Invariant-domain preserving Runge-Kutta methods

Alexandre Ern
ENPC and INRIA, Paris, France
joint work with Jean-Luc Guermond (TAMU)

FORTH Workshop, 09/2023

Outline

- Setting
- Beyond strong stability preserving (SSP) RK schemes
- New perspective on explicit RK schemes
- New perspective on implicit-explicit (IMEX) schemes

Outline

- Setting
- Beyond strong stability preserving (SSP) RK schemes
- New perspective on explicit RK schemes
- New perspective on implicit-explicit (IMEX) schemes

Warning: space discretization is hidden in the background, but is important!

Outline

- Setting
- Beyond strong stability preserving (SSP) RK schemes
- New perspective on explicit RK schemes
- New perspective on implicit-explicit (IMEX) schemes

Warning: space discretization is hidden in the background, but is important!
Main references:

- [AE \& JLG, SISC 22] for ERK
- [AE \& JLG, SISC 23] for IMEX

Setting

Cauchy problem

- Cauchy problem

$$
\begin{cases}\partial_{t} \boldsymbol{u}+\nabla \cdot \boldsymbol{f}(\boldsymbol{u})+\nabla \cdot \boldsymbol{g}(\boldsymbol{u}, \nabla \boldsymbol{u})=S(\boldsymbol{u}) & \text { in } D \times \mathbb{R}_{+} \\ \boldsymbol{u}(\cdot, 0)=\boldsymbol{u}_{0} & \text { in } D\end{cases}
$$

$D \subset \mathbb{R}^{d}$ (open Lipschitz polytope)

Cauchy problem

- Cauchy problem

$$
\begin{cases}\partial_{t} \boldsymbol{u}+\nabla \cdot f(\boldsymbol{u})+\nabla \cdot g(\boldsymbol{u}, \nabla \boldsymbol{u})=S(\boldsymbol{u}) & \text { in } D \times \mathbb{R}_{+} \\ \boldsymbol{u}(\cdot, 0)=\boldsymbol{u}_{0} & \text { in } D\end{cases}
$$

$D \subset \mathbb{R}^{d}$ (open Lipschitz polytope)

- Field \boldsymbol{u} takes values in \mathbb{R}^{m}, i.e., $\boldsymbol{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
- $f \in C^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$: hyperbolic flux
- $g \in C^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$: parabolic/diffusive flux
- $S \in C^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$: source/relaxation term

Cauchy problem

- Cauchy problem

$$
\begin{cases}\partial_{t} \boldsymbol{u}+\nabla \cdot \boldsymbol{f}(\boldsymbol{u})+\nabla \cdot g(\boldsymbol{u}, \nabla \boldsymbol{u})=S(\boldsymbol{u}) & \text { in } D \times \mathbb{R}_{+} \\ \boldsymbol{u}(\cdot, 0)=\boldsymbol{u}_{0} & \text { in } D\end{cases}
$$

$D \subset \mathbb{R}^{d}$ (open Lipschitz polytope)

- Field \boldsymbol{u} takes values in \mathbb{R}^{m}, i.e., $\boldsymbol{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
- $f \in C^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$: hyperbolic flux
- $g \in C^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$: parabolic/diffusive flux
- $S \in C^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$: source/relaxation term
- \boldsymbol{u}_{0} : admissible initial data
- BCs not discussed herein

Exemple 1: Scalar advection-diffusion-reaction

- Find $u: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that

$$
\partial_{t} u+\nabla \cdot \boldsymbol{f}(\boldsymbol{x}, u)+\nabla \cdot(\kappa(u) \nabla u)=S(u), \quad u(\cdot, 0)=u_{0}
$$

- Hyperbolic and parabolic fluxes

$$
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}):=\left\{\begin{array}{l}
\left(f_{1}(u), \ldots, f_{d}(u)\right) \\
\boldsymbol{\beta}(\boldsymbol{x}) u \text { with } \nabla \cdot \boldsymbol{\beta}=0
\end{array} \quad g(u, \nabla u):=\kappa(u) \nabla u\right.
$$

- Source term, for instance

$$
S(u):=\mu \phi(u) u(1-u), \quad \phi \in C^{0}(\mathbb{R} ;[-1,1]), \quad \mu \geq 0
$$

Exemple 2: compressible Navier-Stokes

- Find $\boldsymbol{u}:=\left(\rho, \boldsymbol{m}^{\top}, E\right)^{\top}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d+2}$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\boldsymbol{v} \rho)=0 \\
\partial_{t} \boldsymbol{m}+\nabla \cdot(\boldsymbol{v} \otimes \boldsymbol{m}+p(\boldsymbol{u}) \mathbb{I}-s(\boldsymbol{v}))=\mathbf{0} \\
\partial_{t} E+\nabla \cdot(\boldsymbol{v}(E+p(\boldsymbol{u}))-\boldsymbol{v} \cdot \boldsymbol{s}(\boldsymbol{v})+\boldsymbol{q}(\boldsymbol{u}))=0
\end{array}\right.
$$

with velocity $\boldsymbol{v}:=\boldsymbol{m} / \rho$ and pressure $p(\boldsymbol{u})$

Exemple 2: compressible Navier-Stokes

- Find $u:=\left(\rho, \boldsymbol{m}^{\top}, E\right)^{\top}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d+2}$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\boldsymbol{v} \rho)=0 \\
\partial_{t} \boldsymbol{m}+\nabla \cdot(\boldsymbol{v} \otimes \boldsymbol{m}+p(\boldsymbol{u}) \mathbb{I}-s(\boldsymbol{v}))=\mathbf{0} \\
\partial_{t} E+\nabla \cdot(\boldsymbol{v}(E+p(\boldsymbol{u}))-\boldsymbol{v} \cdot \boldsymbol{s}(\boldsymbol{v})+\boldsymbol{q}(\boldsymbol{u}))=0
\end{array}\right.
$$

with velocity $\boldsymbol{v}:=\boldsymbol{m} / \rho$ and pressure $p(\boldsymbol{u})$

- Hyperbolic (Euler) and parabolic fluxes

$$
\boldsymbol{f}(\boldsymbol{u}):=\left(\begin{array}{c}
\boldsymbol{v} \rho \\
\boldsymbol{v} \otimes \boldsymbol{m}+p(\boldsymbol{u}) \mathbb{I} \\
\boldsymbol{v}(E+p(\boldsymbol{u}))
\end{array}\right), \quad g(\boldsymbol{u}, \nabla \boldsymbol{u}):=\left(\begin{array}{c}
0 \\
-\boldsymbol{s}(\boldsymbol{v}) \\
-\boldsymbol{v} \cdot \boldsymbol{s}(\boldsymbol{v})+\boldsymbol{q}(\boldsymbol{u})
\end{array}\right)
$$

with viscous stress tensor and heat flux such that

$$
\boldsymbol{s}(\boldsymbol{v})=2 \mu \boldsymbol{e}(\boldsymbol{v})+\left(\lambda-\frac{2}{3} \mu\right)(\nabla \cdot \boldsymbol{v}) \mathbb{I}, \quad \boldsymbol{q}(\boldsymbol{u})=-\kappa \nabla T(\boldsymbol{u})
$$

with (linearized) strain tensor $\boldsymbol{e}(\boldsymbol{v}):=\frac{1}{2}\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{\top}\right)$ and temperature
$T(\boldsymbol{u})$ (from specific internal energy $e(\boldsymbol{u}):=E / \rho-\frac{1}{2}\|\boldsymbol{v}\|_{\ell^{2}}^{2}$)

- μ, λ, κ constant for simplicity

Invariant domain

- Key assumption: There exists a convex subset $\mathcal{A} \subsetneq \mathbb{R}^{m}$ (depending on the initial data \boldsymbol{u}_{0}) s.t. the entropy/admissible solution to the Cauchy problem takes values in \mathcal{A} for a.e. $(\boldsymbol{x}, t) \in D \times \mathbb{R}_{+}$

$$
\left\{\boldsymbol{u}_{0}(\boldsymbol{x}) \in \mathcal{A} \text { for a.e. } \boldsymbol{x} \in D\right\} \Longrightarrow\left\{\boldsymbol{u}(\boldsymbol{x}, t) \in \mathcal{A} \text { for a.e. }(\boldsymbol{x}, t) \in D \in \mathbb{R}_{+}\right\}
$$

Invariant domain

- Key assumption: There exists a convex subset $\mathcal{A} \subsetneq \mathbb{R}^{m}$ (depending on the initial data \boldsymbol{u}_{0}) s.t. the entropy/admissible solution to the Cauchy problem takes values in \mathcal{A} for a.e. $(\boldsymbol{x}, t) \in D \times \mathbb{R}_{+}$
$\left\{\boldsymbol{u}_{0}(\boldsymbol{x}) \in \mathcal{A}\right.$ for a.e. $\left.\boldsymbol{x} \in D\right\} \Longrightarrow\left\{\boldsymbol{u}(\boldsymbol{x}, t) \in \mathcal{A}\right.$ for a.e. $\left.(\boldsymbol{x}, t) \in D \in \mathbb{R}_{+}\right\}$
- This is a generalization of the maximum principle

Invariant domain

- Key assumption: There exists a convex subset $\mathcal{A} \subsetneq \mathbb{R}^{m}$ (depending on the initial data \boldsymbol{u}_{0}) s.t. the entropy/admissible solution to the Cauchy problem takes values in \mathcal{A} for a.e. $(\boldsymbol{x}, t) \in D \times \mathbb{R}_{+}$

$$
\left\{\boldsymbol{u}_{0}(\boldsymbol{x}) \in \mathcal{A} \text { for a.e. } \boldsymbol{x} \in D\right\} \Longrightarrow\left\{\boldsymbol{u}(\boldsymbol{x}, t) \in \mathcal{A} \text { for a.e. }(\boldsymbol{x}, t) \in D \in \mathbb{R}_{+}\right\}
$$

- This is a generalization of the maximum principle
- Scalar conservation equations without reaction

$$
\mathcal{A}:=\left[\operatorname{ess} \inf u_{0}, \operatorname{ess} \sup u_{0}\right]
$$

- Scalar conservation equations with $S(u):=\mu \phi(u) u(1-u)$

$$
\mathcal{A}:=[0,1]
$$

Invariant domain

- Key assumption: There exists a convex subset $\mathcal{A} \subsetneq \mathbb{R}^{m}$ (depending on the initial data \boldsymbol{u}_{0}) s.t. the entropy/admissible solution to the Cauchy problem takes values in \mathcal{A} for a.e. $(\boldsymbol{x}, t) \in D \times \mathbb{R}_{+}$

$$
\left\{\boldsymbol{u}_{0}(\boldsymbol{x}) \in \mathcal{A} \text { for a.e. } \boldsymbol{x} \in D\right\} \Longrightarrow\left\{\boldsymbol{u}(\boldsymbol{x}, t) \in \mathcal{A} \text { for a.e. }(\boldsymbol{x}, t) \in D \in \mathbb{R}_{+}\right\}
$$

- This is a generalization of the maximum principle
- Scalar conservation equations without reaction

$$
\mathcal{A}:=\left[\text { ess inf } u_{0}, \text { ess } \sup u_{0}\right]
$$

