3rd-order A-stable alternating implict RK schemes

Alexandre Ern

ENPC and INRIA, Paris, France joint work with Jean-Luc Guermond (TAMU)

EFEF, London, June 2024

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55; Douglas & Rachford 56]
- Consider 2D parabolic problem

 $\partial_t u = \Delta u = L_0(u) + L_1(u), \quad L_0(u) := \partial_{xx} u, \quad L_1(u) := \partial_{yy} u$

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55; Douglas & Rachford 56]
- Consider 2D parabolic problem

 $\partial_t u = \Delta u = L_0(u) + L_1(u), \quad L_0(u) := \partial_{xx} u, \quad L_1(u) := \partial_{yy} u$

• After space semi-discretization, perform following time-stepping

$$U^{n,1} = U^n + \frac{1}{2}\tau \mathbb{L}_0(U^{n,1}) + \frac{1}{2}\tau \mathbb{L}_1(U^n)$$
$$U^{n+1} := U^{n,2} = U^n + \tau \mathbb{L}_0(U^{n,1}) + \frac{1}{2}\tau \big(\mathbb{L}_1(U^n) + \mathbb{L}_1(U^{n,2})\big)$$

Combination of midpoint and Crank-Nicolson schemes

An old breakthrough

- Alternating Direction Implicit (ADI) schemes [Peaceman & Rachford 55; Douglas & Rachford 56]
- Consider 2D parabolic problem

 $\partial_t u = \Delta u = L_0(u) + L_1(u), \quad L_0(u) := \partial_{xx} u, \quad L_1(u) := \partial_{yy} u$

• After space semi-discretization, perform following time-stepping

$$U^{n,1} = U^n + \frac{1}{2}\tau \mathbb{L}_0(U^{n,1}) + \frac{1}{2}\tau \mathbb{L}_1(U^n)$$
$$U^{n+1} := U^{n,2} = U^n + \tau \mathbb{L}_0(U^{n,1}) + \frac{1}{2}\tau \big(\mathbb{L}_1(U^n) + \mathbb{L}_1(U^{n,2})\big)$$

Combination of midpoint and Crank-Nicolson schemes

- Second-order accurate and A-stable
- Highly efficient when using FD in space (tridiagonal solves)
- Quite popular in Russian literature [Yanenko 71; Marchuk 90]

• (s+1)-stage scheme represented by Butcher tableau $\frac{c}{b}$

- $A \in \mathbb{R}^{s+1,s+1}$ strictly lower triangular \implies explicit scheme
- A has (some) nonzero diagonal entries \implies implicit scheme

- (s+1)-stage scheme represented by Butcher tableau $\frac{c}{h}$
 - $A \in \mathbb{R}^{s+1,s+1}$ strictly lower triangular \Longrightarrow explicit scheme
 - A has (some) nonzero diagonal entries \implies implicit scheme
 - Simplifying assumptions
 - AU = c with $U := (1, ..., 1)^{\mathsf{T}}$ (Butcher's simplifying assumption)
 - $c_1 = A_{11} = 0$ (first stage trivial), $c_s = 1$ and $e_s^T A = b$ (last stage trivial) \implies only *s* nontrivial stages

• (s+1)-stage scheme represented by Butcher tableau $\frac{c}{h}$

- $A \in \mathbb{R}^{s+1,s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \implies implicit scheme
- Simplifying assumptions
 - AU = c with $U := (1, ..., 1)^{\mathsf{T}}$ (Butcher's simplifying assumption)
 - $c_1 = A_{11} = 0$ (first stage trivial), $c_s = 1$ and $e_s^T A = b$ (last stage trivial) \implies only *s* nontrivial stages
- Order conditions well understood
 - $bc = \frac{1}{2}$ (2nd-order), $bc^2 = \frac{1}{3}$, $bAc = \frac{1}{6}$ (third-order), ...

