	Building bridges	

Hybrid High-Order methods: Overview and recent advances

Alexandre Ern

University Paris-Est, ENPC and INRIA

BAIL Glasgow, 19 June 2018

ENPC & INRIA

Alexandre Ern HHO methods

	Building bridges	

Outline

1. In a nutshell

2. Main ideas: scalar elliptic PDEs

- ▶ [Di Pietro, AE, CMAME, 15] for linear elasticity
- [Di Pietro, AE, Lemaire, CMAM, 14] for diffusion

3. Building bridges

[Cockburn, Di Pietro, AE, 16]

4. Advection-diffusion and Stokes

- ▶ [Di Pietro, Droniou, AE, 15] for advection-diffusion
- [Di Pietro, AE, Linke, Schieweck, 16] for Stokes

5. Interface problems

[Burman, AE, SINUM 18]

In a nutshell	Building bridges	

In a nutshell

- HHO methods attach discrete unknowns to mesh faces
 - one polynomial of order $k \ge 0$ on each mesh face
- ► HHO methods also use cell unknowns
 - elimination by static condensation (local Schur complement)

In a nutshell	Building bridges	

In a nutshell

- HHO methods attach discrete unknowns to mesh faces
 - one polynomial of order $k \ge 0$ on each mesh face
- HHO methods also use cell unknowns
 - elimination by static condensation (local Schur complement)

In a nutshell	Building bridges	

Main assets

- General meshes are supported
 - polygonal/polyhedral cells, hanging nodes

Physical fidelity

- local conservation
- robustness (dominant advection, quasi-incompressible elasticity...)

Attractive computational costs

- energy-error decays as $O(h^{k+1})$ using face polynomials of order k
- more compact stencil than vertex-based methods (esp. in 3D)
- global system size $k^2 #$ (faces) vs. $k^3 #$ (cells) for dG

► Genericity

- construction independent of space dimension
- library using generic programming [Cicuttin, Di Pietro, AE 17]
- Industrial collaborations: EDF, CEA, BRGM

Motivations for polyhedral methods (Courtesy IFPEN, EDF R&D)

Related low-order methods

Mimetic Finite Differences (MFD)

[Brezzi, Lipnikov, Shashkov 05]

Hybrid Finite Volumes

[Droniou, Eymard, Gallouet, Herbin 06-10]

Non-conforming FEM

[Crouzeix, Raviart 73]

Unified settings

- Gradient Schemes [Droniou, Eymard, Gallouet, Herbin 10, 13]
- Compatible Discrete Operator (CDO) schemes [Bonelle, AE 14]

< 口 > < 同

Related high-order methods

Hybridizable DG (HDG)

- [Cockburn, Gopalakrishnan, Lazarov 09]
- Weak Galerkin [Wang & Ye 13], equivalent to HDG [Cockburn 16]

Non-conforming Virtual Elements (ncVEM)

- [Lipnikov, Manzini 14; Ayuso, Lipnikov, Manzini 16]
- HDG, HHO and ncVEM are very closely related
 - [Cockburn, Di Pietro, AE, 16]
- Multiscale Hybrid Mixed (MHM) method
 - [Araya, Harder, Paredes, Valentin, 13]

Main ideas	Building bridges	

Main ideas

Poisson model problem

• Let $f \in L^2(D)$ and let $D \subset \mathbb{R}^d$ be a Lipschitz polyhedron

Find
$$u \in V := H_0^1(D)$$
 s.t.

$$(\nabla u, \nabla w)_{L^2(D)} = (f, w)_{L^2(D)} \quad \forall w \in V$$

Other BC's can be considered as well

Devising HHO methods

- Devising from primal formulation using two ideas
- Local reconstruction operator to build a higher-order field in each cell from cell and face unknowns
- Local stabilization operator to connect cell and face unknowns

Main ideas	Building bridges	

Local viewpoint

- ► Consider a mesh $T = \{T\}$ of D and a polynomial degree $k \ge 0$
 - ▶ broken polynomial space $\mathbb{P}^{k}(\mathcal{F}_{\partial T})$ (one poly. on each face of T)
- \blacktriangleright For all ${\mathcal T}\in {\mathcal T},$ the discrete unknowns are

 $(\mathbf{v}_{\mathcal{T}},\mathbf{v}_{\partial\mathcal{T}})\in\mathbb{P}^k(\mathcal{T}) imes\mathbb{P}^k(\mathcal{F}_{\partial\mathcal{T}})$

Examples in hexagonal cell

ENPC & INRIA

Alexand	re Ern
HHO m	ethods

Reconstruction operator

- Let $(v_T, v_{\partial T}) \in \mathbb{P}^k(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$
- ▶ Then $\mathsf{R}^{k+1}_{\mathsf{T}}(\mathsf{v}_{\mathsf{T}}, \mathsf{v}_{\partial \mathsf{T}}) \in \mathbb{P}^{k+1}(\mathsf{T})$ solves, $\forall w \in \mathbb{P}^{k+1}(\mathsf{T})$.

 $(\nabla \mathsf{R}^{k+1}_{\tau}(\mathbf{v}_{\tau},\mathbf{v}_{\partial \tau}),\nabla w)_{L^{2}(\tau)} = -(\mathbf{v}_{\tau},\Delta w)_{L^{2}(\tau)} + (\mathbf{v}_{\partial \tau},\mathbf{n}_{\tau}\cdot\nabla w)_{L^{2}(\partial \tau)}$

- well-posed local Neumann pb. (with $(R_T^{k+1}(v_T, v_{\partial T}) v_T, 1)_{I^2(T)} = 0)$
- ▶ local stiffness matrix in $\mathbb{P}^{k+1}(T)$, fully parallelizable
- Note that $R_T^{k+1}(v_T, v_{T|\partial T}) = v_T$
 - no order pickup if trace and face values coincide

イロト イポト イヨト イヨト 二日

Main ideas	Building bridges	

Reduction and approximation operators

- ▶ Reconstruction operator $\mathsf{R}_{T}^{k+1} : \mathbb{P}^{k}(T) \times \mathbb{P}^{k}(\mathcal{F}_{\partial T}) \to \mathbb{P}^{k+1}(T)$
- ▶ Reduction operator $\mathcal{I}_{T}^{k}: H^{1}(T) \to \mathbb{P}^{k}(T) \times \mathbb{P}^{k}(\mathcal{F}_{\partial T})$ s.t.

$$\mathcal{I}_T^k(v) := (\Pi_T^k(v), \Pi_{\partial T}^k(v))$$

with L^2 -orthogonal projectors onto $\mathbb{P}^k(\mathcal{T})$ and $\mathbb{P}^k(\mathcal{F}_{\partial \mathcal{T}})$ resp.

