Alexandre Ern

ENPC and INRIA, Paris, France
joint work with Jean-Luc Guermond (TAMU)

FORTH Workshop, 09/2023

1/83

e Setting
e Beyond strong stability preserving (SSP) RK schemes
e New perspective on explicit RK schemes

e New perspective on implicit-explicit IMEX) schemes

2/53

owine

e Setting

e Beyond strong stability preserving (SSP) RK schemes
e New perspective on explicit RK schemes

e New perspective on implicit-explicit IMEX) schemes

Warning: space discretization is hidden in the background, but is important!

2/53

e Setting

e Beyond strong stability preserving (SSP) RK schemes
e New perspective on explicit RK schemes

e New perspective on implicit-explicit IMEX) schemes

Warning: space discretization is hidden in the background, but is important!

Main references:
@ [AE & JLG, SISC 22] for ERK
@ [AE & JLG, SISC 23] for IMEX

2/53

13/63

@ Cauchy problem

ou+Vf(u)+V-g(u,Vu) =S(u) inDXxR,
u(-,0) =ug inD

D c R? (open Lipschitz polytope)

4/53

@ Cauchy problem

ou+Vf(u)+V-g(u,Vu) =S(u) inDXxR,
u(-,0) =ug inD

D c R? (open Lipschitz polytope)

@ Field u takes values in R",i.e.,u : DXR, — R"
e f e C'(R™;R™d): hyperbolic flux
@ g e C'(R™ x R™; R"™*d): parabolic/diffusive flux

@ S e C'(R™;R™): source/relaxation term

4/53

_Cauchy problem

@ Cauchy problem

ou+Vf(u)+V-g(u,Vu) =S(u) inDXxR,
u(-,0) =ug inD
D c R? (open Lipschitz polytope)

@ Field u takes values in R”,i.e.,u : DX R, — R"
e f e C'(R™;R™d): hyperbolic flux

@ g € C'(R™ x R"™4; R™): parabolic/diffusive flux
@ S e C'(R™;R™): source/relaxation term

@ u: admissible initial data

@ BCs not discussed herein

4/53

Exem

@ Find u : D x R, — R such that
O+ V-f(x,u) + V-(k(u)Vu) = S(u), u(-,0)=ug
@ Hyperbolic and parabolic fluxes

. faw) -
fx,u) = { B(x)u with V- = 0 g(u, Vu) := k(u)Vu

@ Source term, for instance

S(u) = pp(wu(l —u), ¢eCOR;[-1,1]), u>0

5/583

_ Exemple 2: compressible Navier-Stokes
@ Findu := (p,m",E)" : D xR, — R%? such that

op+V-(vp) =0
om+V-vdm+pu)l—s(v))=0
HE+V-(WE+pu))—vs(v)+qu))=0

with velocity v := m/p and pressure p(u)

B6/53

@ Findu := (p,m",E)" : D xR, — R%? such that

op+V-(vp) =0
om+V-vdm+pu)l—s(v))=0
GE+V-(WE+p(u)) —vs(v)+qu)) =0

with velocity v := m/p and pressure p(u)

@ Hyperbolic (Euler) and parabolic fluxes

vp 0
f(u) = (v ®m +p(u)1l), g(u,Vu) = (—s(v))
V(E +p(u)) —v-s(v) +q(u)

with viscous stress tensor and heat flux such that
s(v) = 2ue(v) + (1 = 3) (Vv)l, q(u) = —«kVT(u)

with (linearized) strain tensor e(v) := %(Vv +V»") and temperature
T (u) (from specific internal energy e(u) := E/p — %||v||§2)

@ u, A, k constant for simplicity

B6/53

@ Key assumption: There exists a convex subset A € R (depending on
the initial data ug) s.t. the entropy/admissible solution to the Cauchy
problem takes values in A for a.e. (x,1) € DX R,

{uo(x) € Aforae. x e D} = {u(x,1) € Aforae. (x,1) € DR}

7/583

Inv.

@ Key assumption: There exists a convex subset A € R (depending on
the initial data ug) s.t. the entropy/admissible solution to the Cauchy
problem takes values in A for a.e. (x,1) € DX R,

{uo(x) € Aforae. x e D} = {u(x,1) € Aforae. (x,1) € DeR,}

@ This is a generalization of the maximum principle

7/583

@ Key assumption: There exists a convex subset A € R™ (depending on
the initial data ug) s.t. the entropy/admissible solution to the Cauchy
problem takes values in A for a.e. (x,1) € DX R,

{uo(x) € Aforae. x e D} = {u(x,1) € Aforae. (x,1) € DeR,}
@ This is a generalization of the maximum principle
@ Scalar conservation equations without reaction
A = [essinf ug, ess sup up|
@ Scalar conservation equations with S(u) := u¢(w)u(1 — u)

A= 10,1]

7/83

Invariant domain

@ Key assumption: There exists a convex subset A € R™ (depending on
the initial data ug) s.t. the entropy/admissible solution to the Cauchy
problem takes values in A for a.e. (x,1) € DX R,

{u()(x) € Aforae. x € D} = {u(x, 1) e Aforae. (x,1) €D e R+}
@ This is a generalization of the maximum principle
@ Scalar conservation equations without reaction
A := [essinf ug, ess sup ug]
@ Scalar conservation equations with S(u) := u¢(u)u(1 — u)

A =1[0,1]

@ Navier-Stokes and Euler equations (s(u): specific entropy)
Axs = {(p,m",E)YTeR" |0 < p, 0<T(u))}
Ay = {(p,m",E)T e R™ | 0 < p, 0 < T(u), essinfs(uo) < s(u)}

7/583

_ Ivariant-domain presenving (1) e

@ Approximation methods that preserve invariant domains are called
Invariant domain preserving (IDP)

8/53

@ Approximation methods that preserve invariant domains are called
Invariant domain preserving (IDP)

@ Space semi-discrete problem: Find U € C'(R,; (R™)!) s.t.
Mo,U = F(U) + G(U), U(0) =Yg

I: #dofs for space approximation (C°-FEM, dG, FV, FD, ...)

M: mass matrix (invertible)

F: (RMT — (R™): space approximation of —V-f (u)

G : (R™M! = (R™)!: space approximation of —V-g(u, Vu) + S(u)

U; approximates u at some point x; € /) = natural requirement is U Al

8/53

Invariant-domain preserving (IDP) approximation methods

@ Approximation methods that preserve invariant domains are called
Invariant domain preserving (IDP)

@ Space semi-discrete problem: Find U € C'(R,; (R™)) s.t.
Mo,U = F(U) + G(U), U(0) = Uy

I: #dofs for space approximation (C°-FEM, dG, FV, FD, ...)

