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@ Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55;
Douglas & Rachford 56]

@ Consider 2D parabolic problem

Ot = Au=Lo(u) + L1 (), Lo(u) := Onu, Li(u):=0yu
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@ Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55;
Douglas & Rachford 56]

@ Consider 2D parabolic problem

Ot = Au=Lo(u) + L1 (1), Lo(u) := Ou, Li(u) = Oyyu

@ After space semi-discretization, perform following time-stepping

unt = U+ SeLo(uth) + S7L (UY)
Ut i= U2 = U+ 7lo(UMY) + 37 (L1 (U") + Ly (U™?))

Combination of midpoint and Crank—Nicolson schemes
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@ Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55;
Douglas & Rachford 56]

@ Consider 2D parabolic problem

O =Au=Lo(u) +Li(u), Lo(u) = 0uu, Li(u):=0yu

After space semi-discretization, perform following time-stepping

U™ = U+ 7o (U™ + 7Ly (UY)
U™ = Um? = U + 7Lo(U™Y) + 37 (Ly (U") + Ly (U™?))

Combination of midpoint and Crank—Nicolson schemes

@ Second-order accurate and A-stable

Highly efficient when using FD in space (tridiagonal solves)

Quite popular in Russian literature [Yanenko 71; Marchuk 90]
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A
@ (s + 1)-stage scheme represented by Butcher tableau L’T

o A € R¥*15* grictly lower triangular = explicit scheme
o A has (some) nonzero diagonal entries = implicit scheme
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A
@ (s+ 1)-stage scheme represented by Butcher tableau L‘T

o A e R*1s*! gtrictly lower triangular = explicit scheme
o A has (some) nonzero diagonal entries = implicit scheme
o Simplifying assumptions
@ AU =c with U := (1,...,1)T (Butcher’s simplifying assumption)
@ ¢ = Ayq; = 0 (first stage trivial), ¢s = 1 and eIA = b (last stage trivial) =
only s nontrivial stages

@ Order conditions well understood
e be =1 (2nd-order), be? = £, bAc = L (third-order), - - -

@ Linear stability studied through amplification function

p(z)

= - _ oA
det(l — zA)’ p(z) =det(l —zA)zb(I —zA)~ U

R(z) =1+

o A(a)-stability whenever |R(z)| < 1 forallz € C7, arg(-z) <
o L(a)-stability if also £ := limg () _,_o, R(z) =0
o Dahlquist’s test problem d;u = Au (operator L with eigenvalue 1 € C7)
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@ Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes
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_Rewriing ADI as AIRK_

@ Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes
@ Each scheme (midpoint and CN) is A-stable (but not L-stable, £ = —1)
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@ Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes
@ Each scheme (midpoint and CN) is A-stable (but not L-stable, £ = —1)
@ Linear stability for combined scheme

po(z)
det(I — zAg)’
with Ay := (1 = 0)Ag + 0Ay, by := (1 — )by + Ob;

Ro(z) =1+ po(2) == det(I — zA9)zbo (I — zA9) U

@ 0 € [0, 1] measures relative strength of eigenvalues of Ly and L;
whenever they are real (otherwise § may be complex)
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Rewriting ADI as AIRK

@ Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes
@ Each scheme (midpoint and CN) is A-stable (but not L-stable, £ = —1)
@ Linear stability for combined scheme

po(2)
det(I — zAg)’
with Ag := (1 — 0)Ag + 0A1, by := (1 —0)by + 0b,

Ro(z) =1+ po(z) :=det(I — zAg)zbg(I — zA9)~'U

@ 0 € [0, 1] measures relative strength of eigenvalues of Ly and L;
whenever they are real (otherwise 6§ may be complex)
@ For ADI, a simple calculation establishes A-stability
1+46z 1+1(1-6)z
-loz 1-1a-0)
Notice {p := limg (;)——co Rg(2) = 1,0 ¢ {0, 1}, but {o = £ = —1
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@ Time-dependent (nonlinear) PDE (after space semi-discretization)

6tU = ]Lo(U) +L1(U) +]L2(U)
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@ Time-dependent (nonlinear) PDE (after space semi-discretization)

U =LoU)+L;(U)+L, (V)

@ Ly, L; (diffusion/reaction) much stiffer than L, (nonlinear transport)

@ Use AIRK scheme for Ly, L; and explicit RK scheme for L,
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@ Time-dependent (nonlinear) PDE (after space semi-discretization)

6tU = Lo(U) +L1(U) +L2(U)

@ Lo,L; (diffusion/reaction) much stiffer than L, (nonlinear transport)