▶ $\mathsf{R}^{k+1}_{T} \circ \mathcal{I}^{k}_{T} : H^{1}(T) \to \mathbb{P}^{k+1}(T)$ acts as an approximation operator

Main ideas	Building bridges	

Numerical illustration

• *h*-approximation of $cos(\pi x)$, N = 2, 4, 8, k = 0

• *p*-approximation of $cos(\pi x)$, N = 2, k = 0, 1, 2

イロト イ部ト イヨト イヨト

Elliptic projector

• Elliptic projector $\mathcal{E}_T^{k+1}: H^1(T) \to \mathbb{P}^{k+1}(T)$

►
$$(\nabla(\mathcal{E}_{T}^{k+1}(v) - v), \nabla w)_{L^{2}(T)} = 0, \forall w \in \mathbb{P}^{k+1}(T)$$

► $(\mathcal{E}_{T}^{k+1}(v) - v, 1)_{L^{2}(T)} = 0$

• We have
$$\mathsf{R}_T^{k+1} \circ \mathcal{I}_T^k = \mathcal{E}_T^{k+1}$$

イロト イ部ト イヨト イヨト

Main ideas	Building bridges	

A short proof

- Let $v \in H^1(T)$
- ▶ For all $w \in \mathbb{P}^{k+1}(T)$, we have

$$(\nabla R_T^{k+1}(\mathcal{I}_T^k(v)), \nabla w)_{L^2(T)}$$

= $(\nabla R_T^{k+1}(\Pi_T^k(v), \Pi_{\partial T}(v)), \nabla w)_{L^2(T)}$
= $-(\Pi_T^k(v), \Delta w)_{L^2(T)} + (\Pi_{\partial T}^k(v), \mathbf{n}_T \cdot \nabla w)_{L^2(\partial T)}$
= $-(v, \Delta w)_{L^2(T)} + (v, \mathbf{n}_T \cdot \nabla w)_{L^2(\partial T)}$
= $(\nabla v, \nabla w)_{L^2(T)}$

 $\implies R_T^{k+1}(\mathcal{I}_T^k(v)) = \mathcal{E}_T^{k+1}(v)$

イロト イ団ト イヨト イヨト

	Main ideas	Building bridges	
Stabiliza	ation		

► {
$$\nabla \mathsf{R}_{T}^{k+1}(\mathsf{v}_{T},\mathsf{v}_{\partial T}) = \mathbf{0}$$
} \Rightarrow { $\mathsf{v}_{T} = \mathsf{v}_{\partial T} = \mathsf{cst}$ }

▶ We "connect" cell and face unknowns by a LS penalty on

$$S_{\partial T}^{k}(\mathbf{v}_{T}, \mathbf{v}_{\partial T}) := \tilde{S}_{\partial T}^{k}(\mathbf{v}_{\partial T} - \mathbf{v}_{T})$$
$$:= \Pi_{\partial T}^{k} \left(\left(\mathbf{v}_{\partial T} - \mathbf{v}_{T} \right) - \left(I - \Pi_{T}^{k} \right) \mathsf{R}_{T}^{k+1}(0, \mathbf{v}_{\partial T} - \mathbf{v}_{T}) \right)$$

- Note that $S_{\partial T}^k(v_T, v_{T|\partial T}) = 0$
 - stabilization vanishes if trace and face values coincide
- ► The high-order correction is a **distinctive feature** of HHO methods
- ▶ Local mass matrices in $\mathbb{P}^{k}(T)$ and $\mathbb{P}^{k}(\mathcal{F}_{\partial T})$, fully parallelizable

Main ideas	Building bridges	

 \mathbb{P}^{k+1} -polynomial consistency

- Recall elliptic projector $\mathcal{E}_T^{k+1}: H^1(T) \to \mathbb{P}^{k+1}(T)$
- ▶ Recall reduction operator s.t. $\mathcal{I}_T^k(v) = (\Pi_T^k(v), \Pi_{\partial T}^k(v))$
- For all $v \in H^1(T)$, we have

 $\mathsf{S}^k_{\partial T}(\mathcal{I}^k_T(v)) = (\mathsf{\Pi}^k_T - \mathsf{\Pi}^k_{\partial T})(v - \mathcal{E}^{k+1}_T(v))$

Consequently, $\mathsf{S}^k_{\partial T}(\mathcal{I}^k_T(p)) = 0$, $\forall p \in \mathbb{P}^{k+1}(T)$

$$S_{\partial T}^{k}(\mathcal{I}_{T}^{k}(\mathbf{v})) = \Pi_{\partial T}^{k}(\Pi_{T}^{k}(\mathbf{v}) - \Pi_{\partial T}^{k}(\mathbf{v}) + (I - \Pi_{T}^{k})(\mathcal{E}_{T}^{k+1}(\mathbf{v})))$$

$$= \Pi_{\partial T}^{k}(\Pi_{T}^{k}(\mathbf{v} - \mathcal{E}_{T}^{k+1}(\mathbf{v})) - (\Pi_{\partial T}^{k}(\mathbf{v}) - \mathcal{E}_{T}^{k+1}(\mathbf{v})))$$

$$= \Pi_{T}^{k}(\mathbf{v} - \mathcal{E}_{T}^{k+1}(\mathbf{v})) - \Pi_{\partial T}^{k}(\mathbf{v} - \mathcal{E}_{T}^{k+1}(\mathbf{v}))$$

since $\Pi_{\partial T}^k \Pi_T^k = \Pi_T^k$ and $\Pi_{\partial T}^k \Pi_{\partial T}^k = \Pi_{\partial T}^k$

▶ Without the higher-order term, $\mathsf{S}^k_{\partial T}(\mathcal{I}^k_T(p)) = 0$ only for $p \in \mathbb{P}^k(T)$

<ロト <部ト <注ト < 注ト = 3

	Main ideas	Building bridges			
Local st	abilitv and	boundednes	S		
► Lo	ocal bilinear fo	rm (with $ au_{\partial T F} \sim$	h_F^{-1} for all $F \subset \partial T$)		
			1 / 11		
	$\hat{a}_T((v_T, v_{\partial T}), (v_T, v_{\partial T})))$	$(w_T, w_{\partial T})) := (\nabla R_T^{\kappa_+})$	$\nabla^{1}(v_{T}, v_{\partial T}), \nabla R_{T}^{\kappa+1}(w_{T}, w_{\partial T}))$	$L^2(T)$	
			Galerkin/reconstruction		

+
$$\underbrace{(\tau_{\partial T} \mathsf{S}^{k}_{\partial T}(\mathsf{v}_{T}, \mathsf{v}_{\partial T}), \mathsf{S}^{k}_{\partial T}(\mathsf{w}_{T}, \mathsf{w}_{\partial T}))_{L^{2}(\partial T)}}_{L^{2}(\partial T)}$$

stabilization

Image: A math a math

Local stability and boundedness:

 $\hat{a}_T((v_T, v_{\partial T}), (v_T, v_{\partial T})) \sim |(v_T, v_{\partial T})|^2_{\mathcal{H}^1(T)}$

with the local H^1 -like seminorm

$$\|(\mathbf{v}_{\mathcal{T}},\mathbf{v}_{\partial\mathcal{T}})\|_{\mathcal{H}^{1}(\mathcal{T})}^{2} = \|\nabla\mathbf{v}_{\mathcal{T}}\|_{\boldsymbol{L}^{2}(\mathcal{T})}^{2} + \|\tau_{\partial\mathcal{T}}^{\frac{1}{2}}(\mathbf{v}_{\mathcal{T}}-\mathbf{v}_{\partial\mathcal{T}})\|_{\boldsymbol{L}^{2}(\partial\mathcal{T})}^{2}$$