M: mass matrix (invertible)

F: (RMT — (R™): space approximation of —V-f (u)

G : (R™! — (R™)!: space approximation of —V-g(u, Vu) + S (u)
= natural requirement is

@ Time-stepping scheme produces a sequence U, U', ... U", ...
@ Time-stepping scheme is IDP if
{Upe A"} = {U" e A’ vn =0}
How to achieve this goal?

8/53

SSP

@ Let us focus first on hyperbolic problems

@ Key idea: [Shu & Osher 88] SSPRK are ERK methods where all updates
are convex combinations of previous updates computed with forward
Euler method (recall A convex)

9/53

@ Let us focus first on hyperbolic problems

@ Key idea: [Shu & Osher 88] SSPRK are ERK methods where all updates
are convex combinations of previous updates computed with forward
Euler method (recall ‘A convex)

o Key assumption: 37* > 0 s.t. V1 € (0,7"],
{veA'} = {V+r(M)'F(V) e A'}

In other words, A’ is invariant under the forward Euler method with
CFL condition 7 € (0, 7]

9/53

@ Let us focus first on hyperbolic problems

@ Key idea: [Shu & Osher 88] SSPRK are ERK methods where all updates
are convex combinations of previous updates computed with forward
Euler method (recall ‘A convex)

o Key assumption: 37* > 0 s.t. V1 € (0,7"],
{veA'} = {V+r(M)'F(V) e A'}

In other words, A’ is invariant under the forward Euler method with
CFL condition 7 € (0, 7]

@ Theory of SSP methods applied to ODEs is well understood
[Kraaijevanger 91;S Ruuth & Spiteri 02; Ferracina & Spijker 05; Higueras 05]

9/53

@ Notation: SSPRK (s, p) for s-stage, pth-order method
@ SSPRK(2,2) (two-stage, second-order) [Heun’s second-order method]

w) =y + TL(7", u")

wh = Lt L w4 oL@, w))
@ SSPRK(3,3) (three-stage, third-order) [Fehlberg’s method]

w) =+ TL(", W)
w? = %u" + }T(W(l) + 7L, w))

W™=t 2 (w4 TL(™3, w))

@ SSPRK(4,3) and SSPRK(5,4) also available

10/53

11/53

@ Restriction in accuracy: SSPRK are restricted to fourth-order (if one
insists on never stepping backward in time) [Ruuth & Spiteri 02]

19/53

@ Restriction in accuracy: SSPRK are restricted to fourth-order (if one
insists on never stepping backward in time) [Ruuth & Spiteri 02]

@ Difficult to accommodate implicit and explicit substeps

e implicit RK schemes of order > 2 cannot be SSP [Gottlieb, Shu, Tadmor 01]
o explicit methods suffer from parabolic CFL restriction 7 < ¢/’

19/53

@ Definition: efficiency ratio of any s-stage ERK method

e 7*: maximal time step that makes forward Euler method IDP
e 7: maximal time step that makes s-stage ERK method IDP

|'~\1

Ceff i= pr (usually, ceff < 1)

~

13/83

@ Definition: efficiency ratio of any s-stage ERK method

e 7*: maximal time step that makes forward Euler method IDP
e 7: maximal time step that makes s-stage ERK method IDP

|'~|1

Ceff i= pr (usually, ceff < 1)

~

@ Do we care? Under the same CFL constraint, # flux evaluations to reach
some T for s-stage ERK is ﬁ X that for forward Euler method

13/53

@ Definition: efficiency ratio of any s-stage ERK method

e 7*: maximal time step that makes forward Euler method IDP
e 7: maximal time step that makes s-stage ERK method IDP

(usually, ceff < 1)

@ Do we care? Under the same CFL constraint, # flux evaluations to reach
some T for s-stage ERK is ﬁ X that for forward Euler method

@ SSPRK methods are usually inefficient!
o ceff = 4 for SSPRK(2,2)
o ceff = 1 for SSPRK(3,3)
o ceff = 4 for SSPRK(4,3)

13/53

Limitations of SSP paradigm (2/2)

@ Definition: efficiency ratio of any s-stage ERK method

e 7*: maximal time step that makes forward Euler method IDP
e 7: maximal time step that makes s-stage ERK method IDP

"ﬂz

Ceff = 5 (usually, cef < 1)

3

@ Do we care? Under the same CFL constraint, # flux evaluations to reach
some T for s-stage ERK is ﬁ X that for forward Euler method

@ SSPRK methods are usually inefficient!
o cefr = 4 for SSPRK(2,2)
o ceff = 1 for SSPRK(3,3)
o cefr = 1 for SSPRK(4,3)

@ Notation: RK(s, p; ¢) for s-stage, pth-order method, efficiency ratio e
SSPRK(2,2;1) SSPRK(3,3;1) SSPRK(4,3;1)

13/53

@ Introduce a new methodology that makes any ERK scheme IDP

14/53

@ Introduce a new methodology that makes any ERK scheme IDP

@ Introduce a new methodology that makes any IMEX scheme IDP

14/53

@ Introduce a new methodology that makes any ERK scheme IDP
@ Introduce a new methodology that makes any IMEX scheme IDP

@ Benefits

o employ optimally efficient methods
e break order barriers
o introduce IDP-IMEX schemes of order p > 2

14/53

@ We will see that for an ERK-IDP scheme, maximal efficiency with
cef = 1 is reached for equi-distributed sub-stages

15/83

@ We will see that for an ERK-IDP scheme, maximal efficiency with
cef = 1 is reached for equi-distributed sub-stages

@ RK(2,2;1) (midpoint), RK(3,3;1) (Heun), RK(4,3;1) [fourth-order on linear pb.]

oo
oo 1130
1] 1 1 1
L i I
1o 1 1|0 3 2 0
N

@ RK(5,4;1), RK(6,4;1) [fifth-order on linear pb.] and RK(7,5;1) [AE & JLG 22]

15/53

16/563

@ The beauty of SSP is that the forward Euler substep is a black box

17/83

@ The beauty of SSP is that the forward Euler substep is a black box

@ This black box involves two fluxes (not just one as one might think)

o low-order in space: flux F& and mass matrix ML
o high-order in space: flux FH and mass matrix MH

17/83

@ The beauty of SSP is that the forward Euler substep is a black box

@ This black box involves two fluxes (not just one as one might think)

o low-order in space: flux F& and mass matrix ML
o high-order in space: flux FH and mass matrix MH

@ Some details

MMUR = MUY+ R (U7
MU= MY+ TFT(UY)

17/83

@ The beauty of SSP is that the forward Euler substep is a black box

@ This black box involves two fluxes (not just one as one might think)

o low-order in space: flux F& and mass matrix ML
o high-order in space: flux FH and mass matrix MH

@ Some details
MEyb = MU + oFR(U7)
MHYH = MU + 7 (U)

Starting from U" € A,

o ULl ¢ Al under CFL, but is low-order accurate ...
o UH.n+l departs from A’ but is high-order accurate ...