• (s+1)-stage scheme represented by Butcher tableau $\frac{c}{h}$

- $A \in \mathbb{R}^{s+1,s+1}$ strictly lower triangular \Longrightarrow explicit scheme
- A has (some) nonzero diagonal entries \implies implicit scheme
- Simplifying assumptions
 - AU = c with $U := (1, ..., 1)^{\mathsf{T}}$ (Butcher's simplifying assumption)
 - $c_1 = A_{11} = 0$ (first stage trivial), $c_s = 1$ and $e_s^T A = b$ (last stage trivial) \implies only *s* nontrivial stages
- Order conditions well understood
 - $bc = \frac{1}{2}$ (2nd-order), $bc^2 = \frac{1}{3}$, $bAc = \frac{1}{6}$ (third-order), ...
- Linear stability studied through amplification function

$$R(z) := 1 + \frac{\rho(z)}{\det(I - zA)}, \qquad \rho(z) = \det(I - zA)zb(I - zA)^{-1}U$$

- A(α)-stability whenever $|R(z)| \le 1$ for all $z \in \mathbb{C}^-$, $\arg(-z) \le \alpha$
- L(α)-stability if also $\ell := \lim_{\mathfrak{R}(z) \to -\infty} R(z) = 0$
- Dahlquist's test problem $\partial_t u = \lambda u$ (operator \mathbb{L} with eigenvalue $\lambda \in \mathbb{C}^-$)

• Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

$$\begin{array}{c|c} c & A_0 \\ \hline c & b_0 \end{array} = \begin{array}{c|c} 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 \end{array} \end{array} \begin{array}{c|c} c & A_1 \\ \hline c & b_1 \end{array} = \begin{array}{c|c} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \hline 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \hline 1 & \frac{1}{2} & 0 & \frac{1}{2} \end{array}$$

which we call Alternating Implicit RK (AIRK) schemes

• Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

$$\begin{array}{c|c} c & A_0 \\ \hline & b_0 \end{array} = \begin{array}{c|c} 0 & 0 \\ \hline \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 1 & 0 \\ \hline & 0 & 1 & 0 \end{array} \end{array} \begin{array}{c|c} c & A_1 \\ \hline & b_1 \end{array} = \begin{array}{c|c} 0 & 0 \\ \hline \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \hline & \frac{1}{2} & 0 & \frac{1}{2} \\ \hline & \frac{1}{2} & 0 & \frac{1}{2} \end{array}$$

which we call Alternating Implicit RK (AIRK) schemes

• Each scheme (midpoint and CN) is A-stable (but not L-stable, $\ell = -1$)

• Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes

- Each scheme (midpoint and CN) is A-stable (but not L-stable, $\ell = -1$)
- Linear stability for combined scheme

$$R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$$

with $A_{\theta} := (1 - \theta)A_0 + \theta A_1$, $b_{\theta} := (1 - \theta)b_0 + \theta b_1$

 θ ∈ [0, 1] measures relative strength of eigenvalues of L₀ and L₁ whenever they are real (otherwise θ may be complex)

• Two implicit Butcher arrays of size s + 1 = 3 (2 nontrivial stages)

which we call Alternating Implicit RK (AIRK) schemes

- Each scheme (midpoint and CN) is A-stable (but not L-stable, $\ell = -1$)
- Linear stability for combined scheme

$$R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$$

with $A_{\theta} := (1 - \theta)A_0 + \theta A_1$, $b_{\theta} := (1 - \theta)b_0 + \theta b_1$

- θ ∈ [0, 1] measures relative strength of eigenvalues of L₀ and L₁ whenever they are real (otherwise θ may be complex)
- For ADI, a simple calculation establishes A-stability

$$R_{\theta}(z) = \frac{1 + \frac{1}{2}\theta z}{1 - \frac{1}{2}\theta z} \times \frac{1 + \frac{1}{2}(1 - \theta)z}{1 - \frac{1}{2}(1 - \theta)z}$$

