3rd-order A-stable alternating implict RK schemes

Alexandre Ern
ENPC and INRIA, Paris, France
joint work with Jean-Luc Guermond (TAMU)

EFEF, London, June 2024

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman \& Rachford 55; Douglas \& Rachford 56]
- Consider 2D parabolic problem

$$
\partial_{t} u=\Delta u=L_{0}(u)+L_{1}(u), \quad L_{0}(u):=\partial_{x x} u, \quad L_{1}(u):=\partial_{y y} u
$$

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman \& Rachford 55;

Douglas \& Rachford 56]

- Consider 2D parabolic problem

$$
\partial_{t} u=\Delta u=L_{0}(u)+L_{1}(u), \quad L_{0}(u):=\partial_{x x} u, \quad L_{1}(u):=\partial_{y y} u
$$

- After space semi-discretization, perform following time-stepping

$$
\begin{aligned}
\mathrm{U}^{n, 1} & =\mathrm{U}^{n}+\frac{1}{2} \tau \mathbb{L}_{0}\left(\mathrm{U}^{n, 1}\right)+\frac{1}{2} \tau \mathbb{L}_{1}\left(\mathrm{U}^{n}\right) \\
\mathrm{U}^{n+1}:=\mathrm{U}^{n, 2} & =\mathrm{U}^{n}+\tau \mathbb{L}_{0}\left(\mathrm{U}^{n, 1}\right)+\frac{1}{2} \tau\left(\mathbb{L}_{1}\left(\mathrm{U}^{n}\right)+\mathbb{L}_{1}\left(\mathrm{U}^{n, 2}\right)\right)
\end{aligned}
$$

Combination of midpoint and Crank-Nicolson schemes

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman \& Rachford 55;

Douglas \& Rachford 56]

- Consider 2D parabolic problem

$$
\partial_{t} u=\Delta u=L_{0}(u)+L_{1}(u), \quad L_{0}(u):=\partial_{x x} u, \quad L_{1}(u):=\partial_{y y} u
$$

- After space semi-discretization, perform following time-stepping

$$
\begin{aligned}
& \mathrm{U}^{n, 1}=\mathrm{U}^{n}+\frac{1}{2} \tau \mathbb{L}_{0}\left(\mathrm{U}^{n, 1}\right)+\frac{1}{2} \tau \mathbb{L}_{1}\left(\mathrm{U}^{n}\right) \\
& \mathrm{U}^{n+1}:=\mathrm{U}^{n, 2}=\mathrm{U}^{n}+\tau \mathbb{L}_{0}\left(\mathrm{U}^{n, 1}\right)+\frac{1}{2} \tau\left(\mathbb{L}_{1}\left(\mathrm{U}^{n}\right)+\mathbb{L}_{1}\left(\mathrm{U}^{n, 2}\right)\right)
\end{aligned}
$$

Combination of midpoint and Crank-Nicolson schemes

- Second-order accurate and A-stable
- Highly efficient when using FD in space (tridiagonal solves)
- Quite popular in Russian literature [Yanenko 71; Marchuk 90]

Runge-Kutta (RK) schemes

- $(s+1)$-stage scheme represented by Butcher tableau | c | A |
| :---: | :---: |
| | b |
- $A \in \mathbb{R}^{s+1, s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \Longrightarrow implicit scheme

Runge-Kutta (RK) schemes

- $A \in \mathbb{R}^{s+1, s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \Longrightarrow implicit scheme
- Simplifying assumptions
- $A U=c$ with $U:=(1, \ldots, 1)^{\top}$ (Butcher's simplifying assumption)
- $c_{1}=A_{11}=0$ (first stage trivial), $c_{s}=1$ and $e_{s}^{\top} A=b$ (last stage trivial) \Longrightarrow only s nontrivial stages

