Hybrid high-order methods for the wave equation

Alexandre Ern
ENPC and INRIA, Paris, France
joint work with E. Burman (UCL), G. Delay (Sorbonne), O. Duran (Bergen)
collaboration and support: CEA

ICOSAHOM, Vienna, 13/07/2021

Outline

Hybrid high-order (HHO) methods ...

- in a nutshell
- for wave propagation
- on unfitted meshes (curved interfaces/boundary)

HHO in a nutshell

Basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree $k \geq 0$ on cells and faces

Basic ideas

- Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree $k \geq 0$ on cells and faces

- In each cell, one devises a local gradient reconstruction operator
- One adds a local stabilization to weakly enforce the matching of cell dofs trace with face dofs
- The global problem is assembled cellwise as in FEM

Gradient reconstruction and stabilization

- Mesh cell $T \in \mathcal{T}$, cell dofs $u_{T} \in \mathbb{P}^{k}(T)$, face dofs $u_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right) \in \hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)
$$

- Local potential reconstruction $R_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k+1}(T)$ s.t.

$$
\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla q\right)_{T}=-\left(u_{T}, \Delta q\right)_{T}+\left(u_{\partial T}, \nabla q \cdot \mathbf{n}_{T}\right)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T) / \mathbb{R}
$$

together with $\left(R_{T}\left(\hat{u}_{T}\right), 1\right)_{T}=\left(u_{T}, 1\right)_{T}$

Gradient reconstruction and stabilization

- Mesh cell $T \in \mathcal{T}$, cell dofs $u_{T} \in \mathbb{P}^{k}(T)$, face dofs $u_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right) \in \hat{U}_{T}:=\mathbb{P}^{k}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)
$$

- Local potential reconstruction $R_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k+1}(T)$ s.t.

$$
\left(\nabla R_{T}\left(\hat{u}_{T}\right), \nabla q\right)_{T}=-\left(u_{T}, \Delta q\right)_{T}+\left(u_{\partial T}, \nabla q \cdot \mathbf{n}_{T}\right)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T) / \mathbb{R}
$$

together with $\left(R_{T}\left(\hat{u}_{T}\right), 1\right)_{T}=\left(u_{T}, 1\right)_{T}$

- Local gradient reconstruction $\mathbf{G}_{T}\left(\hat{u}_{T}\right):=\nabla R_{T}\left(\hat{u}_{T}\right) \in \nabla \mathbb{P}^{k+1}(T)$
- Local stabilization operator acting on $\delta:=\left.u_{T}\right|_{\partial T}-u_{\partial T}$

$$
S_{\partial T}\left(\hat{u}_{T}\right):=\Pi_{\partial T}^{k}(\delta-\underbrace{\left.\left(\left(I-\Pi_{T}^{k}\right) R_{T}(0, \delta)\right)\right|_{\partial T}}_{\text {high-order correction }})
$$

- Local bilinear form for Poisson model problem

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\mathbf{G}_{T}\left(\hat{u}_{T}\right), \mathbf{G}_{T}\left(\hat{w}_{T}\right)\right)_{T}+h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}
$$

- Stability and boundedness

$$
\alpha\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{u}_{T}, \hat{u}_{T}\right) \leq \omega\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla u_{T}\right\|_{T}^{2}+h_{T}^{-1}\left\|\left.u_{T}\right|_{\partial T}-u_{\partial T}\right\|_{\partial T}^{2}$

Local bilinear form

- Local bilinear form for Poisson model problem

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\mathbf{G}_{T}\left(\hat{u}_{T}\right), \mathbf{G}_{T}\left(\hat{w}_{T}\right)\right)_{T}+h_{T}^{-1}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}
$$

- Stability and boundedness

$$
\alpha\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2} \leq a_{T}\left(\hat{u}_{T}, \hat{u}_{T}\right) \leq \omega\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}
$$

with $\left\|\hat{u}_{T}\right\|_{\hat{U}_{T}}^{2}:=\left\|\nabla u_{T}\right\|_{T}^{2}+h_{T}^{-1}\left\|\left.u_{T}\right|_{\partial T}-u_{\partial T}\right\|_{\partial T}^{2}$

