
Espaces de Hilbert

1 Espaces de Hilbert

1.1 Formes bilinéaires continues

Définition 1.1. (Forme bilinéaire)
Soient V et W deux R-ev normés. Une forme bilinéaire sur V × W est une application a : V × W → R

telle que

• Pour tout v ∈ V , l’application a(v, ·) : W → R est linéaire;

• Pour tout w ∈ W , l’application a(·, w) : V → R est linéaire.

Définition 1.2. (Forme bilinéaire continue)
Soient V et W deux R-ev. Une forme bilinéaire a : V × W → R est continue sur V × W s’il existe une

constante c < ∞ telle que
∀(v,w) ∈ V × W, |a(v,w)| ≤ c‖v‖V ‖w‖W .

On note ‖a‖(V ×W )′ = sup(v,w)∈V ×W, v 6=0, w 6=0
|a(v,w)|

‖v‖V ‖w‖W
.

1.2 Produit scalaire

Soit V un R-ev.

Définition 1.3. (Produit scalaire)
Un produit scalaire sur V est une forme bilinéaire sur V , notée (·, ·)V : V × V → R, et vérifiant les trois

propriétés suivantes:

(i) symétrie: ∀v,w ∈ V, (v,w)V = (w, v)V ,

(ii) positivité: ∀v ∈ V, (v, v)V ≥ 0,

(iii) (v, v)V = 0 ⇐⇒ v = 0.

Proposition 1.1. (Cauchy-Schwartz) Soit (·, ·)V un produit scalaire sur V . L’application v ∈ V 7→ ‖v‖V =
√

(v, v)V définit une norme sur V appelée norme induite. Elle vérifie l’inégalité de Cauchy-Schwartz:

∀v,w ∈ V, |(v,w)V | ≤ ‖v‖V ‖w‖V .

Remarque: Cette inégalité montre que la forme bilinéaire (v,w) ∈ V × V 7→ (v,w)V est continue,
autrement dit que le produit scalaire est une forme bilinéaire continue.

Preuve:

• Montrons d’abord l’inégalité de Cauchy-Schwartz. Soient v,w ∈ V . Pour tout λ ∈ R, (v + λw, v +
λw)V ≥ 0. Or si on développe ce produit scalaire on obtient

(v + λw, v + λw)V = ‖v‖2 + 2λ(v,w)V + λ2‖w‖2.

Il s’agit d’un polynôme du second degré en λ. Comme il est toujours positif ou nul, son discriminant
est forcément négatif ou nul ce qui implique:

4|(v,w)V |2 ≤ 4‖v‖2‖w‖2,

ce qui entraine Cauchy-Schwartz en prenant la racine carrée de cette expression.

• Montrer que c’est une norme: la “linéarité” et la positivité sont évidentes; L’inégalité triangulaire
découle de Cauchy-Schwartz. En effet, soient v,w ∈ V .

‖v + w‖2 = ‖v‖2 + 2(v,w)V + ‖w‖2,

≤ ‖v‖2 + 2‖v‖‖w‖ + ‖w‖2,

= (‖v‖ + ‖w‖)2.
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1.3 Espaces de Hilbert

Définition 1.4. (Espace de Hilbert)
Un espace de Hilbert est un espace vectoriel muni d’un produit scalaire (donc normé), et complet pour la

norme induite.

Un espace de Hilbert est donc un cas particulier d’un espace de Banach (la norme est définie à partir
d’un produit scalaire).

Exemple: Soit l2 = {{un}n∈N ⊂ R;
∑+∞

n=1 u2
n < ∞}.

On considère l’application qui à u, v ∈ l2 associe (u, v) =
∑

n∈N
unvn. Ce nombre est bien défini (en effet,

|unvn| ≤ u2
n/2 + v2

n/2 donc la série est absolument convergente donc convergente).
L’application (·, ·) est donc bien définie, symétrique, définie et positive: c’est un produit scalaire sur l2.