Runge-Kutta (RK) schemes

- $A \in \mathbb{R}^{s+1, s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \Longrightarrow implicit scheme
- Simplifying assumptions
- $A U=c$ with $U:=(1, \ldots, 1)^{\top}$ (Butcher's simplifying assumption)
- $c_{1}=A_{11}=0$ (first stage trivial), $c_{s}=1$ and $e_{s}^{\top} A=b$ (last stage trivial) \Longrightarrow only s nontrivial stages
- Order conditions well understood
- $b c=\frac{1}{2}$ (2nd-order), $b c^{2}=\frac{1}{3}, b A c=\frac{1}{6}$ (third-order), \cdots

Runge-Kutta (RK) schemes

- $(s+1)$-stage scheme represented by Butcher tableau | c | A |
| :---: | :---: |
| | b |
- $A \in \mathbb{R}^{s+1, s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \Longrightarrow implicit scheme
- Simplifying assumptions
- $A U=c$ with $U:=(1, \ldots, 1)^{\top}$ (Butcher's simplifying assumption)
- $c_{1}=A_{11}=0$ (first stage trivial), $c_{s}=1$ and $e_{s}^{\top} A=b$ (last stage trivial) \Longrightarrow only s nontrivial stages
- Order conditions well understood
- $b c=\frac{1}{2}$ (2nd-order), $b c^{2}=\frac{1}{3}, b A c=\frac{1}{6}$ (third-order), \cdots
- Linear stability studied through amplification function

$$
R(z):=1+\frac{\rho(z)}{\operatorname{det}(I-z A)}, \quad \rho(z)=\operatorname{det}(I-z A) z b(I-z A)^{-1} U
$$

- $\mathrm{A}(\alpha)$-stability whenever $|R(z)| \leq 1$ for all $z \in \mathbb{C}^{-}, \arg (-z) \leq \alpha$
- $\mathrm{L}(\alpha)$-stability if also $\ell:=\lim _{\mathfrak{R}}(z) \rightarrow-\infty=0$
- Dahlquist's test problem $\partial_{t} u=\lambda u$ (operator \mathbb{L} with eigenvalue $\lambda \in \mathbb{C}^{-}$)

Rewriting ADI as AIRK

- Two implicit Butcher arrays of size $s+1=3$ (2 nontrivial stages)
which we call Alternating Implicit RK (AIRK) schemes

Rewriting ADI as AIRK

- Two implicit Butcher arrays of size $s+1=3$ (2 nontrivial stages)

$$
\begin{array}{l|l|lll}
c & A_{0} \\
\hline & b_{0}
\end{array}=\begin{array}{l|lll}
0 & 0 & & \\
\frac{1}{2} & 0 & \frac{1}{2} & \\
1 & 0 & 1 & 0 \\
\hline & 0 & 1 & 0
\end{array}
$$

c	A_{1}					
	b_{1}	$=$	0	0		
:---:	:---:	:---:	:---:			
$\frac{1}{2}$	$\frac{1}{2}$	0				
1	$\frac{1}{2}$	0	$\frac{1}{2}$			
	$\frac{1}{2}$	0	$\frac{1}{2}$			

which we call Alternating Implicit RK (AIRK) schemes

- Each scheme (midpoint and CN) is A-stable (but not L-stable, $\ell=-1$)

Rewriting ADI as AIRK

- Two implicit Butcher arrays of size $s+1=3$ (2 nontrivial stages)

$$
\begin{array}{c|c|ccc}
& & \\
c & A_{0} \\
\hline & b_{0}
\end{array}=\begin{array}{c|cc}
0 & 0 & \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 1 \\
\hline
\end{array} \quad \begin{aligned}
& 0 \\
& \hline
\end{aligned} 0
$$

which we call Alternating Implicit RK (AIRK) schemes

- Each scheme (midpoint and CN) is A-stable (but not L-stable, $\ell=-1$)
- Linear stability for combined scheme

$$
\begin{aligned}
& R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U \\
& \text { with } A_{\theta}:=(1-\theta) A_{0}+\theta A_{1}, b_{\theta}:=(1-\theta) b_{0}+\theta b_{1}
\end{aligned}
$$