Note that $|(v_T, v_{\partial T})|_{\mathcal{H}^1(T)} = 0$ implies $v_T = v_{\partial T} = \text{cst}$

Variations on the cell unknowns

- Let $k \ge 0$ be the degree of the face unknowns
- Let $l \ge 0$ be the degree of the cell unknowns
- The equal-order case is l = k
- It is possible to choose *l* = *k* − 1 (*k* ≥ 1) while achieving the same stability and approximation properties
- It is possible to choose l = k + 1
 - no further gain in stability/approximation
 - simplified stabilization Š^k_{∂T}(v_{∂T} − v_T) = Π^k_{∂T}(v_{∂T} − v_T), but more cell unknowns to eliminate

(日)

ENPC & INRIA

cf. [Lehrenfeld, Schöberl 10] stabilization for HDG

Assembling the discrete problem (1)

• Mesh $\mathcal{M} = \{\mathcal{T}, \mathcal{F}\}$, cells collected in $\mathcal{T} = \{T\}$, faces in $\mathcal{F} = \{F\}$

イロト イヨト イヨト

The (global) discrete unknowns are in

 $(v_{\mathcal{T}},v_{\mathcal{F}})\in\mathcal{V}^k_{\mathcal{M}}:=\mathbb{P}^k(\mathcal{T}) imes\mathbb{P}^k(\mathcal{F})$

- one polynomial of order k per cell (or $l \in \{k 1, k, k + 1\}$)
- one polynomial of order k per face

 Let (v_T, v_F) ∈ V^k_M; the discrete unknowns attached to a cell T ∈ T and its faces F ⊂ ∂T are denoted (v_T, v_{∂T}) Assembling the discrete problem (2)

- ▶ To enforce homogeneous Dirichlet BCs, we restrict to $\mathcal{V}_{\mathcal{M},0}^k$
 - global unknowns attached to boundary faces are set to zero
- ▶ The discrete problem is: Find $(u_T, u_F) \in \mathcal{V}_{\mathcal{M},0}^k$ s.t.

$$\sum_{T \in \mathcal{T}} \hat{a}_T((u_T, u_{\partial T}), (w_T, w_{\partial T})) = \sum_{T \in \mathcal{T}} (f, w_T)_{L^2(T)}, \quad \forall (w_T, w_F) \in \mathcal{V}_{\mathcal{M}, 0}^k$$

Image: A matrix

Main ideas	Building bridges	

Local conservation

• For all $T \in T$, we define the **numerical flux trace**

 $\phi_{\partial T} := -\nabla R_T^{k+1}(u_T, u_{\partial T}) \cdot \boldsymbol{n}_T + \alpha_{\partial T}^{\text{HHO}}(u_T - u_{\partial T}) \in \mathbb{P}^k(\mathcal{F}_{\partial T})$

with $\alpha_{\partial T}^{_{\rm HHO}} := \tilde{\mathsf{S}}_{\partial T}^{k*}(\tau_{\partial T} \tilde{\mathsf{S}}_{\partial T}^{k})$ (self-adjoint non-negative boundary operator)

► We have the local cell balance

 $(\nabla R_T^{k+1}(u_T, u_{\partial T}), \nabla p)_{L^2(T)} + (\phi_{\partial T}, p)_{L^2(\partial T)} = (f, p)_{L^2(T)}$

- ▶ test discrete pb. with $((p\delta_{T,T'})_{T'\in \mathcal{T}}, (0)_{F'\in \mathcal{F}})$, $\forall p \in \mathbb{P}^k(\mathcal{T})$
- We have the flux equilibration condition

 $\phi_{\partial T_1|F} + \phi_{\partial T_2|F} = 0, \quad F = \partial T_1 \cap \partial T_2$

▶ test discrete pb. with $((0)_{T' \in T}, (q\delta_{F,F'})_{F' \in F})$, $\forall q \in \mathbb{P}^k(F)$

(日)

Algebraic realization

 Ordering cell unknowns first and then face unknowns, we obtain the linear system

$$\begin{bmatrix} \textbf{A}_{\mathcal{T}\mathcal{T}} & \textbf{A}_{\mathcal{T}\mathcal{F}} \\ \textbf{A}_{\mathcal{F}\mathcal{T}} & \textbf{A}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \textbf{U}_{\mathcal{T}} \\ \textbf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \textbf{F}_{\mathcal{T}} \\ \textbf{0} \end{bmatrix}$$

- The system matrix is SPD
- Local elimination of cell unknowns
 - A_{TT} is block-diagonal \rightarrow one can solve the Schur complement system in terms of face unknowns
 - size $\sim k^2 \#$ (faces)
 - compact stencil (two faces interact only if they belong to same cell)
 - can be interpreted as a global transmission problem [Cockburn 16]

lexandre Ern	
HO methods	

	Main ideas	Building bridges	

Error analysis

▶ Stability and \mathbb{P}^{k+1} -consistency give $O(h^{k+1})$ energy-error estimate

$$\left(\sum_{T\in\mathcal{T}}\|\nabla(u-\mathsf{R}_{T}^{k+1}(u_{T},u_{\partial T}))\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}} \leq c\left(\sum_{T\in\mathcal{T}}h_{T}^{2(k+1)}|u|_{H^{k+2}(T)}^{2}\right)^{\frac{1}{2}}$$

• Under (full) elliptic regularity, $O(h^{k+2}) L^2$ -error estimate

$$\left(\sum_{T\in\mathcal{T}}\|\Pi_{T}^{k}(u)-u_{T}\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}} \leq c h\left(\sum_{T\in\mathcal{T}}h_{T}^{2(k+1)}|u|_{H^{k+2}(T)}^{2}\right)^{\frac{1}{2}}$$

→ ∃ →

Polytopal mesh regularity

- (Usual) assumption that each mesh cell is an agglomeration of finitely many, shape-regular simplices; we assume planar faces
- Polynomial approximation in polyhedral cells in Sobolev norms
 - Poincaré–Steklov inequality:

$\|\boldsymbol{v} - \boldsymbol{\Pi}_{T}^{0}(\boldsymbol{v})\|_{L^{2}(T)} \leq C_{\mathrm{PS}} h_{T} \|\nabla \boldsymbol{v}\|_{L^{2}(T)}, \quad \forall \boldsymbol{v} \in H^{1}(T)$

- $C_{\rm PS} = \frac{1}{\pi}$ for convex T [Poincaré 1894; Steklov 1897; Bebendorf 03]
- on polyhedral cells, combine PS on simplices with multiplicative trace inequality [Veeser, Verfürth 12; AE, Guermond 16]

$\|v\|_{L^{2}(\partial T)} \leq C_{\mathrm{MT}} \Big(h_{T}^{-\frac{1}{2}} \|v\|_{L^{2}(T)} + \|v\|_{L^{2}(T)}^{\frac{1}{2}} \|\nabla v\|_{L^{2}(T)}^{\frac{1}{2}} \Big), \quad \forall v \in H^{1}(T)$

- higher-order polynomial approximation using Morrey's polynomial
- this argument avoids a star-shapedness assumption on cells
- both PS and MT inequalities allow for some face degeneration (see also [Cangiani, Georgoulis, Houston 14; Dong, PhD Thesis 2016])

<ロ> (四) (四) (三) (三) (三) (三)