La norme induite est ‖u‖l2 =
√
∑

n∈N
u2

n.
l2 muni de cette norme est un espace complet, donc un espace de Hilbert.

2 Théorème de projection orthogonale

2.1 Le théorème

Faire un dessin pour comprendre ce que c’est en dimension finie. Insister sur le fait qu’on ne fait que
généraliser en dimension infinie une notion triviale en dimension finie.

Théorème 2.1. (Projection orthogonale)
Soit H un espace de Hilbert, et K un sous-espace vectoriel fermé non vide de H. Pour tout u ∈ H, il

existe un unique u ∈ K, appelé projection orthogonale de u sur K, et noté PKu, tel que

‖PKu − u‖H = inf
w∈K

‖w − u‖H . (1)

De plus, PKu est caractérisé par

PKu ∈ K et ∀w ∈ K, (PKu − u,w) = 0. (2)

Remarque: Si u ∈ K, PKu = u. Faire le dessin.
Preuve:

• Formule de la médiane: (vraie ici car la norme dérive d’un produit scalaire)

1

2
‖s + t‖2

H +
1

2
‖s − t‖2

H = ‖s‖2
H + ‖t‖2

H .

• Existence: Soit wn ∈ K une suite minimisante: I = infw∈K ‖w − u‖H = limn ‖wn − u‖H .

On applique l’égalité de la médiane à s = wn − u et t = wn+p − u:

1

2
‖wn+p + wn − 2u‖2

H +
1

2
‖wn+p − wn‖

2
H = ‖wn+p − u‖2

H + ‖wn − u‖2
H ,

donc
1

2
‖wn+p − wn‖

2
H = ‖wn+p − u‖2

H + ‖wn − u‖2
H −

1

2
‖wn+p + wn − 2u‖2

H ,

d’où

‖wn+p − wn‖
2
H = 2

(

‖wn+p − u‖2
H + ‖wn − u‖2

H − 2

∥

∥

∥

∥

1

2
(wn+p + wn) − u

∥

∥

∥

∥

2

H

)

≤ 2

(

‖wn+p − u‖2
H + ‖wn − u‖2

H − 2( inf
w∈K

‖w − u‖H)2
)

.

Soit ε > 0. Il existe N tel que

∀n > N, ‖wn − u‖2
H ≤ ε + ( inf

w∈K
‖w − u‖H)2.
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Donc, ∀n > N, ∀p > 0,
‖wn+p − wn‖

2
H ≤ ε,

et la suite (wn)n∈N est de Cauchy.

L’espace H étant complet, limn→∞ wn = u et comme K est fermé, u ∈ K. De plus, ‖u − u‖H =
infw∈K ‖w − u‖H par continuité de la norme sur H. Ceci montre l’existence d’une solution pour (1).

• Unicité: Soit w1 et w2 deux solutions. On prend s = w1 − u et t = w2 − u. On a

1

2
‖w1 − w2‖

2
H = I2 + I2 −

1

2
‖w1 + w2 − 2u‖2

H ,

= I2 + I2 − 2

∥

∥

∥

∥

w1 + w2

2
− u

∥

∥

∥

∥

2

H

,

≤ I2 + I2 − 2I2 = 0.

• Caractérisation: On veut montrer l’équivalence entre (1) et (2). Soit w ∈ K. PKu + tw ∈ K pour
tout t ∈ R, donc φ(t) = ‖PKu + tw − u‖2

H est minimale en t = 0. On développe φ:

φ(t) = ‖PKu + tw − u‖2
H = ‖PKu − u‖2

H + 2t(PKu − u,w)H + t2‖w‖2
H .

C’est un trinôme, donc la minimalité en 0 implique que φ′(0) = 0, soit (2).