= employ a limiter to construct new update U™*! € A’ as close as
possible to UH-+1

17/83

@ Let us formalize a little bit

) Assumption 1. [forward Euler with low-order flux is IDP under CFL condition]
Ir* s.t. Vr € (0,7*] and all V € (R™),

{vea'} = {v+r (M) 'F(V) e A'}

18/53

@ Let us formalize a little bit

) Assumption 1. [forward Euler with low-order flux is IDP under CFL condition]
Ir* s.t. Vr € (0,7*] and all V € (R™),

{vea'} = {v+r (M) 'F(V) e A'}
@ Assumption 2. [nonlinear limiting operator]
£ A x (R™M! x (RM)! — (R™) s.t. for all (V, F&, FH),
{(v+r(MY)'FH (V) e A} = {0V, F Y e A')

Key idea: £(V, F&, FY) is built as a convex combination of
V+7(MY)'FE and V + 7 (M5) ' FH

18/53

@ Let us formalize a little bit

@ Assumption 1. [forward Euler with low-order flux is IDP under CFL condition]
Ir* s.t. V7 € (0,7*] and all V € (R™)/,

{veAa'} = {v+rM")'FH(V) e A'}
@ Assumption 2. [nonlinear limiting operator]
£ A x (R™M x (R™)! — (R™) s.t. for all (V, F&, FH),
{(v+r(MY)'FH (V) e A} = {0V, F Y e A')

Key idea: £(V, F&, FY) is built as a convex combination of
V+7(MY)'FE and V + 7 (M5) ' FH

@ Notice that both low/high-order updates start from the same vector V

18/53

Pee

@ Given U” in the invariant set A’

@ The forward Euler step proceeds as follows:

o compute low-order flux F&(U")
e compute high-order flux FH(U")
e compute update by limiting

Ut = eun, FH (U, FH(U)

19/53

@ Given U” in the invariant set A’

@ The forward Euler step proceeds as follows:

e compute low-order flux FL(u™)
o compute high-order flux FHun)
e compute update by limiting

Ut = eun, FH (U, FH(U)

@ (Well-known) Proposition. [Forward Euler is IDP]
Let Assumptions 1 and 2 be met. Assume U” € A’. Then, U™ ¢ A’
for all T € (0, 7]

19/53

@ We are now ready to go high-order in time!

20/53

@ We are now ready to go high-order in time!

@ Externalize the limiting process at each ERK stage

20/53

@ We are now ready to go high-order in time!
@ Externalize the limiting process at each ERK stage

@ Rewrite ERK scheme in incremental form: at each stage,

e compute low/high-order updates using a common previous IDP-update
o apply limiter

20/53

@ We are now ready to go high-order in time!
@ Externalize the limiting process at each ERK stage

@ Rewrite ERK scheme in incremental form: at each stage,

e compute low/high-order updates using a common previous IDP-update
o apply limiter

@ Literature:

o idea of externalizing the limiter proposed independently in [Kuzmin,
Quezada de Luna, Ketcheson, Griill, 22] for ERK and in [Quezada de Luna,
Ketcheson 22] for DIRK

o central idea of writing scheme in incremental form and maximizing
efficiency only in [AE, JLG 22]

e schemes with two time-derivatives [Gottlieb, Grant, Hu, Shu 22]

20/53

@ Generic form of Butcher tableau

c1 0
c | ax 0
3 | az1 azp O

Cs ds, | as,2 g g1 0
by by - b b

21/83

@ Generic form of Butcher tableau

c1 0
c | ax 0
3 | az1 azp O

Cs ds, | as,2 g g1 0
by by oo by by

@ Rename last line, set ¢; := 0 and ¢4 := 1

0 0

c ar | 0

c3 | as as 0

Cs g, 1 das,2 c As,s—1 0

T | agi,1 am12 -0 Gals1 Al

21/53

@ Generic form of Butcher tableau

c1 0
c | ax 0
3 | az1 azp O

Cs ds, | as,2 g g1 0
[b by -+ by b

@ Rename last line, set ¢; := 0 and ¢4 := 1

0 0

&3 ar | 0

c3 | az az 0

Cs g, 1 das,2 c As,s—1 0

I [awin as2 - Gulsl Gerls

@ Assume ¢y > Oforallk € {1:s+1}
@ Foralll e {2:s+ 1}, set

() :=max{k <1I|cr <c}

Think of I'(l) := I - 1 if sequence (c;)ie(1:5+1} iS increasing

21/83

o LetU" € A and set U™! = U”

29/59

o LetU" € A and set U™! = U”

@ Loop over/ € {2:s + 1} (stage index)

29/59

@ Let U € A and set U™! := U”

@ Loop over/ € {2:s + 1} (stage index)

e Compute low-order update starting from U™ (think of /' = [- 1)
MUl = MEU 47 (¢ - ep) FE(UMT)

[—
=k

29/59

@ Let U € A and set U™! := U”

@ Loop over/ € {2:s + 1} (stage index)

e Compute low-order update starting from U™ (think of /' = [- 1)
MEUR = MU 4 (e - e FH(UM)

[—
=k

@ Compute high-order update using same starting point U" (incremental
form)

MHYR = MHU 4 ¢ Z (al,k - alf,k)FH(Un’k)
ke{l-1}

=@l

29/59

Detals

@ Let U € A and set U™! := U”

@ Loop over/ € {2:s + 1} (stage index)

e Compute low-order update starting from U™ (think of /' = - 1)
MEUR = MU 4 (e - e FH(UM)

[—
=@l

@ Compute high-order update using same starting point U" (incremental
form)

MHYR = MHU 4 ¢ Z (al,k - alf,k)FH(Un’k)
ke{l-1}

=@l

e Apply limiter: U™/ := £(U™, ®", ®")

29/59

Detals

o LetU" € A and set U™! = U”

Loop over [l € {2:5 + 1} (stage index)

Compute low-order update starting from U™ (think of # = 1 - 1)

MEUR = MU 4 (e - e FH(UM)
R ——
=k

Compute high-order update using same starting point U" (incremental
form)

MHYR = MHU 4 ¢ Z (al,k - alf,k)FH(Un’k)
ke{l-1}

=@l

Apply limiter: U™ := £(U™!, ®", @)

End of loop: return U1 := ums+!