- Scalar conservation equations with $S(u):=\mu \phi(u) u(1-u)$

$$
\mathcal{A}:=[0,1]
$$

- Navier-Stokes and Euler equations ($s(\boldsymbol{u})$: specific entropy)

$$
\begin{aligned}
\mathcal{A}_{\mathrm{NS}} & :=\left\{\left(\rho, \boldsymbol{m}^{\top}, E\right)^{\top} \in \mathbb{R}^{m} \mid 0<\rho, 0<T(\boldsymbol{u})\right\} \\
\mathcal{A}_{\mathrm{Eu}} & :=\left\{\left(\rho, \boldsymbol{m}^{\top}, E\right)^{\top} \in \mathbb{R}^{m} \mid 0<\rho, 0<T(\boldsymbol{u}), \text { ess inf } s\left(\boldsymbol{u}_{0}\right) \leq s(\boldsymbol{u})\right\}
\end{aligned}
$$

Invariant-domain preserving (IDP) approximation methods

- Approximation methods that preserve invariant domains are called Invariant domain preserving (IDP)

Invariant-domain preserving (IDP) approximation methods

- Approximation methods that preserve invariant domains are called Invariant domain preserving (IDP)
- Space semi-discrete problem: Find $\mathbf{U} \in C^{1}\left(\mathbb{R}_{+} ;\left(\mathbb{R}^{m}\right)^{I}\right)$ s.t.

$$
\mathbb{M} \partial_{t} \mathbf{U}=\mathbf{F}(\mathbf{U})+\mathbf{G}(\mathbf{U}), \quad \mathbf{U}(0)=\mathbf{U}_{0}
$$

- I: \#dofs for space approximation ($C^{0}-\mathrm{FEM}, \mathrm{dG}, \mathrm{FV}, \mathrm{FD}, \ldots$)
- \mathbb{M} : mass matrix (invertible)
- $\boldsymbol{F}:\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}:$ space approximation of $-\nabla \cdot \boldsymbol{f}(\boldsymbol{u})$
- $G:\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}:$ space approximation of $-\nabla \cdot \boldsymbol{g}(\boldsymbol{u}, \nabla \boldsymbol{u})+S(\boldsymbol{u})$
- U_{i} approximates u at some point $x_{i} \in D \Longrightarrow$ natural requirement is $\mathrm{U} \in \mathcal{A}^{I}$

Invariant-domain preserving (IDP) approximation methods

- Approximation methods that preserve invariant domains are called Invariant domain preserving (IDP)
- Space semi-discrete problem: Find $\mathbf{U} \in C^{1}\left(\mathbb{R}_{+} ;\left(\mathbb{R}^{m}\right)^{I}\right)$ s.t.

$$
\mathbb{M} \partial_{t} \mathbf{U}=\mathbf{F}(\mathbf{U})+\mathbf{G}(\mathbf{U}), \quad \mathbf{U}(0)=\mathbf{U}_{0}
$$

- I: \#dofs for space approximation ($C^{0}-\mathrm{FEM}, \mathrm{dG}, \mathrm{FV}, \mathrm{FD}, \ldots$)
- \mathbb{M} : mass matrix (invertible)
- $\boldsymbol{F}:\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}:$ space approximation of $-\nabla \cdot \boldsymbol{f}(\boldsymbol{u})$
- $G:\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}:$ space approximation of $-\nabla \cdot \boldsymbol{g}(\boldsymbol{u}, \nabla \boldsymbol{u})+S(\boldsymbol{u})$
- U_{i} approximates u at some point $x_{i} \in D \Longrightarrow$ natural requirement is $\mathrm{U} \in \mathcal{A}^{I}$
- Time-stepping scheme produces a sequence $\mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n}, \ldots$
- Time-stepping scheme is IDP if

$$
\left\{\mathbf{U}_{0} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{U}^{n} \in \mathcal{F}^{I} \forall n \geq 0\right\}
$$

How to achieve this goal?

SSP paradigm for hyperbolic problems

- Let us focus first on hyperbolic problems
- Key idea: [Shu \& Osher 88] SSPRK are ERK methods where all updates are convex combinations of previous updates computed with forward Euler method (recall \mathcal{A} convex)

SSP paradigm for hyperbolic problems

- Let us focus first on hyperbolic problems
- Key idea: [Shu \& Osher 88] SSPRK are ERK methods where all updates are convex combinations of previous updates computed with forward Euler method (recall \mathcal{A} convex)
- Key assumption: $\exists \tau^{*}>0$ s.t. $\forall \tau \in\left(0, \tau^{*}\right]$,

$$
\left\{\mathbf{v} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{v}+\tau(\mathbb{M})^{-1} \mathbf{F}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

In other words, \mathcal{A}^{I} is invariant under the forward Euler method with CFL condition $\tau \in\left(0, \tau^{*}\right]$

SSP paradigm for hyperbolic problems

- Let us focus first on hyperbolic problems
- Key idea: [Shu \& Osher 88] SSPRK are ERK methods where all updates are convex combinations of previous updates computed with forward Euler method (recall \mathcal{A} convex)
- Key assumption: $\exists \tau^{*}>0$ s.t. $\forall \tau \in\left(0, \tau^{*}\right]$,

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau(\mathbb{M})^{-1} \mathbf{F}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

In other words, \mathcal{A}^{I} is invariant under the forward Euler method with CFL condition $\tau \in\left(0, \tau^{*}\right]$

- Theory of SSP methods applied to ODEs is well understood [Kraaijevanger 91;S Ruuth \& Spiteri 02; Ferracina \& Spijker 05; Higueras 05]

Examples (for $\partial_{t} u=L(t, u)$)

- Notation: $\operatorname{SSPRK}(s, p)$ for s-stage, p th-order method
- $\operatorname{SSPRK}(2,2)$ (two-stage, second-order) [Heun's second-order method]

$$
\begin{aligned}
& w^{(1)}=u^{n}+\tau L\left(t^{n}, u^{n}\right) \\
& u^{n+1}=\frac{1}{2} u^{n}+\frac{1}{2}\left(w^{(1)}+\tau L\left(t^{n+1}, w^{(1)}\right)\right)
\end{aligned}
$$

- $\operatorname{SSPRK}(3,3)$ (three-stage, third-order) [Fehlberg's method]

$$
\begin{aligned}
& w^{(1)}=u^{n}+\tau L\left(t^{n}, u^{n}\right) \\
& w^{(2)}=\frac{3}{4} u^{n}+\frac{1}{4}\left(w^{(1)}+\tau L\left(t^{n+1}, w^{(1)}\right)\right) \\
& u^{n+1}=\frac{1}{3} u^{n}+\frac{2}{3}\left(w^{(2)}+\tau L\left(t^{n+\frac{1}{2}}, w^{(2)}\right)\right)
\end{aligned}
$$

- $\operatorname{SSPRK}(4,3)$ and $\operatorname{SSPRK}(5,4)$ also available

Why (and how to) go beyond SSP?

Limitations of SSP paradigm (1/2)

- Restriction in accuracy: SSPRK are restricted to fourth-order (if one insists on never stepping backward in time) [Ruuth \& Spiteri 02]

Limitations of SSP paradigm (1/2)

- Restriction in accuracy: SSPRK are restricted to fourth-order (if one insists on never stepping backward in time) [Ruuth \& Spiteri 02]
- Difficult to accommodate implicit and explicit substeps
- implicit RK schemes of order ≥ 2 cannot be SSP [Gottlieb, Shu, Tadmor 01]
- explicit methods suffer from parabolic CFL restriction $\tau \leq c h^{2}$

Limitations of SSP paradigm (2/2)

- Definition: efficiency ratio of any s-stage ERK method
- τ^{*} : maximal time step that makes forward Euler method IDP
- $\tilde{\tau}$: maximal time step that makes s-stage ERK method IDP

$$
c_{\mathrm{eff}}:=\frac{\tilde{\tau}}{s \tau^{*}} \quad\left(\text { usually }, c_{\mathrm{eff}} \leq 1\right)
$$

Limitations of SSP paradigm (2/2)

- Definition: efficiency ratio of any s-stage ERK method
- τ^{*} : maximal time step that makes forward Euler method IDP
- $\tilde{\tau}$: maximal time step that makes s-stage ERK method IDP

$$
c_{\mathrm{eff}}:=\frac{\tilde{\tau}}{s \tau^{*}} \quad\left(\text { usually }, c_{\mathrm{eff}} \leq 1\right)
$$

- Do we care? Under the same CFL constraint, \# flux evaluations to reach some T for s-stage ERK is $\frac{1}{c_{\text {eff }}} \times$ that for forward Euler method

Limitations of SSP paradigm (2/2)

- Definition: efficiency ratio of any s-stage ERK method
- τ^{*} : maximal time step that makes forward Euler method IDP
- $\tilde{\tau}$: maximal time step that makes s-stage ERK method IDP

$$
c_{\mathrm{eff}}:=\frac{\tilde{\tau}}{s \tau^{*}} \quad\left(\text { usually }, c_{\mathrm{eff}} \leq 1\right)
$$

- Do we care? Under the same CFL constraint, \# flux evaluations to reach some T for s-stage ERK is $\frac{1}{c_{\text {eff }}} \times$ that for forward Euler method
- SSPRK methods are usually inefficient!
- $c_{\text {eff }}=\frac{1}{2}$ for $\operatorname{SSPRK}(2,2)$
- $c_{\text {eff }}=\frac{1}{3}$ for $\operatorname{SSPRK}(3,3)$
- $c_{\text {eff }}=\frac{1}{2}$ for $\operatorname{SSPRK}(4,3)$

Limitations of SSP paradigm (2/2)

- Definition: efficiency ratio of any s-stage ERK method
- τ^{*} : maximal time step that makes forward Euler method IDP
- $\tilde{\tau}$: maximal time step that makes s-stage ERK method IDP

$$
c_{\mathrm{eff}}:=\frac{\tilde{\tau}}{s \tau^{*}} \quad\left(\text { usually }, c_{\mathrm{eff}} \leq 1\right)
$$

- Do we care? Under the same CFL constraint, \# flux evaluations to reach some T for s-stage ERK is $\frac{1}{c_{\text {eff }}} \times$ that for forward Euler method
- SSPRK methods are usually inefficient!
- $c_{\text {eff }}=\frac{1}{2}$ for $\operatorname{SSPRK}(2,2)$
- $c_{\text {eff }}=\frac{1}{3}$ for $\operatorname{SSPRK}(3,3)$
- $c_{\text {eff }}=\frac{1}{2}$ for $\operatorname{SSPRK}(4,3)$
- Notation: $\operatorname{RK}(s, p ; e)$ for s-stage, p th-order method, efficiency ratio e $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right) \quad \operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right) \quad \operatorname{SSPRK}\left(4,3 ; \frac{1}{2}\right)$

Our contribution

- Introduce a new methodology that makes any ERK scheme IDP

Our contribution

- Introduce a new methodology that makes any ERK scheme IDP
- Introduce a new methodology that makes any IMEX scheme IDP

Our contribution

- Introduce a new methodology that makes any ERK scheme IDP
- Introduce a new methodology that makes any IMEX scheme IDP
- Benefits
- employ optimally efficient methods
- break order barriers
- introduce IDP-IMEX schemes of order $p \geq 2$

Examples of optimally efficient ERK methods

- We will see that for an ERK-IDP scheme, maximal efficiency with $c_{\text {eff }}=1$ is reached for equi-distributed sub-stages

Examples of optimally efficient ERK methods

- We will see that for an ERK-IDP scheme, maximal efficiency with $c_{\text {eff }}=1$ is reached for equi-distributed sub-stages
- $\mathrm{RK}(2,2 ; 1)$ (midpoint), $\mathrm{RK}(3,3 ; 1)$ (Heun), $\mathrm{RK}(4,3 ; 1)$ [fourth-order on linear pb.]
- RK (5,4;1), RK (6,4;1) [ffifth-order on linear pb.] and RK(7,5;1) [AE \& JLG 22]

