Hybrid high-order methods for the wave equation

Alexandre Ern

ENPC and INRIA, Paris, France joint work with E. Burman (UCL), G. Delay (Sorbonne), O. Duran (Bergen) collaboration and support: CEA

ICOSAHOM, Vienna, 13/07/2021

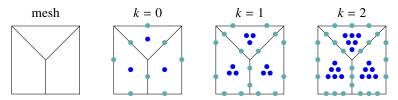
Hybrid high-order (HHO) methods ...

- in a nutshell
- for wave propagation
- on unfitted meshes (curved interfaces/boundary)

HHO in a nutshell

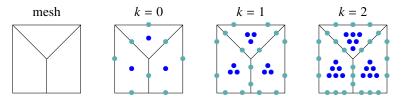
Basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree *k* ≥ 0 on cells and faces



Basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree *k* ≥ 0 on cells and faces



- In each cell, one devises a local gradient reconstruction operator
- One adds a local stabilization to weakly enforce the matching of cell dofs trace with face dofs
- The global problem is assembled cellwise as in FEM

Gradient reconstruction and stabilization

• Mesh cell $T \in \mathcal{T}$, cell dofs $u_T \in \mathbb{P}^k(T)$, face dofs $u_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^k(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

• Local potential reconstruction $R_T : \hat{U}_T \to \mathbb{P}^{k+1}(T)$ s.t.

 $(\nabla R_T(\hat{u}_T), \nabla q)_T = -(\underline{u}_T, \Delta q)_T + (\underline{u}_{\partial T}, \nabla q \cdot \mathbf{n}_T)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T)/\mathbb{R}$

together with $(R_T(\hat{u}_T), 1)_T = (u_T, 1)_T$

Gradient reconstruction and stabilization

• Mesh cell $T \in \mathcal{T}$, cell dofs $u_T \in \mathbb{P}^k(T)$, face dofs $u_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^k(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

• Local potential reconstruction $R_T : \hat{U}_T \to \mathbb{P}^{k+1}(T)$ s.t.

 $(\nabla R_T(\hat{u}_T), \nabla q)_T = -(\underline{u}_T, \Delta q)_T + (\underline{u}_{\partial T}, \nabla q \cdot \mathbf{n}_T)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T)/\mathbb{R}$

together with $(R_T(\hat{u}_T), 1)_T = (u_T, 1)_T$

- Local gradient reconstruction $\mathbf{G}_T(\hat{u}_T) := \nabla R_T(\hat{u}_T) \in \nabla \mathbb{P}^{k+1}(T)$
- Local stabilization operator acting on $\delta := u_T |_{\partial T} u_{\partial T}$

$$S_{\partial T}(\hat{u}_T) := \prod_{\partial T}^k \left(\delta - \underbrace{\left((I - \prod_T^k) R_T(0, \delta) \right)|_{\partial T}}_{\mathcal{O}} \right)$$

high-order correction

Local bilinear form

• Local bilinear form for Poisson model problem

 $a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_T + h_T^{-1}(S_{\partial T}(\hat{u}_T), S_{\partial T}(\hat{w}_T))_{\partial T}$

• Stability and boundedness

$$\alpha \|\hat{u}_{T}\|_{\hat{U}_{T}}^{2} \leq a_{T}(\hat{u}_{T}, \hat{u}_{T}) \leq \omega \|\hat{u}_{T}\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}$$

with $\|\hat{u}_{T}\|_{\hat{U}_{T}}^{2} := \|\nabla u_{T}\|_{T}^{2} + h_{T}^{-1} \|u_{T}|_{\partial T} - u_{\partial T}\|_{\partial T}^{2}$

Local bilinear form

• Local bilinear form for Poisson model problem

 $a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_T + h_T^{-1}(S_{\partial T}(\hat{u}_T), S_{\partial T}(\hat{w}_T))_{\partial T}$

• Stability and boundedness

$$\alpha \|\hat{u}_T\|_{\hat{U}_T}^2 \le a_T(\hat{u}_T, \hat{u}_T) \le \omega \|\hat{u}_T\|_{\hat{U}_T}^2, \quad \forall \hat{u}_T \in \hat{U}_T$$

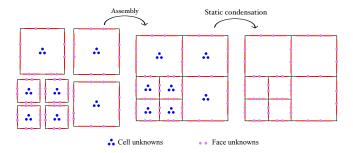
with $\|\hat{u}_T\|^2_{\hat{U}_T} := \|\nabla u_T\|^2_T + h_T^{-1} \|u_T\|_{\partial T} - u_{\partial T}\|^2_{\partial T}$

- Reduction operator $\hat{l}_T(v) := (\Pi_T^k(v), \Pi_{\partial T}^k(v|_{\partial T})) \in \hat{U}_T, \forall v \in H^1(T)$
- Main consistency properties

•
$$h_T^{-1} \| v - R_T(\hat{l}_T(v)) \|_T + \| \nabla (v - R_T(\hat{l}_T(v))) \|_T \leq h_T^{k+1} \| v \|_{H^{k+2}(T)}$$

•
$$h_T^{-\frac{1}{2}} \|S_{\partial T}(\hat{l}_T(v))\|_{\partial T} \leq h_T^{k+1} |v|_{H^{k+2}(T)}$$

Assembly and static condensation



• Global dofs $\hat{u}_h = (u_{\mathcal{T}}, u_{\mathcal{F}})$ ($\mathcal{T} := \{\text{mesh cells}\}, \mathcal{F} := \{\text{mesh faces}\}$)

 $\hat{U}_h := \mathbb{P}^k(\mathcal{T}) \times \mathbb{P}^k(\mathcal{F}), \quad \mathbb{P}^k(\mathcal{T}) := \sum_{T \in \mathcal{T}} \mathbb{P}^k(T), \quad \mathbb{P}^k(\mathcal{F}) := \sum_{F \in \mathcal{F}} \mathbb{P}^k(F)$

- Global assembly: $\sum_{T \in \mathcal{T}} a_T(\hat{u}_T, \hat{w}_T) = \sum_{T \in \mathcal{T}} (f, w_T)_T$
- Dirichlet conditions can be directly enforced on the face boundary dofs
- Cell dofs are eliminated locally by static condensation
 - global problem couples only face dofs
 - cell dofs recovered by local post-processing

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2}) L^2$ -error estimate (with full elliptic regularity)

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2}) L^2$ -error estimate (with full elliptic regularity)
 - more generally, $O(h^t) H^1$ -error estimate if $u \in H^{1+t}(\Omega), t \in (\frac{1}{2}, k+1]$
 - for $t \in (0, \frac{1}{2})$, see [AE, Guermond 21 (FoCM)]