29/59

@ Theorem. [IDP-ERK scheme]
Let Assumptions 1 and 2 be met. Assume U” € A!. Then, U™ € A!
(as well as all intermediate stages) for all

€ (0,7°/ ma —cp
Te(T/le{zzsfl}(cl cr)]

212/59

@ Theorem. [IDP-ERK scheme]
Let Assumptions 1 and 2 be met. Assume U” € A!. Then, U™ € A!
(as well as all intermediate stages) for all

€ (0,7°/ ma —cp
Te(T/le{zzsfl}(cl cr)]

@ Corollary. [Optimal efficiency]

o ceff = 1/(smaxje (2:541y(c1 — 1))
o optimal efficiency (with ce = 1) reached when points (c7)e 1.54+1) are
equi-distributed in [0, 1]

212/69

@ Some optimal methods: RK(2,2;1), RK(3,3;1), RK(4,3;1)

— [BwR—s— O
(= e R

0|0 0
1|1 1
2] 0 P
110 1 i 2
2 1
33

wivl S

24/53

@ Some optimal methods: RK(2,2;1), RK(3,3;1), RK(4,3;1)

)
0o 110
1 | 1 1 1
Hod o
1o 1 119 3 20

1o 3 -5 3

@ Some non-optimal methods: SSPRK(2,2;%), SSPRK(3,3;%)

—_
D= = O
©— O

D= Bl= = O

24/53

@ Two popular but sub-optimal methods: RK(4,4;%) and RK(4,4;%)

0o o] o

1] 1 1| 1

il 9 il]

210 2 0 5/-3 10

1o 0o 1 o 1| 1 -1 1 0

T T T 1 T T 2 2 1
6 3 3 6 8§ 8 8 8

25/53

Exa

@ Two popular but sub-optimal methods: RK(4,4;%) and RK(4,4;%)

oo 0] o

1|1 1 1

A IS

110 0 1 o0 1l 1 -1 1 0
1 1 1 1 1 3 3 1

tlg 3 3 3 g 3 3 s

@ Optimal RK(5,4;1) and RK(6,4;1) devised in [AE & JLG 22]
[both can be used within an IMEX scheme]

RK(6,4;1) is fifth-order accurate on linear problems

25/53

1y

@ Butcher’s method RK(6,5;%) (requires cg

D ool

S e~

|
o — © Y~

O —loo—Ien O e~

O —ist—ie © Lo~

O It —lcienlst —

~IR

R
Rall=N

IR

1=
Rall=N

S

~IR

26/53

Examples:

@ Butcher’s method RK(6,5;%) (requires ¢ = 1)

o] o
1 1
i I
I R 0
% 3 (2) 0 9 0
s 2 e LB s
7 7 7 7 7
% 0% % % %
@ Novel RK(7,5;1) method [AE & JLG 22]
0 0
L 0.1428571428571428 0
2 0.0107112392440216 0.2750030464702641 0
é 0.4812641640977338 —0.9634955610240432 0.9108028254977381 0
4 0.3718168921589701 —0.5615016072648120 0.5590150320681445 0.2020982544662687
5 0.2210152091353413 0.3526985345185138 —0.8940286416537777 0.8097519357352928
é 0.2038005573304709 —0.4759394836772968 1.0938423462712870 —0.2853403360392873
1 | 0.0979996468518433 —0.0044680013474903 0.3592897484042552 0.0225280828210172

26/563

_ Methodology for numeries e

@ All the tests are done by fixing CFL € (0, 1] and setting
7:=CFLxsXxT1"

= all the methods perform the same number of flux evaluations and
limiting operations independently of s
= each method is IDP at least up to CFL < ceq

27/583

@ All the tests are done by fixing CFL € (0, 1] and setting
7:=CFLxsXxT1"

= all the methods perform the same number of flux evaluations and
limiting operations independently of s
— each method is IDP at least up to CFL < ceg

@ Local maximum/minimum principle enforced at every dof
(relaxation performed as in [Guermond, Popov, Tomas, 19])

@ Global maximum/minimum principle strictly enforced

27/53

@ All the tests are done by fixing CFL € (0, 1] and setting
7:=CFLxsXxT1"

= all the methods perform the same number of flux evaluations and
limiting operations independently of s
— each method is IDP at least up to CFL < ceg

@ Local maximum/minimum principle enforced at every dof
(relaxation performed as in [Guermond, Popov, Tomas, 19])

@ Global maximum/minimum principle strictly enforced

@ Affine constraints defining A: Flux-Corrected Transport (FCT)
[Boris & Book 73; Zalesak 79; Kuzmin, Lohner, Turek 12]

@ Non-affine constraints: some nonlinear technique
[Sanders 88; Coquel & LeFloch 91; Liu & Osher 96; Zhang & Shu 11; Lohman &
Kuzmin 16; Guermond, Nazarov, Popov, Tomas 18]

27/53

@ Linear transport, D := (0, 1), periodic BCs

(x—x0) (x1—x) \6 .
Ou+du =0 up(x) := U) ¥ € (oox) = (0.1,04)
’ 0 otherwise

@ 4th order Finite Differences in space

28/53

@ Linear transport, D := (0, 1), periodic BCs

(x—x0) (x1—x) \6 .
Ou+du =0 up(x) := @Gy)7 X € box) = (0.1,04)
0 otherwise

@ 4th order Finite Differences in space

@ In the L'-norm, all the methods achieve the expected convergence order
with CFL of the order of 0.5

@ Let us look at the more challenging L™ -error measure

28/53

@ Second-order methods: RK(2,2;1) outperforms SSPRK(2,2;%)

CFL =0.2

CFL = 0.25

RK(2,2;1) rate SSPRK(2,2; 1) rate

50
100
200
400
800
1600
3200

4.72E-02
2.81E-03
1.16E-03
3.38E-04
8.79E-05
2.22E-05

5.58E-06

4.07
1.28
1.78
1.94
1.98
1.99

1.23E-01
1.50E-02
1.24E-03
3.47E-04
9.28E-05
2.33E-05
5.92E-06

29/53

1D linear tran

@ Second-order methods: RK(2,2;1) outperforms SSPRK(2,2;%)

CFL=0.2

1 [RK(2,2:1) rate SSPRK(2,2; 1) rate
50 | 470E02 T23E-01
100 | 281E-03 407 1.50E-02
200 | 116E-03 128 124E-03
400 | 338E-04 178 347E-04
800 | 8.79E-05 194 9.28E-05
1600 222E-05 198 233E-05
3200| 558E-06 199 5.92E-06

CFL = 0.25

@ Third-order methods: SSPRK(3,3;%) behaves poorly, RK(4,3;1)
performs best

CFL = 0.05 CFL =0.25
1 [RKG3:D) rate SSPRKG.3;1) rate RK(@.3:1) rate [RKG.3:1)
50 |5.05E-02 - 476E02 - 5.05B02 - | 548E02
100 | S41E-03 325 S41E-03 3.4 S541B-03 3.25|5.15E-03
200 | 379E-04 383 379E-04 383 3.79E-04 3.83|3.92E-04
400 | 227E-05 406 227E-05 406 227E-05 4.06| 2.89E-05
800 | 1.58E-06 3.85 158E-06 3.85 1.58E-06 3.85 | 3.20E-06
1600 | 9.12E-08 412 122E-07 3.69 8.13E-08 4.28|8.23E-07
3200 1.52E-08 2.58 6.84E-08 0.84 531E-09 3.94 | 2.40E-07