Main ideas	Building bridges	

Implementation

- Disk++ library, open-source distribution under MPL license
 - library description in [Cicuttin, Di Pietro, AE 17]
- Generic programming: "write once, run on any kind of mesh and in any space dimension"
 - other examples: deal.II [Bangerth et al.], DUNE [Bastian et al.], FreeFEM++ [Hecht], Feel++ [Prud'homme et al.]
- Profiling example on tet meshes $(k \in \{0, 1, 2\})$

Alexandre Ern HHO methods

	Building bridges	

Building bridges

- We can bridge the viewpoints of HHO, HDG & ncVEM
 - see [Cockburn, Di Pietro, AE 16]
- Usual presentation of HDG
 - ▶ approximate the triple (σ, u, λ) , with $\sigma = -\nabla u$, $\lambda = u_{|\mathcal{F}|}$
 - ► $(\sigma_{\mathcal{T}}, u_{\mathcal{T}}, \lambda_{\mathcal{F}}) \in S_{\mathcal{T}} \times V_{\mathcal{T}} \times V_{\mathcal{F}}$ with local spaces $S_{\mathcal{T}}, V_{\mathcal{T}}, V_{\mathcal{F}}$
 - ► discrete HDG problem: $\forall (\tau_T, w_T, \mu_F) \in \mathbf{S}_T \times V_T \times V_F$,

$$\begin{aligned} (\boldsymbol{\sigma}_{T},\boldsymbol{\tau}_{T})_{\boldsymbol{L}^{2}(T)} &- (\boldsymbol{u}_{T},\nabla\cdot\boldsymbol{\tau}_{T})_{\boldsymbol{L}^{2}(T)} + (\lambda_{\partial T},\boldsymbol{\tau}_{T}\cdot\boldsymbol{n}_{T})_{\boldsymbol{L}^{2}(\partial T)} = \boldsymbol{0} \\ &- (\boldsymbol{\sigma}_{T},\nabla\boldsymbol{w}_{T})_{\boldsymbol{L}^{2}(T)} + (\phi_{\partial T},\boldsymbol{w}_{T})_{\boldsymbol{L}^{2}(\partial T)} = (\boldsymbol{f},\boldsymbol{w}_{T})_{\boldsymbol{L}^{2}(T)} \\ &(\phi_{\partial T_{1}} + \phi_{\partial T_{2}},\mu_{F})_{\boldsymbol{L}^{2}(F)} = \boldsymbol{0}, \quad \boldsymbol{F} = \partial T_{1} \cap \partial T_{2} \end{aligned}$$

with the numerical flux trace

$$\phi_{\partial T} = \boldsymbol{\sigma}_T \cdot \boldsymbol{n}_T + \alpha_{\partial T}^{\text{HDG}} (\boldsymbol{u}_T - \lambda_{\partial T})$$

HHO meets HDG

- ► HDG method specified through S_T , V_T , V_F and $\alpha_{\partial T}^{\text{HDG}}$
 - ► $\boldsymbol{S}_T = \mathbb{P}^k(T; \mathbb{R}^d), V_T = \mathbb{P}^k(T), V_F = \mathbb{P}^k(F), \alpha_{\partial T}^{\text{HDG}}$ acts pointwise
- HHO as HDG method
 - ► $\mathbf{S}_T = \nabla \mathbb{P}^{k+1}(T), V_T, V_F$ as above, $\alpha_{\partial T}^{\text{HHO}} = \tilde{\mathbf{S}}_{\partial T}^{k*}(\tau_{\partial T} \tilde{\mathbf{S}}_{\partial T}^k)$
 - 1st HDG eq: $\sigma_T = -\nabla \mathsf{R}^{k+1}_T(u_T, \lambda_{\partial T})$
 - 2nd HDG eq: HHO tested with $(w_T, 0)$
 - 3rd HDG eq: HHO tested with $(0, \mu_F)$
- Comments
 - HHO uses smaller flux space (avoids curl-free functions)
 - HHO uses nonlocal stabilization for polyhedral high-order CV
 - alternative route for HDG: space triplets using *M*-decompositions [Cockburn, Fu, Sayas 16]

イロト イヨト イヨト

HHO meets ncVEM

- ▶ For (conforming) VEM, see [Beirão da Veiga, Brezzi, Marini, Russo, 13]
- Consider the (finite-dimensional) virtual space

 $V^{k+1}(T) = \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^k(T), \ \boldsymbol{n}_T \cdot \nabla v \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$

- ▶ $\mathbb{P}^{k+1}(T) \subsetneq V^{k+1}(T)$; other functions are not explicitly known
- ► recall reduction operator $\mathcal{I}_T^k(v) = (\Pi_T^k(v), \Pi_{\partial T}^k(v))$; then

 $\mathcal{I}^k_T: \textit{V}^{k+1}(\textit{T}) \longleftrightarrow \mathbb{P}^k(\textit{T}) \times \mathbb{P}^k(\mathcal{F}_{\partial T}) \text{ is an isomorphism }$

► Let $\varphi \in V^{k+1}(T)$ ► $\mathcal{E}_T^{k+1}(\varphi) = R_T^{k+1}(\mathcal{I}_T^k(\varphi))$ is computable from the dof's $\mathcal{I}_T^k(\varphi)$ of φ ► same for $\check{S}_{\partial T}^k(\varphi) = S_{\partial T}^k(\mathcal{I}_T^k(\varphi))$

• We have $\check{a}_T(\varphi, \psi) = \hat{a}_T(\mathcal{I}_T^k(\varphi), \mathcal{I}_T^k(\psi))$ with

 $\check{a}_{\mathcal{T}}(\varphi,\psi) = (\nabla \mathcal{E}_{\mathcal{T}}^{k+1}(\varphi), \nabla \mathcal{E}_{\mathcal{T}}^{k+1}(\psi))_{\mathcal{L}^{2}(\mathcal{T})} + (\tau_{\partial \mathcal{T}}\check{S}_{\partial \mathcal{T}}^{k}(\varphi), \check{S}_{\partial \mathcal{T}}^{k}(\psi))_{\mathcal{L}^{2}(\partial \mathcal{T})}$

イロト イ部ト イヨト イヨト 三日

	Building bridges	Advection-diffusion and Stokes	

Péclet-robust advection-diffusion

Locally degenerate problem

 $\nabla \cdot (-\nu \nabla u + \beta u) + \mu u = f \quad \text{in } D$

with $\nu \geq 0$, $\beta = O(1)$ Lipschitz, $\mu > 0$

- Dirichlet BC on $\{ \boldsymbol{x} \in \partial D \mid \nu > 0 \text{ or } \boldsymbol{\beta} \cdot \boldsymbol{n} < 0 \}$
- ► Exact solution jumps across diffusive/non-diffusive interface $I_{\nu,\beta}^$ where β flows from non-diffusive into diffusive region

see [Gastaldi, Quarteroni 89; Di Pietro, AE, Guermond 08]

ENPC & INRIA

Alexandre Ern HHO methods

HHO discretization

- Main features of HHO method [Di Pietro, Droniou, AE 15]
 - arbitrary polynomial degree $k \ge 0$
 - local advective derivative reconstruction in $\mathbb{P}^{k}(\mathcal{T})$
 - local upwind stabilization between face and cell unknowns
 - weak enforcement of BC's à la Nitsche
 - ▶ no need to duplicate face unknowns on I⁻_{ν,β}