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2}) L^2$ -error estimate (with full elliptic regularity)
 - more generally, $O(h^t) H^1$ -error estimate if $u \in H^{1+t}(\Omega), t \in (\frac{1}{2}, k+1]$
 - for $t \in (0, \frac{1}{2})$, see [AE, Guermond 21 (FoCM)]
- Local conservation
 - optimally convergent and algebraically balanced fluxes on faces
 - as any face-based method, balance at cell level
- Attractive computational costs
 - only face dofs are globally coupled
 - compact stencil

Variants

• Variant on gradient reconstruction $\mathbf{G}_T : \hat{U}_T \to \mathbb{P}^k(T; \mathbb{R}^d)$ s.t.

$$(\mathbf{G}_T(\hat{u}_T), \mathbf{q})_T = -(\mathbf{u}_T, \operatorname{div} \mathbf{q})_T + (\mathbf{u}_{\partial T}, \mathbf{q} \cdot \mathbf{n}_T)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^k(T; \mathbb{R}^d)$$

- same scalar mass matrix for each component of $\mathbf{G}_T(\hat{u}_T)$
- useful for nonlinear problems [Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

Variants

• Variant on gradient reconstruction $\mathbf{G}_T : \hat{U}_T \to \mathbb{P}^k(T; \mathbb{R}^d)$ s.t.

$$(\mathbf{G}_T(\hat{u}_T), \mathbf{q})_T = -(\mathbf{u}_T, \operatorname{div} \mathbf{q})_T + (\mathbf{u}_{\partial T}, \mathbf{q} \cdot \mathbf{n}_T)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^k(T; \mathbb{R}^d)$$

- same scalar mass matrix for each component of $\mathbf{G}_T(\hat{u}_T)$
- useful for nonlinear problems
 [Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]
- Variants on cell dofs and stabilization
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs
 - this variant allows for the simpler Lehrenfeld-Schöberl HDG stabilization

$$S_{\partial T}(\hat{u}_T) := \Pi^k_{\partial T}(\delta)$$

• another variant is $k \ge 1$ for face dofs and (k - 1) for cell dofs

• HHO(*k* = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

- HHO(*k* = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
 - equal-order HHO uses reconstruction in the stabilization
 - HHO allows for a simpler analysis based on *L*²-projections: avoids invoking the special HDG projection

- HHO(*k* = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
 - equal-order HHO uses reconstruction in the stabilization
 - HHO allows for a simpler analysis based on *L*²-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
 - weak gradient \leftrightarrow HHO grad. rec.
 - WG often uses plain LS stabilization (can be suboptimal)

- HHO(*k* = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
 - equal-order HHO uses reconstruction in the stabilization
 - HHO allows for a simpler analysis based on *L*²-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
 - weak gradient \leftrightarrow HHO grad. rec.
 - WG often uses plain LS stabilization (can be suboptimal)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
 - HHO dof space \hat{U}_T isomorphic to virtual space \mathcal{V}_T

$$\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^k(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$$

- HHO grad. rec. \leftrightarrow computable gradient projection
- stabilization controls energy-norm of noncomputable remainder
- see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]

- HHO(*k* = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
 - equal-order HHO uses reconstruction in the stabilization
 - HHO allows for a simpler analysis based on *L*²-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
 - weak gradient \leftrightarrow HHO grad. rec.
 - WG often uses plain LS stabilization (can be suboptimal)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
 - HHO dof space \hat{U}_T isomorphic to virtual space \mathcal{V}_T

$$\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^k(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$$

- HHO grad. rec. \leftrightarrow computable gradient projection
- stabilization controls energy-norm of noncomputable remainder
- see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]
- Different devising viewpoints should be mutually enriching

Applications, libraries, textbooks

- Broad area of applications (non-exhaustive list...)
 - **solid mechanics**: nonlinear elasticity, hyperlasticity and plasticity, contact, Tresca friction, obstacle pb
 - fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
 - Leray-Lions, spectral pb, H^{-1} -loads, magnetostatics, de Rham complexes
- Libraries
 - industry (code_aster, code_saturne, EDF R&D), ongoing developments at CEA
 - academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse), HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)

• Textbooks

- Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and applications (Springer, 2020)
- Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics (Springer Briefs, 2021)

HHO for wave propagation

- Second-order formulation in time: Newmark schemes
- First-order formulation in time: RK schemes
- [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

Second-order formulation in time

- Domain $\Omega \subset \mathbb{R}^d$, time interval $J := (0, T_f), T_f > 0$
- Acoustic wave equation with wave speed $c := \sqrt{\kappa/\rho}$

$$\frac{1}{\kappa}\partial_{tt}p - \operatorname{div}\left(\frac{1}{\rho}\nabla p\right) = f \quad \text{in } J \times \Omega$$

Everything can be extended to elastodynamics

• Weak form: Under mild regularity assumptions on the data,

$$(\partial_{tt} p(t), w)_{\frac{1}{\kappa};\Omega} + (\nabla p(t), \nabla w)_{\frac{1}{\rho};\Omega} = (f(t), w)_{\Omega}, \quad \forall w \in H_0^1(\Omega) \, \forall t \in J$$

• Energy balance: $\mathfrak{E}(t) = \mathfrak{E}(0) + \int_0^t (f(s), \partial_t p(s))_\Omega ds$ with

$$\mathfrak{E}(t) := \frac{1}{2} \|\partial_t p(t)\|_{\frac{1}{\kappa};\Omega}^2 + \frac{1}{2} \|\nabla p(t)\|_{\frac{1}{\rho};\Omega}^2$$

HHO space semi-discretization (1/3)

• Local cell dofs in $\mathbb{P}^{k'}(T)$, $k' \in \{k, k+1\}$, and local face dofs in $\mathbb{P}^{k}(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^{k'}(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

- Local gradient reconstruction $\mathbf{G}_T(\hat{u}_T) \in \mathbb{P}^k(T; \mathbb{R}^d)$ (or in $\nabla \mathbb{P}^{k+1}(T)$)
- Local stabilization acting on $\delta := u_T |_{\partial T} u_{\partial T}$

$$S_{\partial T}(\hat{u}_T) := \begin{cases} \Pi_{\partial T}^k \left(\delta - \left((I - \Pi_T^k) R_T(0, \delta) \right) \big|_{\partial T} \right) & \text{if } k' = k \\ \Pi_{\partial T}^k(\delta) & \text{if } k' = k + 1 \end{cases}$$