- Reduction operator $\hat{I}_{T}(v):=\left(\Pi_{T}^{k}(v), \Pi_{\partial T}^{k}\left(\left.v\right|_{\partial T}\right)\right) \in \hat{U}_{T}, \forall v \in H^{1}(T)$
- Main consistency properties
- $h_{T}^{-1}\left\|v-R_{T}\left(\hat{I}_{T}(v)\right)\right\|_{T}+\left\|\nabla\left(v-R_{T}\left(\hat{I}_{T}(v)\right)\right)\right\|_{T} \lesssim h_{T}^{k+1}|v|_{H^{k+2}(T)}$
- $h_{T}^{-\frac{1}{2}}\left\|S_{\partial T}\left(\hat{I}_{T}(v)\right)\right\|_{\partial T} \lesssim h_{T}^{k+1}| |_{H^{k+2}(T)}$

Assembly and static condensation

- Global dofs $\hat{u}_{h}=\left(u_{\mathcal{T}}, u_{\mathcal{F}}\right)(\mathcal{T}:=\{$ mesh cells $\}, \mathcal{F}:=\{$ mesh faces $\})$

$$
\hat{U}_{h}:=\mathbb{P}^{k}(\mathcal{T}) \times \mathbb{P}^{k}(\mathcal{F}), \quad \mathbb{P}^{k}(\mathcal{T}):=\chi_{T \in \mathcal{T}} \mathbb{P}^{k}(T), \quad \mathbb{P}^{k}(\mathcal{F}):=X_{F \in \mathcal{F}} \mathbb{P}^{k}(F)
$$

- Global assembly: $\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)=\sum_{T \in \mathcal{T}}\left(f, w_{T}\right)_{T}$
- Dirichlet conditions can be directly enforced on the face boundary dofs
- Cell dofs are eliminated locally by static condensation
- global problem couples only face dofs
- cell dofs recovered by local post-processing

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
- $O\left(h^{k+1}\right) H^{1}$-error estimate (face dofs of order $k \geq 0$)
- $O\left(h^{k+2}\right) L^{2}$-error estimate (with full elliptic regularity)

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
- $O\left(h^{k+1}\right) H^{1}$-error estimate (face dofs of order $k \geq 0$)
- $O\left(h^{k+2}\right) L^{2}$-error estimate (with full elliptic regularity)
- more generally, $O\left(h^{t}\right) H^{1}$-error estimate if $u \in H^{1+t}(\Omega), t \in\left(\frac{1}{2}, k+1\right]$
- for $t \in\left(0, \frac{1}{2}\right)$, see [AE, Guermond 21 (FoCM)]

Main characteristics

- General meshes: polytopal cells, hanging nodes
- Optimal error estimates (smooth solutions)
- $O\left(h^{k+1}\right) H^{1}$-error estimate (face dofs of order $k \geq 0$)
- $O\left(h^{k+2}\right) L^{2}$-error estimate (with full elliptic regularity)
- more generally, $O\left(h^{t}\right) H^{1}$-error estimate if $u \in H^{1+t}(\Omega), t \in\left(\frac{1}{2}, k+1\right]$
- for $t \in\left(0, \frac{1}{2}\right)$, see [AE, Guermond 21 (FoCM)]
- Local conservation
- optimally convergent and algebraically balanced fluxes on faces
- as any face-based method, balance at cell level
- Attractive computational costs
- only face dofs are globally coupled
- compact stencil

Variants

- Variant on gradient reconstruction $\mathbf{G}_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$ s.t.

$$
\left(\mathbf{G}_{T}\left(\hat{u}_{T}\right), \mathbf{q}\right)_{T}=-\left(u_{T}, \operatorname{div} \mathbf{q}\right)_{T}+\left(u_{\partial T}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)
$$

- same scalar mass matrix for each component of $\mathbf{G}_{T}\left(\hat{u}_{T}\right)$
- useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

Variants

- Variant on gradient reconstruction $\mathbf{G}_{T}: \hat{U}_{T} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$ s.t.

$$
\left(\mathbf{G}_{T}\left(\hat{u}_{T}\right), \mathbf{q}\right)_{T}=-\left(u_{T}, \operatorname{div} \mathbf{q}\right)_{T}+\left(u_{\partial T}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)
$$