Notice $\ell_{\theta} := \lim_{\mathfrak{R}(z) \to -\infty} R_{\theta}(z) = 1, \theta \notin \{0, 1\}$, but $\ell_0 = \ell_1 = -1$

• Time-dependent (nonlinear) PDE (after space semi-discretization)

• Time-dependent (nonlinear) PDE (after space semi-discretization)

- $\mathbb{L}_0, \mathbb{L}_1$ (diffusion/reaction) much stiffer than \mathbb{L}_2 (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_0, \mathbb{L}_1$ and explicit RK scheme for \mathbb{L}_2

$$\begin{array}{c|c} c & A_0 \\ \hline & b_0 \end{array} \quad \begin{array}{c|c} c & A_1 \\ \hline & b_1 \end{array} \quad \begin{array}{c|c} c & A_2 \\ \hline & b_2 \end{array}$$

• Time-dependent (nonlinear) PDE (after space semi-discretization)

- $\mathbb{L}_0, \mathbb{L}_1$ (diffusion/reaction) much stiffer than \mathbb{L}_2 (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_0, \mathbb{L}_1$ and explicit RK scheme for \mathbb{L}_2

$$\begin{array}{c|c} c & A_0 \\ \hline & b_0 \end{array} \quad \begin{array}{c|c} c & A_1 \\ \hline & b_1 \end{array} \quad \begin{array}{c|c} c & A_2 \\ \hline & b_2 \end{array}$$

- We want to achieve
 - third-order accuracy

• Time-dependent (nonlinear) PDE (after space semi-discretization)

- $\mathbb{L}_0, \mathbb{L}_1$ (diffusion/reaction) much stiffer than \mathbb{L}_2 (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_0, \mathbb{L}_1$ and explicit RK scheme for \mathbb{L}_2

$$\begin{array}{c|c} c & A_0 \\ \hline & b_0 \end{array} \quad \begin{array}{c|c} c & A_1 \\ \hline & b_1 \end{array} \quad \begin{array}{c|c} c & A_2 \\ \hline & b_2 \end{array}$$

- We want to achieve
 - third-order accuracy
 - A(0)-stability for AIRK scheme for all $\theta \in [0, 1]$ (skew-symmetric part, e.g., transport, less stiff than symmetric part, e.g., diffusion)

• Time-dependent (nonlinear) PDE (after space semi-discretization)

- $\mathbb{L}_0, \mathbb{L}_1$ (diffusion/reaction) much stiffer than \mathbb{L}_2 (nonlinear transport)
- Use AIRK scheme for $\mathbb{L}_0, \mathbb{L}_1$ and explicit RK scheme for \mathbb{L}_2

$$\begin{array}{c|c} c & A_0 \\ \hline & b_0 \end{array} \quad \begin{array}{c|c} c & A_1 \\ \hline & b_1 \end{array} \quad \begin{array}{c|c} c & A_2 \\ \hline & b_2 \end{array}$$

- We want to achieve
 - third-order accuracy
 - A(0)-stability for AIRK scheme for all $\theta \in [0, 1]$ (skew-symmetric part, e.g., transport, less stiff than symmetric part, e.g., diffusion)
 - A(α)-stability for each constitutive implicit RK scheme, and possibly also L(α)-stability

• Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]
- One remedy is adopting complex time integration [Hansen & Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
 - application to nonlinear transport not clear

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]
- One remedy is adopting complex time integration [Hansen & Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
 - application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
 - additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
 - important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97; Pareschi & Russo 01; Kennedy & Carpenter 03]
 - Generalized ARK (GARK) methods [Sandu & Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]
- One remedy is adopting complex time integration [Hansen & Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
 - application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
 - additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
 - important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97; Pareschi & Russo 01; Kennedy & Carpenter 03]
 - Generalized ARK (GARK) methods [Sandu & Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
 - order conditions well understood through concept of P-trees [Hairer 80]