Local bilinear form

 $a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_{\frac{1}{\rho};T} + \tau_{\partial T}(S_{\partial T}(\hat{u}_T), S_{\partial T}(\hat{w}_T))_{\partial T}$

with $\tau_{\partial T} := (\rho_{|T} h_T)^{-1}$

- Global dofs $\hat{u}_h = (u_{\mathcal{T}}, u_{\mathcal{F}}) \in \hat{U}_h := \mathbb{P}^{k'}(\mathcal{T}) \times \mathbb{P}^k(\mathcal{F})$
- Global assembly leading to

$$a_h(\hat{u}_h, \hat{w}_h) := \sum_{T \in \mathcal{T}} a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_{\mathcal{T}}(\hat{u}_h), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\frac{1}{\rho};\Omega} + s_h(\hat{u}_h, \hat{w}_h)$$

• Dirichlet conditions can be directly enforced on the face boundary dofs

$$\hat{U}_{h0} := \mathbb{P}^{k'}(\mathcal{T}) \times \mathbb{P}^{k}(\mathcal{F}^{\circ})$$

with $\mathcal{F}^{\circ} := \{ \text{mesh interfaces} \}$

HHO space semi-discretization (3/3)

• Wave equation in space semi-discrete form: $\hat{p}_h \in C^2(\bar{J}; \hat{U}_{h0})$ s.t.

 $(\partial_{tt} p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + a_h(\hat{p}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega}, \quad \forall \hat{w}_h \in \hat{U}_{h0} \, \forall t \in J$

HHO space semi-discretization (3/3)

• Wave equation in space semi-discrete form: $\hat{p}_h \in C^2(\bar{J}; \hat{U}_{h0})$ s.t.

$$(\partial_{tt} p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{k};\Omega} + a_h(\hat{p}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega}, \quad \forall \hat{w}_h \in \hat{U}_{h0} \, \forall t \in J$$

• Energy balance: $\mathfrak{E}_h(t) = \mathfrak{E}_h(0) + \int_0^t (f(s), \partial_t p_{\mathcal{T}}(s))_\Omega ds$ with $\mathfrak{E}_h(t) := \frac{1}{2} \|\partial_t p_{\mathcal{T}}(t)\|_{1:\Omega}^2 + \frac{1}{2} \|\mathbf{G}_{\mathcal{T}}(\hat{p}_h(t))\|_{1:\Omega}^2 + \frac{1}{2} s_h(\hat{p}_h(t), \hat{p}_h(t))$

Stabilization is taken into account in the energy definition

• HDG methods for wave equation in second-order form [Cockburn, Fu, Hungria, Ji, Sanchez, Sayas 18]

- Bases for $\mathbb{P}^{k'}(\mathcal{T})$ and $\mathbb{P}^{k}(\mathcal{F})$, component vector $(\mathsf{P}_{\mathcal{T}}(t), \mathsf{P}_{\mathcal{F}}(t)) \in \mathbb{R}^{N_{\mathcal{T}} \times N_{\mathcal{F}}}$ $\begin{bmatrix} \mathsf{M}_{\mathcal{T}\mathcal{T}} \partial_{tt} \mathsf{P}_{\mathcal{T}}(t) \\ 0 \end{bmatrix} + \begin{bmatrix} \mathsf{K}_{\mathcal{T}\mathcal{T}} & \mathsf{K}_{\mathcal{T}\mathcal{F}} \\ \mathsf{K}_{\mathcal{F}\mathcal{T}} & \mathsf{K}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{P}_{\mathcal{T}}(t) \\ \mathsf{P}_{\mathcal{F}}(t) \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}}(t) \\ 0 \end{bmatrix}$
- $\bullet\,$ Mass matrix $M_{\mathcal{TT}}$ and stiffness submatrix $K_{\mathcal{TT}}$ are block-diagonal
- Stiffness submatrix K_{FF} is only sparse: face dofs from the same cell are coupled together owing to reconstruction

- Assuming a smooth solution,
 - $\|\partial_t p \partial_t p_{\mathcal{T}}\|_{L^{\infty}(J;L^2(\frac{1}{\kappa};\Omega))} + \|\nabla p \mathbf{G}_{\mathcal{T}}(\hat{p}_h)\|_{L^2(J;L^2(\frac{1}{\rho};\Omega))}$ decays as $O(h^{k+1})$ $\|\Pi_{\mathcal{T}}^{k'}(p) p_{\mathcal{T}}\|_{L^{\infty}(J;L^2(\frac{1}{\rho};\Omega))}$ decays as $O(h^{k+2})$ under (full) elliptic reg.
- Some comments on proofs
 - adapt ideas for FEM analysis from [Dupont 73; Wheeler 73; Baker 76]
 - simpler than for HDG (avoids HDG projection which needs a special initialization in HDG scheme)
 - could be re-used in DG setting using discrete gradients (revisiting [Grote, Schneebeli, Schötzau 06])

- Newmark scheme with parameters $(\beta, \gamma) = (\frac{1}{4}, \frac{1}{2})$
 - implicit, second-order, unconditionally stable
 - $p, \partial_t p, \partial_{tt} p$ are approximated by hybrid pairs $\hat{p}_h^n, \hat{v}_h^n, \hat{a}_h^n \in \hat{U}_{h0}, \forall n \ge 0$
- Each time-step implemented as usual

- Newmark scheme with parameters $(\beta, \gamma) = (\frac{1}{4}, \frac{1}{2})$
 - implicit, second-order, unconditionally stable
 - $p, \partial_t p, \partial_{tt} p$ are approximated by hybrid pairs $\hat{p}_h^n, \hat{v}_h^n, \hat{a}_h^n \in \hat{U}_{h0}, \forall n \ge 0$
- Each time-step implemented as usual
- Discrete energy is exactly conserved
- $\bullet\,$ Central FD scheme is not efficient: inversion of stiffness submatrix $K_{{\cal F}{\cal F}}$

First-order formulation in time

• Introduce velocity $v := \partial_t p$ and dual variable $\sigma := \frac{1}{\rho} \nabla p$

$$\begin{cases} \rho \partial_t \boldsymbol{\sigma} - \nabla v = 0\\ \frac{1}{\kappa} \partial_t v - \operatorname{div} \boldsymbol{\sigma} = f \end{cases} \quad \text{in } J \times \Omega$$