Réciproquement,

‖u − w‖2
H = ‖u − PKu + PKu − w‖2

H

= ‖u − PKu‖2
H + ‖PKu − w‖2

H + 2(u − PKu, PKu − w)

= ‖u − PKu‖2
H + ‖PKu − w‖2

H

≥ ‖u − PKu‖2
H .

2.2 Conséquence

Théorème 2.2. PK est une application linéaire de H dans K et ‖PK‖L(H,K) = 1 (si K 6= {0}).

Preuve:

• La linéarité vient de la caractérisation (2). En effet; PKu+PKv est dans K et vérifie, pour tout w ∈ K,

(PKu − u,w) = 0 et (PKv − v,w) = 0.

Donc (PKu + PKv − (u + v), w) = 0 donc PK(u + v) = PKu + PKv.

• Soit u ∈ H. Comme PKu ∈ K, on a

‖u‖2
H = ‖(u − PKu) + PKu‖2

H = ‖u − PKu‖2
H + ‖PKu‖2

H ≥ ‖PKu‖2
H .

Donc PK est continue, et

‖PK‖L(H,K) = sup
u∈H, u 6=0

‖PKu‖H

‖u‖H

≤ 1.

• Si K 6= {0}, soit w ∈ K \ {0}. On a PKw = w, donc ‖w‖H = ‖PKw‖H . Donc

‖PK‖L(H,K) = sup
u∈H, u 6=0

‖PKu‖H

‖u‖H

≥
‖PKw‖H

‖w‖H

= 1.
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3 Théorème de Riesz

A tout u ∈ H, on peut associer l’application φ : w ∈ H 7→ (u,w) ∈ R, qui est une application linéaire
continue de H dans R, et donc un élément de H ′. Est-ce qu’on atteint ainsi tous les éléments de H ′? Le
théorème de Riesz dit que oui.

Théorème 3.1. (Riesz)
Soit H un espace de Hilbert. Etant donné φ ∈ H ′ = L(H, R), il existe u ∈ H unique tel que

∀w ∈ H, φ(w) = (u,w)H .

De plus, on a ‖u‖H = ‖φ‖H′ . En d’autres termes, l’application de H ′ dans H qui à φ associe u permet
d’identifier l’espace de Hilbert H avec son dual.

Rappel: ‖φ‖H′ = supw∈H, w 6=0
|φ(w)|
‖w‖H

.
Preuve:

• Existence: Soit φ ∈ H ′ et posons K = Ker(φ) = {w ∈ H, φ(w) = 0}. K est par construction un
sous-espace vectoriel fermé de H. Si K = H, on en déduit que φ = 0 si bien que φ = 0 peut être
trivialement représentée par u = 0.

Si K 6= H, on peut trouver v0 ∈ H avec v0 /∈ K, donc φ(v0) 6= 0. Posons

v1 = PKv0 et v =
v1 − v0

‖v1 − v0‖H

.

Faire un dessin de ce qu’est v. En particulier, on a ‖v‖H = 1 et (v, z)H = 0 pour tout z ∈ K.

Posons
u = φ(v)v.

Montrons que u est un représentant de φ. Pour tout w ∈ H, on peut écrire w = λv + z avec
λ = φ(w)/φ(v), ce qui définit z. On calcule φ(z) = φ(w) − λφ(v) = 0, donc z ∈ Ker(φ) = K. On
obtient donc

(u,w)H = λ(u, v)H + (u, z)H =
φ(w)

φ(v)
φ(v)(v, v)H + φ(v)(v, z)H = φ(w).

Donc u est un représentant de φ.

• Unicité: L’unicité du représentant est immédiate: si u1 et u2 ∈ H sont deux représentants de φ, on a
(u1 − u2, w)H = 0 pour tout w ∈ H si bien que u=u2.

• Egalité des normes: Par construction de u, on a φ(w) = (u,w)H . On a

‖φ‖H′ = sup
w∈H, w 6=0

|φ(w)|

‖w‖
= sup

w∈H, w 6=0

|(u,w)H |

‖w‖H

.