- $\theta \in[0,1]$ measures relative strength of eigenvalues of \mathbb{L}_{0} and \mathbb{L}_{1} whenever they are real (otherwise θ may be complex)

Rewriting ADI as AIRK

- Two implicit Butcher arrays of size $s+1=3$ (2 nontrivial stages)

$$
\left.\begin{array}{c|c|ccc}
c & A_{0} \\
\hline & b_{0}
\end{array}=\begin{array}{c|cc}
0 & 0 & \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 1 \\
\hline
\end{array} \right\rvert\, \begin{aligned}
& 0 \\
& \hline
\end{aligned}
$$

which we call Alternating Implicit RK (AIRK) schemes

- Each scheme (midpoint and CN) is A-stable (but not L -stable, $\ell=-1$)
- Linear stability for combined scheme

$$
\begin{aligned}
& R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U \\
& \text { with } A_{\theta}:=(1-\theta) A_{0}+\theta A_{1}, b_{\theta}:=(1-\theta) b_{0}+\theta b_{1}
\end{aligned}
$$

- $\theta \in[0,1]$ measures relative strength of eigenvalues of \mathbb{L}_{0} and \mathbb{L}_{1} whenever they are real (otherwise θ may be complex)
- For ADI, a simple calculation establishes A-stability

$$
R_{\theta}(z)=\frac{1+\frac{1}{2} \theta z}{1-\frac{1}{2} \theta z} \times \frac{1+\frac{1}{2}(1-\theta) z}{1-\frac{1}{2}(1-\theta) z}
$$

Notice $\ell_{\theta}:=\lim _{\mathfrak{R}(z) \rightarrow-\infty} R_{\theta}(z)=1, \theta \notin\{0,1\}$, but $\ell_{0}=\ell_{1}=-1$

Our goal

- Time-dependent (nonlinear) PDE (after space semi-discretization)

$$
\partial_{t} U=\mathbb{L}_{0}(\mathrm{U})+\mathbb{L}_{1}(\mathrm{U})+\mathbb{L}_{2}(\mathrm{U})
$$

Our goal

- Time-dependent (nonlinear) PDE (after space semi-discretization)

$$
\partial_{t} U=\mathbb{L}_{0}(\mathrm{U})+\mathbb{L}_{1}(\mathrm{U})+\mathbb{L}_{2}(\mathrm{U})
$$

- $\mathbb{L}_{0}, \mathbb{L}_{1}$ (diffusion/reaction) much stiffer than \mathbb{L}_{2} (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_{0}, \mathbb{L}_{1}$ and explicit $R K$ scheme for \mathbb{L}_{2}

$$
\begin{array}{l|l}
c & A_{0} \\
\hline & b_{0}
\end{array} \quad \begin{array}{l|l}
c & A_{1} \\
\hline & b_{1}
\end{array} \quad \begin{array}{c|c}
c & A_{2} \\
\hline & b_{2}
\end{array}
$$

Our goal

- Time-dependent (nonlinear) PDE (after space semi-discretization)

$$
\partial_{t} U=\mathbb{L}_{0}(\mathrm{U})+\mathbb{L}_{1}(\mathrm{U})+\mathbb{L}_{2}(\mathrm{U})
$$

- $\mathbb{L}_{0}, \mathbb{L}_{1}$ (diffusion/reaction) much stiffer than \mathbb{L}_{2} (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_{0}, \mathbb{L}_{1}$ and explicit RK scheme for \mathbb{L}_{2}

$$
\begin{array}{l|l}
c & A_{0} \\
\hline & b_{0}
\end{array} \quad \begin{array}{l|l}
c & A_{1} \\
\hline & b_{1}
\end{array} \quad \begin{array}{c|c}
c & A_{2} \\
\hline & b_{2}
\end{array}
$$