29/53

1D linear

@ Fourth-order methods: RK(5,4;1) outperforms SSPRK(5,4;%)

CFL=0.05 CFL=0.2
I [RK@4:1) rate SSPRK(5.4:T) rate RK(.4:1) rate [RK(4.4:T)
50 | 432602 - 537602 - 505602 - | 126601
100 | 5.41E-03 300 509E-03 340 5.09E-03 3.54| 1.65E-02
200 | 379E-04 384 304E-04 407 3.04E-04 4.07| 4.10E-04
400 | 227605 406 191E05 399 191E-05 3.99| 5.02E-05
800 | 158E-06 385 LI9E-06 400 1.I9E-06 4.00| 1.10E-05
1600| 8.13E-08 428 74SE-08 4.00 74SE-08 4.00| 2.70E-06
3200| 536E-09 392 465E-09 400 4.65E-09 4.00| 7.69E-07

20/53

1D linear trans

@ Fourth-order methods: RK(5,4;1) outperforms SSPRK(5,4;%)

CFL=0.05 CFL=02
I [RK@4:1) rate SSPRK(5.4:T) rate RK(.4:1) rate [RK(4.4:T)
50 [432500 - 537E02 — 595602 — | T26E01

100 | 5.41E-03 3.00 5.09E-03 3.40 5.09E-03 3.54| 1.65E-02
200 | 3.79E-04 3.84 3.04E-04 4.07 3.04E-04 4.07| 4.10E-04
400 | 2.27E-05 4.06 1.91E-05 399 191E-05 3.99| 5.02E-05
800 | 1.58E-06 3.85 1.19E-06 4.00 1.19E-06 4.00| 1.10E-05
1600 | 8.13E-08 4.28 745E-08 4.00 7.45E-08 4.00(2.70E-06
3200 | 5.36E-09 3.92 4.65E-09 4.00 4.65E-09 4.00| 7.69E-07

@ Fifth-order methods: no SSP competitor!

CFL = 0.02 CFL = 0.025
1 [RK6.5:%) rre RK@.51) rate [RK6.5:3)
50 [S.9E02 — S.19E02 - | 5.19E-02
100 | 5.41E-03 326 S4IE-03 326| 541E-03
200 | 379E-04 383 3.79E-04 3.83| 3.79E-04
400 | 227E-05 406 227E-05 4.06| 2.27E-05
800 | 1.58E-06 3.85 1.58E-06 3.85| 1.58E-06
1600| 84SE-08 422 $.13E-08 4.28| 8.71E-08
3200| 7.10E-09 3.58 592E-09 3.78| I.16E-08

20/53

@ Three-solid problem with rotating advection field [Zalesak 79]
@ Continuous P'-FEM on unstructured non-nested Delaunay meshes

@ Solutions at 7 = 1 using RK(2,2;1) (midpoint rule) at CFL = 0.25
[From left to nght 1=6561;1=24917;1 = 98648; I = 389860 dofs]

EX N

@ Relative error in /' -norm for RK(2,2;1) and RK(4,3;1)

1 RK(2,2;1) rate RK(4,3;1) rate
1605 2.45E-01 - 2.49E-01 -
6561 1.28E-01 093 1.31E-01 0.92
24917 7.34E-02 0.81 749E-02 0.84
98648 426E-02 0.78 4.44E-02 0.76

389860 | 2.44E-02 0.81 2.56E-02 0.80

131/583

@ 2D Burgers’ equation in D := (-.25, 1.75)>
Qu+Vifu) =0, flu) =3 u)T

with initial data

® 1 ifly -3 <land|x -3 <1
up(x) :=
0 —a otherwise

@ This problem exhibits many sonic points, which makes methods with
too little low/high-order viscosity to fail [Guermond, Popov 17]

@ Solution at 7 = 0.65 computed with RK(4,3;1) at CFL = 0.25 using
8012 grid points

139/53

2D Burgers’ equati

e T =0.65, CFL = 0.25, relative L!-error for all the methods

1 RK(2,1;1) rate SSPRK(2,2; %) rate 1 RK(3,3;1) rate SSPRK(3,3; %) rate RK(4,3;1) rate
50 | 6.61E-02 - 6.70E-02 - 50 | 6.61E-02 - 6.74E-02 - 6.62E-02 -
100 | 3.31E-02 1.00 3.34E-02 1.00 [100 | 3.31E-02 1.00 3.35E-02 1.01 331E-02 100
200 | 2.12E-02 0.65 2.12E-02 0.66 || 200 | 2.12E-02 0.65 2.13E-02 0.66 2.12E-02 0.65

400 | 120E-02 0.82 1.16E-02 0.87 || 400 | 1.20E-02 0.82 1.15E-02 0.89 1.20E-02 0.82
800 | 6.04E-03 0.99 5.73E-03 1.02 || 800 | 6.04E-03 0.99 5.72E-03 1.01 6.04E-03 0.99

I [RK@4:D) e RK@4F) mie SSPRKG4L) nte RKG4D) rale RKG4D) rte
50 | 674E02 — 663E02 - 672602 T 66E02 - G660E02 -
100 | 335E-02 101 331E-02 100 343E-02 097 332802 100 330E-02 100
200 | 213E02 066 201E02 065 226E-02 060 212E-02 064 2.11E-02 0.64
400 | 117E-02 087 LISE-02 084 128E-02 082 120E-02 082 120E-02 082
800 | 575E-03 102 584E-03 102 620B03 105 606E-03 099 603E-03 0.9
I [RKG65:2) rte RK(GS5:1) rate
50 | 665E02 — 662502
100 | 332E-02 100 331E-02 1.00
200 | 211E-02 065 212E02 065
400 | LISE-02 084 120E-02 082
800 | 579E-03 102 G606E-03 099

@ — at moderate CFL, all the methods converge equally well (all at
order one)

133/53

@ Challenge methods by increasing CFL

@ Results for second- and third-order methods (top), fourth-order,
fifth-order methods plus a recap for all optimal methods

002 0.02
SSPRK(22:1/2) SSPRK(33:1/3) ——
RK(221) - RK(3.31) ----
0018 0.018 RK(4,3:1) -
0016
0014
00124 o . o
001 001
07 02 03 04 05 06 07 08 09 07 02 03 04 05 06 07 08 09
0.0: 0.02 0.02
SSP RK(5.4:0.51) —— RK(8,5:2/3)
[l RK(75:1) ----
0018 RK(6.4i1) —— 0018 0018
0016 0016 0016
001 001 001
07 02 03 04 05 06 07 08 09 07 02 03 04 05 06 07 08 09 07 02 03 04 05 06 07 08 09