IDP ERK schemes

Peep under the hood of SSP $(1 / 3)$

- The beauty of SSP is that the forward Euler substep is a black box

Peep under the hood of SSP $(1 / 3)$

- The beauty of SSP is that the forward Euler substep is a black box
- This black box involves two fluxes (not just one as one might think)
- low-order in space: flux F^{L} and mass matrix \mathbb{M}^{L}
- high-order in space: flux \mathbf{F}^{H} and mass matrix \mathbb{M}^{H}

Peep under the hood of SSP $(1 / 3)$

- The beauty of SSP is that the forward Euler substep is a black box
- This black box involves two fluxes (not just one as one might think)
- low-order in space: flux F^{L} and mass matrix \mathbb{M}^{L}
- high-order in space: flux \mathbf{F}^{H} and mass matrix \mathbb{M}^{H}
- Some details

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right) \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, n+1} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)
\end{aligned}
$$

Peep under the hood of SSP $(1 / 3)$

- The beauty of SSP is that the forward Euler substep is a black box
- This black box involves two fluxes (not just one as one might think)
- low-order in space: flux F^{L} and mass matrix \mathbb{M}^{L}
- high-order in space: flux F^{H} and mass matrix \mathbb{M}^{H}
- Some details

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right) \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, n+1} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\tau \bar{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)
\end{aligned}
$$

Starting from $\mathbf{U}^{n} \in \mathcal{A}^{I}$,

- $\mathrm{U}^{\mathrm{L}, n+1} \in \mathcal{A}^{I}$ under CFL, but is low-order accurate ...
- $\mathbf{U}^{\mathrm{H}, n+1}$ departs from \mathcal{A}^{I} but is high-order accurate ...
\Longrightarrow employ a limiter to construct new update $\mathbf{U}^{n+1} \in \mathcal{A}^{I}$ as close as possible to $\mathbf{U}^{\mathrm{H}, n+1}$

Peep under the hood of SSP $(2 / 3)$

- Let us formalize a little bit
- Assumption 1. [forward Euler with low-order flux is IDP under CFL condition] $\exists \tau^{*}$ s.t. $\forall \tau \in\left(0, \tau^{*}\right]$ and all $\mathbf{V} \in\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

Peep under the hood of SSP (2/3)

- Let us formalize a little bit
- Assumption 1. [forward Euler with low-order flux is IDP under CFL condition] $\exists \tau^{*}$ s.t. $\forall \tau \in\left(0, \tau^{*}\right]$ and all $\mathbf{V} \in\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

- Assumption 2. [nonlinear limiting operator] $\ell: \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}$ s.t. for all $\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right)$,

$$
\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

Key idea: $\ell\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right)$ is built as a convex combination of $\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}$ and $\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{H}}$

Peep under the hood of SSP (2/3)

- Let us formalize a little bit
- Assumption 1. [forward Euler with low-order flux is IDP under CFL condition] $\exists \tau^{*}$ s.t. $\forall \tau \in\left(0, \tau^{*}\right]$ and all $\mathbf{V} \in\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

- Assumption 2. [nonlinear limiting operator] $\ell: \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}$ s.t. for all $\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right)$,

$$
\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

Key idea: $\ell\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}, \mathbf{F}^{\mathrm{H}}\right)$ is built as a convex combination of $\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}$ and $\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{H}}$

- Notice that both low/high-order updates start from the same vector \mathbf{V}

Peep under the hood of SSP (3/3)

- Given \mathbf{U}^{n} in the invariant set \mathcal{A}^{I}
- The forward Euler step proceeds as follows:
- compute low-order flux $\mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)$
- compute high-order flux $\mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)$
- compute update by limiting

$$
\mathbf{U}^{n+1}:=\ell\left(\mathbf{U}^{n}, \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)\right)
$$

Peep under the hood of SSP (3/3)

- Given \mathbf{U}^{n} in the invariant set \mathcal{A}^{I}
- The forward Euler step proceeds as follows:
- compute low-order flux $\mathrm{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)$
- compute high-order flux $\mathrm{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)$
- compute update by limiting

$$
\mathbf{U}^{n+1}:=\ell\left(\mathbf{U}^{n}, \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)\right)
$$

- (Well-known) Proposition. [Forward Euler is IDP]

Let Assumptions 1 and 2 be met. Assume $\mathbf{U}^{n} \in \mathcal{A}^{I}$. Then, $\mathbf{U}^{n+1} \in \mathcal{A}^{I}$ for all $\tau \in\left(0, \tau^{*}\right]$

The two key ideas of IDP-ERK

- We are now ready to go high-order in time!

The two key ideas of IDP-ERK

- We are now ready to go high-order in time!
- Externalize the limiting process at each ERK stage

The two key ideas of IDP-ERK

- We are now ready to go high-order in time!
- Externalize the limiting process at each ERK stage
- Rewrite ERK scheme in incremental form: at each stage,
- compute low/high-order updates using a common previous IDP-update
- apply limiter

The two key ideas of IDP-ERK

- We are now ready to go high-order in time!
- Externalize the limiting process at each ERK stage
- Rewrite ERK scheme in incremental form: at each stage,
- compute low/high-order updates using a common previous IDP-update
- apply limiter
- Literature:
- idea of externalizing the limiter proposed independently in [Kuzmin, Quezada de Luna, Ketcheson, Grüll, 22] for ERK and in [Quezada de Luna, Ketcheson 22] for DIRK
- central idea of writing scheme in incremental form and maximizing efficiency only in [AE, JLG 22]
- schemes with two time-derivatives [Gottlieb, Grant, Hu, Shu 22]

Butcher tableau of s-stage ERK method

- Generic form of Butcher tableau

Butcher tableau of s-stage ERK method

- Generic form of Butcher tableau

- Rename last line, set $c_{1}:=0$ and $c_{s+1}:=1$

0	0				
c_{2}	$a_{2,1}$	0			
c_{3}	$a_{3,1}$	$a_{3,2}$	0		
\vdots	\vdots		\ddots	\ddots	
c_{s}	$a_{s, 1}$	$a_{s, 2}$	\cdots	$a_{s, s-1}$	0
1	$a_{s+1,1}$	$a_{s+1,2}$	\cdots	$a_{s+1, s-1}$	$a_{s+1, s}$

Butcher tableau of s-stage ERK method

- Generic form of Butcher tableau

- Rename last line, set $c_{1}:=0$ and $c_{s+1}:=1$

- Assume $c_{k} \geq 0$ for all $k \in\{1: s+1\}$
- For all $l \in\{2: s+1\}$, set

$$
l^{\prime}(l):=\max \left\{k<l \mid c_{k} \leq c_{l}\right\}
$$

Think of $l^{\prime}(l):=l-1$ if sequence $\left(c_{l}\right)_{l \in\{1: s+1\}}$ is increasing

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- Loop over $l \in\{2: s+1\}$ (stage index)

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- Loop over $l \in\{2: s+1\}$ (stage index)
- Compute low-order update starting from $\mathbf{U}^{n, l^{\prime}}$ (think of $l^{\prime}=l-1$)

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\boldsymbol{\tau} \underbrace{\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{L}}}
$$

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- Loop over $l \in\{2: s+1\}$ (stage index)
- Compute low-order update starting from $\mathbf{U}^{n, l^{\prime}}$ (think of $l^{\prime}=l-1$)

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\tau \underbrace{\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{L}}}
$$

- Compute high-order update using same starting point $\mathbf{U}^{n, l^{\prime}}$ (incremental form)

$$
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n, l^{\prime}}+\tau \underbrace{\sum_{k \in\{1: l-1\}}\left(a_{l, k}-a_{l^{\prime}, k}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{H}}}
$$

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- Loop over $l \in\{2: s+1\}$ (stage index)
- Compute low-order update starting from $\mathbf{U}^{n, l^{\prime}}$ (think of $l^{\prime}=l-1$)

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\tau \underbrace{\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{L}}}
$$

- Compute high-order update using same starting point $\mathbf{U}^{n, l^{\prime}}$ (incremental form)

$$
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n, l^{\prime}}+\tau \underbrace{\sum_{k \in\{1: l-1\}}\left(a_{l, k}-a_{l^{\prime}, k}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{H}}}
$$

- Apply limiter: $\mathbf{U}^{n, l}:=\ell\left(\mathbf{U}^{n, l^{\prime}}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)$

Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- Loop over $l \in\{2: s+1\}$ (stage index)
- Compute low-order update starting from $\mathbf{U}^{n, l^{\prime}}$ (think of $l^{\prime}=l-1$)

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\boldsymbol{\tau} \underbrace{\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{L}}}
$$

- Compute high-order update using same starting point $\mathbf{U}^{n, l^{\prime}}$ (incremental form)

$$
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n, l^{\prime}}+\tau \underbrace{\sum_{k \in\{1: l-1\}}\left(a_{l, k}-a_{l^{\prime}, k}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)}_{:=\boldsymbol{\Phi}^{\mathrm{H}}}
$$

- Apply limiter: $\mathbf{U}^{n, l}:=\ell\left(\mathbf{U}^{n, l^{\prime}}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)$
- End of loop: return $\mathbf{U}^{n+1}:=\mathbf{U}^{n, s+1}$

Main results

- Theorem. [IDP-ERK scheme]

Let Assumptions 1 and 2 be met. Assume $\mathbf{U}^{n} \in \mathcal{A}^{I}$. Then, $\mathbf{U}^{n+1} \in \mathcal{A}^{I}$ (as well as all intermediate stages) for all

$$
\boldsymbol{\tau} \in\left(0, \tau^{*} / \max _{l \in\{2: s+1\}}\left(c_{l}-c_{l^{\prime}}\right)\right]
$$

Main results

- Theorem. [IDP-ERK scheme]

Let Assumptions 1 and 2 be met. Assume $\mathbf{U}^{n} \in \mathcal{A}^{I}$. Then, $\mathbf{U}^{n+1} \in \mathcal{A}^{I}$ (as well as all intermediate stages) for all

$$
\boldsymbol{\tau} \in\left(0, \tau^{*} / \max _{l \in\{2: s+1\}}\left(c_{l}-c_{l^{\prime}}\right)\right]
$$

- Corollary. [Optimal efficiency]
- $c_{\text {eff }}=1 /\left(s \max _{l \in\{2: s+1\}}\left(c_{l}-c_{l}\right)\right)$
- optimal efficiency (with $c_{\text {eff }}=1$) reached when points $\left(c_{l}\right)_{l \in\{1: s+1\}}$ are equi-distributed in $[0,1]$

Examples: second- and third-order methods

- Some optimal methods: $\operatorname{RK}(2,2 ; 1), \operatorname{RK}(3,3 ; 1), \operatorname{RK}(4,3 ; 1)$

$$
\begin{array}{c|cc}
0 & 0 & \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline 1 & 0 & 1
\end{array}
$$

Examples: second- and third-order methods

- Some optimal methods: $\operatorname{RK}(2,2 ; 1), \operatorname{RK}(3,3 ; 1), \operatorname{RK}(4,3 ; 1)$

$$
\begin{array}{c|cc}
0 & 0 & \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline 1 & 0 & 1
\end{array}
$$

- Some non-optimal methods: $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right), \operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$

Examples: fourth-order methods

- Two popular but sub-optimal methods: $\mathrm{RK}\left(4,4 ; \frac{1}{2}\right)$ and $\mathrm{RK}\left(4,4 ; \frac{3}{4}\right)$

0	0			
$\frac{1}{2}$	$\frac{1}{2}$	0		
$\frac{1}{2}$	0	$\frac{1}{2}$	0	
1	0	0	1	0
1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Examples: fourth-order methods