- We want to achieve
- third-order accuracy

Our goal

- Time-dependent (nonlinear) PDE (after space semi-discretization)

$$
\partial_{t} U=\mathbb{L}_{0}(\mathrm{U})+\mathbb{L}_{1}(\mathrm{U})+\mathbb{L}_{2}(\mathrm{U})
$$

- $\mathbb{L}_{0}, \mathbb{L}_{1}$ (diffusion/reaction) much stiffer than \mathbb{L}_{2} (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_{0}, \mathbb{L}_{1}$ and explicit RK scheme for \mathbb{L}_{2}

$$
\begin{array}{l|l}
c & A_{0} \\
\hline & b_{0}
\end{array} \quad \begin{array}{l|l}
c & A_{1} \\
\hline & b_{1}
\end{array} \quad \begin{array}{c|c}
c & A_{2} \\
\hline & b_{2}
\end{array}
$$

- We want to achieve
- third-order accuracy
- A(0)-stability for AIRK scheme for all $\theta \in[0,1]$ (skew-symmetric part, e.g., transport, less stiff than symmetric part, e.g., diffusion)

Our goal

- Time-dependent (nonlinear) PDE (after space semi-discretization)

$$
\partial_{t} U=\mathbb{L}_{0}(\mathrm{U})+\mathbb{L}_{1}(\mathrm{U})+\mathbb{L}_{2}(\mathrm{U})
$$

- $\mathbb{L}_{0}, \mathbb{L}_{1}$ (diffusion/reaction) much stiffer than \mathbb{L}_{2} (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_{0}, \mathbb{L}_{1}$ and explicit RK scheme for \mathbb{L}_{2}

$$
\begin{array}{l|l}
c & A_{0} \\
\hline & b_{0}
\end{array} \quad \begin{array}{l|l}
c & A_{1} \\
\hline & b_{1}
\end{array} \quad \begin{array}{c|c}
c & A_{2} \\
\hline & b_{2}
\end{array}
$$

- We want to achieve
- third-order accuracy
- A(0)-stability for AIRK scheme for all $\theta \in[0,1]$ (skew-symmetric part, e.g., transport, less stiff than symmetric part, e.g., diffusion)
- $\mathrm{A}(\alpha)$-stability for each constitutive implicit RK scheme, and possibly also $\mathrm{L}(\alpha)$-stability

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]
- One remedy is adopting complex time integration [Hansen \& Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
- application to nonlinear transport not clear

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]
- One remedy is adopting complex time integration [Hansen \& Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
- application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
- additive RK (ARK) methods [Rice 60; Cooper \& Sayfy 83; Rentrop 85]
- important example are IMEX methods [Zhong 96; Ascher, Ruuth \& Spiteri 97;

Pareschi \& Russo 01; Kennedy \& Carpenter 03]

- Generalized ARK (GARK) methods [Sandu \& Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]
- One remedy is adopting complex time integration [Hansen \& Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
- application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
- additive RK (ARK) methods [Rice 60; Cooper \& Sayfy 83; Rentrop 85]
- important example are IMEX methods [Zhong 96; Ascher, Ruuth \& Spiteri 97; Pareschi \& Russo 01; Kennedy \& Carpenter 03]
- Generalized ARK (GARK) methods [Sandu \& Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
- order conditions well understood through concept of P-trees [Hairer 80]

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]
- One remedy is adopting complex time integration [Hansen \& Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
- application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
- additive RK (ARK) methods [Rice 60; Cooper \& Sayfy 83; Rentrop 85]
- important example are IMEX methods [Zhong 96; Ascher, Ruuth \& Spiteri 97; Pareschi \& Russo 01; Kennedy \& Carpenter 03]
- Generalized ARK (GARK) methods [Sandu \& Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
- order conditions well understood through concept of P-trees [Hairer 80]
- much less known about stability, even linear