- same scalar mass matrix for each component of $\mathbf{G}_{T}\left(\hat{u}_{T}\right)$
- useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]
- Variants on cell dofs and stabilization
- mixed-order setting: $k \geq 0$ for face dofs and $(k+1)$ for cell dofs
- this variant allows for the simpler Lehrenfeld-Schöberl HDG stabilization

$$
S_{\partial T}\left(\hat{u}_{T}\right):=\Pi_{\partial T}^{k}(\delta)
$$

- another variant is $k \geq 1$ for face dofs and $(k-1)$ for cell dofs

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- equal-order HHO uses reconstruction in the stabilization
- HHO allows for a simpler analysis based on L^{2}-projections: avoids invoking the special HDG projection

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- equal-order HHO uses reconstruction in the stabilization
- HHO allows for a simpler analysis based on L^{2}-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient $\leftrightarrow \mathrm{HHO}$ grad. rec.
- WG often uses plain LS stabilization (can be suboptimal)

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- equal-order HHO uses reconstruction in the stabilization
- HHO allows for a simpler analysis based on L^{2}-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient $\leftrightarrow \mathrm{HHO}$ grad. rec.
- WG often uses plain LS stabilization (can be suboptimal)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
- HHO dof space \hat{U}_{T} isomorphic to virtual space \mathcal{V}_{T}

$$
\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_{T}:=\left\{v \in H^{1}(T)\left|\Delta v \in \mathbb{P}^{k}(T), \mathbf{n} \cdot \nabla v\right|_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right\}
$$

- HHO grad. rec. \leftrightarrow computable gradient projection
- stabilization controls energy-norm of noncomputable remainder
- see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]

Link to other methods

- $\mathrm{HHO}(k=0)$ equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
- HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
- equal-order HHO uses reconstruction in the stabilization
- HHO allows for a simpler analysis based on L^{2}-projections: avoids invoking the special HDG projection
- Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
- weak gradient \leftrightarrow HHO grad. rec.
- WG often uses plain LS stabilization (can be suboptimal)
- HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
- HHO dof space \hat{U}_{T} isomorphic to virtual space \mathcal{V}_{T}

$$
\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_{T}:=\left\{v \in H^{1}(T)\left|\Delta v \in \mathbb{P}^{k}(T), \mathbf{n} \cdot \nabla v\right|_{\partial T} \in \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)\right\}
$$

- HHO grad. rec. \leftrightarrow computable gradient projection
- stabilization controls energy-norm of noncomputable remainder
- see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]
- Different devising viewpoints should be mutually enriching

Applications, libraries, textbooks

- Broad area of applications (non-exhaustive list...)
- solid mechanics: nonlinear elasticity, hyperlasticity and plasticity, contact, Tresca friction, obstacle pb
- fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
- Leray-Lions, spectral pb, H^{-1}-loads, magnetostatics, de Rham complexes
- Libraries
- industry (code_aster, code_saturne, EDF R\&D), ongoing developments at CEA
- academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse), HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)
- Textbooks
- Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and applications (Springer, 2020)
- Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics (Springer Briefs, 2021)

HHO for wave propagation

- Second-order formulation in time: Newmark schemes
- First-order formulation in time: RK schemes
- [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

Second-order formulation in time

- Domain $\Omega \subset \mathbb{R}^{d}$, time interval $J:=\left(0, T_{\mathrm{f}}\right), T_{\mathrm{f}}>0$
- Acoustic wave equation with wave speed $c:=\sqrt{\kappa / \rho}$

$$
\frac{1}{\kappa} \partial_{t t} p-\operatorname{div}\left(\frac{1}{\rho} \nabla p\right)=f \quad \text { in } J \times \Omega
$$

Everything can be extended to elastodynamics

- Weak form: Under mild regularity assumptions on the data,

$$
\left(\partial_{t t} p(t), w\right)_{\frac{1}{k} ; \Omega}+(\nabla p(t), \nabla w)_{\frac{1}{\rho} ; \Omega}=(f(t), w)_{\Omega}, \quad \forall w \in H_{0}^{1}(\Omega) \forall t \in J
$$

- Energy balance: $\mathfrak{E}(t)=\mathscr{E}(0)+\int_{0}^{t}\left(f(s), \partial_{t} p(s)\right)_{\Omega} d s$ with

$$
\mathfrak{E}(t):=\frac{1}{2}\left\|\partial_{t} p(t)\right\|_{\frac{1}{k} ; \Omega}^{2}+\frac{1}{2}\|\nabla p(t)\|_{\frac{1}{\rho} ; \Omega}^{2}
$$