@ — SSPRK (2,2) and SSPRK(3,3) start loosing accuracy at CFL ~ 0.5,
whereas IDP-ERK methods behave well over whole CFL range

24/53

@ All IDP-ERK methods perform as well, and often better, than SSPRK
methods of the same order

125/53

Conclu

@ All IDP-ERK methods perform as well, and often better, than SSPRK
methods of the same order

@ RK(2,2;1) (midpoint rule) outperforms popular SSPRK(Z,Z;%)

@ RK(4,3;1) (vastly) outperforms popular SSPRK(3,3;%)

125/53

@ All IDP-ERK methods perform as well, and often better, than SSPRK
methods of the same order

@ RK(2,2;1) (midpoint rule) outperforms popular SSPRK(Z,Z;%)
@ RK(4,3;1) (vastly) outperforms popular SSPRK(3,3;%)

@ The considered fourth-order methods provide comparable results

125/53

@ All IDP-ERK methods perform as well, and often better, than SSPRK
methods of the same order

RK(2,2;1) (midpoint rule) outperforms popular SSPRK(Z,Z;%)

RK(4,3;1) (vastly) outperforms popular SSPRK(3,3;%)

The considered fourth-order methods provide comparable results

Novel fifth-order IDP-ERK method with no SSP competitor

125/53

26/53

@ Consider low-order and high-order fluxes for

e hyperbolic terms
e parabolic (diffusion/relaxation) terms

137/53

@ Consider low-order and high-order fluxes for

e hyperbolic terms
e parabolic (diffusion/relaxation) terms

@ Quasi-linearization of parabolic fluxes (both low- and high-order)

137/53

@ Consider low-order and high-order fluxes for

e hyperbolic terms
e parabolic (diffusion/relaxation) terms

@ Quasi-linearization of parabolic fluxes (both low- and high-order)

@ Key assumption: Under CFL condition, we have two IDP steps

o forward Euler with low-order hyperbolic flux
e backward Euler with low-order quasi-linear parabolic flux

137/53

Meinideas

@ Consider low-order and high-order fluxes for

e hyperbolic terms
e parabolic (diffusion/relaxation) terms

@ Quasi-linearization of parabolic fluxes (both low- and high-order)

@ Key assumption: Under CFL condition, we have two IDP steps

o forward Euler with low-order hyperbolic flux
e backward Euler with low-order quasi-linear parabolic flux

@ Rewrite IMEX scheme in incremental form

137/53

Consider low-order and high-order fluxes for

e hyperbolic terms
e parabolic (diffusion/relaxation) terms

@ Quasi-linearization of parabolic fluxes (both low- and high-order)

Key assumption: Under CFL condition, we have two IDP steps

o forward Euler with low-order hyperbolic flux
e backward Euler with low-order quasi-linear parabolic flux

Rewrite IMEX scheme in incremental form

Apply (possibly distinct) limiters to hyperbolic and parabolic substeps

137/53

@ Explicit Butcher tableau

0 0
) ag,l 0
e e
c3 a3 as, 0
e e e
Cs 41 %) 451 0
1

) € € €
A1 95412 Aort,s-1 Dorls

128/53

@ Explicit Butcher tableau

0 0
e
il I
c3 a3 as, 0
€ e e €
Cs a1 %) Ay 51 0
€ € . € €
1 | A1 95412 Aort,s-1 Dorls
@ Implicit Butcher tableau
0 0
i i
Q| Gy Yy
1 | 1
| 43, 32 433
1 i L i i
Cs 951) as.s—l As,s

1 I 1 1
Lldgy duap A1 Gerns

128/53

@ Explicit Butcher tableau

0 0
e
c a; 0
e e
c3 a3 as, 0
€ e e €
Cs a1 %) Ay 51 0
e e A e e
1 | A1 95412 Aort,s-1 Dorls
@ Implicit Butcher tableau
0 0
i i
2] dy o
1 | 1
| 43, 32 433
i i o i i
Cs 51) s5-1 ds,s
1 I 1 1
1 | A1 Y12 7 D1 %als

@ Both tableaux share the same coefficients (c;)jeqi:5+1}

128/53

@ Heun + Crank—Nicolson: efficiency ratio is %

_——=O
(ST)
(Sl Bl
—_——_=O
D= — O
BI— Bl—

129/53

@ Heun + Crank—Nicolson: efficiency ratio is %

_——=O
(ST)
(Sl Bl
—_——_=O
D= — O
BI— Bl—

@ Explicit + implicit midpoint rules: efficiency ratio is 1

010 010

1 1 1 1
212 0 210 3
T]0 1 T]0 1

139/53

_ Examplos: third-ordr IM X112

@ Three-stage, third-order method [Ngrsett 74, Crouzeix 75]
(y=1+ ﬁ ~ 0.78867)

\/_
0 0 0 0
Y Y 0 y |0 Y
-y | y-1 2-2y O 1-y 10 1-2y vy
L]o R I

@ Implicit method is A-stable, but efficiency ratio is only %7 ~ 0.26

40/53

) Three—stage, third-order method [Ngrsett 74, Crouzeix 75]
(y=1+ ﬁ ~ 0.78867)

\/_
0 0 0 0
Y Y 0 Y 0 y
-y | y-1 2-2y O 1-y 10 1-2y vy
Lo LR N

@ Implicit method is A-stable, but efficiency ratio is only %y ~ 0.26

@ New scheme with optimal efficiency 1 [AE & JLG 22]

0|0 0| o
510 3 0 530 v 32y v
HERCEE g o 3

@ Implicit method has the same amplification function as above (and
hence is A-stable)

40/53

@ Novel four-stage, third-order IMEX scheme with optimal efficiency |
and implicit method is L-stable

@ Explicit scheme is ERK(4,3;1) (already considered!)