Literature

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman \& Kaper 96; Blanes \& Casas 05]
- One remedy is adopting complex time integration [Hansen \& Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
- application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
- additive RK (ARK) methods [Rice 60; Cooper \& Sayfy 83; Rentrop 85]
- important example are IMEX methods [Zhong 96; Ascher, Ruuth \& Spiteri 97; Pareschi \& Russo 01; Kennedy \& Carpenter 03]
- Generalized ARK (GARK) methods [Sandu \& Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
- order conditions well understood through concept of P-trees [Hairer 80]
- much less known about stability, even linear
- We prove that there is a stability barrier for $s=4$ nontrivial stages
- Our goal can be achieved with $s=6$ nontrivial stages

Six-stage AIRK scheme(s)

- Butcher tableaux (we omit line vector b for simplicity)

Six-stage AIRK scheme(s)

- Butcher tableaux (we omit line vector b for simplicity)

- We take equi-distributed substages, $c_{m}=\frac{m-1}{6}, m \in\{1: 7\}$
- optimizes CFL condition for ERK scheme [Shu \& Osher 88; AE \& JLG 23]

Six-stage AIRK scheme(s)

- Butcher tableaux (we omit line vector b for simplicity)

- We take equi-distributed substages, $c_{m}=\frac{m-1}{6}, m \in\{1: 7\}$
- optimizes CFL condition for ERK scheme [Shu \& Osher 88; AE \& JLG 23]
- There are 48 unknown coefficients for AIRK (24 for each array)
- There are 24 (non)linear relations coming from
- Butcher's simplifying assumption (12 linear relations)
- third-order (single and coupled) conditions (8 (non)linear relations)
- requiring singly diagonal schemes (4 linear relations)
- There are 15 additional nonlinear relations related to stability

Our approach to stability

- Recall combined amplification function $\left(z \in \mathbb{C}^{-}, \theta \in[0,1]\right)$

$$
R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U
$$

Our approach to stability

- Recall combined amplification function $\left(z \in \mathbb{C}^{-}, \theta \in[0,1]\right)$

$$
R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U
$$

- $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton-Cayley)

$$
\rho_{\theta}(z)=\sum_{k \in\{0: 5\}} \omega_{k}(\theta) z^{k+1}
$$

Our approach to stability

- Recall combined amplification function $\left(z \in \mathbb{C}^{-}, \theta \in[0,1]\right)$

$$
R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U
$$

- $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton-Cayley)

$$
\rho_{\theta}(z)=\sum_{k \in\{0: 5\}} \omega_{k}(\theta) z^{k+1}
$$

- $\operatorname{det}\left(I-z A_{\theta}\right) \in \mathbb{P}_{6}[z]$ for $\theta \notin\{0,1\}$, and in $\mathbb{P}_{3}[z]$ if $\theta \in\{0,1\}$

Our approach to stability

- Recall combined amplification function $\left(z \in \mathbb{C}^{-}, \theta \in[0,1]\right)$

$$
R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U
$$

- $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton-Cayley)

$$
\rho_{\theta}(z)=\sum_{k \in\{0: 5\}} \omega_{k}(\theta) z^{k+1}
$$

- $\operatorname{det}\left(I-z A_{\theta}\right) \in \mathbb{P}_{6}[z]$ for $\theta \notin\{0,1\}$, and in $\mathbb{P}_{3}[z]$ if $\theta \in\{0,1\}$
- Necessary condition for A-stability is $\omega_{5}(\theta)=0, \forall \theta \in[0,1]$, and this implies that $\ell_{\theta}=1$ for all $\theta \notin\{0,1\}$ (barrier to L-stability)
- $\omega_{5}(\theta) \in \mathbb{P}_{5}[\theta] \Longrightarrow 6$ conditions
- we also set $\omega_{4}^{\prime}(0)=\omega_{4}^{\prime}(1)=0$ and $\omega_{4}\left(\frac{1}{2}\right) \approx 0 \Longrightarrow 3$ conditions

