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An old breakthrough

Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55;
Douglas & Rachford 56]

Consider 2D parabolic problem

mtu = Δu = L0 (u) + L1 (u), L0 (u) := mxxu, L1 (u) := myyu

After space semi-discretization, perform following time-stepping

Un,1 = Un + 1
2gL0 (U

n,1) + 1
2gL1 (U

n)
Un+1 := Un,2 = Un + gL0 (Un,1) + 1

2g
(
L1 (Un) + L1 (Un,2)

)
Combination of midpoint and Crank–Nicolson schemes

Second-order accurate and A-stable

Highly efficient when using FD in space (tridiagonal solves)

Quite popular in Russian literature [Yanenko 71; Marchuk 90]
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Runge–Kutta (RK) schemes

(s + 1)-stage scheme represented by Butcher tableau c A
b

A ∈ Rs+1,s+1 strictly lower triangular =⇒ explicit scheme
A has (some) nonzero diagonal entries =⇒ implicit scheme

Simplifying assumptions
AU = c with U := (1, . . . , 1)T (Butcher’s simplifying assumption)
c1 = A11 = 0 (first stage trivial), cs = 1 and eTs A = b (last stage trivial) =⇒
only s nontrivial stages

Order conditions well understood
bc = 1

2 (2nd-order), bc2 = 1
3 , bAc = 1

6 (third-order), · · ·

Linear stability studied through amplification function

R(z) := 1 + d(z)
det(I − zA) , d(z) = det(I − zA)zb(I − zA)−1U

A(U)-stability whenever |R(z) | ≤ 1 for all z ∈ C−, arg(−z) ≤ U
L(U)-stability if also ℓ := lim<(z)→−∞ R(z) = 0
Dahlquist’s test problem mtu = _u (operator L with eigenvalue _ ∈ C−)
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Rewriting ADI as AIRK
Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

c A0
b0

=

0 0
1
2 0 1

2
1 0 1 0

0 1 0

c A1
b1

=

0 0
1
2

1
2 0

1 1
2 0 1

2
1
2 0 1

2

which we call Alternating Implicit RK (AIRK) schemes

Each scheme (midpoint and CN) is A-stable (but not L-stable, ℓ = −1)

Linear stability for combined scheme

R\ (z) = 1 + d\ (z)
det(I − zA\ )

, d\ (z) := det(I − zA\ )zb\ (I − zA\ )−1U

with A\ := (1 − \)A0 + \A1, b\ := (1 − \)b0 + \b1
\ ∈ [0, 1] measures relative strength of eigenvalues of L0 and L1
whenever they are real (otherwise \ may be complex)
For ADI, a simple calculation establishes A-stability

R\ (z) =
1 + 1

2 \z

1 − 1
2 \z
×

1 + 1
2 (1 − \)z

1 − 1
2 (1 − \)z

Notice ℓ\ := lim<(z)→−∞ R\ (z) = 1, \ ∉ {0, 1}, but ℓ0 = ℓ1 = −1
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Our goal

Time-dependent (nonlinear) PDE (after space semi-discretization)

mtU = L0 (U) + L1 (U) + L2 (U)

L0,L1 (diffusion/reaction) much stiffer than L2 (nonlinear transport)

Use AIRK scheme for L0,L1 and explicit RK scheme for L2
c A0

b0
c A1

b1
c A2

b2

We want to achieve
third-order accuracy
A(0)-stability for AIRK scheme for all \ ∈ [0, 1] (skew-symmetric part,
e.g., transport, less stiff than symmetric part, e.g., diffusion)
A(U)-stability for each constitutive implicit RK scheme, and possibly also
L(U)-stability
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Literature

Second-order barrier for exponential splitting methods (with only
forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman &
Kaper 96; Blanes & Casas 05]

One remedy is adopting complex time integration [Hansen & Osterman 09;
Castella, Chartier, Descombes, Vilmart 09]

application to nonlinear transport not clear

Interlacing two (or more) RK schemes
additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97;
Pareschi & Russo 01; Kennedy & Carpenter 03]
Generalized ARK (GARK) methods [Sandu & Günther 15; González-Pinto et
al. 22] (several copies of dependent unknowns advanced at each stage)
order conditions well understood through concept of P-trees [Hairer 80]
much less known about stability, even linear

We prove that there is a stability barrier for s = 4 nontrivial stages

Our goal can be achieved with s = 6 nontrivial stages
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Six-stage AIRK scheme(s)

Butcher tableaux (we omit line vector b for simplicity)