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]
- One remedy is adopting complex time integration [Hansen & Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
 - application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
 - additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
 - important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97; Pareschi & Russo 01; Kennedy & Carpenter 03]
 - Generalized ARK (GARK) methods [Sandu & Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
 - order conditions well understood through concept of P-trees [Hairer 80]
 - much less known about stability, even linear

- Second-order barrier for exponential splitting methods (with only forward steps and positive coefficients) [Sheng 89; Suzuki 91; Goldman & Kaper 96; Blanes & Casas 05]
- One remedy is adopting complex time integration [Hansen & Osterman 09; Castella, Chartier, Descombes, Vilmart 09]
 - application to nonlinear transport not clear
- Interlacing two (or more) RK schemes
 - additive RK (ARK) methods [Rice 60; Cooper & Sayfy 83; Rentrop 85]
 - important example are IMEX methods [Zhong 96; Ascher, Ruuth & Spiteri 97; Pareschi & Russo 01; Kennedy & Carpenter 03]
 - Generalized ARK (GARK) methods [Sandu & Günther 15; González-Pinto et al. 22] (several copies of dependent unknowns advanced at each stage)
 - order conditions well understood through concept of P-trees [Hairer 80]
 - much less known about stability, even linear
- We prove that there is a stability barrier for s = 4 nontrivial stages
- Our goal can be achieved with s = 6 nontrivial stages

Six-stage AIRK scheme(s)

• Butcher tableaux (we omit line vector *b* for simplicity)

Six-stage AIRK scheme(s)

• Butcher tableaux (we omit line vector *b* for simplicity)

0	0							0	0						
c_2	•	٠						c_2	•	0					
с3	٠	٠	0							٠					
c_4	٠	٠	•	•								0			
c_5								c_5	•	٠	٠	•	•		
c_6												•			
1	•		•	•	•	•	0	1	•	•	٠	•		•	•

• We take equi-distributed substages, $c_m = \frac{m-1}{6}, m \in \{1:7\}$

• optimizes CFL condition for ERK scheme [Shu & Osher 88; AE & JLG 23]

Six-stage AIRK scheme(s)

• Butcher tableaux (we omit line vector *b* for simplicity)

0	0							0	0						
c_2	•	•						$0 \\ c_2$	•	0					
<i>c</i> ₃	•	٠	0					<i>c</i> ₃	•	٠	•				
c_4	٠	•	٠	•				c_4	•	٠	٠	0			
c_5	٠	٠	٠	٠	0			c5	•	٠	٠	٠	•		
c_6	•	٠	٠	٠	٠	•		c_6	•	٠	٠	٠	•	0	
1	٠	٠	٠	٠	٠	٠	0	1	•	٠	٠	٠	٠	•	•

• We take equi-distributed substages, $c_m = \frac{m-1}{6}, m \in \{1:7\}$

- optimizes CFL condition for ERK scheme [Shu & Osher 88; AE & JLG 23]
- There are 48 unknown coefficients for AIRK (24 for each array)
- There are 24 (non)linear relations coming from
 - Butcher's simplifying assumption (12 linear relations)
 - third-order (single and coupled) conditions (8 (non)linear relations)
 - requiring singly diagonal schemes (4 linear relations)
- There are 15 additional nonlinear relations related to stability

• Recall combined amplification function $(z \in \mathbb{C}^-, \theta \in [0, 1])$

 $R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$

• Recall combined amplification function $(z \in \mathbb{C}^-, \theta \in [0, 1])$

 $R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$

• $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton–Cayley)

$$\rho_{\theta}(z) = \sum_{k \in \{0:5\}} \omega_k(\theta) z^{k+1}$$

• Recall combined amplification function $(z \in \mathbb{C}^-, \theta \in [0, 1])$

 $R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$

• $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton–Cayley)

$$\rho_{\theta}(z) = \sum_{k \in \{0:5\}} \omega_k(\theta) z^{k+1}$$

• det $(I - zA_{\theta}) \in \mathbb{P}_6[z]$ for $\theta \notin \{0, 1\}$, and in $\mathbb{P}_3[z]$ if $\theta \in \{0, 1\}$