@ Use AIRK scheme for Ly, L; and explicit RK scheme for L,

ClA(] C|A1 C|A2
[ bo | b | b2

@ We want to achieve
o third-order accuracy
o A(0)-stability for AIRK scheme for all 6 € [0, 1] (skew-symmetric part,
e.g., transport, less stiff than symmetric part, e.g., diffusion)
o A(a)-stability for each constitutive implicit RK scheme, and possibly also
L(@)-stability
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@ Second-order barrier for exponential splitting methods (with only
forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman &
Kaper 96; Blanes & Casas 05]

6/10



@ Second-order barrier for exponential splitting methods (with only
forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman &
Kaper 96; Blanes & Casas 05]

@ One remedy is adopting complex time integration [Hansen & Osterman 09;
Castella, Chartier, Descombes, Vilmart 09]

e application to nonlinear transport not clear

6/10



@ Second-order barrier for exponential splitting methods (with only
forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman &
Kaper 96; Blanes & Casas 05]

@ One remedy is adopting complex time integration [Hansen & Osterman 09;
Castella, Chartier, Descombes, Vilmart 09]

e application to nonlinear transport not clear

@ Interlacing two (or more) RK schemes
o additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
e important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97;
Pareschi & Russo 01; Kennedy & Carpenter 03]
o Generalized ARK (GARK) methods [Sandu & Giinther 15; Gonzélez-Pinto et
al. 22] (several copies of dependent unknowns advanced at each stage)
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@ Second-order barrier for exponential splitting methods (with only
forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman &
Kaper 96; Blanes & Casas 05]

@ One remedy is adopting complex time integration [Hansen & Osterman 09;
Castella, Chartier, Descombes, Vilmart 09]

e application to nonlinear transport not clear

@ Interlacing two (or more) RK schemes

e additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]

e important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97;
Pareschi & Russo 01; Kennedy & Carpenter 03]

o Generalized ARK (GARK) methods [Sandu & Giinther 15; Gonzélez-Pinto et
al. 22] (several copies of dependent unknowns advanced at each stage)

e order conditions well understood through concept of P-trees [Hairer 80]

e much less known about stability, even linear

@ We prove that there is a stability barrier for s = 4 nontrivial stages

@ Our goal can be achieved with s = 6 nontrivial stages
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@ Butcher tableaux (we omit line vector b for simplicity)

010 010
cp | e e cp e O
cz|e o 0 c3|e o o
cyp | @ o o o cqg | o o O
cs | e o o o cs | e o o o o
C6|® © o o o o c6|® o o o o 0
1 e o o o o o 0 1 e o o o o o o
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Six

@ Butcher tableaux (we omit line vector b for simplicity)

010 010
cp | e e cp e O
cz|e o 0 c3|e o o
cyp | @ o o o cqg | o o O
cs ° ° ° ° cs e o o e o
C6|® © o o o o c6|® o o o o 0
1 e o o o o o 0 1 e o o o o o o

@ We take equi-distributed substages, ¢, = ’”T_l, m e {1:7}

o optimizes CFL condition for ERK scheme [Shu & Osher 88; AE & JLG 23]
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Six-stage AIRK scheme(s)

@ Butcher tableaux (we omit line vector b for simplicity)

010 010
cr| e o c|e O
c3|e o O c3|e o o
cqp | @ o o o cg | o o o 0
cs | e o o o cs | e o o o o
c6 ° ° ° ° ° ° ce ° ° ° ° ° 0

1 e o o o o o 0 1 ° ° e o o o o

@ We take equi-distributed substages, c¢,, = %, m e {1:7}
e optimizes CFL condition for ERK scheme [Shu & Osher 88; AE & JLG 23]

@ There are 48 unknown coefficients for AIRK (24 for each array)

@ There are 24 (non)linear relations coming from

o Butcher’s simplifying assumption (12 linear relations)
o third-order (single and coupled) conditions (8 (non)linear relations)
e requiring singly diagonal schemes (4 linear relations)

@ There are 15 additional nonlinear relations related to stability
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@ Recall combined amplification function (z € C~, 8 € [0, 1])

po(2)

LA _ - B B
det(I —zAg)’ po(2) :=det(l —zAg)zbg(I — z2A9)" U

Ry(z) =1+
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@ Recall combined amplification function (z € C~, 8 € [0, 1])

po(z)

LA _ - B B
det(I — zAg)’ po(2) :=det(l —zAg)zbg(I — z2A9)" U

RQ(Z) =1+

@ py € Pg[z] (and not P;[z] by Hamilton—Cayley)
po@d = Y w(O)F
ke{0:5}
@ det(I —zAg) € Pg[z] for 6 ¢ {0, 1}, and in P3([z] if 6 € {0, 1}