- Two popular but sub-optimal methods: $\mathrm{RK}\left(4,4 ; \frac{1}{2}\right)$ and $\mathrm{RK}\left(4,4 ; \frac{3}{4}\right)$

0	0			
$\frac{1}{2}$	$\frac{1}{2}$	0		
$\frac{1}{2}$	0	$\frac{1}{2}$	0	
1	0	0	1	0
1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

0	0			
$\frac{1}{3}$	$\frac{1}{3}$	0		
$\frac{2}{3}$	$-\frac{1}{3}$	1	0	
1	1	-1	1	0
1	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

- Optimal RK (5,4;1) and RK(6,4;1) devised in [AE \& JLG 22]
[both can be used within an IMEX scheme]
$R K(6,4 ; 1)$ is fifth-order accurate on linear problems

Examples: fifth-order methods

- Butcher's method $\operatorname{RK}\left(6,5 ; \frac{2}{3}\right)$ (requires $c_{6}=1$)

0	0					
$\frac{1}{4}$	$\frac{1}{4}$	0				
$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	0			
$\frac{1}{2}$	0	$-\frac{1}{2}$	1	0		
$\frac{3}{4}$	$\frac{3}{16}$	0	0	$\frac{9}{16}$	0	
1	$-\frac{3}{7}$	$\frac{2}{7}$	$\frac{12}{7}$	$-\frac{12}{7}$	$\frac{8}{7}$	0
1	$\frac{7}{90}$	0	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$

Examples: fifth-order methods

- Butcher's method $\operatorname{RK}\left(6,5 ; \frac{2}{3}\right)$ (requires $c_{6}=1$)

- Novel RK(7,5;1) method [AE \& JLG 22]

0	0						
$\frac{1}{7}$	0.1428571428571428	0					
$\frac{2}{7}$	0.0107112392440216	0.2750030464702641	0				
$\frac{3}{7}$	0.4812641640977338	-0.9634955610240432	0.9108028254977381	0			
$\frac{4}{7}$	0.3718168921589701	-0.5615016072648120	0.5590150320681445	0.2020982544662687	0		
$\frac{5}{7}$	0.2210152091353413	0.3526985345185138	-0.8940286416537777	0.8097519357352928	\ldots		
$\frac{6}{7}$	0.2038005573304709	-0.4759394836772968	1.0938423462712870	-0.2853403360392873	\ldots		
1	0.0979996468518433	-0.0044680013474903	0.3592897484042552	0.0225280828210172	\ldots		

Methodology for numerical tests

- All the tests are done by fixing $\mathrm{CFL} \in(0,1]$ and setting

$$
\tau:=\mathrm{CFL} \times s \times \tau^{*}
$$

\Longrightarrow all the methods perform the same number of flux evaluations and limiting operations independently of s
\Longrightarrow each method is IDP at least up to $\mathrm{CFL} \leq c_{\text {eff }}$

Methodology for numerical tests

- All the tests are done by fixing $\operatorname{CFL} \in(0,1]$ and setting

$$
\tau:=\mathrm{CFL} \times s \times \tau^{*}
$$

\Longrightarrow all the methods perform the same number of flux evaluations and limiting operations independently of s
\Longrightarrow each method is IDP at least up to $\mathrm{CFL} \leq c_{\text {eff }}$

- Local maximum/minimum principle enforced at every dof (relaxation performed as in [Guermond, Popov, Tomas, 19])
- Global maximum/minimum principle strictly enforced

Methodology for numerical tests

- All the tests are done by fixing $\mathrm{CFL} \in(0,1]$ and setting

$$
\tau:=\mathrm{CFL} \times s \times \tau^{*}
$$

\Longrightarrow all the methods perform the same number of flux evaluations and limiting operations independently of s
\Longrightarrow each method is IDP at least up to CFL $\leq c_{\text {eff }}$

- Local maximum/minimum principle enforced at every dof (relaxation performed as in [Guermond, Popov, Tomas, 19])
- Global maximum/minimum principle strictly enforced
- Affine constraints defining \mathcal{A} : Flux-Corrected Transport (FCT) [Boris \& Book 73; Zalesak 79; Kuzmin, Löhner, Turek 12]
- Non-affine constraints: some nonlinear technique
[Sanders 88; Coquel \& LeFloch 91; Liu \& Osher 96; Zhang \& Shu 11; Lohman \& Kuzmin 16; Guermond, Nazarov, Popov, Tomas 18]

1D linear transport, 4th-order FD (1/3)

- Linear transport, $D:=(0,1)$, periodic BCs

$$
\partial_{t} u+\partial_{x} u=0, \quad u_{0}(x):= \begin{cases}\left(4 \frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{\left(x_{1}-x_{0}\right)^{2}}\right)^{6} & x \in\left(x_{0}, x_{1}\right):=(0.1,0.4) \\ 0 & \text { otherwise }\end{cases}
$$

- 4th order Finite Differences in space

1D linear transport, 4th-order FD (1/3)

- Linear transport, $D:=(0,1)$, periodic BCs

$$
\partial_{t} u+\partial_{x} u=0, \quad u_{0}(x):= \begin{cases}\left(4 \frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{\left(x_{1}-x_{0}\right)^{2}}\right)^{6} & x \in\left(x_{0}, x_{1}\right):=(0.1,0.4) \\ 0 & \text { otherwise }\end{cases}
$$

- 4th order Finite Differences in space
- In the L^{1}-norm, all the methods achieve the expected convergence order with CFL of the order of 0.5
- Let us look at the more challenging L^{∞}-error measure

1D linear transport, 4th-order FD (2/3)

- Second-order methods: $\operatorname{RK}(2,2 ; 1)$ outperforms $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$

	$\mathrm{CFL}=0.2$					$\mathrm{CFL}=0.25$			
I	$\mathrm{RK}(2,2 ; 1)$	rate	$\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$	rate	RK $(2,2 ; 1)$	rate	$\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$	rate	
50	$4.72 \mathrm{E}-02$	-	$1.23 \mathrm{E}-01$	-	$4.91 \mathrm{E}-02$	-	$1.30 \mathrm{E}-01$	-	
100	$2.81 \mathrm{E}-03$	4.07	$1.50 \mathrm{E}-02$	3.03	$4.51 \mathrm{E}-03$	3.44	$4.32 \mathrm{E}-02$	1.60	
200	$1.16 \mathrm{E}-03$	1.28	$1.24 \mathrm{E}-03$	3.60	$2.01 \mathrm{E}-03$	1.17	$2.14 \mathrm{E}-03$	4.34	
400	$3.38 \mathrm{E}-04$	1.78	$3.47 \mathrm{E}-04$	1.84	$5.41 \mathrm{E}-04$	1.89	$5.67 \mathrm{E}-04$	1.91	
800	$8.79 \mathrm{E}-05$	1.94	$9.28 \mathrm{E}-05$	1.90	$1.38 \mathrm{E}-04$	1.97	$1.48 \mathrm{E}-04$	1.94	
1600	$2.22 \mathrm{E}-05$	1.98	$2.33 \mathrm{E}-05$	1.99	$3.47 \mathrm{E}-05$	1.99	$3.78 \mathrm{E}-05$	1.97	
3200	$5.58 \mathrm{E}-06$	1.99	$5.92 \mathrm{E}-06$	1.98	$8.73 \mathrm{E}-06$	1.99	$5.36 \mathrm{E}-05$	-.50	

1D linear transport, 4th-order FD $(2 / 3)$

- Second-order methods: RK(2,2;1) outperforms $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$

	$\mathrm{CFL}=0.2$					$\mathrm{CFL}=0.25$			
I	$\mathrm{RK}(2,2 ; 1)$	rate	$\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$	rate	RK $(2,2 ; 1)$	rate	$\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$	rate	
50	$4.72 \mathrm{E}-02$	-	$1.23 \mathrm{E}-01$	-	$4.91 \mathrm{E}-02$	-	$1.30 \mathrm{E}-01$	-	
100	$2.81 \mathrm{E}-03$	4.07	$1.50 \mathrm{E}-02$	3.03	$4.51 \mathrm{E}-03$	3.44	$4.32 \mathrm{E}-02$	1.60	
200	$1.16 \mathrm{E}-03$	1.28	$1.24 \mathrm{E}-03$	3.60	$2.01 \mathrm{E}-03$	1.17	$2.14 \mathrm{E}-03$	4.34	
400	$3.38 \mathrm{E}-04$	1.78	$3.47 \mathrm{E}-04$	1.84	$5.41 \mathrm{E}-04$	1.89	$5.67 \mathrm{E}-04$	1.91	
800	$8.79 \mathrm{E}-05$	1.94	$9.28 \mathrm{E}-05$	1.90	$1.38 \mathrm{E}-04$	1.97	$1.48 \mathrm{E}-04$	1.94	
1600	$2.22 \mathrm{E}-05$	1.98	$2.33 \mathrm{E}-05$	1.99	$3.47 \mathrm{E}-05$	1.99	$3.78 \mathrm{E}-05$	1.97	
3200	$5.58 \mathrm{E}-06$	1.99	$5.92 \mathrm{E}-06$	1.98	$8.73 \mathrm{E}-06$	1.99	$5.36 \mathrm{E}-05$	-.50	

- Third-order methods: $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$ behaves poorly, $\operatorname{RK}(4,3 ; 1)$ performs best

| | $\mathrm{CFL}=0.05$ | | | | | $\mathrm{CFL}=0.25$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | $\mathrm{RK}(3,3 ; 1)$ | rate | $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$ | rate | $\mathrm{RK}(4,3 ; 1)$ | rate | RK $(3,3 ; 1)$ | rate | SSPRK $\left(3,3 ; \frac{1}{3}\right)$ | rate | RK $(4,3 ; 1)$ | rate |
| 50 | $5.15 \mathrm{E}-02$ | - | $4.76 \mathrm{E}-02$ | - | $5.15 \mathrm{E}-02$ | - | $5.48 \mathrm{E}-02$ | - | $1.55 \mathrm{E}-01$ | - | $6.08 \mathrm{E}-02$ | - |
| 100 | $5.41 \mathrm{E}-03$ | 3.25 | $5.41 \mathrm{E}-03$ | 3.14 | $5.41 \mathrm{E}-03$ | 3.25 | $5.15 \mathrm{E}-03$ | 3.41 | $6.12 \mathrm{E}-02$ | 1.35 | $6.15 \mathrm{E}-03$ | 3.31 |
| 200 | $3.79 \mathrm{E}-04$ | 3.83 | $3.79 \mathrm{E}-04$ | 3.83 | $3.79 \mathrm{E}-04$ | 3.83 | $3.92 \mathrm{E}-04$ | 3.72 | $1.07 \mathrm{E}-03$ | 5.84 | $3.83 \mathrm{E}-04$ | 4.01 |
| 400 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.89 \mathrm{E}-05$ | 3.76 | $2.18 \mathrm{E}-04$ | 2.29 | $2.30 \mathrm{E}-05$ | 4.06 |
| 800 | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ | 3.85 | $3.20 \mathrm{E}-06$ | 3.18 | $6.41 \mathrm{E}-05$ | 1.77 | $1.59 \mathrm{E}-06$ | 3.85 |
| 1600 | $9.12 \mathrm{E}-08$ | 4.12 | $1.22 \mathrm{E}-07$ | 3.69 | $8.13 \mathrm{E}-08$ | 4.28 | $8.23 \mathrm{E}-07$ | 1.96 | $1.83 \mathrm{E}-05$ | 1.81 | $8.25 \mathrm{E}-08$ | 4.27 |
| 3200 | $1.52 \mathrm{E}-08$ | 2.58 | $6.84 \mathrm{E}-08$ | 0.84 | $5.31 \mathrm{E}-09$ | 3.94 | $2.40 \mathrm{E}-07$ | 1.78 | $5.39 \mathrm{E}-06$ | 1.76 | $5.39 \mathrm{E}-09$ | 3.94 |