HHO space semi-discretization (1/3)

- Local cell dofs in $\mathbb{P}^{k^{\prime}}(T), k^{\prime} \in\{k, k+1\}$, and local face dofs in $\mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)$

$$
\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right) \in \hat{U}_{T}:=\mathbb{P}^{k^{\prime}}(T) \times \mathbb{P}^{k}\left(\mathcal{F}_{\partial T}\right)
$$

- Local gradient reconstruction $\mathbf{G}_{T}\left(\hat{u}_{T}\right) \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)\left(\right.$ or in $\left.\nabla \mathbb{P}^{k+1}(T)\right)$
- Local stabilization acting on $\delta:=\left.u_{T}\right|_{\partial T}-u_{\partial T}$

$$
S_{\partial T}\left(\hat{u}_{T}\right):= \begin{cases}\Pi_{\partial T}^{k}\left(\delta-\left.\left(\left(I-\Pi_{T}^{k}\right) R_{T}(0, \delta)\right)\right|_{\partial T}\right) & \text { if } k^{\prime}=k \\ \Pi_{\partial T}^{k}(\delta) & \text { if } k^{\prime}=k+1\end{cases}
$$

- Local bilinear form

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\mathbf{G}_{T}\left(\hat{u}_{T}\right), \mathbf{G}_{T}\left(\hat{w}_{T}\right)\right)_{\frac{1}{\rho} ; T}+\tau_{\partial T}\left(S_{\partial T}\left(\hat{u}_{T}\right), S_{\partial T}\left(\hat{w}_{T}\right)\right)_{\partial T}
$$

with $\tau_{\partial T}:=\left(\rho_{\mid T} h_{T}\right)^{-1}$

HHO space semi-discretization (2/3)

- Global dofs $\hat{u}_{h}=\left(u_{\mathcal{T}}, u_{\mathcal{F}}\right) \in \hat{U}_{h}:=\mathbb{P}^{k^{\prime}}(\mathcal{T}) \times \mathbb{P}^{k}(\mathcal{F})$
- Global assembly leading to

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right):=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\left(\mathbf{G}_{\mathcal{T}}\left(\hat{u}_{h}\right), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\frac{1}{\rho} ; \Omega}+s_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right)
$$

- Dirichlet conditions can be directly enforced on the face boundary dofs

$$
\hat{U}_{h 0}:=\mathbb{P}^{p^{\prime}}(\mathcal{T}) \times \mathbb{P}^{k}\left(\mathcal{F}^{\circ}\right)
$$

with $\mathcal{F}^{\circ}:=\{$ mesh interfaces $\}$

HHO space semi-discretization (3/3)

- Wave equation in space semi-discrete form: $\hat{p}_{h} \in C^{2}\left(\bar{J} ; \hat{U}_{h 0}\right)$ s.t.

$$
\left(\partial_{t t} p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{k} ; \Omega}+a_{h}\left(\hat{p}_{h}(t), \hat{w}_{h}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0} \forall t \in J
$$

HHO space semi-discretization (3/3)

- Wave equation in space semi-discrete form: $\hat{p}_{h} \in C^{2}\left(\bar{J} ; \hat{U}_{h 0}\right)$ s.t.

$$
\left(\partial_{t t} p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{\kappa} ; \Omega}+a_{h}\left(\hat{p}_{h}(t), \hat{w}_{h}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}, \quad \forall \hat{w}_{h} \in \hat{U}_{h 0} \forall t \in J
$$

- Energy balance: $\mathfrak{F}_{h}(t)=\mathfrak{E}_{h}(0)+\int_{0}^{t}\left(f(s), \partial_{t} p_{\mathcal{T}}(s)\right)_{\Omega} d s$ with

$$
\mathfrak{E}_{h}(t):=\frac{1}{2}\left\|\partial_{t} p_{\mathcal{T}}(t)\right\|_{\frac{1}{\kappa} ; \Omega}^{2}+\frac{1}{2}\left\|\mathbf{G}_{\mathcal{T}}\left(\hat{p}_{h}(t)\right)\right\|_{\frac{1}{\rho} ; \Omega}^{2}+\frac{1}{2} s_{h}\left(\hat{p}_{h}(t), \hat{p}_{h}(t)\right)
$$