0
1
1
1
2
3
1
1

@ Implicit scheme as follows:

0
—0.1858665215084591 0.4358665215084591
—0.4367256409878701 0.5008591194794110 0.4358665215084591
—0.0423391342724147 0.7701152303135821 —0.4136426175496265 0.4358665215084591

| 0 =

el B S B)

41/53

@ Five- and six-stage schemes reviewed in [Carpenter & Kennedy 19]

@ Novel five-stage scheme devised in [AE & JLG 22]

o optimal efficiency 1
o implicit scheme is singly diagonal and L-stable

@ Novel six-stage scheme devised in [AE & JLG 22] with similar properties
o the scheme is of linear order 5

42/53

@ Travelling viscous wave [Becker, 1922; Johnson, 13], Q := [-0.5,1], T = 3

@ Ideal gas law, constant properties (¢ = 0.01, Pr = 0.75)
@ Cumulated relative L'-error on density, momentum and total energy
@ Challenge all IMEX methods by increasing CFL

43/53

Compressible Navier—Stokes eq_

@ Travelling viscous wave [Becker, 1922; Johnson, 13], Q := [-0.5,1], T =3
@ Ideal gas law, constant properties (¢ = 0.01, Pr = 0.75)

@ Cumulated relative L'-error on density, momentum and total energy
@ Challenge all IMEX methods by increasing CFL

400 grid points 1000 grid points

IMEX@22:1) — .
IMEX(2.2:1/2) - -

B 102
102 - — T
10°
. IMEX(2,2:1) ——
10° SOMEX@R2:172) - - -
10* IMEX(3,3;1) ——
IMEX(3,30.26) - - -
IMEX(4,3:1) -~
/ IMEX(5.4:1) — - —
" g S " IMEX(64.:1) - — -
10 02 04 06 08 1 12 14 16 18 2 10 02 04 06 08 1 12 14 16 18 2

@ Main conclusions:

o IMEX(2,2; 1) always outperforms IMEX(2, 2; %)
o IMEX(4, 3; 1) outperforms the other two third-order methods
o IMEX(6,4: 1) slightly more robust than IMEX(5, 4; 1)

43/53

@ Viscous shock tube problem [Daru & Tenaud, 01, 09]

e Q:=[0,1]x[0,3],T=1

@ Ideal gas law, constant properties (u = 0.001, Pr = 0.73)
o P; Lagrange FEM, IMEX(4,3;1) at CFL = 1.5

44/53

Viscous shock tube problem [Daru & Tenaud, 01, 09]
Q:=[0,1]x[0,1]. T =1

Ideal gas law, constant properties (u = 0.001, Pr = 0.73)
Py Lagrange FEM, IMEX(4,3; 1) at CFL = 1.5

Density isocontours

572k grid points 762k grid points

44/53

Compressible Navier—Stokes _

Viscous shock tube problem [Daru & Tenaud, 01, 09]
Q:=[0,1]x[0,1]. T =1

Ideal gas law, constant properties (u = 0.001, Pr = 0.73)
Py Lagrange FEM, IMEX(4,3; 1) at CFL = 1.5

Density isocontours

572k grid points 762k grid points

@ Numerical tests using non-ideal gas laws in progress

Thank you for your attention!

44/53

@ Gentle introduce ideas on Euler IDP-IMEX scheme

45/53

@ Gentle introduce ideas on Euler IDP-IMEX scheme
@ F: Low-order approx. of hyperbolic flux —V-f (u)

e G-"(W";.): Low-order quasi-linear approx. of parabolic flux
-V-g(u,Vu) + S(u)

45/53

Euler |

@ Gentle introduce ideas on Euler IDP-IMEX scheme
@ F: Low-order approx. of hyperbolic flux —V-f (u)

e G-"(W";.): Low-order quasi-linear approx. of parabolic flux
-V-g(u,Vu) + S(u)

@ Consider low-order quasi-linear update
MLuL,n+l — MLUn + TFL(Un) +TGL,lin(WL,n, ULJH-l)

—_—
=MLwk-"

45/53

@ Gentle introduce ideas on Euler IDP-IMEX scheme
@ FL: Low-order approx. of hyperbolic flux —V-f (u)

e G-"(W";.): Low-order quasi-linear approx. of parabolic flux
-V-g(u,Vu) + S(u)

@ Consider low-order quasi-linear update

MLuL,n+l — MLUn + TFL(Un) +TGL,]in(WL,n. UL,n+1)
————
=MLW"
@ This can be decomposed as
@ hyperbolic sub-step (explicit update):

whr = U (MR TR (U
@ parabolic sub-step (quasi-linear solve):

UL,rL+1 = (]I _ T(ML)_IGL’“"(WL’"; _))—1 (WL,n)

45/53

@ Assumption 1. There exists 7* > 0 s.t. for all T € (0, 77],
o forward Euler with low-order hyperbolic flux is IDP:

{(veal = {v+r)IFH(v) e Al}

46/53

@ Assumption 1. There exists 7* > 0 s.t. for all T € (0, 77],
o forward Euler with low-order hyperbolic flux is IDP:

{(veal = {v+r)IFH(v) e Al}

o backward Euler with low-order quasi-linear parabolic flux is IDP: For all
we Al 1- b tatlinew;) - (R™)! - (R™)! is bijective and
(Vea} = {(1-rH~'an ;) (v) e Al

Notice that quasi-linearization is performed at V

46/53

@ Assumption 1. There exists 7* > 0 s.t. for all T € (0, 77],
o forward Euler with low-order hyperbolic flux is IDP:

veall = {v+rb)~IFH(v) e A'}
e backward Euler with low-order quasi-linear parabolic flux is IDP: For all
we Al 1- b tatlinew;) - (R™)! - (R™)! is bijective and
(Vea} = {(1-rH~'an ;) (v) e Al
Notice that quasi-linearization is performed at V

@ (Well-known) Proposition. [Low-order Euler IDP-IMEX]
Let Assumption 1 hold. Assume that U” € Al and T € (0, 7*]. Then,
UL,n+l c ﬂl

46/53

@ We want to use high-order fluxes in space!

47/53

@ We want to use high-order fluxes in space!
@ Assumption 2. There exist two nonlinear limiting operators
e i Al (RM % (R™MT — (R™M)!

such that
o forall (V, ®", @) e Al x (R™)! x (R™),

(viruh) ol e Al = {™P(v, @, @f) e A’}
o forall (W, ¥, W) e Al x (R™)! x (R™)!,

W+t el e A’} = {err(w, vl) e Al)

47/53

@ We want to use high-order fluxes in space!
@ Assumption 2. There exist two nonlinear limiting operators
fhyp’ £par . ﬂl x (Rm)l x (Rm)l — (Rm)l

such that
o forall (V, ®F, @) ¢ A x (R™)! x (R™)!,

(viruh) ol e Al = {™P(v, @, @f) e A’}
o forall (W, ¥, W) e Al x (R™)! x (R™)!,
(w+rbh el e Ay = {errr(w, wh, vl e Al)

@ Important remarks

o the invariant domains enforced by the two limiters can be different
e bounds for limiting are deduced from the low-order updates

47/53

_ High-order Euler 1D -MEX (2l

@ Given U" € A/, high-order Euler IDP-IMEX proceeds as follows:

(3)

(WL n+l WH n+1) Wn+1 (UL o+l UH n+1) Un+l

hyperbolic step parabolic step

48/53

@ Given U" € A/, high-order Euler IDP-IMEX proceeds as follows:

(3)

(WL Sh+1 WH n+1) Wn+l (UL o+l UH n+1) Un+1

hyperbolic step parabolic step

@ Hyperbolic steps (1) and (2): compute low/high-order updates and limit
MLWL n+1 MLUn + TFL(Un)

n+l ._ phyp (qyn L H
MHWHA+ MHUn+TFH(Un) W= £8P (U7, @7, @)