1D linear transport, 4th-order FD (3/3)

- Fourth-order methods: $\operatorname{RK}(5,4 ; 1)$ outperforms $\operatorname{SSPRK}\left(5,4 ; \frac{1}{2}\right)$

| | $\mathrm{CFL}=0.05$ | | | | | $\mathrm{CFL}=0.2$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | RK $\left(4,4 ; \frac{1}{2}\right)$ | rate | $\operatorname{SSPRK}\left(5,4 ; \frac{1}{2}\right)$ | rate | RK $(5,4 ; 1)$ | rate | RK $\left(4,4 ; \frac{1}{2}\right)$ | rate | SSPRK $\left(5,4 ; \frac{1}{2}\right)$ | rate | RK $(5,4 ; 1)$ | rate |
| 50 | $4.32 \mathrm{E}-02$ | - | $5.37 \mathrm{E}-02$ | - | $5.95 \mathrm{E}-02$ | - | $1.26 \mathrm{E}-01$ | - | $5.63 \mathrm{E}-02$ | - | $5.55 \mathrm{E}-02$ | - |
| 100 | $5.41 \mathrm{E}-03$ | 3.00 | $5.09 \mathrm{E}-03$ | 3.40 | $5.09 \mathrm{E}-03$ | 3.54 | $1.65 \mathrm{E}-02$ | 2.93 | $7.82 \mathrm{E}-03$ | 2.85 | $5.72 \mathrm{E}-03$ | 3.28 |
| 200 | $3.79 \mathrm{E}-04$ | 3.84 | $3.04 \mathrm{E}-04$ | 4.07 | $3.04 \mathrm{E}-04$ | 4.07 | $4.10 \mathrm{E}-04$ | 5.33 | $3.00 \mathrm{E}-04$ | 4.36 | $3.82 \mathrm{E}-04$ | 3.90 |
| 400 | $2.27 \mathrm{E}-05$ | 4.06 | $1.91 \mathrm{E}-05$ | 3.99 | $1.91 \mathrm{E}-05$ | 3.99 | $5.02 \mathrm{E}-05$ | 3.03 | $2.27 \mathrm{E}-05$ | 4.06 | $2.29 \mathrm{E}-05$ | 4.06 |
| 800 | $1.58 \mathrm{E}-06$ | 3.85 | $1.19 \mathrm{E}-06$ | 4.00 | $1.19 \mathrm{E}-06$ | 4.00 | $1.10 \mathrm{E}-05$ | 2.19 | $1.79 \mathrm{E}-06$ | 3.67 | $1.60 \mathrm{E}-06$ | 3.84 |
| 1600 | $8.13 \mathrm{E}-08$ | 4.28 | $7.45 \mathrm{E}-08$ | 4.00 | $7.45 \mathrm{E}-08$ | 4.00 | $2.70 \mathrm{E}-06$ | 2.03 | $3.66 \mathrm{E}-07$ | 2.29 | $8.26 \mathrm{E}-08$ | 4.28 |
| 3200 | $5.36 \mathrm{E}-09$ | 3.92 | $4.65 \mathrm{E}-09$ | 4.00 | $4.65 \mathrm{E}-09$ | 4.00 | $7.69 \mathrm{E}-07$ | 1.81 | $9.29 \mathrm{E}-08$ | 1.98 | $5.38 \mathrm{E}-09$ | 3.94 |

1D linear transport, 4th-order FD (3/3)

- Fourth-order methods: RK(5,4;1) outperforms $\operatorname{SSPRK}\left(5,4 ; \frac{1}{2}\right)$

	$\mathrm{CFL}=0.05$					CFL $=0.2$						
I	RK $\left(4,4 ; \frac{1}{2}\right)$	rate	$\operatorname{SSPRK}\left(5,4 ; \frac{1}{2}\right)$	rate	RK $(5,4 ; 1)$	rate	RK $\left(4,4 ; \frac{1}{2}\right)$	rate	SSPRK $\left(5,4 ; \frac{1}{2}\right)$	rate	RK $(5,4 ; 1)$	rate
50	$4.32 \mathrm{E}-02$	-	$5.37 \mathrm{E}-02$	-	$5.95 \mathrm{E}-02$	-	$1.26 \mathrm{E}-01$	-	$5.63 \mathrm{E}-02$	-	$5.55 \mathrm{E}-02$	-
100	$5.41 \mathrm{E}-03$	3.00	$5.09 \mathrm{E}-03$	3.40	$5.09 \mathrm{E}-03$	3.54	$1.65 \mathrm{E}-02$	2.93	$7.82 \mathrm{E}-03$	2.85	$5.72 \mathrm{E}-03$	3.28
200	$3.79 \mathrm{E}-04$	3.84	$3.04 \mathrm{E}-04$	4.07	$3.04 \mathrm{E}-04$	4.07	$4.10 \mathrm{E}-04$	5.33	$3.80 \mathrm{E}-04$	4.36	$3.82 \mathrm{E}-04$	3.90
400	$2.27 \mathrm{E}-05$	4.06	$1.91 \mathrm{E}-05$	3.99	$1.91 \mathrm{E}-05$	3.99	$5.02 \mathrm{E}-05$	3.03	$2.27 \mathrm{E}-05$	4.06	$2.29 \mathrm{E}-05$	4.06
800	$1.58 \mathrm{E}-06$	3.85	$1.19 \mathrm{E}-06$	4.00	$1.19 \mathrm{E}-06$	4.00	$1.10 \mathrm{E}-05$	2.19	$1.79 \mathrm{E}-06$	3.67	$1.60 \mathrm{E}-06$	3.84
1600	$8.13 \mathrm{E}-08$	4.28	$7.45 \mathrm{E}-08$	4.00	$7.45 \mathrm{E}-08$	4.00	$2.70 \mathrm{E}-06$	2.03	$3.66 \mathrm{E}-07$	2.29	$8.26 \mathrm{E}-08$	4.28
3200	$5.36 \mathrm{E}-09$	3.92	$4.65 \mathrm{E}-09$	4.00	$4.65 \mathrm{E}-09$	4.00	$7.69 \mathrm{E}-07$	1.81	$9.29 \mathrm{E}-08$	1.98	$5.38 \mathrm{E}-09$	3.94

- Fifth-order methods: no SSP competitor!

	$\mathrm{CFL}=0.02$				$\mathrm{CFL}=0.025$			
I	$\mathrm{RK}\left(6,5 ; \frac{1}{3}\right)$	rate	$\mathrm{RK}(7,5 ; 1)$	rate	$\mathrm{RK}\left(6,5 ; \frac{2}{3}\right)$	rate	$\mathrm{RK}(7,5 ; 1)$	rate
50	$5.19 \mathrm{E}-02$	-						
100	$5.41 \mathrm{E}-03$	3.26						
200	$3.79 \mathrm{E}-04$	3.83	$3.79 \mathrm{E}-04$	3.83	$3.79 \mathrm{E}-04$	3.84	$3.79 \mathrm{E}-04$	3.83
400	$2.27 \mathrm{E}-05$	4.06						
800	$1.58 \mathrm{E}-06$	3.85						
1600	$8.48 \mathrm{E}-08$	4.22	$8.13 \mathrm{E}-08$	4.28	$8.71 \mathrm{E}-08$	4.18	$8.13 \mathrm{E}-08$	4.28
3200	$7.10 \mathrm{E}-09$	3.58	$5.92 \mathrm{E}-09$	3.78	$1.16 \mathrm{E}-08$	2.91	$5.56 \mathrm{E}-09$	3.87

Linear transport with non-smooth solution

- Three-solid problem with rotating advection field [Zalesak 79]
- Continuous \mathbb{P}^{1}-FEM on unstructured non-nested Delaunay meshes
- Solutions at $T=1$ using $\operatorname{RK}(2,2 ; 1)$ (midpoint rule) at $\mathrm{CFL}=0.25$
[From left to right: $I=6561 ; I=24917 ; I=98648 ; I=389860$ dofs]

- Relative error in L^{1}-norm for $\operatorname{RK}(2,2 ; 1)$ and $\operatorname{RK}(4,3 ; 1)$

I	RK $(2,2 ; 1)$	rate	RK $(4,3 ; 1)$	rate
1605	$2.45 \mathrm{E}-01$	-	$2.49 \mathrm{E}-01$	-
6561	$1.28 \mathrm{E}-01$	0.93	$1.31 \mathrm{E}-01$	0.92
24917	$7.34 \mathrm{E}-02$	0.81	$7.49 \mathrm{E}-02$	0.84
98648	$4.26 \mathrm{E}-02$	0.78	$4.44 \mathrm{E}-02$	0.76
389860	$2.44 \mathrm{E}-02$	0.81	$2.56 \mathrm{E}-02$	0.80

2D Burgers' equation ($1 / 3$)

- 2D Burgers' equation in $D:=(-.25,1.75)^{2}$

$$
\partial_{t} u+\nabla \cdot \boldsymbol{f}(u)=0, \quad \boldsymbol{f}(u):=\frac{1}{2}\left(u^{2}, u^{2}\right)^{\top}
$$

with initial data

$$
u_{0}(\boldsymbol{x}):= \begin{cases}1 & \text { if }\left|x_{1}-\frac{1}{2}\right| \leq 1 \text { and }\left|x_{2}-\frac{1}{2}\right| \leq 1 \\ -a & \text { otherwise }\end{cases}
$$

- This problem exhibits many sonic points, which makes methods with too little low/high-order viscosity to fail [Guermond, Popov 17]
- Solution at $T=0.65$ computed with $\operatorname{RK}(4,3 ; 1)$ at $\mathrm{CFL}=0.25$ using 801^{2} grid points

2D Burgers' equation (2/3)