• Weak form: $\forall (\tau, w) \in L^2(\Omega; \mathbb{R}^d) \times H_0^1(\Omega), \forall t \in J$,

$$\begin{cases} (\partial_t \boldsymbol{\sigma}(t), \boldsymbol{\tau})_{\rho;\Omega} - (\nabla v(t), \boldsymbol{\tau})_{\Omega} = 0\\ (\partial_t v(t), w)_{\frac{1}{\kappa};\Omega} + (\boldsymbol{\sigma}(t), \nabla w)_{\Omega} = (f(t), w)_{\Omega} \end{cases}$$

• Energy balance: $\mathfrak{E}(t) = \mathfrak{E}(0) + \int_0^t (f(s), v(s))_{\Omega} ds$ with

$$\mathfrak{E}(t) := \frac{1}{2} \| \boldsymbol{v}(t) \|_{\frac{1}{\kappa};\Omega}^2 + \frac{1}{2} \| \boldsymbol{\sigma}(t) \|_{\rho;\Omega}^2$$

HHO space semi-discretization

- $\hat{v}_h \in C^1(\overline{J}; \hat{U}_{h0})$ and $\sigma_{\mathcal{T}} \in C^1(\overline{J}; \mathbf{S}_{\mathcal{T}})$ with $\mathbf{S}_{\mathcal{T}} := \mathbb{P}^k(\mathcal{T}; \mathbb{R}^d)$
- Space semi-discrete form:

$$\begin{cases} (\partial_t \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}})_{\rho;\Omega} - (\mathbf{G}_{\mathcal{T}}(\hat{v}_h(t)), \boldsymbol{\tau}_{\mathcal{T}})_{\Omega} = 0\\ (\partial_t v_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{k};\Omega} + (\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\Omega} + \tilde{s}_h(\hat{v}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega} \end{cases}$$

• Stabilization $\tilde{s}_h(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T} = (\rho c)_{|T}^{-1}$, i.e., $\tilde{\tau}_{\partial T} = O(1)$

HHO space semi-discretization

- $\hat{v}_h \in C^1(\overline{J}; \hat{U}_{h0}) \text{ and } \boldsymbol{\sigma}_{\mathcal{T}} \in C^1(\overline{J}; \mathbf{S}_{\mathcal{T}}) \text{ with } \mathbf{S}_{\mathcal{T}} := \mathbb{P}^k(\mathcal{T}; \mathbb{R}^d)$
- Space semi-discrete form:

$$\begin{cases} (\partial_t \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}})_{\rho;\Omega} - (\mathbf{G}_{\mathcal{T}}(\hat{v}_h(t)), \boldsymbol{\tau}_{\mathcal{T}})_{\Omega} = 0\\ (\partial_t v_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + (\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\Omega} + \tilde{s}_h(\hat{v}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega} \end{cases}$$

- Stabilization $\tilde{s}_h(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T} = (\rho c)_{|T}^{-1}$, i.e., $\tilde{\tau}_{\partial T} = O(1)$
- Energy balance: $\mathfrak{E}_h(t) + \int_0^t \tilde{s}_h(\hat{v}_h(s), \hat{v}_h(s)) ds = \mathfrak{E}_h(0) + \int_0^t (f(s), v_{\mathcal{T}}(s))_\Omega ds$

$$\mathfrak{E}_{h}(t) := \frac{1}{2} \| \boldsymbol{v}_{\mathcal{T}}(t) \|_{\frac{1}{k};\Omega}^{2} + \frac{1}{2} \| \boldsymbol{\sigma}_{\mathcal{T}}(t) \|_{\rho;\Omega}^{2}$$

Stabilization acts as a dissipative mechanism

• HDG methods for wave equation in first-order form [Nguyen, Peraire, Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]

Algebraic realization

• Component vectors $Z_{\mathcal{T}}(t) \in \mathbb{R}^{M_{\mathcal{T}}}$ and $(V_{\mathcal{T}}(t), V_{\mathcal{F}}(t)) \in \mathbb{R}^{N_{\mathcal{T}} \times N_{\mathcal{F}}}$

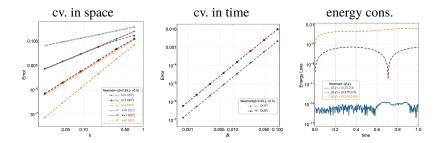
$$\begin{bmatrix} \mathsf{M}^{\boldsymbol{\sigma}}_{\mathcal{T}\mathcal{T}}\partial_{t}\mathsf{Z}_{\mathcal{T}}(t)\\ \mathsf{M}_{\mathcal{T}\mathcal{T}}\partial_{t}\mathsf{V}_{\mathcal{T}}(t)\\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -\mathsf{G}_{\mathcal{T}} & -\mathsf{G}_{\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{T}} & \mathsf{S}_{\mathcal{F}\mathcal{T}} & \mathsf{S}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{Z}_{\mathcal{T}}(t)\\ \mathsf{V}_{\mathcal{T}}(t)\\ \mathsf{V}_{\mathcal{F}}(t) \end{bmatrix} = \begin{bmatrix} 0\\ \mathsf{F}_{\mathcal{T}}(t)\\ 0 \end{bmatrix}$$

- Mass matrices M_{TT}^{σ} and M_{TT} are block-diagonal
- Key point: stab. submatrix $S_{\mathcal{FF}}$ block-diagonal only if k' = k + 1
 - for k' = k, high-order HHO correction in stabilization destroys this property (couples all faces of the same cell!)

- Natural choice for first-order formulation in time
 - single diagonally implicit RK: SDIRK(s, s + 1) (s stages, order (s + 1))
 - explicit RK: ERK(s) (s stages, order s)
- ERK schemes subject to CFL stability condition $\frac{c\Delta t}{h} \leq \beta(s)\mu(k)$
 - $\beta(s)$ slightly increases with $s \in \{2, 3, 4\}$
 - $\mu(k)$ essentially behaves as $(k + 1)^{-1}$ w.r.t. polynomial degree

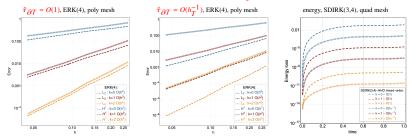
Numerical results: homogeneous media (1/2)

- Smooth solution
- Newmark scheme (equal-order, quadrilateral mesh)



Numerical results: homogeneous media (2/2)

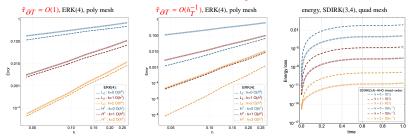
- SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)
 - recall that $\tilde{\tau}_{\partial T} = O(1)$
 - we also consider over-penalty with $\tilde{\tau}_{\partial T} = O(h_T^{-1})$



• Energy dissipation strongly tempered by increasing polynomial degree

Numerical results: homogeneous media (2/2)