@ Necessary condition for A-stability is ws(6) = 0, V@ € [0, 1], and this
implies that £y = 1 for all 6 ¢ {0, 1} (barrier to L-stability)
e ws5(0) € P5[0] = 6 conditions
o we also set wy (0) = wj (1) =0 and a)4(%) ~ 0 = 3 conditions
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@ Recall combined amplification function (z € C~, 8 € [0, 1])

po(z)

_ pelzd) _ - B »
det(I - zAg)’ po(z) :=det(I —zAg)zbo(I — 2A9)" U

Ro(z) =1+

@ py € Pg[z] (and not P;[z] by Hamilton—Cayley)
po(= D w(0)Z

ke{0:5}
@ det(I —zAg) € Pg[z] for 6 ¢ {0, 1}, and in P3([z] if 6 € {0, 1}
@ Necessary condition for A-stability is ws(6) = 0, V@ € [0, 1], and this
implies that £y = 1 for all 6 ¢ {0, 1} (barrier to L-stability)
e ws(0) € P5s[#] = 6 conditions
o we also set wy (0) = wj (1) =0 and w4(%) ~ 0 = 3 conditions
@ A-stability of single RK schemes further requires 6 necessary conditions
w4(0) = wa(1) = w3(0) = w3(1) =0
@2(0) = (L~ Do), ()=l -D(e2)”, .6 € [-11]
Two natural choices are £y = £; = 0 (L-stability) or £ = ¢} = 1
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Tid

@ 48 unknowns and 39 (non)linear relations

@ can be solved (with care) in quadruple precision with julia
e for both choices, ¢y = {1 = 0 (L-stability) or {5 = {1 = 1
o A(0)-stability is indeed achieved for all 6 € [0, 1]
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@ Companion ERK scheme
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@ 48 unknowns and 39 (non)linear relations

@ can be solved (with care) in quadruple precision with julia
e for both choices, ¢y = {1 = 0 (L-stability) or {5 = {1 = 1
o A(0)-stability is indeed achieved for all 6 € [0, 1]

@ Companion ERK scheme

0
(&)
[&]
4
Cs
C6

1

e o o o 0o o O
e o o o 0o O
e o o 0o O

e e o O

@ 21 unknowns

o Butcher’s simplifying assumption and third-order (single and coupled)
conditions = 13 (non)linear relations

e one can also prescribe 3 additional conditions to achieve linear order 4

@ solved using julia
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Numerical illustrations

@ L-stable AIRK. Left: modulus of amplification function Ry(z) in C~
(a = 75°). Center: absolute value of amplification function Ry (x)

along negative real axis and 6 € [0, 1]. Right: modulus of amplification
function for ERK companion scheme
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Numerical illustrations

@ L-stable AIRK. Left: modulus of amplification function Ry(z) in C~
(a = 75°). Center: absolute value of amplification function Ry (x)
along negative real axis and 6 € [0, 1]. Right: modulus of amplification
function for ERK companion scheme

@ 2D diffusion with nonlinear transport: d;u = 1Oyt + Oyyut) — v-V( %uz),
space semi-discretization using FEM

P Py P3

1 L2-err rate 1 L2-err rate 1 LZ-err rate

121 1.80E-02 - 441 4.95E-04 - 961 4.44E-05 -
441 5.08E-03 1.96 1681 3.39E-05 4.01 3721 2.76E-06  4.10
1681 1.31E-03  2.03 6561 2.17E-06  4.04 14641 1.76E-07  4.02
6561 3.29E-04  2.03 25921 1.37E-07  4.03 58081 1.25E-08  3.85
25921 8.24E-05  2.02 103041 8.60E-09  4.01 231361 1.49E-09  3.07
103041 2.06E-05  2.01 410881 5.90E-10  3.87 923521 2.86E-10  2.39
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Numerical illustrations

@ L-stable AIRK. Left: modulus of amplification function Ry(z) in C~
(a = 75°). Center: absolute value of amplification function Ry (x)
along negative real axis and 6 € [0, 1]. Right: modulus of amplification
function for ERK compamon scheme

]

@ 2D diffusion with nonlinear transport: d;u = p(Oycut + Oyyur) — v-V( %uz),
space semi-discretization using FEM

P Py P3

1 L2-err rate 1 L2-err rate 1 LZ-err rate

121 1.80E-02 - 441 4.95E-04 - 961 4.44E-05 -
441 5.08E-03 1.96 1681 3.39E-05 4.01 3721 2.76E-06  4.10
1681 1.31E-03  2.03 6561 2.17E-06  4.04 14641 1.76E-07  4.02
6561 3.29E-04  2.03 25921 1.37E-07  4.03 58081 1.25E-08  3.85
25921 8.24E-05  2.02 103041 8.60E-09  4.01 231361 1.49E-09  3.07
103041 2.06E-05  2.01 410881 5.90E-10  3.87 923521 2.86E-10  2.39

Thank you for your attention!
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