- $T=0.65, \mathrm{CFL}=0.25$, relative L^{1}-error for all the methods

I	RK $(2,1 ; 1)$	rate	SSPRK $\left(2,2 ; \frac{1}{2}\right)$	rate	I	RK $(3,3 ; 1)$	rate	SSPRK $\left(3,3 ; \frac{1}{3}\right)$	rate	RK $(4,3 ; 1)$	rate		
50	$6.61 \mathrm{E}-02$	-	$6.70 \mathrm{E}-02$	-	50	$6.61 \mathrm{E}-02$	-	$6.74 \mathrm{E}-02$	-	$6.62 \mathrm{E}-02$			
100	$3.31 \mathrm{E}-02$	1.00	$3.34 \mathrm{E}-02$	1.00	100	$3.31 \mathrm{E}-02$	1.00	$3.35 \mathrm{E}-02$	1.01	$3.31 \mathrm{E}-02$	1.00		
200	$2.12 \mathrm{E}-02$	0.65	$2.12 \mathrm{E}-02$	0.66	200	$2.12 \mathrm{E}-02$	0.65	$2.13 \mathrm{E}-02$	0.66	$2.12 \mathrm{E}-02$	0.65		
400	$1.20 \mathrm{E}-02$	0.82	$1.16 \mathrm{E}-02$	0.87	400	$1.20 \mathrm{E}-02$	0.82	$1.15 \mathrm{E}-02$	0.89	$1.20 \mathrm{E}-02$	0.82		
800	$6.04 \mathrm{E}-03$	0.99	$5.73 \mathrm{E}-03$	1.02	800	$6.04 \mathrm{E}-03$	0.99	$5.72 \mathrm{E}-03$	1.01	$6.04 \mathrm{E}-03$	0.99		
I	RK $\left(4,4 ; \frac{1}{2}\right)$	rate	RK $\left(4,4 ; \frac{3}{4}\right)$	rate	$\mathrm{SSPRK}\left(5,4 ; \frac{1}{2}\right)$	rate	RK $(5,4 ; 1)$	rate	$\mathrm{RK}(6,4 ; 1)$	rate			
50	$6.74 \mathrm{E}-02$	-	$6.63 \mathrm{E}-02$	-	$6.72 \mathrm{E}-02$	-	$6.63 \mathrm{E}-02$	-	$6.60 \mathrm{E}-02$	-			
100	$3.35 \mathrm{E}-02$	1.01	$3.31 \mathrm{E}-02$	1.00	$3.43 \mathrm{E}-02$	0.97	$3.32 \mathrm{E}-02$	1.00	$3.30 \mathrm{E}-02$	1.00			
200	$2.13 \mathrm{E}-02$	0.66	$2.11 \mathrm{E}-02$	0.65	$2.26 \mathrm{E}-02$	0.60	$2.12 \mathrm{E}-02$	0.64	$2.11 \mathrm{E}-02$	0.64			
400	$1.17 \mathrm{E}-02$	0.87	$1.18 \mathrm{E}-02$	0.84	$1.28 \mathrm{E}-02$	0.82	$1.20 \mathrm{E}-02$	0.82	$1.20 \mathrm{E}-02$	0.82			
800	$5.75 \mathrm{E}-03$	1.02	$5.84 \mathrm{E}-03$	1.02	$6.20 \mathrm{E}-03$	1.05	$6.06 \mathrm{E}-03$	0.99	$6.03 \mathrm{E}-03$	0.99			
I	RK(6,5; $\left.\frac{2}{3}\right)$	rate	$\mathrm{RK}(7,5 ; 1)$	rate									
50	$6.65 \mathrm{E}-02$	-	$6.62 \mathrm{E}-02$	-									
100	$3.32 \mathrm{E}-02$	1.00	$3.31 \mathrm{E}-02$	1.00									
200	$2.11 \mathrm{E}-02$	0.65	$2.12 \mathrm{E}-02$	0.65									
400	$1.18 \mathrm{E}-02$	0.84	$1.20 \mathrm{E}-02$	0.82									
800	$5.79 \mathrm{E}-03$	1.02	$6.06 \mathrm{E}-03$	0.99									

$\bullet \Longrightarrow$ at moderate CFL, all the methods converge equally well (all at order one)

2D Burgers' equation ($3 / 3$)

- Challenge methods by increasing CFL
- Results for second- and third-order methods (top), fourth-order, fifth-order methods plus a recap for all optimal methods

- $\Longrightarrow \operatorname{SSPRK}(2,2)$ and $\operatorname{SSPRK}(3,3)$ start loosing accuracy at $\operatorname{CFL} \approx 0.5$, whereas IDP-ERK methods behave well over whole CFL range

Conclusions from numerical tests

- All IDP-ERK methods perform as well, and often better, than SSPRK methods of the same order

Conclusions from numerical tests

- All IDP-ERK methods perform as well, and often better, than SSPRK methods of the same order
- $\mathrm{RK}(2,2 ; 1)$ (midpoint rule) outperforms popular $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$
- RK(4,3;1) (vastly) outperforms popular $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$

Conclusions from numerical tests

- All IDP-ERK methods perform as well, and often better, than SSPRK methods of the same order
- $\mathrm{RK}(2,2 ; 1)$ (midpoint rule) outperforms popular $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$
- $\operatorname{RK}(4,3 ; 1)$ (vastly) outperforms popular $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$
- The considered fourth-order methods provide comparable results

Conclusions from numerical tests

- All IDP-ERK methods perform as well, and often better, than SSPRK methods of the same order
- $\mathrm{RK}(2,2 ; 1)$ (midpoint rule) outperforms popular $\operatorname{SSPRK}\left(2,2 ; \frac{1}{2}\right)$
- $\operatorname{RK}(4,3 ; 1)$ (vastly) outperforms popular $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$
- The considered fourth-order methods provide comparable results
- Novel fifth-order IDP-ERK method with no SSP competitor

IDP IMEX schemes

Main ideas

- Consider low-order and high-order fluxes for
- hyperbolic terms
- parabolic (diffusion/relaxation) terms

Main ideas

- Consider low-order and high-order fluxes for
- hyperbolic terms
- parabolic (diffusion/relaxation) terms
- Quasi-linearization of parabolic fluxes (both low- and high-order)

Main ideas

- Consider low-order and high-order fluxes for
- hyperbolic terms
- parabolic (diffusion/relaxation) terms
- Quasi-linearization of parabolic fluxes (both low- and high-order)
- Key assumption: Under CFL condition, we have two IDP steps
- forward Euler with low-order hyperbolic flux
- backward Euler with low-order quasi-linear parabolic flux

Main ideas

- Consider low-order and high-order fluxes for
- hyperbolic terms
- parabolic (diffusion/relaxation) terms
- Quasi-linearization of parabolic fluxes (both low- and high-order)
- Key assumption: Under CFL condition, we have two IDP steps
- forward Euler with low-order hyperbolic flux
- backward Euler with low-order quasi-linear parabolic flux
- Rewrite IMEX scheme in incremental form

Main ideas

- Consider low-order and high-order fluxes for
- hyperbolic terms
- parabolic (diffusion/relaxation) terms
- Quasi-linearization of parabolic fluxes (both low- and high-order)
- Key assumption: Under CFL condition, we have two IDP steps
- forward Euler with low-order hyperbolic flux
- backward Euler with low-order quasi-linear parabolic flux
- Rewrite IMEX scheme in incremental form
- Apply (possibly distinct) limiters to hyperbolic and parabolic substeps

Butcher tableaux

- Explicit Butcher tableau

Butcher tableaux

- Explicit Butcher tableau

- Implicit Butcher tableau

Butcher tableaux

- Explicit Butcher tableau

- Implicit Butcher tableau

- Both tableaux share the same coefficients $\left(c_{l}\right)_{l \in\{1: s+1\}}$

Examples: second-order IMEX

- Heun + Crank-Nicolson: efficiency ratio is $\frac{1}{2}$

0	0	
1	1	0
1	$\frac{1}{2}$	$\frac{1}{2}$

0	0	
1	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$

Examples: second-order IMEX

- Heun + Crank-Nicolson: efficiency ratio is $\frac{1}{2}$

0	0	
1	1	0
1	$\frac{1}{2}$	$\frac{1}{2}$

0	0	
1	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$

- Explicit + implicit midpoint rules: efficiency ratio is 1

$$
\begin{array}{c|ccc|cc}
0 & 0 & & 0 & 0 & \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline 1 & 0 & 1
\end{array} \quad \begin{array}{llll}
\frac{1}{2} & 0 & \frac{1}{2} \\
\hline 1 & 0 & 1
\end{array}
$$

Examples: third-order IMEX (1/2)

- Three-stage, third-order method [Nørsett 74, Crouzeix 75]

$$
\left(\gamma:=\frac{1}{2}+\frac{1}{2 \sqrt{3}} \approx 0.78867\right)
$$

0	0		
γ	γ	0	
$1-\gamma$	$\gamma-1$	$2-2 \gamma$	0
1	0	$\frac{1}{2}$	$\frac{1}{2}$

0	0		
γ	0	γ	
$1-\gamma$	0	$1-2 \gamma$	γ
1	0	$\frac{1}{2}$	$\frac{1}{2}$

- Implicit method is A-stable, but efficiency ratio is only $\frac{1}{3} \gamma \approx 0.26$

Examples: third-order IMEX (1/2)

- Three-stage, third-order method [Nørsett 74, Crouzeix 75]

$$
\left(\gamma:=\frac{1}{2}+\frac{1}{2 \sqrt{3}} \approx 0.78867\right)
$$

0	0		
γ	γ	0	
$1-\gamma$	$\gamma-1$	$2-2 \gamma$	0
1	0	$\frac{1}{2}$	$\frac{1}{2}$

0	0		
γ	0	γ	
$1-\gamma$	0	$1-2 \gamma$	γ
1	0	$\frac{1}{2}$	$\frac{1}{2}$

- Implicit method is A-stable, but efficiency ratio is only $\frac{1}{3} \gamma \approx 0.26$
- New scheme with optimal efficiency 1 [AE \& JLG 22]

$$
\begin{array}{c|cccc|ccc}
0 & 0 & & & 0 & 0 & & \\
\frac{1}{3} & \frac{1}{3} & 0 & & \frac{1}{3} & \frac{1}{3}-\gamma & \gamma & \\
\frac{2}{3} & 0 & \frac{2}{3} & 0 & & \frac{2}{3} & \gamma & \frac{2}{3}-2 \gamma \\
\hline 1 & \frac{1}{4} & 0 & \frac{3}{4} & & \gamma \\
\hline 1 & \frac{1}{4} & 0 & \frac{3}{4}
\end{array}
$$

- Implicit method has the same amplification function as above (and hence is A-stable)

Examples: third-order IMEX (2/2)

- Novel four-stage, third-order IMEX scheme with optimal efficiency 1 and implicit method is L-stable
- Explicit scheme is $\operatorname{ERK}(4,3 ; 1)$ (already considered!)

0	0			
$\frac{1}{4}$	$\frac{1}{4}$	0		
$\frac{1}{2}$	0	$\frac{1}{2}$	0	
$\frac{3}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0
1	0	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$

- Implicit scheme as follows:

0	0			
$\frac{1}{4}$	-0.1858665215084591	0.4358665215084591		
$\frac{1}{2}$	-0.4367256409878701	0.5008591194794110	0.4358665215084591	
$\frac{3}{4}$	-0.0423391342724147	0.7701152303135821	-0.4136426175496265	0.4358665215084591
1	0	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$

Examples: fourth-order IMEX

- Five- and six-stage schemes reviewed in [Carpenter \& Kennedy 19]
- Novel five-stage scheme devised in [AE \& JLG 22]
- optimal efficiency 1
- implicit scheme is singly diagonal and L-stable
- Novel six-stage scheme devised in [AE \& JLG 22] with similar properties
- the scheme is of linear order 5

Compressible Navier-Stokes equations, 1D

- Travelling viscous wave [Becker, 1922; Johnson, 13], $\Omega:=[-0.5,1], T=3$
- Ideal gas law, constant properties $(\mu=0.01, \operatorname{Pr}=0.75)$
- Cumulated relative L^{1}-error on density, momentum and total energy
- Challenge all IMEX methods by increasing CFL

Compressible Navier-Stokes equations, 1D

- Travelling viscous wave [Becker, 1922; Johnson, 13], $\Omega:=[-0.5,1], T=3$
- Ideal gas law, constant properties ($\mu=0.01, \operatorname{Pr}=0.75$)
- Cumulated relative L^{1}-error on density, momentum and total energy
- Challenge all IMEX methods by increasing CFL

- Main conclusions:
- $\operatorname{IMEX}(2,2 ; 1)$ always outperforms $\operatorname{IMEX}\left(2,2 ; \frac{1}{2}\right)$
- IMEX $(4,3 ; 1)$ outperforms the other two third-order methods
- $\operatorname{IMEX}(6,4 ; 1)$ slightly more robust than $\operatorname{IMEX}(5,4 ; 1)$

Compressible Navier-Stokes equations, 2D

- Viscous shock tube problem [Daru \& Tenaud, 01, 09]
- $\Omega:=[0,1] \times\left[0, \frac{1}{2}\right], T=1$
- Ideal gas law, constant properties ($\mu=0.001, \operatorname{Pr}=0.73$)
- \mathbb{P}_{1} Lagrange $\operatorname{FEM}, \operatorname{IMEX}(4,3 ; 1)$ at $\mathrm{CFL}=1.5$

Compressible Navier-Stokes equations, 2D

- Viscous shock tube problem [Daru \& Tenaud, 01, 09]
- $\Omega:=[0,1] \times\left[0, \frac{1}{2}\right], T=1$
- Ideal gas law, constant properties $(\mu=0.001, \operatorname{Pr}=0.73)$
- \mathbb{P}_{1} Lagrange FEM, $\operatorname{IMEX}(4,3 ; 1)$ at $\mathrm{CFL}=1.5$
- Density isocontours

Compressible Navier-Stokes equations, 2D

- Viscous shock tube problem [Daru \& Tenaud, 01, 09]
- $\Omega:=[0,1] \times\left[0, \frac{1}{2}\right], T=1$
- Ideal gas law, constant properties $(\mu=0.001, \operatorname{Pr}=0.73)$
- \mathbb{P}_{1} Lagrange $\operatorname{FEM}, \operatorname{IMEX}(4,3 ; 1)$ at $\mathrm{CFL}=1.5$
- Density isocontours

- Numerical tests using non-ideal gas laws in progress

Thank you for your attention!