Stabilization is taken into account in the energy definition

- HDG methods for wave equation in second-order form [Cockburn, Fu, Hungria, Ji, Sanchez, Sayas 18]

Algebraic realization

- Bases for $\mathbb{P}^{k^{\prime}}(\mathcal{T})$ and $\mathbb{P}^{k}(\mathcal{F})$, component vector $\left(\mathbb{P}_{\mathcal{T}}(t), \mathrm{P}_{\mathcal{F}}(t)\right) \in \mathbb{R}^{N_{\mathcal{T}} \times N_{\mathcal{F}}}$

$$
\left[\begin{array}{c}
\mathrm{M}_{\mathcal{T} \mathcal{T}} \partial_{t t} \mathrm{P}_{\mathcal{T}}(t) \\
0
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{K}_{\mathcal{T} \mathcal{T}} & \mathrm{K}_{\mathcal{T F}} \\
\mathrm{K}_{\mathcal{F} \mathcal{T}} & \mathrm{K}_{\mathcal{F} \mathcal{F}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{\mathcal{T}}(t) \\
\mathrm{P}_{\mathcal{F}}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{F}_{\mathcal{T}}(t) \\
0
\end{array}\right]
$$

- Mass matrix $\mathrm{M}_{\mathcal{T} \mathcal{T}}$ and stiffness submatrix $\mathrm{K}_{\mathcal{T} \mathcal{T}}$ are block-diagonal
- Stiffness submatrix $\mathrm{K}_{\mathcal{F} \mathcal{F}}$ is only sparse: face dofs from the same cell are coupled together owing to reconstruction

Error analysis

- Assuming a smooth solution,
- $\left\|\partial_{t} p-\partial_{t} p_{\mathcal{T}}\right\|_{L^{\infty}\left(J ; L^{2}\left(\frac{1}{k} ; \Omega\right)\right)}+\left\|\nabla p-\mathbf{G}_{\mathcal{T}}\left(\hat{p}_{h}\right)\right\|_{L^{2}\left(J ; L^{2}\left(\frac{1}{\rho} ; \Omega\right)\right)}$ decays as $O\left(h^{k+1}\right)$
- $\left\|\Pi_{\mathcal{T}}^{k^{\prime}}(p)-p_{\mathcal{T}}\right\|_{L^{\infty}\left(J ; L^{2}\left(\frac{1}{\rho} ; \Omega\right)\right)}$ decays as $O\left(h^{k+2}\right)$ under (full) elliptic reg.
- Some comments on proofs
- adapt ideas for FEM analysis from [Dupont 73; Wheeler 73; Baker 76]
- simpler than for HDG (avoids HDG projection which needs a special initialization in HDG scheme)
- could be re-used in DG setting using discrete gradients (revisiting [Grote, Schneebeli, Schötzau 06])

Newmark scheme

- Newmark scheme with parameters $(\beta, \gamma)=\left(\frac{1}{4}, \frac{1}{2}\right)$
- implicit, second-order, unconditionally stable
- $p, \partial_{t} p, \partial_{t t} p$ are approximated by hybrid pairs $\hat{p}_{h}^{n}, \hat{v}_{h}^{n}, \hat{a}_{h}^{n} \in \hat{U}_{h 0}, \forall n \geq 0$
- Each time-step implemented as usual

Newmark scheme

- Newmark scheme with parameters $(\beta, \gamma)=\left(\frac{1}{4}, \frac{1}{2}\right)$
- implicit, second-order, unconditionally stable
- $p, \partial_{t} p, \partial_{t t} p$ are approximated by hybrid pairs $\hat{p}_{h}^{n}, \hat{v}_{h}^{n}, \hat{a}_{h}^{n} \in \hat{U}_{h 0}, \forall n \geq 0$
- Each time-step implemented as usual
- Discrete energy is exactly conserved
- Central FD scheme is not efficient: inversion of stiffness submatrix $\mathrm{K}_{\mathcal{F} \mathcal{F}}$