48/53

@ Given U" € A/, high-order Euler IDP-IMEX proceeds as follows:

(3)

(WL Sh+1 WH n+1) Wn+l (UL n+1 UH n+1) Un+1

hyperbolic step parabolic step

@ Hyperbolic steps (1) and (2): compute low/high-order updates and limit
MLWL n+1 MLUn + TFL(Un)

n+l ._ phyp L H
MHWHA+ MHUn+TFH(Un) W= £8P (U7, @7, @)

@ Parabolic steps (3) and (4): compute low/high-order updates
(quasi-linear solves) and limit

MLUL,n+1 _ TGL,lin (W"H; UL,n+1) = MLWn+1,

n+l ._ ppar nwn+l L H
MHYHA _ zgHlin (g, gHrel) o] U= e wrt w e

48/53

High-order Euler IDP-IMEX (2/2)

@ Given U" € A’, high-order Euler IDP-IMEX proceeds as follows:

(3)

L,n+1 H,n+1 n+1 L,n+1 H,n+1 n+1
O owlmst ity gt O et gy @y

hyperbolic step parabolic step

@ Hyperbolic steps (1) and (2): compute low/high-order updates and limit
MLWL n+l MLUn + TFL(U")

n+l ._ phyp L H
MHWH = vy 4 2FH (), W= P (U7, 07, @)

@ Parabolic steps (3) and (4): compute low/high-order updates
(quasi-linear solves) and limit

MLULJH-I _ TGL.lin (WII+] . UL,)1+1) — MLWn+1

n+l ._ ppar n+1 L H
MHUH’n+1 _ TGH‘“n (U“; UH’“+I) = MHwn+l , u =4 (W R)

@ (Well-known) Proposition. [High-order Euler IDP-IMEX]
Let Assumptions 1 and 2 hold. Assume that U" € A’ and 7 € (0, 7*].
Then, U™ € A’

48/53

@ We are now ready to go high-order in time!
@ Key idea. Consider the following two ODE systems on (", *1):

MM4,U = FH(U) + G (w; u) (at each stage /)
~—_—— ——
explicit implicit

MPg,u = F(u) + GH(u) - gMinu Uy + GHPIN(UT V)

explicit implicit

49/53

@ Explicit Butcher tableau

0 0
) ag,l 0
e e
c3 a3 | as, 0
e e . e
Cs 41 %) Ges-1 0
1

) € € e
A1 Y5412 Aort,s-1 Dorls

50/53

@ Explicit Butcher tableau

0 0
e
e | a3, 0
e e
€3] a3 a3 0
e e e
Cs 1 %) Ay 51 0
e e e e
1 | A1 Y5412 Aort,s-1 Dorls
@ Implicit Butcher tableau
0 0
i i
€| ay a5 '
1 | 1
| 43, 32 433
i i i i
Cs 51) dys5-1 s,
1 I 1 1
1 as+1,1 as+1,2 as+1,s—1 as+1,s

50/53

@ Explicit Butcher tableau

0 0
e
e | a3, 0
e e
c3 a3 | as, 0
e e e
Cs 1 %) Ay 51 0
e e e
L a9 Aort,s-1 Dorls
@ Implicit Butcher tableau
0 0
i i
2] Gy Gy
1 | 1
| 43, 32 433
i i i i
Cs 951) s5-1 As,s
1 I 1 1
1 as+1,1 as+1,2 as+1,s—1 as+1,s

@ Both tableaux share the same coefficients (c;)je(i:5+1}; recall the
notation /'(1) := max{k < [| ¢ < ¢;} (think of I'([) =1-1)

50/53

@ Given U" € A!, setU™! .= U"
@ Ateach stage [€ {2:5 + 1}, one performs the following steps:

(1)

o’ 2 oWl wH l) Wnl ®3) (Ul gt l) n,l

hyperbolic step parabolic step

51/583

Detals (1/2)

@ Given U" € A!, setU™! .= U"

@ Ateach stage [€ {2:5 + 1}, one performs the following steps:

. (1 3
ut Y,) (WLIWHl) Wnl ®3) (!, UHl) n,l

hyperbolic step parabolic step

@ Hyperbolic steps (1) and (2): compute low/high-order updates
MEWE = MUY+ 1 (e = o) PR (UMY

MHWH! = My 4 ¢ Z (af, — af YFH (U™
ke{l:l-1}

and limit
I} — fhyp(un,l’, q)L, q)H)

51/583

@ Recall W™/ just computed from hyperbolic steps (1) and (2)

592/53

@ Recall W! just computed from hyperbolic steps (1) and (2)
@ Parabolic steps (3) and (4): compute low/high-order updates
MLUL’I _ T(Cl _ Cl’)GL’lin(Wn’l; UL,I) = MLwn,l
MU — 74y GPM (U U = MPW A

(Al - Z (ail,k _ai’, k)GH,lin(Un; Un,k) 4 Z (azk _“ze' k) (GH(Un,k) _ GH,lin(Un;un,k)))
ke{l:l-1} ke{l:l-1}

@ Notice that ail , =0for/=s+1 (final high-order stage is explicit)

@ Limit: U™ .= ¢par (Wl wh wih

592/53

Detals @2)

@ Recall W™/ just computed from hyperbolic steps (1) and (2)
@ Parabolic steps (3) and (4): compute low/high-order updates
MLUL’I _ T(Cl _ cl,)GL,lin(W}'L,l; UL,I) = MLwn,l

MHUR - ‘rail,lGH’““(U"; Ut = MW 4 7A,

(Al - Z (ail’k _ai’, k)GH,lin(Un; RO Z (azk _ a?,) (GH(Un.k> _ GH,lin(Un;un,k)))
ke{l:l-1} ke{l:l-1}

@ Notice that ail , =0for/=s+1 (final high-order stage is explicit)
@ Limit: U™ .= ¢par (Wl wpl i

@ Theorem. [High-order IDP-IMEX]
Let Assumptions 1 and 2 hold. Assume that U" € Al Then, U! € A!
(as well as all intermediate stages) V7 € (0, 7°/maxe (2.1} (¢; — c7)]

592/53

@ The design of low-order linearized parabolic flux G™'™ is
problem-dependent

53/53

@ The design of low-order linearized parabolic flux G™'™ is
problem-dependent

@ The whole scheme can be rewritten using conservative limiters

53/53

@ The design of low-order linearized parabolic flux G™'™ is
problem-dependent

@ The whole scheme can be rewritten using conservative limiters

@ The setting allows for the hyperbolic and parabolic problems to be
solved each with its own natural set of variables

e conservative for Euler, primitive for Navier—Stokes

53/53