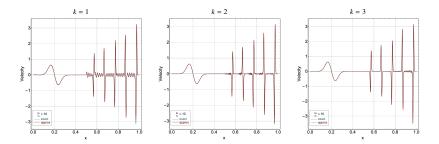
- SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)
 - recall that $\tilde{\tau}_{\partial T} = O(1)$
 - we also consider over-penalty with $\tilde{\tau}_{\partial T} = O(h_T^{-1})$



- Energy dissipation strongly tempered by increasing polynomial degree
- Discussion on $\tilde{\tau}_{\partial T}$
 - energy-error decays optimally as $O(h^{k+1})$ for both $\tilde{\tau}_{\partial T}$
 - \Rightarrow proof for (HHO, $O(h_T^{-1})$) and HDG, but using different tools
 - L^2 -error decays optimally as $O(h^{k+2})$ only for $\tilde{\tau}_{\partial T} = O(h_T^{-1})$ \rightarrow HDC $\tilde{\tau}_{\lambda} = O(1)$ special part product of $\tilde{\tau}_{\partial T}$ and $\tilde{\tau}_{\lambda}$
 - \Rightarrow HDG, $\tilde{\tau}_{\partial T} = O(1)$, special post-proc. [Cockburn, Quenneville-Bélair 12]
 - $\tilde{\tau}_{\partial T} = O(h_T^{-1})$ worsens CFL condition for ERK schemes

Numerical results: heterogeneous media (1/3)

- 1D test case, $\Omega_1 = (0, 0.5), \Omega_2 = (0.5, 1), c_1/c_2 = 10$
 - initial Gaussian profile in Ω_1
 - analytical solution available (series)
- Benefits of increasing polynomial degree
 - Newmark scheme, equal-order, $k \in \{1, 2, 3\}, h = 0.1 \times 2^{-8}, \Delta t = 0.1 \times 2^{-9}$
 - HHO-Newmark solution at $t = \frac{1}{2}$ (after reflection/transmission at $x = \frac{1}{2}$)



Numerical results: heterogeneous media (2/3)

• 2D test case, Ricker (Mexican hat) wavelet

•
$$\Omega_1 = (0,1) \times (0,\frac{1}{2}), \Omega_2 = (0,1) \times (\frac{1}{2},1), c_1/c_2 = 5$$

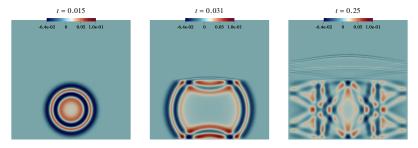
•
$$p_0 = 0, v_0 = -\frac{4}{10}\sqrt{\frac{10}{3}}\left(1600 \ r^2 - 1\right)\pi^{-\frac{1}{4}}\exp\left(-800r^2\right),$$

 $r^2 = (x - x_c)^2 + (y - y_c)^2, (x_c, y_c) = (\frac{1}{2}, \frac{1}{4}) \in \Omega_1$

• semi-analytical solution (infinite media): gar6more2d software (INRIA)

• HHO-SDIRK(3,4) velocity profiles

- mixed-order, k = 5, polygonal meshes
- $\Delta t = 0.025 \times 2^{-6}$ (four times larger than Newmark for similar accuracy)



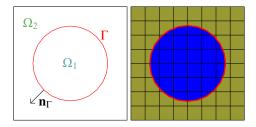
Numerical results: heterogeneous media (3/3)

- Comparison of computational efficiency
 - all schemes tuned to comparable max. rel. error on a sensor at $(\frac{1}{2}, \frac{2}{3})$
 - very preliminary results! (on-the-shelf solvers)
 - if no direct solvers allowed, ERK(4) wins despite CFL restriction
 - with direct solvers, SDIRK(3,4) wins
 - RK schemes more efficient than Newmark scheme
 - for SDIRK(3,4), $\tilde{\tau}_{\partial T} = O(h^{-1})$ more accurate/expensive than $\tilde{\tau}_{\partial T} = O(1)$

scheme	(k',k)	stab	solver	t/step	steps	time	err
ERK(4)	(6,5)	<i>O</i> (1)	n/a	0.410	5,120	2,099	2.23
Newmark	(7,6)	$O(h^{-1})$	iter	56.74	2,560	58,265	2.15
SDIRK(3, 4)	(6, 5)	$O(h^{-1})$	iter	31.24	640	5,639	2.21
SDIRK(3, 4)	(6,5)	<i>O</i> (1)	iter	22.52	640	2,200	4.45
Newmark	(7,6)	$O(h^{-1})$	direct	0.515	2,560	1,318	2.15
SDIRK(3, 4)	(6,5)	$O(h^{-1})$	direct	1.579	640	1,010	2.21

Unfitted meshes

Elliptic interface problem



- Polytopal domain $\Omega \subset \mathbb{R}^d, d \in \{2, 3\}$
- Subdomains $\Omega_1, \Omega_2 \subset \Omega$ with different (contrasted) material properties
- Curved interface Γ , jump $\llbracket a \rrbracket_{\Gamma} = a_{|\Omega_1} a_{|\Omega_2}$
- Model problem

$$-\operatorname{div} (\kappa \nabla u) = f \qquad \text{in } \Omega_1 \cup \Omega_2$$
$$\llbracket u \rrbracket_{\Gamma} = g_D, \ \llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma} = g_N \qquad \text{on } \Gamma$$
$$u = 0 \qquad \qquad \text{on } \partial \Omega$$

• Everything can be adapted to a single domain with curved boundary

Motivation for unfitted meshes

- Use of unfitted meshes for interface problems
 - curved interface can cut arbitrarily through mesh cells
 - numerical method must deal with badly cut cells
- Classical FEM on unfitted meshes
 - double unknowns in cut cells and use a consistent Nitsche's penalty technique to enforce jump conditions [Hansbo, Hansbo 02]
 - ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across faces near curved boundary/interface)

Motivation for unfitted meshes

- Use of unfitted meshes for interface problems
 - curved interface can cut arbitrarily through mesh cells
 - numerical method must deal with badly cut cells
- Classical FEM on unfitted meshes
 - double unknowns in cut cells and use a consistent Nitsche's penalty technique to enforce jump conditions [Hansbo, Hansbo 02]
 - ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across faces near curved boundary/interface)
- An alternative to ghost penalty: local cell agglomeration
 - natural for polytopal methods as dG [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13]
 - cG agglomeration procedure in [Badia, Verdugo, Martín 18]

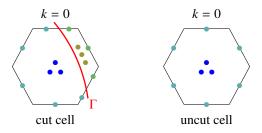
Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
 - double cell and face dofs in cut cells, no dofs on curved boundary/interface
 - local cell agglomeration to counter bad cuts
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs

Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
 - double cell and face dofs in cut cells, no dofs on curved boundary/interface
 - local cell agglomeration to counter bad cuts
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs
- Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]
 - novel gradient reconstruction, avoiding that the penalty parameter in Nitsche's method is large enough
 - robust cell agglomeration procedure (guaranteeing locality)
- Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]
- Wave propagation [Burman, Duran, AE 21] hal-03086432

Local dofs



- Mesh still composed of polytopal cells (with planar faces)
- Decomposition of cut cells: $\overline{T} = \overline{T_1} \cup \overline{T_2}, T^{\Gamma} = T \cap \Gamma$
- Decomposition of cut faces: $\partial(T_i) = (\partial T)^i \cup T^{\Gamma}, i \in \{1, 2\}$
- Local dofs (no dofs on T^{Γ} !)