Inf-sup stability norm

 $\begin{aligned} \|(\mathbf{v}_{T}, \mathbf{v}_{\partial T})\|_{\nu\beta, T} &= |(\mathbf{v}_{T}, \mathbf{v}_{\partial T})|_{\nu, T} \\ &+ |(\mathbf{v}_{T}, \mathbf{v}_{\partial T})|_{\beta, T} + h_{T}\beta_{T}^{-1} \|G_{\beta, T}^{k}(\mathbf{v}_{T}, \mathbf{v}_{\partial T})\|_{L^{2}(T)} \end{aligned}$

•
$$|\cdot|_{\nu,T}$$
: ν -scaled diffusive norm

$$|\cdot|_{\beta,T} = \|v_T\|_{L^2(T)} + \||\beta \cdot n|^{\frac{1}{2}} (v_T - v_{\partial T})\|_{L^2(\partial T)}$$

	Building bridges	Advection-diffusion and Stokes	

Error estimate and convergence

▶ Error estimate captures full range of Péclet numbers $Pe_{T} \in [0,\infty]$

$$\left(\sum_{T \in \mathcal{T}} \| \mathcal{I}_{T}^{k}(u) - (u_{T}, u_{\partial T}) \|_{\nu\beta, T}^{2} \right)^{\frac{1}{2}} \leq \\ c \left(\sum_{T \in \mathcal{T}} \nu_{T} h_{T}^{2(k+1)} |u|_{H^{k+2}(T)}^{2} + \beta_{T} \min(1, \operatorname{Pe}_{T}) h_{T}^{2(k+\frac{1}{2})} |u|_{H^{k+1}(T)}^{2} \right)^{\frac{1}{2}}$$

• Numerical decay rates for energy (left) and L^2 (right) errors

Alexandre Ern

HHO methods

Incompressible Stokes flows

- Model problem $-\nu \Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}, \ \nabla \cdot \boldsymbol{u} = 0$ in D
- Main features of HHO method [DP, AE, Linke, Schieweck 16]
 - arbitrary polynomial order $k \ge 0$
 - ▶ local velocity in $\mathbb{P}^{k}(T; \mathbb{R}^{d}) \times \mathbb{P}^{k}(\mathcal{F}_{\partial T}; \mathbb{R}^{d})$ and pressure in $\mathbb{P}^{k}(T)$
 - ► after static condensation, global saddle-point system of size k²#(faces) + 1#(cells) (3D)
 - energy-velocity and L^2 -pressure $O(h^{k+1})$ error estimates
 - L^2 -velocity $O(h^{k+2})$ error estimates under full elliptic regularity
 - local momentum and mass balance in each mesh cell
- Some recent literature on hybrid methods for Stokes flows
 - hybrid FE [Jeon, Park, Sheen 14]
 - HDG [Egger, Waluga 13; Cockburn, Sayas 14; Cockburn, Shi 14; Lehrenfeld, Schöberl 15], WG [Mu, Wang, Ye 15]

< 日 > < 同 > < 回 > < 回 > < 回 > <

ENPC & INRIA

	Building bridges	Advection-diffusion and Stokes	

Large irrotational body forces

- Examples: Coriolis, centrifugal, electrokinetics [Linke 14]
- Pointwise divergence-free velocity reconstruction to test momentum balance; here, Raviart–Thomas reconstruction on tet meshes
- Velocity error for 3D Green–Taylor vortex flow vs. viscosity

	Building bridges	Interface problems

Elliptic interface problem

• Let Ω be a Lipschitz polyhedron in \mathbb{R}^d s.t.

 $\overline{\Omega} = \overline{\Omega^1} \cup \overline{\Omega^2}, \qquad \Gamma = \partial \Omega^1 \cap \partial \Omega^2$

• We consider the following elliptic interface problem:

 $\begin{aligned} -\nabla \cdot (\kappa \nabla u) &= f \quad \text{ on } \Omega^1 \cup \Omega^2 \\ \llbracket u \rrbracket_{\Gamma} &= g_{\mathrm{D}} \quad \text{ on } \Gamma \\ \llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \boldsymbol{n}_{\Gamma} &= g_{\mathrm{N}} \quad \text{ on } \Gamma \end{aligned}$

- $f \in L^2(\Omega)$, $g_D \in H^{\frac{1}{2}}(\Gamma)$, $g_N \in L^2(\Gamma)$, Dirichlet BCs on $\partial \Omega$
- ▶ each subdomain has a specific diffusivity $\kappa^i = \kappa_{|\Omega^i}$, $i \in \{1, 2\}$

interface pb.

	Building bridges	Interface problems

Unfitted meshes

• The domain Ω is meshed without fitting the interface Γ

- uncut cells in Ω¹
- uncut cells in Ω^2
- cut cells overlapping Ω^1 and Ω^2

► For cut cells, we set $T^i = T \cap \Omega^i$, $i \in \{1, 2\}$

• a degenerate cut arises when $\min(|T^1|, |T^2|) \ll \max(|T^1|, |T^2|)$

▶ The highly-contrasted case arises when $\min(\kappa^1, \kappa^2) \ll \max(\kappa^1, \kappa^2)$

イロト イヨト イヨト イヨト

Robust unfitted methods

- Cut-robust unfitted conforming FEM [Hansbo, Hansbo 02]
 - use function pairs to approximate solution in cut cells
 - consistent Nitsche's penalty method [Nitsche 71]
 - cut-dependent averaging for consistency terms
 - ► cut-robustness, but not *κ*-robustness ...
 - DG version with hp-analysis [Massjung 12]
- Ghost penalty [Burman 10]
 - diffusion-dependent averaging [Dryja 03; Burman, Zunino 06; Ern et al. 09] leads to κ-robustness
 - cut-robustness achieved by additional patch-based stabilization
- Alternative route to cut-robustness by cell-agglomeration
 - \blacktriangleright eliminate degenerate cells by local agglomeration \rightarrow polytopal cells
 - well suited to DG setting [Johansson, Larson 13]; for conforming FEM on quadrilaterals with hanging nodes, see [Huang, Wu, Xuo 17]

< □ > < □ > < □ > < □ > < □ > < □ >

This contribution

Our main objectives are

- extend the cell-agglomeration idea of [Johansson, Larson 13] from the fictitious domain to the elliptic interface problem
- achieve both cut- and κ-robustness
- use the recent framework of Hybrid High-Order methods
- ▶ We neglect quadrature errors due to geometry approximation
 - [Burman, Hansbo, Larson 17]: Taylor expansions
 - ▶ [Lehrenfeld, Reusken 17]: isoparametric level-set function

	Building bridges	Interface problems

Unfitted HHO

 \blacktriangleright We consider a mesh ${\mathcal T}$ of Ω that does not fit the interface Γ

 $\begin{array}{ll} \mbox{cut cells} & \mathcal{T}^{\Gamma} = \{\mathcal{T} \in \mathcal{T} \mid \mbox{mes}_{d-1}(\mathcal{T} \cap \Gamma) > 0\} \\ \mbox{uncut cells} & \mathcal{T}^{\setminus \Gamma} = \mathcal{T}^1 \cup \mathcal{T}^2 \end{array}$

with $\mathcal{T}^i = \{ \mathcal{T} \in \mathcal{T} \mid \mathcal{T} \subset \Omega^i \}$, $i \in \{1, 2\}$