Euler IDP-IMEX scheme

- Gentle introduce ideas on Euler IDP-IMEX scheme

Euler IDP-IMEX scheme

- Gentle introduce ideas on Euler IDP-IMEX scheme
- F^{L} : Low-order approx. of hyperbolic flux $-\nabla \cdot f(\boldsymbol{u})$
- $\mathbf{G}^{\mathrm{L}, \text { lin }}\left(\mathbf{W}^{n} ; \cdot\right)$: Low-order quasi-linear approx. of parabolic flux $-\nabla \cdot g(u, \nabla u)+S(u)$

Euler IDP-IMEX scheme

- Gentle introduce ideas on Euler IDP-IMEX scheme
- F^{L} : Low-order approx. of hyperbolic flux $-\nabla \cdot f(\boldsymbol{u})$
- $\mathbf{G}^{\mathrm{L}, \text { lin }}\left(\mathbf{W}^{n} ; \cdot\right)$: Low-order quasi-linear approx. of parabolic flux $-\nabla \cdot g(u, \nabla u)+S(u)$
- Consider low-order quasi-linear update

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}=\underbrace{\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)}_{=: \mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, n}}+\tau \mathrm{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{\mathrm{L}, n} ; \mathbf{U}^{\mathrm{L}, n+1}\right)
$$

Euler IDP-IMEX scheme

- Gentle introduce ideas on Euler IDP-IMEX scheme
- F^{L} : Low-order approx. of hyperbolic flux $-\nabla \cdot \boldsymbol{f}(\boldsymbol{u})$
- $\mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n} ; \cdot\right)$: Low-order quasi-linear approx. of parabolic flux $-\nabla \cdot \boldsymbol{g}(\boldsymbol{u}, \nabla \boldsymbol{u})+\boldsymbol{S}(\boldsymbol{u})$
- Consider low-order quasi-linear update

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}=\underbrace{\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)}_{=: \mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, n}}+\tau \mathrm{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{\mathrm{L}, n} ; \mathbf{U}^{\mathrm{L}, n+1}\right)
$$

- This can be decomposed as
- hyperbolic sub-step (explicit update):

$$
\mathbf{W}^{\mathrm{L}, n}:=\mathbf{U}^{n}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)
$$

- parabolic sub-step (quasi-linear solve):

$$
\mathbf{U}^{\mathrm{L}, n+1}:=\left(\mathbb{I}-\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{\mathrm{L}, n} ; \cdot\right)\right)^{-1}\left(\mathbf{W}^{\mathrm{L}, n}\right)
$$

Key assumption on low-order fluxes

- Assumption 1. There exists $\tau^{*}>0$ s.t. for all $\tau \in\left(0, \tau^{*}\right]$,
- forward Euler with low-order hyperbolic flux is IDP:

$$
\left\{\mathbf{v} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{v}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

Key assumption on low-order fluxes

- Assumption 1. There exists $\tau^{*}>0$ s.t. for all $\tau \in\left(0, \tau^{*}\right]$,
- forward Euler with low-order hyperbolic flux is IDP:

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

- backward Euler with low-order quasi-linear parabolic flux is IDP: For all $\mathbf{W} \in \mathcal{A}^{I}, \mathbb{I}-\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \operatorname{lin}}(\mathbf{W} ; \cdot):\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}$ is bijective and

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\left(\mathbb{I}-\tau\left(\mathbb{M}^{\mathbf{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \operatorname{lin}}(\mathbf{V} ; \cdot)\right)^{-1}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

Notice that quasi-linearization is performed at \mathbf{V}

Key assumption on low-order fluxes

- Assumption 1. There exists $\tau^{*}>0$ s.t. for all $\tau \in\left(0, \tau^{*}\right]$,
- forward Euler with low-order hyperbolic flux is IDP:

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

- backward Euler with low-order quasi-linear parabolic flux is IDP: For all $\mathbf{W} \in \mathcal{A}^{I}, \mathbb{I}-\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \text { lin }}(\mathbf{W} ; \cdot):\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}$ is bijective and

$$
\left\{\mathbf{V} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\left(\mathbb{I}-\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \operatorname{lin}}(\mathbf{V} ; \cdot)\right)^{-1}(\mathbf{V}) \in \mathcal{A}^{I}\right\}
$$

Notice that quasi-linearization is performed at \mathbf{V}

- (Well-known) Proposition. [Low-order Euler IDP-IMEX]

Let Assumption 1 hold. Assume that $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and $\tau \in\left(0, \tau^{*}\right]$. Then, $\mathbf{U}^{\mathrm{L}, n+1} \in \mathcal{A}^{I}$

High-order Euler IDP-IMEX (1/2)

- We want to use high-order fluxes in space!

High-order Euler IDP-IMEX (1/2)

- We want to use high-order fluxes in space!
- Assumption 2. There exist two nonlinear limiting operators

$$
\ell^{\text {hyp }}, \ell^{\text {par }}: \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}
$$

such that

- for all $\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{L}} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell^{\mathrm{hyp}}\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

- for all $\left(\mathbf{W}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right) \in \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{W}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Psi}^{\mathrm{L}} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell^{\mathrm{par}}\left(\mathbf{W}, \mathbf{\Psi}^{\mathrm{L}}, \mathbf{\Psi}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

High-order Euler IDP-IMEX (1/2)

- We want to use high-order fluxes in space!
- Assumption 2. There exist two nonlinear limiting operators

$$
\ell^{\text {hyp }}, \ell^{\text {par }}: \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I} \rightarrow\left(\mathbb{R}^{m}\right)^{I}
$$

such that

- for all $\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{V}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{L}} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell^{\mathrm{hyp}}\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

- for all $\left(\mathbf{W}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right) \in \mathcal{A}^{I} \times\left(\mathbb{R}^{m}\right)^{I} \times\left(\mathbb{R}^{m}\right)^{I}$,

$$
\left\{\mathbf{W}+\tau\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Psi}^{\mathrm{L}} \in \mathcal{A}^{I}\right\} \Longrightarrow\left\{\ell^{\mathrm{par}}\left(\mathbf{W}, \mathbf{\Psi}^{\mathrm{L}}, \mathbf{\Psi}^{\mathrm{H}}\right) \in \mathcal{A}^{I}\right\}
$$

- Important remarks
- the invariant domains enforced by the two limiters can be different
- bounds for limiting are deduced from the low-order updates

High-order Euler IDP-IMEX (2/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{I}$, high-order Euler IDP-IMEX proceeds as follows:

$$
\mathbf{U}^{n} \underbrace{\stackrel{(1)}{\longrightarrow}}_{\text {hyperbolic step }}\left(\mathbf{W}^{\mathrm{L}, n+1}, \mathbf{W}^{\mathrm{H}, n+1}\right) \stackrel{(2)}{\longrightarrow} \mathbf{W}^{n+1} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, n+1}, \mathbf{U}^{\mathrm{H}, n+1}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n+1}
$$

High-order Euler IDP-IMEX (2/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{I}$, high-order Euler IDP-IMEX proceeds as follows:

$$
\mathbf{U}^{n} \underbrace{\stackrel{(1)}{\longrightarrow}\left(\mathbf{W}^{\mathrm{L}, n+1}, \mathbf{W}^{\mathrm{H}, n+1}\right) \stackrel{(2)}{\longrightarrow}}_{\text {hyperbolic step }} \mathbf{W}^{n+1} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, n+1}, \mathbf{U}^{\mathrm{H}, n+1}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n+1}
$$

- Hyperbolic steps (1) and (2): compute low/high-order updates and limit

$$
\begin{aligned}
& \mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, n+1}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbb{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \\
& \mathbb{M}^{\mathrm{H}} \mathbf{W}^{\mathrm{H}, n+1}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\tau \mathbb{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right), \quad \mathbf{W}^{n+1}:=\ell^{\mathrm{hyp}}\left(\mathbf{U}^{n}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)
\end{aligned}
$$

High-order Euler IDP-IMEX (2/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{I}$, high-order Euler IDP-IMEX proceeds as follows:

$$
\mathbf{U}^{n} \underbrace{\stackrel{(1)}{\longrightarrow}\left(\mathbf{W}^{\mathrm{L}, n+1}, \mathbf{W}^{\mathrm{H}, n+1}\right) \stackrel{(2)}{\longrightarrow}}_{\text {hyperbolic step }} \mathbf{W}^{n+1} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, n+1}, \mathbf{U}^{\mathrm{H}, n+1}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n+1}
$$

- Hyperbolic steps (1) and (2): compute low/high-order updates and limit

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, n+1} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \\
\mathbb{M}^{\mathrm{H}} \mathbf{W}^{\mathrm{H}, n+1} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right),
\end{aligned} \quad \mathbf{W}^{n+1}:=\ell^{\mathrm{hyp}}\left(\mathbf{U}^{n}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)
$$

- Parabolic steps (3) and (4): compute low/high-order updates (quasi-linear solves) and limit

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}-\boldsymbol{\tau} \mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n+1} ; \mathbf{U}^{\mathrm{L}, n+1}\right) & :=\mathbb{M}^{\mathrm{L}} \mathbf{W}^{n+1} \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, n+1}-\boldsymbol{\tau} \mathrm{G}^{\mathrm{H}, \operatorname{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, n+1}\right) & :=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{n+1}
\end{aligned}
$$

$$
\mathbf{U}^{n+1}:=\ell^{\operatorname{par}}\left(\mathbf{W}^{n+1}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right)
$$

High-order Euler IDP-IMEX (2/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{I}$, high-order Euler IDP-IMEX proceeds as follows:

$$
\mathbf{U}^{n} \underbrace{\stackrel{(1)}{\longrightarrow}\left(\mathbf{W}^{\mathrm{L}, n+1}, \mathbf{W}^{\mathrm{H}, n+1}\right) \xrightarrow{(2)}}_{\text {hyperbolic step }} \mathbf{W}^{n+1} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, n+1}, \mathbf{U}^{\mathrm{H}, n+1}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n+1}
$$

- Hyperbolic steps (1) and (2): compute low/high-order updates and limit

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L} n+1} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\tau \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right),
\end{aligned} \quad \mathbf{W}^{n+1}:=\ell^{\mathrm{hyp}}\left(\mathbf{U}^{n}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)
$$