 $\hat{u}_T = (u_{T_1}, u_{T_2}, u_{(\partial T)^1}, u_{(\partial T)^2}) \in \mathbb{P}^{k+1}(T_1) \times \mathbb{P}^{k+1}(T_2) \times \mathbb{P}^k(\mathcal{F}_{(\partial T)^1}) \times \mathbb{P}^k(\mathcal{F}_{(\partial T)^2})$

Gradient reconstruction in cut cells

- Gradient reconstruction $\mathbf{G}_{T_i}(\hat{u}_T) \in \mathbb{P}^k(T_i; \mathbb{R}^d)$ in each subcell
 - (Option 1) Independent reconstruction in each subcell

 $(\mathbf{G}_{T_i}(\hat{u}_T), \mathbf{q})_{T_i} = -(\underline{u}_{T_i}, \operatorname{div} \mathbf{q})_{T_i} + (\underline{u}_{(\partial T)^i}, \mathbf{q} \cdot \mathbf{n}_T)_{(\partial T)^i} + (\underline{u}_{T_i}, \mathbf{q} \cdot \mathbf{n}_{T_i})_{T^{\Gamma}}$

• (Option 2) Reconstruction mixing data from both subcells

 $(\mathbf{G}_{T_i}(\hat{u}_T), \mathbf{q})_{T_i} = -(\underline{u}_{T_i}, \operatorname{div} \mathbf{q})_{T_i} + (\underline{u}_{(\partial T)^i}, \mathbf{q} \cdot \mathbf{n}_T)_{(\partial T)^i} + (\underline{u}_{T_{3-i}}, \mathbf{q} \cdot \mathbf{n}_T)_T \Gamma$

- Both options avoid Nitsche's consistency terms
 - no penalty parameter needs to be taken large enough!

Local bilinear form in cut cells

Local bilinear form

$$a_{T}(\hat{u}_{T}, \hat{w}_{T}) := \sum_{i \in \{1, 2\}} \left\{ \kappa_{i}(\mathbf{G}_{T_{i}}(\hat{u}_{T}), \mathbf{G}_{T_{i}}(\hat{w}_{T}))_{T_{i}} + s_{T_{i}}(\hat{u}_{T}, \hat{w}_{T}) \right\} + s_{T}^{\Gamma}(u_{T}, w_{T})$$

• LS stabilization inside each subdomain

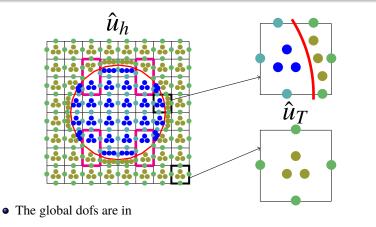
$$s_{T_i}(\hat{u}_T, \hat{w}_T) := \kappa_i h_{T_i}^{-1}(\Pi_{(\partial T)^i}^k(\boldsymbol{u}_{T_i}|_{(\partial T)^i} - \boldsymbol{u}_{(\partial T)^i}), \boldsymbol{w}_{T_i}|_{(\partial T)^i} - \boldsymbol{w}_{(\partial T)^i})_{(\partial T)^i}$$

• Interface bilinear form

$$s_T^{\Gamma}(u_T, w_T) := \eta \kappa_1 h_T^{-1}(\llbracket u_T \rrbracket_{\Gamma}, \llbracket w_T \rrbracket_{\Gamma})_{T^{\Gamma}} \text{ with } \eta = O(1)$$

- The use of two gradient reconstructions allows for robustness w.r.t. contrast (κ₁ ≪ κ₂)
 - use option 1 in Ω_1 and option 2 in Ω_2
 - a_T is symmetric, but Ω_1/Ω_2 do not play symmetric roles

Global dofs



$$\hat{u}_h \in \hat{U}_h := \bigotimes_{T \in \mathcal{T}^1} \mathbb{P}^{k+1}(T_1) \times \bigotimes_{T \in \mathcal{T}^2} \mathbb{P}^{k+1}(T_2) \times \bigotimes_{F \in \mathcal{F}^1} \mathbb{P}^k(F_1) \times \bigotimes_{F \in \mathcal{F}^2} \mathbb{P}^k(F_2)$$

- We set to zero all the face components attached to $\partial \Omega$
- We collect in \hat{u}_T all the global unknowns related to a mesh cell T

• Global problem: Find $\hat{u}_h \in \hat{U}_h$ such that

$$a_h(\hat{u}_h, \hat{w}_h) = \ell_h(\hat{w}_h), \quad \forall \hat{w}_h \in \hat{U}_h$$

with $a_h(\hat{u}_h, \hat{w}_h) = \sum_{T \in \mathcal{T}} a_T(\hat{u}_T, \hat{w}_T)$ and $\ell_h(\hat{w}_h) = \sum_{T \in \mathcal{T}} \ell_T(\hat{w}_T)$ with the consistent rhs

$$\ell_T(\hat{w}_T) := (f, w_{T_1})_{T_1} + (f, w_{T_2})_{T_2} + (g_N, w_{T_2})_{T^{\Gamma}} - \kappa_1(g_D, \mathbf{G}_{T_1}(\hat{w}_T) \cdot \mathbf{n}_{\Gamma} + \eta h_T^{-1} \llbracket w_T \rrbracket)_{T^{\Gamma}}$$

- All the cell dofs are eliminated locally by static condensation
- Only the face dofs are globally coupled

Error analysis

- Multiplicative and discrete trace inequalities [Burman, AE 18]
 - for any cut cell *T*, there is a ball *T*[†] of size *O*(*h_T*) containing *T* and a finite number of its neighbors, and s.t. all *T* ∩ Γ is visible from a point in *T*[†]
 - small ball with diameter $O(h_T)$ present on both sides of interface
 - achievable using local cell agglomeration if mesh fine enough