▶ For a cut cell $T \in T^{\Gamma}$, we define

 $T^{i} = T \cap \Omega^{i}, \qquad T^{\Gamma} = T \cap \Gamma, \qquad \partial T^{i} = (\partial T)^{i} \cup T^{\Gamma}$

Discrete HHO unknowns

Alexandre Ern

HHO methods

- For unfitted FEM, the solution is approximated in a cut cell by a pair of polynomials, one attached to each Ωⁱ [Hansbo, Hansbo 02]
- For the unfitted HHO method, the solution is approximated in a cut cell by a **pair of HHO unknowns**, one attached to each Ω^i

$$\hat{V}_{\mathcal{T}} = (V_{\mathcal{T}}, V_{\partial \mathcal{T}}) = ((v_{\mathcal{T}^1}, v_{\mathcal{T}^2}), (v_{(\partial \mathcal{T})^1}, v_{(\partial \mathcal{T})^2})) \in \hat{\mathcal{X}}_{\mathcal{T}}$$

with
$$\hat{\mathcal{X}}_{\mathcal{T}} = \left(\mathbb{P}^{k+1}(\mathcal{T}^1) \times \mathbb{P}^{k+1}(\mathcal{T}^2)\right) \times \left(\mathbb{P}^k(\mathcal{F}_{(\partial \mathcal{T})^1}) \times \mathbb{P}^k(\mathcal{F}_{(\partial \mathcal{T})^2})\right)$$

• We do not introduce HHO unknowns on T^{Γ}

Nitsche's mortaring

- To fix the ideas, let us assume that $\kappa^1 < \kappa^2$
- ▶ The Nitsche mortaring bilinear form is defined s.t.

$$n_{T}(V,W) = \sum_{i \in \{1,2\}} \int_{T^{i}} \kappa^{i} \nabla v^{i} \cdot \nabla w^{i} + \int_{T^{\Gamma}} \eta \frac{\kappa^{1}}{h_{T}} \llbracket V \rrbracket_{\Gamma} \llbracket W \rrbracket_{\Gamma}$$
$$- \int_{T^{\Gamma}} (\kappa \nabla v)^{1} \cdot \boldsymbol{n}_{\Gamma} \llbracket W \rrbracket_{\Gamma} + (\kappa \nabla w)^{1} \cdot \boldsymbol{n}_{\Gamma} \llbracket V \rrbracket_{\Gamma}$$

for all $V = (v^1, v^2), W = (w^1, w^2)$ in $H^1(T^1) imes H^1(T^2)$

- \blacktriangleright The penalty parameter η is to be taken large enough
 - cut-robust minimum value
 - depends on discrete trace inequality

Image: A mathematical states and the states and

	Building bridges	Interface problems

Reconstruction and stabilization

$$R_T^{k+1}:$$
 \rightarrow \checkmark

▶ Let $\hat{V}_T = (V_T, V_{\partial T}) \in \hat{\mathcal{X}}_T$, then $R_T^{k+1}(\hat{V}_T) \in \mathbb{P}^{k+1}(T^1) \times \mathbb{P}^{k+1}(T^2)$

• We solve for all $Z \in \mathbb{P}^{k+1}(T^1) imes \mathbb{P}^{k+1}(T^2)$,

$$n_T(\mathcal{R}_T^{k+1}(\hat{V}_T), Z) = n_T(V_T, Z) - \sum_{i \in \{1,2\}} \int_{(\partial T)^i} (v_{T^i} - v_{(\partial T)^i}) \boldsymbol{n}_T \cdot \kappa^i \nabla z^i$$

- well-posed local Neumann pb. owing to coercivity of n_T
- Iocal Nitsche's mortaring matrix, fully parallelizable
- the reconstructions in T^1 and T^2 are **built simultaneously**
- The stabilization bilinear form is s.t.

$$s_{\mathcal{T}}(\hat{V}_{\mathcal{T}},\hat{W}_{\mathcal{T}}) = \sum_{i \in \{1,2\}} \kappa^i h_{\mathcal{T}}^{-1} \int_{(\partial \mathcal{T})^i} \Pi^k_{(\partial \mathcal{T})^i} (\mathsf{v}_{\mathcal{T}^i} - \mathsf{v}_{(\partial \mathcal{T})^i}) (\mathsf{w}_{\mathcal{T}^i} - \mathsf{w}_{(\partial \mathcal{T})^i})$$

Assembling the discrete problem (1)

• On all cut cells
$$T \in \mathcal{T}^{\Gamma}$$
, we consider $\hat{V}_{T} = (V_{T}, V_{\partial T})$ with $V_{T} = (v_{T^{1}}, v_{T^{2}}), V_{\partial T} = (v_{(\partial T)^{1}}, v_{(\partial T)^{2}})$, and we set

Building bridges

$$\hat{a}_{T}^{\Gamma}(\hat{V}_{T},\hat{W}_{T}) = n_{T}(R_{T}^{k+1}(\hat{V}_{T}),R_{T}^{k+1}(\hat{W}_{T})) + s_{T}(\hat{V}_{T},\hat{W}_{T})$$
$$\hat{\ell}_{T}^{\Gamma}(\hat{W}_{T}) = \sum_{i \in \{1,2\}} \int_{T^{i}} fw_{T^{i}} + \int_{T^{\Gamma}} (g_{\mathsf{N}}w_{T^{2}} + g_{\mathsf{D}}\phi_{T}(W_{T}))$$

with $\phi_T(W_T) = -\kappa^1 \nabla w_{T^1} \cdot \boldsymbol{n}_{\Gamma} + \eta \kappa^1 h_T^{-1} \llbracket W_T \rrbracket_{\Gamma}$ for consistency reasons

On all the uncut cells T ∈ T^{\Γ}, we consider v̂_T = (v_T, v_{∂T}) (as before), and we set

$$\hat{a}_T^{\backslash \Gamma}(\hat{v}_T, \hat{w}_T) = a_T(r_T^{k+1}(\hat{v}_T), r_T^{k+1}(\hat{w}_T)) + s_T(\hat{v}_T, \hat{w}_T)$$
$$\hat{\ell}_T^{\backslash \Gamma}(\hat{w}_T) = \int_T f w_T$$

In a nutshell

・ロト ・同ト ・ヨト ・ヨト

Assembling the discrete problem (2)

• The global discrete unknowns in Ω^i are in

 $\hat{\mathcal{X}}_h^i = \mathbb{P}^{k+1}(\mathcal{T}^i) imes \mathbb{P}^k(\mathcal{F}^i), \quad i \in \{1,2\}$

• The global discrete unknowns in Ω are in $\hat{\mathcal{X}}_h = \mathcal{X}_h^1 \times \mathcal{X}_h^2$