First-order formulation in time

- Introduce velocity $v:=\partial_{t} p$ and dual variable $\sigma:=\frac{1}{\rho} \nabla p$

$$
\left\{\begin{array}{l}
\rho \partial_{t} \sigma-\nabla v=0 \\
\frac{1}{\kappa} \partial_{t} v-\operatorname{div} \sigma=f
\end{array} \quad \text { in } J \times \Omega\right.
$$

- Weak form: $\forall(\boldsymbol{\tau}, w) \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right) \times H_{0}^{1}(\Omega), \forall t \in J$,

$$
\left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{\sigma}(t), \boldsymbol{\tau}\right)_{\rho ; \Omega}-(\nabla v(t), \boldsymbol{\tau})_{\Omega}=0 \\
\left(\partial_{t} v(t), w\right)_{\frac{1}{k} ; \Omega}+(\boldsymbol{\sigma}(t), \nabla w)_{\Omega}=(f(t), w)_{\Omega}
\end{array}\right.
$$

- Energy balance: $\mathfrak{E}(t)=\mathscr{E}(0)+\int_{0}^{t}(f(s), v(s))_{\Omega} d s$ with

$$
\mathfrak{E}(t):=\frac{1}{2}\|v(t)\|_{\frac{1}{\kappa} ; \Omega}^{2}+\frac{1}{2}\|\sigma(t)\|_{\rho ; \Omega}^{2}
$$

HHO space semi-discretization

- $\hat{v}_{h} \in C^{1}\left(\bar{J} ; \hat{U}_{h 0}\right)$ and $\sigma_{\mathcal{T}} \in C^{1}\left(\bar{J} ; \mathbf{S}_{\mathcal{T}}\right)$ with $\mathbf{S}_{\mathcal{T}}:=\mathbb{P}^{k}\left(\mathcal{T} ; \mathbb{R}^{d}\right)$
- Space semi-discrete form:

$$
\left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\rho ; \Omega}-\left(\mathbf{G}_{\mathcal{T}}\left(\hat{v}_{h}(t)\right), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\Omega}=0 \\
\left(\partial_{t} v_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{k} ; \Omega}+\left(\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\Omega}+\tilde{s}_{h}\left(\hat{v}_{h}(t), \hat{w}_{h}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}
\end{array}\right.
$$

- Stabilization $\tilde{s}_{h}(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T}=(\rho c)_{\mid T}^{-1}$, i.e., $\tilde{\tau}_{\partial T}=O(1)$

HHO space semi-discretization

- $\hat{v}_{h} \in C^{1}\left(\bar{J} ; \hat{U}_{h 0}\right)$ and $\boldsymbol{\sigma}_{\mathcal{T}} \in C^{1}\left(\overline{\boldsymbol{J}} ; \mathbf{S}_{\mathcal{T}}\right)$ with $\mathbf{S}_{\mathcal{T}}:=\mathbb{P}^{k}\left(\mathcal{T} ; \mathbb{R}^{d}\right)$
- Space semi-discrete form:

$$
\left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\rho ; \Omega}-\left(\mathbf{G}_{\mathcal{T}}\left(\hat{v}_{h}(t)\right), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\Omega}=0 \\
\left(\partial_{t} v_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{K} ; \Omega}+\left(\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\Omega}+\tilde{s}_{h}\left(\hat{v}_{h}(t), \hat{w}_{h}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}
\end{array}\right.
$$

- Stabilization $\tilde{s}_{h}(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T}=(\rho c)_{\mid T}^{-1}$, i.e., $\tilde{\tau}_{\partial T}=O(1)$
- Energy balance: $\mathfrak{E}_{h}(t)+\int_{0}^{t} \tilde{s}_{h}\left(\hat{v}_{h}(s), \hat{v}_{h}(s)\right) d s=\mathfrak{E}_{h}(0)+\int_{0}^{t}\left(f(s), v_{\mathcal{T}}(s)\right)_{\Omega} d s$

$$
\mathfrak{E}_{h}(t):=\frac{1}{2}\left\|v_{\mathcal{T}}(t)\right\|_{\frac{1}{\kappa} ; \Omega}^{2}+\frac{1}{2}\left\|\sigma_{\mathcal{T}}(t)\right\|_{\rho ; \Omega}^{2}
$$

Stabilization acts as a dissipative mechanism

- HDG methods for wave equation in first-order form [Nguyen, Peraire, Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]