Our approach to stability

- Recall combined amplification function $\left(z \in \mathbb{C}^{-}, \theta \in[0,1]\right)$

$$
R_{\theta}(z)=1+\frac{\rho_{\theta}(z)}{\operatorname{det}\left(I-z A_{\theta}\right)}, \quad \rho_{\theta}(z):=\operatorname{det}\left(I-z A_{\theta}\right) z b_{\theta}\left(I-z A_{\theta}\right)^{-1} U
$$

- $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton-Cayley)

$$
\rho_{\theta}(z)=\sum_{k \in\{0: 5\}} \omega_{k}(\theta) z^{k+1}
$$

- $\operatorname{det}\left(I-z A_{\theta}\right) \in \mathbb{P}_{6}[z]$ for $\theta \notin\{0,1\}$, and in $\mathbb{P}_{3}[z]$ if $\theta \in\{0,1\}$
- Necessary condition for A-stability is $\omega_{5}(\theta)=0, \forall \theta \in[0,1]$, and this implies that $\ell_{\theta}=1$ for all $\theta \notin\{0,1\}$ (barrier to L-stability)
- $\omega_{5}(\theta) \in \mathbb{P}_{5}[\theta] \Longrightarrow 6$ conditions
- we also set $\omega_{4}^{\prime}(0)=\omega_{4}^{\prime}(1)=0$ and $\omega_{4}\left(\frac{1}{2}\right) \approx 0 \Longrightarrow 3$ conditions
- A-stability of single RK schemes further requires 6 necessary conditions

$$
\begin{aligned}
& \omega_{4}(0)=\omega_{4}(1)=\omega_{3}(0)=\omega_{3}(1)=0 \\
& \omega_{2}(0)=\left(\ell_{0}-1\right)\left(\bullet_{1}\right)^{3}, \quad \omega_{2}(1)=\left(\ell_{1}-1\right)\left(\bullet_{2}\right)^{3}, \quad \ell_{0}, \ell_{1} \in[-1,1]
\end{aligned}
$$

Two natural choices are $\ell_{0}=\ell_{1}=0$ (L-stability) or $\ell_{0}=\ell_{1}=1$

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
- can be solved (with care) in quadruple precision with julia
- for both choices, $\ell_{0}=\ell_{1}=0$ (L-stability) or $\ell_{0}=\ell_{1}=1$
- A(0)-stability is indeed achieved for all $\theta \in[0,1]$

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
- can be solved (with care) in quadruple precision with julia
- for both choices, $\ell_{0}=\ell_{1}=0$ (L-stability) or $\ell_{0}=\ell_{1}=1$
- A(0)-stability is indeed achieved for all $\theta \in[0,1]$
- Companion ERK scheme

0	0						
c_{2}	\bullet	0					
c_{3}	\bullet	\bullet	0				
c_{4}	\bullet	\bullet	\bullet	0			
c_{5}	\bullet	\bullet	\bullet	\bullet	0		
c_{6}	\bullet	\bullet	\bullet	\bullet	\bullet	0	
1	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	0

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
- can be solved (with care) in quadruple precision with julia
- for both choices, $\ell_{0}=\ell_{1}=0$ (L-stability) or $\ell_{0}=\ell_{1}=1$
- A(0)-stability is indeed achieved for all $\theta \in[0,1]$
- Companion ERK scheme

- 21 unknowns
- Butcher's simplifying assumption and third-order (single and coupled) conditions $\Longrightarrow 13$ (non)linear relations
- one can also prescribe 3 additional conditions to achieve linear order 4
- solved using julia