- Parabolic steps (3) and (4): compute low/high-order updates (quasi-linear solves) and limit

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}-\tau \mathbb{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n+1} ; \mathbf{U}^{\mathrm{L}, n+1}\right): & : \mathbb{M}^{\mathrm{L}} \mathbf{W}^{n+1}, \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, n+1}-\tau \mathbb{G}^{\mathrm{H}, \operatorname{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, n+1}\right):=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{n+1}, & \mathbf{U}^{n+1}:=\ell^{\operatorname{par}}\left(\mathbf{W}^{n+1}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right),
\end{aligned}
$$

- (Well-known) Proposition. [High-order Euler IDP-IMEX]

Let Assumptions 1 and 2 hold. Assume that $\mathbf{U}^{n} \in \mathcal{A}^{I}$ and $\tau \in\left(0, \tau^{*}\right]$. Then, $\mathbf{U}^{n+1} \in \mathcal{A}^{I}$

High-order IDP-IMEX

- We are now ready to go high-order in time!
- Key idea. Consider the following two ODE systems on $\left(t^{n}, t^{n+1}\right)$:

$$
\begin{aligned}
& \mathbb{M}^{\mathrm{L}} \partial_{t} \mathbf{U}=\underbrace{\mathbf{F}^{\mathrm{L}}(\mathbf{U})}_{\text {explicit }}+\underbrace{\mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n, l} ; \mathbf{U}\right)}_{\text {implicit }} \quad \text { (at each stage } l) \\
& \mathbb{M}^{\mathrm{H}} \partial_{t} \mathbf{U}=\underbrace{\mathbf{F}^{\mathrm{H}}(\mathbf{U})+\mathbf{G}^{\mathrm{H}}(\mathbf{U})-\mathbf{G}^{\mathrm{H}, \operatorname{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}\right)}_{\text {explicit }}+\underbrace{\mathbf{G}^{\mathrm{H}, \operatorname{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}\right)}_{\text {implicit }}
\end{aligned}
$$

Butcher tableaux

- Explicit Butcher tableau

$$
\begin{array}{c|ccccc}
0 & 0 & & & & \\
c_{2} & a_{2,1}^{\mathrm{e}} & 0 & & & \\
c_{3} & a_{3,1}^{\mathrm{e}} & a_{3,2}^{\mathrm{e}} & 0 & & \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
c_{s} & a_{s, 1}^{\mathrm{e}} & a_{s, 2}^{\mathrm{e}} & \cdots & a_{s, s-1}^{\mathrm{e}} & 0 \\
\hline 1 & a_{s+1,1}^{\mathrm{e}} & a_{s+1,2}^{\mathrm{e}} & \cdots & a_{s+1, s-1}^{\mathrm{e}} & a_{s+1, s}^{\mathrm{e}}
\end{array}
$$

Butcher tableaux

- Explicit Butcher tableau

$$
\begin{array}{c|ccccc}
0 & 0 & & & & \\
c_{2} & a_{2,1}^{\mathrm{e}} & 0 & & & \\
c_{3} & a_{3,1}^{\mathrm{e}} & a_{3,2}^{\mathrm{e}} & 0 & & \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
c_{s} & a_{s, 1}^{\mathrm{e}} & a_{s, 2}^{\mathrm{e}} & \cdots & a_{s, s-1}^{\mathrm{e}} & 0 \\
\hline 1 & a_{s+1,1}^{\mathrm{e}} & a_{s+1,2}^{\mathrm{e}} & \cdots & a_{s+1, s-1}^{\mathrm{e}} & a_{s+1, s}^{\mathrm{e}}
\end{array}
$$

- Implicit Butcher tableau

$$
\begin{array}{c|ccccc}
0 & 0 & & & & \\
c_{2} & a_{2,1}^{\mathrm{i}} & a_{2,2}^{\mathrm{i}} & & & \\
c_{3} & a_{3,1}^{\mathrm{i}} & a_{3,2}^{\mathrm{i}} & a_{3,3}^{\mathrm{i}} & & \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
c_{s} & a_{s, 1}^{\mathrm{i}} & a_{s, 2}^{\mathrm{i}} & \cdots & a_{s, s-1}^{\mathrm{i}} & a_{s, s}^{\mathrm{i}} \\
\hline 1 & a_{s+1,1}^{\mathrm{i}} & a_{s+1,2}^{\mathrm{i}} & \cdots & a_{s+1, s-1}^{\mathrm{i}} & a_{s+1, s}^{\mathrm{i}}
\end{array}
$$

Butcher tableaux

- Explicit Butcher tableau

$$
\begin{array}{c|ccccc}
0 & 0 & & & & \\
c_{2} & a_{2,1}^{\mathrm{e}} & 0 & & & \\
c_{3} & a_{3,1}^{\mathrm{e}} & a_{3,2}^{\mathrm{e}} & 0 & & \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
c_{s} & a_{s, 1}^{\mathrm{e}} & a_{s, 2}^{\mathrm{e}} & \cdots & a_{s, s-1}^{\mathrm{e}} & 0 \\
\hline 1 & a_{s+1,1}^{\mathrm{e}} & a_{s+1,2}^{\mathrm{e}} & \cdots & a_{s+1, s-1}^{\mathrm{e}} & a_{s+1, s}^{\mathrm{e}}
\end{array}
$$

- Implicit Butcher tableau

- Both tableaux share the same coefficients $\left(c_{l}\right)_{l \in\{1: s+1\}}$; recall the notation $l^{\prime}(l):=\max \left\{k<l \mid c_{k} \leq c_{l}\right\}$ (think of $\left.l^{\prime}(l)=l-1\right)$

Details (1/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{l}$, set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- At each stage $l \in\{2: s+1\}$, one performs the following steps:

$$
\mathbf{U}^{n, l^{\prime}} \underbrace{\stackrel{(1)}{\longrightarrow}\left(\mathbf{W}^{\mathrm{L}, l}, \mathbf{W}^{\mathrm{H}, l}\right) \stackrel{(2)}{\longrightarrow}}_{\text {hyperbolic step }} \mathbf{W}^{n, l} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, l}, \mathbf{U}^{\mathrm{H}, l}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n, l}
$$

Details (1/2)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{I}$, set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$
- At each stage $l \in\{2: s+1\}$, one performs the following steps:

$$
\mathbf{U}^{n, l^{\prime}} \underbrace{\stackrel{(1)}{\longrightarrow}\left(\mathbf{W}^{\mathrm{L}, l}, \mathbf{W}^{\mathrm{H}, l}\right) \stackrel{(2)}{\longrightarrow}}_{\text {hyperbolic step }} \mathbf{W}^{n, l} \underbrace{\stackrel{(3)}{\longrightarrow}\left(\mathbf{U}^{\mathrm{L}, l}, \mathbf{U}^{\mathrm{H}, l}\right) \stackrel{(4)}{\longrightarrow}}_{\text {parabolic step }} \mathbf{U}^{n, l}
$$

- Hyperbolic steps (1) and (2): compute low/high-order updates

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, l} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\tau\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right) \\
\mathbb{M}^{\mathrm{H}} \mathbf{W}^{\mathrm{H}, l} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n, l^{\prime}}+\tau \sum_{k \in\{1: l-1\}}\left(a_{l, k}^{\mathrm{e}}-a_{l^{\prime}, k}^{\mathrm{e}}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)
\end{aligned}
$$

and limit

$$
\mathbf{W}^{n, l}:=\ell^{\mathrm{hyp}}\left(\mathbf{U}^{n, l^{\prime}}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)
$$

Details (2/2)

- Recall $\mathbf{W}^{n, l}$ just computed from hyperbolic steps (1) and (2)

Details (2/2)

- Recall $\mathbf{W}^{n, l}$ just computed from hyperbolic steps (1) and (2)
- Parabolic steps (3) and (4): compute low/high-order updates

$$
\begin{aligned}
& \mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}-\tau\left(c_{l}-c_{l^{\prime}}\right) \mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n, l} ; \mathbf{U}^{\mathrm{L}, l}\right):=\mathbb{M}^{\mathrm{L}} \mathbf{W}^{n, l} \\
& \mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}-\tau a_{l, l}^{\mathrm{i}} \mathbf{G}^{\mathrm{H}, \mathrm{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, l}\right):=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{n, l}+\tau \Delta_{l} \\
&\left(\Delta_{l}:=\sum_{k \in\{1: l-1\}}\left(a_{l, k}^{\mathrm{l}}-a_{l, k}^{\mathrm{l}}\right) \mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{n, k}\right)+\sum_{k \in\{1: l-1\}}\left(a_{l, k}^{\mathrm{e}}-a_{l, k}^{\mathrm{e}}\right)\left(\mathbf{G}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)-\mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{n, k}\right)\right)\right)
\end{aligned}
$$

- Notice that $a_{l, l}^{\mathrm{i}}=0$ for $l=s+1$ (final high-order stage is explicit)
- Limit: $\mathbf{U}^{n+1}:=\ell^{\mathrm{par}}\left(\mathbf{W}^{n, l}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right)$

Details (2/2)

- Recall $\mathbf{W}^{n, l}$ just computed from hyperbolic steps (1) and (2)
- Parabolic steps (3) and (4): compute low/high-order updates

$$
\begin{gathered}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}-\tau\left(c_{l}-c_{l^{\prime}}\right) \mathbf{G}^{\mathrm{L}, \operatorname{lin}}\left(\mathbf{W}^{n, l} ; \mathbf{U}^{\mathrm{L}, l}\right):=\mathbb{M}^{\mathrm{L}} \mathbf{W}^{n, l} \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}-\tau a_{l, l}^{\mathrm{i}} \mathbf{G}^{\mathrm{H}, \mathrm{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, l}\right):=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{n, l}+\tau \Delta_{l} \\
\left(\Delta_{l}:=\sum_{k \in\{1: l-1\}}\left(a_{l, k}^{\mathrm{l}}-a_{l, k}^{\mathrm{i}}\right) \mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{n, k}\right)+\sum_{k \in\{1: l-1\}}\left(a_{l, k}^{\mathrm{e}}-a_{l, k}^{\mathrm{e}}\right)\left(\mathbf{G}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)-\mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{n, k}\right)\right)\right)
\end{gathered}
$$

- Notice that $a_{l, l}^{\mathrm{i}}=0$ for $l=s+1$ (final high-order stage is explicit)
- Limit: $\mathbf{U}^{n+1}:=\ell^{p a r}\left(\mathbf{W}^{n, l}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right)$
- Theorem. [High-order IDP-IMEX]

Let Assumptions 1 and 2 hold. Assume that $\mathbf{U}^{n} \in \mathcal{A}^{I}$. Then, $\mathbf{U}^{n+1} \in \mathcal{A}^{l}$ (as well as all intermediate stages) $\forall \tau \in\left(0, \tau^{*} / \max _{l \in\{2: s+1\}}\left(c_{l}-c_{l^{\prime}}\right)\right]$

Important omitted details

- The design of low-order linearized parabolic flux $\mathrm{G}^{\mathrm{L}, \text { lin }}$ is problem-dependent

Important omitted details

- The design of low-order linearized parabolic flux $\mathrm{G}^{\mathrm{L}, \text { lin }}$ is problem-dependent
- The whole scheme can be rewritten using conservative limiters

Important omitted details

- The design of low-order linearized parabolic flux $\mathrm{G}^{\mathrm{L}, \text { lin }}$ is problem-dependent
- The whole scheme can be rewritten using conservative limiters
- The setting allows for the hyperbolic and parabolic problems to be solved each with its own natural set of variables
- conservative for Euler, primitive for Navier-Stokes