- subspace $\hat{\mathcal{X}}_{h0}$ with Dirichlet BCs enforced on face unknowns in $\partial\Omega$
- ▶ Find $\hat{U}_h \in \hat{\mathcal{X}}_{h0}$ s.t. $\hat{a}_h(\hat{U}_h, \hat{W}_h) = \hat{\ell}_h(\hat{W}_h)$, $\forall \hat{W}_h \in \hat{\mathcal{X}}_{h0}$, with

$$egin{aligned} \hat{a}_h(\hat{V}_h,\hat{W}_h) &= \sum_{\mathcal{T}\in\mathcal{T}^{ackslash \Gamma}} \hat{a}_{\mathcal{T}}^{ackslash \Gamma}(\hat{v}_{\mathcal{T}},\hat{w}_{\mathcal{T}}) + \sum_{\mathcal{T}\in\mathcal{T}^{\Gamma}} \hat{a}_{\mathcal{T}}^{\Gamma}(\hat{V}_{\mathcal{T}},\hat{W}_{\mathcal{T}}) \ \hat{\ell}_h(\hat{W}_h) &= \sum_{\mathcal{T}\in\mathcal{T}^{ackslash \Gamma}} \hat{\ell}_{\mathcal{T}}^{ackslash \Gamma}(w_{\mathcal{T}}) + \sum_{\mathcal{T}\in\mathcal{T}^{\Gamma}} \hat{\ell}_{\mathcal{T}}^{\Gamma}(\hat{W}_{\mathcal{T}}) \end{aligned}$$

- global SPD system matrix
- solve Schur complement for face unknowns

(日)

	Building bridges	Interface problems

Main results

- Our goal is to derive stability and error estimates for the unfitted HHO method
- Our estimates depend on three (main) parameters
 - $ho \in (0,1)$ quantifying polytopal mesh regularity
 - ▶ $\gamma \in (0,1)$ quantifying how well the mesh resolves the interface
 - ▶ $\delta \in (0,1)$ quantifying how well the interface cuts the mesh cells
 - they also depend on the polynomial degree k
- \blacktriangleright γ can be bounded away from zero by mesh refinement
 - we assume that the interface Γ is of class C^2
- $\blacktriangleright~\delta$ can be bounded away from zero by local cell agglomeration

Multiplicative trace inequality

▶ There is $\gamma \in (0,1)$ s.t., for all $T \in \mathcal{T}^{\mathsf{\Gamma}}$,

- ▶ there is a ball T^{\dagger} s.t. $T \subset T^{\dagger}$ and $\gamma h_{T^{\dagger}} \leq h_{T}$
- ▶ there is $\mathbf{x} \in T^{\dagger}$ s.t. the fan $\{t\mathbf{x} + (1 t)\mathbf{y}, t \in [0, 1], \mathbf{y} \in T^{\Gamma}\} \subset T^{\dagger}$ and for each $\mathbf{y} \in T^{\Gamma}$, its segment cuts T^{Γ} only once

• There is $c_{mtr} = c_{mtr}(\rho, \gamma)$ s.t. for all $T \in \mathcal{T}^{\Gamma}$ and $v \in H^1(\Omega)$,

 $\max_{i \in \{1,2\}} \|v\|_{L^2(\partial T^i)} \le c_{\mathsf{mtr}} \left(h_T^{-\frac{1}{2}} \|v\|_{L^2(T^{\dagger})} + \|v\|_{L^2(T^{\dagger})}^{\frac{1}{2}} \|\nabla v\|_{L^2(T^{\dagger})}^{\frac{1}{2}} \right)$

Discrete trace inequality

• Let $\delta \in (0,1)$; the cell $T \in \mathcal{T}^{\Gamma}$ is δ -regular if

 $\forall i \in \{1,2\}, \quad \exists \boldsymbol{x}_{T^{i}} \in T^{i} = T \cap \Omega^{i}, \quad B(\boldsymbol{x}_{T^{i}}, \delta h_{T}) \subset T^{i} \quad (1)$

▶ Let $\ell \in \mathbb{N}$; there is $c_{dtr} = c_{dtr}(\rho, \delta, \ell)$ s.t. for all δ -regular cut cell $T \in \mathcal{T}^{\Gamma}$, all $v \in \mathbb{P}^{\ell}_{d}(T^{i})$ and $i \in \{1, 2\}$,

$$\|v\|_{L^2(\partial T^i)} \le c_{dtr} h_T^{-\frac{1}{2}} \|v\|_{L^2(T^i)}$$

- δ -regularity achieved by local cell agglomeration
 - ▶ if (1) fails for T^1 , we look for a neighbor T' of T, $T \cap T' \neq \emptyset$ s.t. (1) holds for $(T \cup T')^1$
 - the agglomerated cell $T \cup T'$ is not necessarily connected!
 - after agglomeration, mult. trace inequality still holds!

	Building bridges	Advection-diffusion and Stokes	Interface problems
A 1 1 1 1			

Stability

- Assume that the Nitsche stability parameter is s.t. $\eta \ge 4c_{dtr}^2$
- Stability of Nitsche's mortaring: $\forall V_T \in \mathbb{P}^{k+1}_d(T^1) \times \mathbb{P}^{k+1}_d(T^2)$,

$$n_{T}(V_{T}, V_{T}) \geq \frac{1}{2} |V_{T}|^{2}_{n_{T}}, \qquad |V_{T}|^{2}_{n_{T}} = \sum_{i \in \{1,2\}} \kappa^{i} ||\nabla v_{T^{i}}||^{2}_{L^{2}(T^{i})} + \eta \frac{\kappa^{1}}{h_{T}} || [V_{T}]_{\Gamma} ||^{2}_{L^{2}(T^{i})}$$

► HHO stability on cut cells:
$$\forall \hat{V}_T \in \hat{\mathcal{X}}_T$$
,
 $\hat{a}_T^{\Gamma}(\hat{V}_T, \hat{V}_T) \gtrsim |\hat{V}_T|^2_{\hat{a}_T}$, $|\hat{V}_T|^2_{\hat{a}_T} = |V_T|^2_{n_T} + s_T(\hat{V}_T, \hat{V}_T)$

▶ HHO stability on uncut cells (as before): $\forall v_T \in \hat{\mathcal{X}}_T$,

 $\hat{\boldsymbol{a}}_{T}^{\backslash \Gamma}(\hat{\boldsymbol{v}}_{T}, \hat{\boldsymbol{v}}_{T}) \gtrsim |\hat{\boldsymbol{v}}_{T}|^{2}_{\hat{\boldsymbol{a}}_{T}}, \qquad |\hat{\boldsymbol{v}}_{T}|^{2}_{\hat{\boldsymbol{a}}_{T}} = \kappa_{T} \|\nabla \boldsymbol{v}_{T}\|^{2}_{\boldsymbol{L}^{2}(T)} + \boldsymbol{s}_{T}(\hat{\boldsymbol{v}}_{T}, \hat{\boldsymbol{v}}_{T})$

Global stability (coercivity) norm

$$|\hat{V}_h|^2_{\hat{a}_h} := \sum_{\mathcal{T}\in\mathcal{T}^{\setminus\Gamma}} |\hat{v}_\mathcal{T}|^2_{\hat{a}_\mathcal{T}} + \sum_{\mathcal{T}\in\mathcal{T}^{\Gamma}} |\hat{V}_\mathcal{T}|^2_{\hat{a}_\mathcal{T}}$$