• Recall combined amplification function $(z \in \mathbb{C}^-, \theta \in [0, 1])$

 $R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$

• $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton–Cayley)

$$\rho_{\theta}(z) = \sum_{k \in \{0:5\}} \omega_k(\theta) z^{k+1}$$

- det $(I zA_{\theta}) \in \mathbb{P}_6[z]$ for $\theta \notin \{0, 1\}$, and in $\mathbb{P}_3[z]$ if $\theta \in \{0, 1\}$
- Necessary condition for A-stability is $\omega_5(\theta) = 0, \forall \theta \in [0, 1]$, and this implies that $\ell_{\theta} = 1$ for all $\theta \notin \{0, 1\}$ (barrier to L-stability)
 - $\omega_5(\theta) \in \mathbb{P}_5[\theta] \Longrightarrow 6$ conditions
 - we also set $\omega'_4(0) = \omega'_4(1) = 0$ and $\omega_4(\frac{1}{2}) \approx 0 \Longrightarrow 3$ conditions

• Recall combined amplification function $(z \in \mathbb{C}^-, \theta \in [0, 1])$

 $R_{\theta}(z) = 1 + \frac{\rho_{\theta}(z)}{\det(I - zA_{\theta})}, \qquad \rho_{\theta}(z) := \det(I - zA_{\theta})zb_{\theta}(I - zA_{\theta})^{-1}U$

• $\rho_{\theta} \in \mathbb{P}_{6}[z]$ (and not $\mathbb{P}_{7}[z]$ by Hamilton–Cayley)

$$\rho_{\theta}(z) = \sum_{k \in \{0:5\}} \omega_k(\theta) z^{k+1}$$

- det $(I zA_{\theta}) \in \mathbb{P}_6[z]$ for $\theta \notin \{0, 1\}$, and in $\mathbb{P}_3[z]$ if $\theta \in \{0, 1\}$
- Necessary condition for A-stability is ω₅(θ) = 0, ∀θ ∈ [0, 1], and this implies that ℓ_θ = 1 for all θ ∉ {0, 1} (barrier to L-stability)
 - $\omega_5(\theta) \in \mathbb{P}_5[\theta] \Longrightarrow 6$ conditions
 - we also set $\omega'_4(0) = \omega'_4(1) = 0$ and $\omega_4(\frac{1}{2}) \approx 0 \Longrightarrow 3$ conditions
- A-stability of single RK schemes further requires 6 necessary conditions

$$\omega_4(0) = \omega_4(1) = \omega_3(0) = \omega_3(1) = 0$$

$$\omega_2(0) = (\ell_0 - 1)(\bullet_1)^3, \quad \omega_2(1) = (\ell_1 - 1)(\bullet_2)^3, \quad \ell_0, \ell_1 \in [-1, 1]$$

Two natural choices are $\ell_0 = \ell_1 = 0$ (L-stability) or $\ell_0 = \ell_1 = 1$

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
 - can be solved (with care) in quadruple precision with julia
 - for both choices, $\ell_0 = \ell_1 = 0$ (L-stability) or $\ell_0 = \ell_1 = 1$
 - A(0)-stability is indeed achieved for all $\theta \in [0, 1]$

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
 - can be solved (with care) in quadruple precision with julia
 - for both choices, $\ell_0 = \ell_1 = 0$ (L-stability) or $\ell_0 = \ell_1 = 1$
 - A(0)-stability is indeed achieved for all $\theta \in [0, 1]$
- Companion ERK scheme

0	0						
$ \begin{array}{c} 0\\ c_2\\ c_3\\ c_4\\ c_5\\ c_6\\ 1 \end{array} $	•	0					
с3	•	٠	0				
c_4	•	•	٠	0			
c_5	•	•	٠	٠	0		
c_6	•	٠	٠	٠	•	0	
1	•	•	•	•	•	•	0