0 0
c2 • •
c3 • • 0
c4 • • • •
c5 • • • • 0
c6 • • • • • •
1 • • • • • • 0

0 0
c2 • 0
c3 • • •
c4 • • • 0
c5 • • • • •
c6 • • • • • 0
1 • • • • • • •

We take equi-distributed substages, cm =
m−1
6 , m ∈ {1:7}

optimizes CFL condition for ERK scheme [Shu & Osher 88; AE & JLG 23]

There are 48 unknown coefficients for AIRK (24 for each array)

There are 24 (non)linear relations coming from
Butcher’s simplifying assumption (12 linear relations)
third-order (single and coupled) conditions (8 (non)linear relations)
requiring singly diagonal schemes (4 linear relations)

There are 15 additional nonlinear relations related to stability
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Our approach to stability

Recall combined amplification function (z ∈ C−, \ ∈ [0, 1])

R\ (z) = 1 + d\ (z)
det(I − zA\ )

, d\ (z) := det(I − zA\ )zb\ (I − zA\ )−1U

d\ ∈ P6 [z] (and not P7 [z] by Hamilton–Cayley)

d\ (z) =
∑

k∈{0:5}
lk (\)zk+1

det(I − zA\ ) ∈ P6 [z] for \ ∉ {0, 1}, and in P3 [z] if \ ∈ {0, 1}

Necessary condition for A-stability is l5 (\) = 0, ∀\ ∈ [0, 1], and this
implies that ℓ\ = 1 for all \ ∉ {0, 1} (barrier to L-stability)

l5 (\) ∈ P5 [\] =⇒ 6 conditions
we also set l′4 (0) = l

′
4 (1) = 0 and l4 ( 12 ) ≈ 0 =⇒ 3 conditions

A-stability of single RK schemes further requires 6 necessary conditions
l4 (0) = l4 (1) = l3 (0) = l3 (1) = 0

l2 (0) = (ℓ0 − 1) (•1)3, l2 (1) = (ℓ1 − 1) (•2)3, ℓ0, ℓ1 ∈ [−1, 1]

Two natural choices are ℓ0 = ℓ1 = 0 (L-stability) or ℓ0 = ℓ1 = 1
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implies that ℓ\ = 1 for all \ ∉ {0, 1} (barrier to L-stability)

l5 (\) ∈ P5 [\] =⇒ 6 conditions
we also set l′4 (0) = l

′
4 (1) = 0 and l4 ( 12 ) ≈ 0 =⇒ 3 conditions

A-stability of single RK schemes further requires 6 necessary conditions
l4 (0) = l4 (1) = l3 (0) = l3 (1) = 0

l2 (0) = (ℓ0 − 1) (•1)3, l2 (1) = (ℓ1 − 1) (•2)3, ℓ0, ℓ1 ∈ [−1, 1]

Two natural choices are ℓ0 = ℓ1 = 0 (L-stability) or ℓ0 = ℓ1 = 1
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Tidying up and ERK companion scheme

48 unknowns and 39 (non)linear relations
can be solved (with care) in quadruple precision with julia
for both choices, ℓ0 = ℓ1 = 0 (L-stability) or ℓ0 = ℓ1 = 1
A(0)-stability is indeed achieved for all \ ∈ [0, 1]

Companion ERK scheme

0 0
c2 • 0
c3 • • 0
c4 • • • 0
c5 • • • • 0
c6 • • • • • 0
1 • • • • • • 0

21 unknowns
Butcher’s simplifying assumption and third-order (single and coupled)
conditions =⇒ 13 (non)linear relations
one can also prescribe 3 additional conditions to achieve linear order 4
solved using julia
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Numerical illustrations
L-stable AIRK. Left: modulus of amplification function R0 (z) in C−
(U ≈ 75◦). Center: absolute value of amplification function R\ (x)
along negative real axis and \ ∈ [0, 1]. Right: modulus of amplification
function for ERK companion scheme

2D diffusion with nonlinear transport: mtu = `(mxxu + myyu) − v·∇( 12u2),
space semi-discretization using FEM

P1
I L2-err rate

121 1.80E-02 –
441 5.08E-03 1.96

1681 1.31E-03 2.03
6561 3.29E-04 2.03

25921 8.24E-05 2.02
103041 2.06E-05 2.01

P2
I L2-err rate

441 4.95E-04 –
1681 3.39E-05 4.01
6561 2.17E-06 4.04

25921 1.37E-07 4.03
103041 8.60E-09 4.01
410881 5.90E-10 3.87

P3
I L2-err rate

961 4.44E-05 –
3721 2.76E-06 4.10
14641 1.76E-07 4.02
58081 1.25E-08 3.85

231361 1.49E-09 3.07
923521 2.86E-10 2.39

Thank you for your attention!
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