the mapping from the parameter to

the prediction (prediction operator).

The mapping G : X → P mapping u ∈ X to the solution G(u) ∈ P of

a (PDE), is the solution operator.

We assume that we are given noisy data:

y = G(u) + ξ, ξ ∼ N (0,Γ). (23)
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The main conclusions are:

(a) The choice of the space or set in which to seek the solution to the

inverse problem is intimately related to whether a low-dimensional

“homogenized" solution or a high-dimensional “multiscale" solution

is required for predictive capability. This is a choice of

regularization.

(b) The regularisation procedure is a part of the modelling strategy.

(c) If a homogenized solution to the inverse problem is desired, then

this can be recovered from carefully designed observations of the

full multiscale system.

(d) Homogenization theory can be used to improve the estimation of

homogenized parameters from observations of multiscale data.
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Example: Dirichlet problem for the pressure (groundwater flow)

∇ · v = f , x in D,

p = 0, x on ∂D,

v = −k∇p

(24)

where D ⊂ R
d.

The permeability tensor field k(x) = exp
(
u(x)

)
, u(x) positive definite

is assumed to be unknown and must be determined from data.

Equation for Lagrangian trajectories (φ is the porosity):

dx =
v(x)

φ
dt +

√
2η dW, x(0) = xinit, (25)

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 63 / 74



from PDE theory we know that we may define G : X → H1
0(D) by

G(u) = p.

Consider a set of real-valued continuous linear functionals

ℓj : H1(D) → R

and define

G : X → R
N by G(u)j = ℓj(G(u)).

Inverse problem: determine u ∈ X from the noisy observations

y ∈ R
N (23).
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Assume that the permeability tensor has two characteristic length

scales k = Kε(x) = K(x, x/ε), periodic in the second argument,

and ε > 0 a small parameter.

Family of problems

∇ · vε = f , x in D, (26a)

pε = 0, x on ∂D, (26b)

vε = −Kε∇pε. (26c)

Family of SDEs (we set η = εη0)

dxε =
vε(xε)

φ
dt +

√
2η0ε dW, xε(0) = xinit. (27)
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The pressure admits the two–scale expansion

pε(x) ≈ pεa(x) := p0(x) + εp1(x,
x

ε
) (28)

The cell problem for χ(x, y) is:

−∇y ·
(
∇yχKT

)
= ∇y · KT , y ∈ T

d. (29)

We can now define for each x ∈ D the effective (homogenized)

permeability tensor K0

K0(x) =

∫

Td

Q(x, y)dy, (30)

Q(x, y) = K(x, y) + K(x, y)∇yχ(x, y)
T . (31)

We write K0 = exp(u0).

G.A. Pavliotis (IC) Inference and Inverse Problems for Multiscale Diffusions 66 / 74



p0 is the solution of the homogenized PDE

∇ · v0 = f , x ∈ D, (32a)

p0 = g, x ∈ ∂D, (32b)

v0 = −K0∇p0. (32c)

and the corrector p1 is defined by

p1(x, y) = χ(x, y) · ∇p0(x). (33)
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Large Data Limits

We study inverse problems where a single scalar parameter is

sought and we study whether or not this parameter is correctly

identified when a large amount of noisy data is available.

We consider the problem of estimating a single scalar parameter

u ∈ R in the elliptic PDE

∇ · v = f , x ∈ D,

p = 0, x ∈ ∂D,

v = − exp(u)A∇p

(34)

where D ⊂ R
d is bounded and open, and f ∈ H−1 as well as the

constant symmetric matrix A are assumed to be known.

We let G : R → H1
0(D) be defined by G(u) = p.

The observation operator G : R → R
N is defined by

G(u)j = ℓj(G(u)).
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Our aim is to solve the inverse problem of determining u given y

satisfying (23).

We assume that ξ ∼ N(0, γ2I) i.e. that the observational noise on

each linear functional is i.i.d. N(0, γ2).

u is finite dimensional, so we can minimize the least squares

functional and no regularization is needed.

Since the solution p of (34) is linear in exp(−u), we can write

G(u) = exp(−u)p⋆ where

∇ · v = f , x ∈ D,

p⋆ = 0, x ∈ ∂D.

v = −A∇p⋆
(35)
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Note that G(u)j = exp(−u)ℓj(p
⋆) so that the least squares

functional has the form

Φ(u) =
1

2γ2

N∑

j=1

|yj − Gj(u)|2 =
1

2γ2

N∑

j=1

|yj − exp(−u)ℓj(p
⋆)|2.

We can prove that Φ has a unique minimizer u satisfying

exp(−u) =

∑N
j=1 yjℓj(p

⋆)
∑N

j=1 ℓj(p⋆)2
. (36)

We ask whether, for large N, the estimate u is close to the desired
value of the parameter. We study two situations:

◮ The data is generated by the model which is used to fit the data.
◮ The data is generated by a multiscale model whose homogenized

limit gives the model which is used to fit the data.

We define p0 = exp(−u0)p
⋆ so that p0 solves (34) with u = u0.
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Assumption

We assume that the data y is given by noisy observations generated

by the statistical model:

yj = ℓj(p0) + ξj

where {ξj} form an i.i.d. sequence of random variables distributed as

N(0, γ2).

Theorem

Let the above assumption hold and assume that

lim infN→∞
1
N

∑N
j=1 ℓj(p

⋆)2 > L > 0 as N → ∞. Then ξ-almost surely

lim
N→∞

| exp(−u)− exp(−u0)| = 0.
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Data from the multiscale problem

We consider the situation where the data is taken from a

multiscale model whose homogenized limit falls within the class

used in the statistical model to estimate parameters.

We define p0 = exp(−u0)p
⋆ and we let pε be the solution of (26)

with Kε chosen so that the homogenized coefficient associated

with this family is K0 = exp(u0)A.

Assumption

We assume that the data y is generated from noisy observations of a

multiscale model:

yj = ℓj(p
ε) + ξj

with pε as above and the {ξj} an i.i.d. sequence of random variables

distributed as N(0, γ2).
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Theorem

Let Assumptions 7 hold and assume that that the linear functionals ℓj

are chosen so that

lim
ε→0

lim sup
N→∞

1

N

N∑

j=1

|ℓj(p
ε − p0)|2 = 0 (37)

and lim infN→∞
1
N

∑N
j=1 ℓj(p

⋆)2 > L > 0 as N → ∞. Then ξ− almost

surely

lim
ε→0

lim
N→∞

| exp(−u)− exp(−u0)| = 0.
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Remarks

1 Assumption (37) encodes the idea that, for small ε, the linear

functionals used in the observation process return nearby values

when applied to the solution pε of the multiscale model or to the

solution p0 of the homogenized equation.

2 If {ℓj(p)}∞j=1 is a family of bounded linear functionals on L2(D),
uniformly bounded in j, then (37) will hold.

3 On the other hand, we may choose linear functionals that are

bounded as functionals on H1(D) yet unbounded on L2(D). In this

case (37) may not hold and the correct homogenized coefficient

may not be recovered, even in the large data limit.

4 This is analogous to the situation in the problem of parameter

estimation for multiscale diffusions.
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