Algebraic realization

- Component vectors $\mathrm{Z}_{\mathcal{T}}(t) \in \mathbb{R}^{M_{\mathcal{T}}}$ and $\left(\mathrm{V}_{\mathcal{T}}(t), \mathrm{V}_{\mathcal{F}}(t)\right) \in \mathbb{R}^{N_{\mathcal{T}} \times N_{\mathcal{F}}}$

$$
\left[\begin{array}{c}
\mathrm{M}_{\mathcal{T} \mathcal{T}}^{\sigma} \partial_{t} \mathrm{Z}_{\mathcal{T}}(t) \\
\mathrm{M}_{\mathcal{T} \mathcal{T}} \mathrm{V}_{\mathcal{T}}(t) \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & -\mathrm{G}_{\mathcal{T}} & -\mathrm{G}_{\mathcal{F}} \\
\mathrm{G}_{\mathcal{T}}^{\dagger} & \mathrm{S}_{\mathcal{T} \mathcal{T}} & \mathrm{S}_{\mathcal{T \mathcal { F }}} \\
\mathrm{G}_{\mathcal{F}}^{\top} & \mathrm{S}_{\mathcal{F} \mathcal{T}} & \mathrm{S}_{\mathcal{F} \mathcal{F}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{Z}_{\mathcal{T}}(t) \\
\mathrm{V}_{\mathcal{T}}(t) \\
\mathrm{V}_{\mathcal{F}}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{~F}_{\mathcal{T}(t)} \\
0
\end{array}\right]
$$

- Mass matrices $\mathrm{M}_{\mathcal{T} \mathcal{T}}^{\boldsymbol{\sigma}}$ and $\mathrm{M}_{\mathcal{T} \mathcal{T}}$ are block-diagonal
- Key point: stab. submatrix $\boldsymbol{S}_{\mathcal{F} \mathcal{F}}$ block-diagonal only if $k^{\prime}=k+1$
- for $k^{\prime}=k$, high-order HHO correction in stabilization destroys this property (couples all faces of the same cell!)

Runge-Kutta (RK) schemes

- Natural choice for first-order formulation in time
- single diagonally implicit RK: $\operatorname{SDIRK}(s, s+1)(s$ stages, order $(s+1))$
- explicit RK: $\operatorname{ERK}(s)$ (s stages, order s)
- ERK schemes subject to CFL stability condition $\frac{c \Delta t}{h} \leq \beta(s) \mu(k)$
- $\beta(s)$ slightly increases with $s \in\{2,3,4\}$
- $\mu(k)$ essentially behaves as $(k+1)^{-1}$ w.r.t. polynomial degree

Numerical results: homogeneous media (1/2)

- Smooth solution
- Newmark scheme (equal-order, quadrilateral mesh)

Numerical results: homogeneous media (2/2)

- $\operatorname{SDIRK}(3,4)$ and $\operatorname{ERK}(4)$ schemes (mixed-order, quad/poly meshes)
- recall that $\tilde{\tau}_{\partial T}=O(1)$
- we also consider over-penalty with $\tilde{\tau}_{\partial T}=O\left(h_{T}^{-1}\right)$

- Energy dissipation strongly tempered by increasing polynomial degree

Numerical results: homogeneous media (2/2)

- $\operatorname{SDIRK}(3,4)$ and $\operatorname{ERK}(4)$ schemes (mixed-order, quad/poly meshes)
- recall that $\tilde{\tau}_{\partial T}=O(1)$
- we also consider over-penalty with $\tilde{\tau}_{\partial T}=O\left(h_{T}^{-1}\right)$

- Energy dissipation strongly tempered by increasing polynomial degree
- Discussion on $\tilde{\tau}_{\partial T}$
- energy-error decays optimally as $O\left(h^{k+1}\right)$ for both $\tilde{\tau}_{\partial T}$ \Rightarrow proof for (HHO, $O\left(h_{T}^{-1}\right)$) and HDG, but using different tools
- L^{2}-error decays optimally as $O\left(h^{k+2}\right)$ only for $\tilde{\tau}_{\partial T}=O\left(h_{T}^{-1}\right)$
\Rightarrow HDG, $\tilde{\tau}_{\partial T}=O(1)$, special post-proc. [Cockburn, Quenneville-Bélair 12]
- $\tilde{\tau}_{\partial T}=O\left(h_{T}^{-1}\right)$ worsens CFL condition for ERK schemes