Tidying up and ERK companion scheme

- 48 unknowns and 39 (non)linear relations
 - can be solved (with care) in quadruple precision with julia
 - for both choices, $\ell_0 = \ell_1 = 0$ (L-stability) or $\ell_0 = \ell_1 = 1$
 - A(0)-stability is indeed achieved for all $\theta \in [0, 1]$
- Companion ERK scheme

0	0						
c_2	•	0					
$\begin{array}{c} 0 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ 1 \end{array}$	•	•	0				
c_4	•	•	•	0			
c_5	•	•	•	•	0		
<i>c</i> ₆	•	•	•	•	•	0	
1	•	٠	•	•	•	٠	0

- 21 unknowns
- Butcher's simplifying assumption and third-order (single and coupled) conditions ⇒ 13 (non)linear relations
- one can also prescribe 3 additional conditions to achieve linear order 4
- solved using julia

Numerical illustrations

• L-stable AIRK. Left: modulus of amplification function $R_0(z)$ in \mathbb{C}^- ($\alpha \approx 75^\circ$). Center: absolute value of amplification function $R_\theta(x)$ along negative real axis and $\theta \in [0, 1]$. Right: modulus of amplification function for ERK companion scheme

Numerical illustrations

• L-stable AIRK. Left: modulus of amplification function $R_0(z)$ in \mathbb{C}^- ($\alpha \approx 75^\circ$). Center: absolute value of amplification function $R_\theta(x)$ along negative real axis and $\theta \in [0, 1]$. Right: modulus of amplification function for ERK companion scheme

• 2D diffusion with nonlinear transport: $\partial_t u = \mu(\partial_{xx}u + \partial_{yy}u) - \mathbf{v}\cdot\nabla(\frac{1}{2}u^2)$, space semi-discretization using FEM

	\mathbb{P}_1			\mathbb{P}_2		\mathbb{P}_3			
I	L ² -err	rate	Ι	L ² -err	rate	I	L ² -err	rate	
121	1.80E-02	-	441	4.95E-04	-	961	4.44E-05	-	
441	5.08E-03	1.96	1681	3.39E-05	4.01	3721	2.76E-06	4.10	
1681	1.31E-03	2.03	6561	2.17E-06	4.04	14641	1.76E-07	4.02	
6561	3.29E-04	2.03	25921	1.37E-07	4.03	58081	1.25E-08	3.85	
25921	8.24E-05	2.02	103041	8.60E-09	4.01	231361	1.49E-09	3.07	
103041	2.06E-05	2.01	410881	5.90E-10	3.87	923521	2.86E-10	2.39	

Numerical illustrations

• L-stable AIRK. Left: modulus of amplification function $R_0(z)$ in \mathbb{C}^- ($\alpha \approx 75^\circ$). Center: absolute value of amplification function $R_\theta(x)$ along negative real axis and $\theta \in [0, 1]$. Right: modulus of amplification function for ERK companion scheme

• 2D diffusion with nonlinear transport: $\partial_t u = \mu(\partial_{xx}u + \partial_{yy}u) - \mathbf{v}\cdot\nabla(\frac{1}{2}u^2)$, space semi-discretization using FEM

	\mathbb{P}_1			\mathbb{P}_2		\mathbb{P}_3			
I	L ² -err	rate	Ι	L ² -err	rate	I	L ² -err	rate	
121	1.80E-02	-	441	4.95E-04	-	961	4.44E-05	-	
441	5.08E-03	1.96	1681	3.39E-05	4.01	3721	2.76E-06	4.10	
1681	1.31E-03	2.03	6561	2.17E-06	4.04	14641	1.76E-07	4.02	
6561	3.29E-04	2.03	25921	1.37E-07	4.03	58081	1.25E-08	3.85	
25921	8.24E-05	2.02	103041	8.60E-09	4.01	231361	1.49E-09	3.07	
103041	2.06E-05	2.01	410881	5.90E-10	3.87	923521	2.86E-10	2.39	

Thank you for your attention!