Error estimate

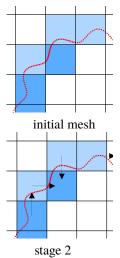
Assuming that
$$u|_{\Omega_i} \in H^{1+t}(\Omega_i)$$
 with $t \in (\frac{1}{2}, k+1]$,

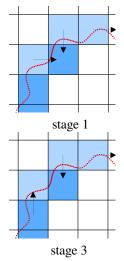
$$\sum_{T} \sum_{i \in \{1,2\}} \kappa_i \|\nabla(u - u_{T_i})\|_{T_i}^2 \le Ch^{2t} \sum_{i \in \{1,2\}} \kappa_i |u|_{H^{t+1}(\Omega_i)}^2$$

Convergence order $O(h^{k+1})$ if $u|_{\Omega_i} \in H^{k+2}(\Omega_i)$

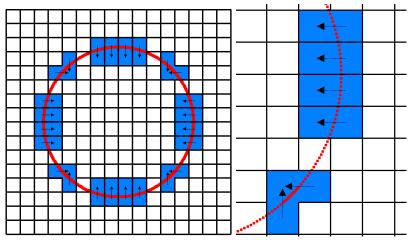
Agglomeration procedure (1/3)

- Three-stage procedure with proven locality in the agglomeration
 - () for any cell KO in $\Omega_1,$ find matching partner OK in Ω_2
 - **2** for any cell KO in Ω_2 not matched, find matching partner OK in Ω_1
 - rearrange locally partnerships to avoid propagation





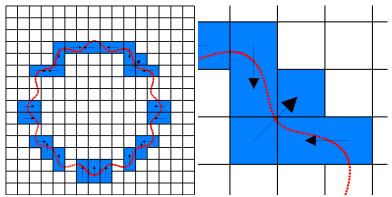
Agglomeration procedure (2/3)



• A 16x16 mesh with circular interface

Agglomeration procedure (3/3)

• A 16x16 mesh with flower-like interface

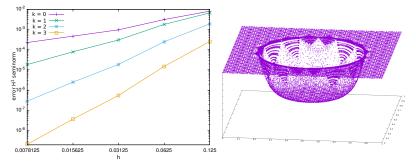


Test case with contrast

•
$$\kappa_1 = 1, \, \kappa_2 = 10^4, \, g_D = g_N = 0, \, \eta = 1$$

• Circular interface $(r^2 = (x_1 - 0.5)^2 + (x_2 - 0.5)^2)$

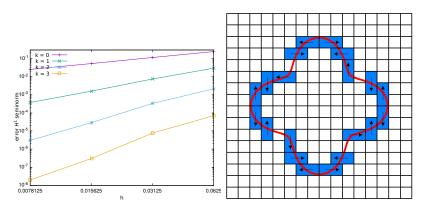
• Exact solution:
$$u_1 := \frac{r^6}{\kappa_1}, u_2 := \frac{r^6}{\kappa_2} + R^6(\frac{1}{\kappa_1} - \frac{1}{\kappa_2})$$



Test case with jump

- Flower-like interface, $\kappa_1 = \kappa_2 = 1$
- Exact solution with jump

$$u(x_1, x_2) := \begin{cases} \sin(\pi x_1) \sin(\pi x_2) & \text{in } \Omega_1 \\ \sin(\pi x_1) \sin(\pi x_2) + 2 + x^3 y^3 & \text{in } \Omega_2 \end{cases}$$



- Subdomains $\Omega_1, \Omega_2 \subset \Omega$, interface Γ , jump $\llbracket a \rrbracket_{\Gamma} = a_{|\Omega_1} a_{|\Omega_2}$
- Acoustic wave propagation across interface

$$\begin{cases} \frac{1}{\kappa} \partial_{n} p - \operatorname{div} \left(\frac{1}{\rho} \nabla p \right) = f & \text{in } J \times (\Omega_{1} \cup \Omega_{2}) \\ \llbracket p \rrbracket_{\Gamma} = 0, \ \llbracket \frac{1}{\rho} \nabla p \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma} = 0 & \text{on } J \times \Gamma \end{cases}$$

- Main ideas as for elliptic interface problems
 - mixed-order setting k' = k + 1
 - distinct gradient reconstructions \mathbf{G}_{T_i} in $\mathbb{P}^k(T_i; \mathbb{R}^d)$, $i \in \{1, 2\}$
 - LS stabilization on $(\partial T)^i$, $i \in \{1, 2\} \Longrightarrow s_{T_i}(\cdot, \cdot)$

Unfitted HHO discretization

• Second-order formulation

 $(\partial_{tt}p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + (\mathbf{G}_{\mathcal{T}}(\hat{p}_{h}(t)), \mathbf{G}_{\mathcal{T}}(\hat{w}_{h}))_{\frac{1}{\rho};\Omega} + s_{h}^{1,2}(\hat{p}_{h}(t), \hat{w}_{h}) + s_{h}^{\Gamma}(p_{\mathcal{T}}(t), w_{\mathcal{T}}) = (f(t), w_{\mathcal{T}})_{\Omega}$

- $s_h^{\Gamma}(p_{\mathcal{T}}(t), w_{\mathcal{T}}) := (\rho_1 h_T)^{-1} (\llbracket p_T \rrbracket_{\Gamma}, \llbracket w_T \rrbracket_{\Gamma})_{T^{\Gamma}}$
- Älgebraic realization and Newmark time-stepping as in fitted case

Unfitted HHO discretization

Second-order formulation

 $(\partial_{tt}p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + (\mathbf{G}_{\mathcal{T}}(\hat{p}_{h}(t)), \mathbf{G}_{\mathcal{T}}(\hat{w}_{h}))_{\frac{1}{\rho};\Omega} + s_{h}^{1,2}(\hat{p}_{h}(t), \hat{w}_{h}) + s_{h}^{\Gamma}(p_{\mathcal{T}}(t), w_{\mathcal{T}}) = (f(t), w_{\mathcal{T}})_{\Omega}$

•
$$s_h^{\Gamma}(p_{\mathcal{T}}(t), w_{\mathcal{T}}) := (\rho_1 h_T)^{-1}(\llbracket p_T \rrbracket_{\Gamma}, \llbracket w_T \rrbracket_{\Gamma})_{T^{\Gamma}}$$