Numerical illustrations

- L-stable AIRK. Left: modulus of amplification function $R_{0}(z)$ in \mathbb{C}^{-} ($\alpha \approx 75^{\circ}$). Center: absolute value of amplification function $R_{\theta}(x)$ along negative real axis and $\theta \in[0,1]$. Right: modulus of amplification function for ERK companion scheme

Numerical illustrations

- L-stable AIRK. Left: modulus of amplification function $R_{0}(z)$ in \mathbb{C}^{-} ($\alpha \approx 75^{\circ}$). Center: absolute value of amplification function $R_{\theta}(x)$ along negative real axis and $\theta \in[0,1]$. Right: modulus of amplification function for ERK companion scheme

- 2D diffusion with nonlinear transport: $\partial_{t} u=\mu\left(\partial_{x x} u+\partial_{y y} u\right)-v \cdot \nabla\left(\frac{1}{2} u^{2}\right)$, space semi-discretization using FEM

\mathbb{P}_{1}			\mathbb{P}_{2}			\mathbb{P}_{3}		
I	L^{2}-err	rate	I	L^{2}-err	rate	I	L^{2}-err	rate
121	$1.80 \mathrm{E}-02$	-	441	$4.95 \mathrm{E}-04$	-	961	$4.44 \mathrm{E}-05$	-
441	$5.08 \mathrm{E}-03$	1.96	1681	$3.39 \mathrm{E}-05$	4.01	3721	2.76E-06	4.10
1681	$1.31 \mathrm{E}-03$	2.03	6561	$2.17 \mathrm{E}-06$	4.04	14641	$1.76 \mathrm{E}-07$	4.02
6561	$3.29 \mathrm{E}-04$	2.03	25921	$1.37 \mathrm{E}-07$	4.03	58081	$1.25 \mathrm{E}-08$	3.85
25921	$8.24 \mathrm{E}-05$	2.02	103041	$8.60 \mathrm{E}-09$	4.01	231361	$1.49 \mathrm{E}-09$	3.07
103041	$2.06 \mathrm{E}-05$	2.01	410881	$5.90 \mathrm{E}-10$	3.87	923521	$2.86 \mathrm{E}-10$	2.39

Numerical illustrations

- L-stable AIRK. Left: modulus of amplification function $R_{0}(z)$ in \mathbb{C}^{-} ($\alpha \approx 75^{\circ}$). Center: absolute value of amplification function $R_{\theta}(x)$ along negative real axis and $\theta \in[0,1]$. Right: modulus of amplification function for ERK companion scheme

- 2D diffusion with nonlinear transport: $\partial_{t} u=\mu\left(\partial_{x x} u+\partial_{y y} u\right)-v \cdot \nabla\left(\frac{1}{2} u^{2}\right)$, space semi-discretization using FEM

\mathbb{P}_{1}			\mathbb{P}_{2}			\mathbb{P}_{3}		
I	L^{2}-err	rate	I	L^{2}-err	rate	I	L^{2}-err	rate
121	$1.80 \mathrm{E}-02$	-	441	$4.95 \mathrm{E}-04$	-	961	$4.44 \mathrm{E}-05$	-
441	$5.08 \mathrm{E}-03$	1.96	1681	$3.39 \mathrm{E}-05$	4.01	3721	2.76E-06	4.10
1681	$1.31 \mathrm{E}-03$	2.03	6561	$2.17 \mathrm{E}-06$	4.04	14641	$1.76 \mathrm{E}-07$	4.02
6561	$3.29 \mathrm{E}-04$	2.03	25921	$1.37 \mathrm{E}-07$	4.03	58081	$1.25 \mathrm{E}-08$	3.85
25921	$8.24 \mathrm{E}-05$	2.02	103041	$8.60 \mathrm{E}-09$	4.01	231361	$1.49 \mathrm{E}-09$	3.07
103041	$2.06 \mathrm{E}-05$	2.01	410881	$5.90 \mathrm{E}-10$	3.87	923521	$2.86 \mathrm{E}-10$	2.39

Thank you for your attention!