Approximation in cut cells

- ▶ Let $E^i : H^1(\Omega^i) \to H^1(\Omega)$, $i \in \{1, 2\}$, be stable extension operators
- \blacktriangleright We approximate the exact pair $U^{ ext{ex}}=(u^1,u^2)$ in $\mathcal{T}\in\mathcal{T}^{\mathsf{\Gamma}}$ by

 $J_{T}^{k+1}(U^{\mathrm{ex}}) := (\Pi_{T^{\dagger}}^{k+1}(E^{1}(u^{1}))_{|T^{1}}, \Pi_{T^{\dagger}}^{k+1}(E^{2}(u^{2}))_{|T^{2}}) \in \mathbb{P}^{k+1}(T^{1}) \times \mathbb{P}^{k+1}(T^{2})$

▶ Local approximation. Assume $U^{ex} \in H^{k+2}(\Omega^1) \times H^{k+2}(\Omega^2)$; then

$$\|J_T^{k+1}(U^{ ext{ex}}) - U^{ ext{ex}}\|_{*\mathcal{T}} \lesssim \sum_{i \in \{1,2\}} (\kappa^i)^{rac{1}{2}} h_T^{k+1} |E^i(u^i)|_{H^{k+2}(T^{\dagger})}$$

where

$$\begin{split} \|V\|_{*T}^{2} &= \sum_{i \in \{1,2\}} \kappa^{i} \left(\|\nabla v^{i}\|_{T^{i}}^{2} + h_{T} \|\nabla v^{i}\|_{(\partial T)^{i}}^{2} + h_{T}^{-1} \|v^{i}\|_{(\partial T)^{i}}^{2} \right) \\ &+ \kappa^{1} \left(h_{T} \|\nabla v^{1}\|_{T^{\Gamma}}^{2} + h_{T}^{-1} \|\llbracket V \rrbracket_{\Gamma}^{2} \right) + \kappa^{2} h_{T} \|\nabla v^{2}\|_{T^{\Gamma}}^{2} \end{split}$$

• use multiplicative trace inequality and standard approximation properties for L^2 -projectors in T^{\dagger}

Consistency/boundedness

• Define on cut cells $T \in T^{\Gamma}$,

 $\hat{J}_{\mathcal{T}}^{k+1}(U^{\mathrm{ex}}) = (J_{\mathcal{T}}^{k+1}(U^{\mathrm{ex}}), (\Pi_{(\partial \mathcal{T})^1}^k(u^1), \Pi_{(\partial \mathcal{T})^2}^k(u^2))) \in \hat{\mathcal{X}}_{\mathcal{T}}$

► Recall on uncut cells $T \in T^{\setminus \Gamma}$, with $u^{\text{ex}} = u^i$, $T \in \Omega^i$, the local approximation by $j_T^{k+1}(u^{\text{ex}}) = \prod_T^{k+1}(u^{\text{ex}})$ and define

 $\hat{\jmath}_T^{k+1}(u^{\mathrm{ex}}) = (j_T^{k+1}(u^{\mathrm{ex}}), \Pi_{\partial T}^k(u^{\mathrm{ex}})) \in \hat{\mathcal{X}}_T$

• Define the **consistency error** s.t., $\forall \hat{W}_h \in \hat{X}_{h0}$,

$$\mathcal{F}(\hat{W}_h) = \sum_{T \in \mathcal{T}^{\backslash \Gamma}} \hat{a}_T^{\backslash \Gamma}(\hat{j}_T^{k+1}(u^{\mathrm{ex}}) - \hat{u}_T, \hat{w}_T) + \sum_{T \in \mathcal{T}^{\Gamma}} \hat{a}_T^{\Gamma}(\hat{J}_T^{k+1}(U^{\mathrm{ex}}) - \hat{U}_T, \hat{W}_T)$$

• Assume $U^{\text{ex}} \in H^{s}(\Omega^{1}) \times H^{s}(\Omega^{2})$, $s > \frac{3}{2}$. Then,

$$\frac{|\mathcal{F}(\hat{W}_h)|}{|\hat{W}_h|_{\hat{a}_h}} \lesssim \left(\sum_{T \in \mathcal{T} \setminus \Gamma} \|j_T^{k+1}(u^{\mathrm{ex}}) - u^{\mathrm{ex}}\|_*^2 + \sum_{T \in \mathcal{T}^{\Gamma}} \|J_T^{k+1}(U^{\mathrm{ex}}) - U^{\mathrm{ex}}\|_*^2 \right)^{\frac{1}{2}}$$

	Building bridges	Interface problems

Error estimate

► Assume
$$U^{\text{ex}} = (u^1, u^2) \in H^s(\Omega^1) \times H^s(\Omega^2)$$
, $s > \frac{3}{2}$. Then,

$$\begin{split} \mathcal{E} &:= \sum_{T \in \mathcal{T}^{\backslash \Gamma}} \kappa_T \| \nabla (u^{\mathrm{ex}} - u_T) \|_T^2 + \sum_{T \in \mathcal{T}^{\Gamma}} \sum_{i \in \{1,2\}} \kappa^i \| \nabla (U^{\mathrm{ex}} - U_T)^i \|_{T^i}^2 \\ &+ \sum_{T \in \mathcal{T}^{\Gamma}} \frac{\kappa^1}{h_T} \| g_{\mathrm{D}} - \llbracket U^{\mathrm{ex}} \rrbracket_{\Gamma}^2 + \frac{h_T}{\kappa^2} \| g_{\mathrm{N}} - \llbracket \kappa \nabla U^{\mathrm{ex}} \rrbracket_{\Gamma} \cdot \boldsymbol{n}_{\Gamma} \|_{T^{\Gamma}}^2 \\ &\lesssim \sum_{T \in \mathcal{T}^{\backslash \Gamma}} \| j_T^{k+1}(u_T^{\mathrm{ex}}) - u_T^{\mathrm{ex}} \|_{*T}^2 + \sum_{T \in \mathcal{T}^{\Gamma}} \| J_T^{k+1}(U^{\mathrm{ex}}) - U_T^{\mathrm{ex}} \|_{*T}^2 \end{split}$$

• Moreover, if $U^{\mathrm{ex}} \in H^{k+2}(\Omega^1) imes H^{k+2}(\Omega^2)$, then

$$\mathcal{E}\lesssim \sum_{i\in\{1,2\}}\kappa^i h^{2(k+1)}|u^i|^2_{H^{k+2}(\Omega^i)}$$

イロト イヨト イヨト イヨト

- HHO methods offer physical fidelity, robustness and competitive costs for a wide range of problems
 - Disk++ library, Github open-source distribution (MPL license)
 - Some recent developments
 - discrete fracture networks [Chave, Di Pietro, Formaggia 17]
 - nonlinear mechanics: hyperelasticity, elastoplasticity, yield fluids [PhD's of M. Botti, N. Pignet, K. Cascavita]
 - obstacle and contact problems [ongoing with T. Gudi & F. Chouly]
 - spectral approximation [Calo, Cicuttin, Deng, AE 18]

Book announcement

- ▶ New Finite Element book(s) with J.-L. Guermond (Fall 2018)
 - \blacktriangleright 10 chapters of 50 pages \rightarrow 65 chapters of 14 pages with exercices

Thank you for your attention