- Algebraic realization and Newmark time-stepping as in fitted case
- First-order formulation $(v := \partial_t p, \sigma := \frac{1}{\rho} \nabla p)$

$$\begin{cases} (\partial_t \sigma_{\mathcal{T}}(t), \tau_{\mathcal{T}})_{\rho;\Omega} - (\mathbf{G}_{\mathcal{T}}(\hat{v}_h(t)), \tau_{\mathcal{T}})_{\Omega} = 0 \\ (\partial_t v_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{k};\Omega} + (\sigma_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\Omega} + \tilde{s}_h^{1,2}(\hat{v}_h(t), \hat{w}_h) + \tilde{s}_h^{\Gamma}(v_{\mathcal{T}}(t), w_{\mathcal{T}}) = (f(t), w_{\mathcal{T}})_{\Omega} \\ \bullet \quad \tilde{s}_h^{\Gamma}(v_{\mathcal{T}}(t), w_{\mathcal{T}}) := \sum_{T \in \mathcal{T}_h} \tilde{\tau}_{\partial T}^{\Gamma}(\llbracket v_T \rrbracket_{\Gamma}, \llbracket w_T \rrbracket_{\Gamma})_{T^{\Gamma}} \\ \bullet \quad \tilde{\tau}_{\partial T}^{\Gamma} = (\rho_1 c_1)^{-1} = O(1) \text{ for ERK, and } \tilde{\tau}_{\partial T}^{\Gamma} = O(h_T^{-1}) \text{ for SDIRK} \\ \bullet \text{ Algebraic realization and RK time-stepping as in fitted case} \end{cases}$$

Fitted-unfitted comparison

• 2D heterogeneous test case with flat interface

•
$$\Omega_1 := (-\frac{3}{2}, \frac{3}{2}) \times (-\frac{3}{2}, 0), \Omega_2 := (-\frac{3}{2}, \frac{3}{2}) \times (0, \frac{3}{2})$$

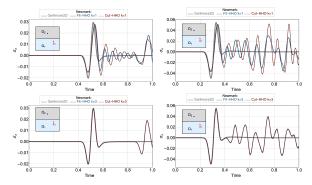
- Ricker wavelet centered at $(0, \frac{2}{3}) \in \Omega_2$, sensor $S_1 = (\frac{3}{4}, -\frac{1}{3}) \in \Omega_1$
- fitted and unfitted HHO behave similarly, both benefit from increasing k

Fitted-unfitted comparison

• 2D heterogeneous test case with flat interface

•
$$\Omega_1 := (-\frac{3}{2}, \frac{3}{2}) \times (-\frac{3}{2}, 0), \Omega_2 := (-\frac{3}{2}, \frac{3}{2}) \times (0, \frac{3}{2})$$

- Ricker wavelet centered at $(0, \frac{2}{3}) \in \Omega_2$, sensor $S_1 = (\frac{3}{4}, -\frac{1}{3}) \in \Omega_1$
- fitted and unfitted HHO behave similarly, both benefit from increasing k
- HHO-Newmark, σ_x signals
 - comparison of semi-analytical and HHO (fitted or unfitted) solutions
 - k = 1 (top) and k = 3 (bottom)
 - $c_2/c_1 = \sqrt{3}$ (low contrast, left) or $c_2/c_1 = 8\sqrt{3}$ (high contrast, right)



CFL condition for ERK (1/2)

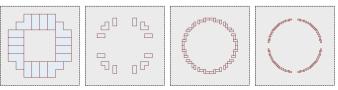
- Homogeneous test case, flat interface
- CFL condition for ERK(*s*): $\frac{c\Delta t}{h} \leq \beta(s)\mu(k)$
 - $\beta(s)$ mildly depends on the number of stages
 - $\mu(k)$ behaves as $(k + 1)^{-1}$ and is quantified by solving a generalized eigenvalue problem with the mass and stiffness matrices
- Additional jump penalties in unfitted HHO only mildly impact $\mu(k)$

k	0	1	2	3
Fitted-HHO	0.118	0.0522	0.0338	0.0229
Unfitted-HHO	0.0765	0.0373	0.0232	0.0159
Ratio	1.5	1.4	1.5	1.4

CFL condition for ERK (2/2)

- Homogeneous test case, circular interface
 - study of impact of agglomeration parameter θ_{agg} on $\mu(k)$
 - "badly cut" cell flagged if relative area of any subcell falls below θ_{agg}

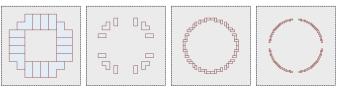
• Agglomerated cells for $\theta_{agg} = 0.3$ on a sequence of refined quad meshes



CFL condition for ERK (2/2)

0.010 0.005 0.001 5.×10⁻⁴

- Homogeneous test case, circular interface
 - study of impact of agglomeration parameter θ_{agg} on $\mu(k)$
 - "badly cut" cell flagged if relative area of any subcell falls below θ_{agg}
- Agglomerated cells for $\theta_{agg} = 0.3$ on a sequence of refined quad meshes

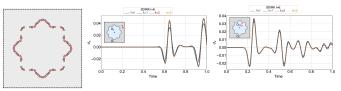


- Behavior of $h\mu(k)$ and impact of θ_{agg} on $\mu(k)$
 - tolerating badly cut cells deteriorates the CFL condition

Circular Interface					
	k	0	1	2	3
	$\theta_{agg} = 0.5$	0.042	0.022	0.014	0.0099
	$\theta_{\text{agg}} = 0.3$	0.030	0.015	0.0094	0.0065
	Ratio	1.4	1.5	1.5	1.5
•	$\theta_{agg} = 0.1$	0.017	0.0087	0.0055	0.0039
	Ratio	2.5	2.6	2.6	2.5

Flower-like interface

• Agglomerated cells for a flower-like interface (quad mesh, $h = 2^{-5}$), HHO-SDIRK(3,4) signal for σ_x at two sensors, $k \in \{1, 2, 3\}, c_2/c_1 = \sqrt{3}$

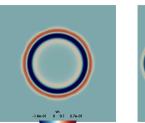


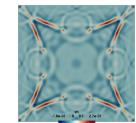
• Pressure isovalues, SDIRK(3,4), k = 3, $h = 0.1 \times 2^{-8}$, $\Delta t = 2^{-6}$

t = 0.25

t = 0.5

t = 1





-1.8e-01

2.7e-0

Some references

- HHO
 - seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
 - textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
 - [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
 - [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]

Some references

- HHO
 - seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
 - textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
 - [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
 - [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
- New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)

with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Some references

- HHO
 - seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
 - textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
 - [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
 - [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
- New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)

with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Thank you for your attention!