Par Cauchy-Schwartz, |(u,w)H | ≤ ‖u‖H‖w‖H , donc ‖φ‖H′ ≤ ‖u‖.

Par ailleurs, en prenant w = u,

‖φ‖H′ = sup
w∈H, w 6=0

|(u,w)H |

‖u‖
≥

|(u, u)H |

‖u‖
= ‖u‖.

D’où l’égalité.

4 Bases hilbertiennes

Définition 4.1. (Ensemble dense)
Un sous-ensemble A de V est dit dense dans V si tout élément v ∈ V est la limite d’une suite (an) de

points de A.
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Définition 4.2. (Bases hilbertiennes)
Soit H un Hilbert. On appelle base hilbertienne de H une suite (en) d’éléments de H tels que

(i) Pour tout n, ‖en‖ = 1 et (en, em) = 0 si n 6= m;

(ii) L’espace vectoriel engendré par la famille (en) est dense dans H.

Remarque: En dimension finie, on généralise la notion de base orthonormée. En dimension infinie,
un espace de Hilbert peut ne pas avoir de base hilbertienne. Cependant, tous les espaces de Hilbert qu’on
rencontrera dans ce cours auront une base hilbertienne.

Proposition 4.1. Soit H un espace de Hilbert admettant une base hilbertienne (en) et soit u ∈ H. On pose
un = (u, en). Alors les séries

∑

n unen et
∑

n u2
n sont convergentes dans H et R respectivement, et

u =
∑

n

unen, ‖u‖2
H =

∑

n

u2
n.

Preuve: Soit Hn engendré par (e0, · · · , en) et Pn la projection orthogonale de H sur Hn. Soit Pnu =
∑n

m=0 umem. On voit que Pnu ∈ Hn et

∀0 ≤ k ≤ n, (Pnu − u, ek) = 0,

donc Pnu n’est autre que la projection de u sur Hn. Donc

Pnu = Pnu =
n
∑

m=0

umem.

On a ‖Pnu‖2 =
∑n

m=0 u2
m. On sait aussi que ‖Pnu‖ ≤ ‖u‖, donc

∑n
m=0 u2

m est convergente. On a ‖Pn+pu−
Pnu‖2

H =
∑n+p

m=n+1 u2
m. Comme la série

∑

u2
m converge, la suite Pnu est de Cauchy, donc converge vers

u ∈ H: u =
∑

umem. Comme Pnu converge vers u ∈ H, on a (Pnu − u, em) →n 0. Or (Pnu, em) = um

donc (u, em) = um = (u, em) donc (u − u, em) = 0. La famille engendrée par la base est dense: u = u. Par
définition, u est la limite de Pnu donc u = limn Pnu. On avait ‖Pnu‖2 =

∑n
m=0 u2

m, ce qui donne à la limite
‖u‖2 =

∑

u2
m.

5 Espace L
2(Ω)

Théorème 5.1. Soit Ω un ouvert de R
d. L’application

f ∈ L2(Ω), g ∈ L2(Ω) 7→ (f, g)L2 =

∫

Ω
f(x)g(x) dx

est un produit scalaire. Muni de ce produit scalaire, L2(Ω) est un espace de Hilbert. La norme induite est

‖f‖L2(Ω) =
√

(f, f)L2 =

√

∫

Ω
|f(x)|2 dx.

Remarque: La fonction x 7→ f(x)g(x) est intégrable. En effet,

|f(x)g(x)| ≤
1

2
(|f(x)|2 + |g(x)|2).

Donc le nombre (f, g)L2 est bien défini. L’application f, g 7→ (f, g)L2 est bien symétrique, positive, définie:

∫

Ω
|f(x)|2 dx = 0 ⇐⇒ f = 0 pp.

C’est donc un produit scalaire. On admet que L2(Ω) est complet pour la norme induite.
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