Numerical results: heterogeneous media ($1 / 3$)

- 1 D test case, $\Omega_{1}=(0,0.5), \Omega_{2}=(0.5,1), c_{1} / c_{2}=10$
- initial Gaussian profile in Ω_{1}
- analytical solution available (series)
- Benefits of increasing polynomial degree
- Newmark scheme, equal-order, $k \in\{1,2,3\}, h=0.1 \times 2^{-8}, \Delta t=0.1 \times 2^{-9}$
- HHO-Newmark solution at $t=\frac{1}{2}$ (after reflection/transmission at $x=\frac{1}{2}$)

Numerical results: heterogeneous media (2/3)

- 2D test case, Ricker (Mexican hat) wavelet
- $\Omega_{1}=(0,1) \times\left(0, \frac{1}{2}\right), \Omega_{2}=(0,1) \times\left(\frac{1}{2}, 1\right), c_{1} / c_{2}=5$
- $p_{0}=0, v_{0}=-\frac{4}{10} \sqrt{\frac{10}{3}}\left(1600 r^{2}-1\right) \pi^{-\frac{1}{4}} \exp \left(-800 r^{2}\right)$, $r^{2}=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2},\left(x_{c}, y_{c}\right)=\left(\frac{1}{2}, \frac{1}{4}\right) \in \Omega_{1}$
- semi-analytical solution (infinite media): gar6more2d software (INRIA)
- HHO-SDIRK $(3,4)$ velocity profiles
- mixed-order, $k=5$, polygonal meshes
- $\Delta t=0.025 \times 2^{-6}$ (four times larger than Newmark for similar accuracy)
$t=0.015$

Numerical results: heterogeneous media (3/3)

- Comparison of computational efficiency
- all schemes tuned to comparable max. rel. error on a sensor at $\left(\frac{1}{2}, \frac{2}{3}\right)$
- very preliminary results! (on-the-shelf solvers)
- if no direct solvers allowed, ERK(4) wins despite CFL restriction
- with direct solvers, $\operatorname{SDIRK}(3,4)$ wins
- RK schemes more efficient than Newmark scheme
- for $\operatorname{SDIRK}(3,4), \tilde{\tau}_{\partial T}=O\left(h^{-1}\right)$ more accurate/expensive than $\tilde{\tau}_{\partial T}=O(1)$

scheme	$\left(k^{\prime}, k\right)$	stab	solver	t/step	steps	time	err
ERK(4)	$(6,5)$	$O(1)$	n/a	0.410	5,120	2,099	2.23
Newmark	$(7,6)$	$O\left(h^{-1}\right)$	iter	56.74	2,560	58,265	2.15
SDIRK $(3,4)$	$(6,5)$	$O\left(h^{-1}\right)$	iter	31.24	640	5,639	2.21
SDIRK $(3,4)$	$(6,5)$	$O(1)$	iter	22.52	640	2,200	4.45
Newmark	$(7,6)$	$O\left(h^{-1}\right)$	direct	0.515	2,560	1,318	2.15
SDIRK $(3,4)$	$(6,5)$	$O\left(h^{-1}\right)$	direct	1.579	640	1,010	2.21

Unfitted meshes

Elliptic interface problem

- Polytopal domain $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$
- Subdomains $\Omega_{1}, \Omega_{2} \subset \Omega$ with different (contrasted) material properties
- Curved interface Γ, jump $\llbracket a \rrbracket_{\Gamma}=a_{\mid \Omega_{1}}-a_{\mid \Omega_{2}}$
- Model problem

$$
\begin{array}{ll}
-\operatorname{div}(\kappa \nabla u)=f & \text { in } \Omega_{1} \\
\llbracket u \rrbracket_{\Gamma}=g_{D}, \llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma}=g_{N} & \text { on } \Gamma \\
u=0 & \text { on } \partial \Omega
\end{array}
$$

- Everything can be adapted to a single domain with curved boundary

Motivation for unfitted meshes

- Use of unfitted meshes for interface problems
- curved interface can cut arbitrarily through mesh cells
- numerical method must deal with badly cut cells
- Classical FEM on unfitted meshes
- double unknowns in cut cells and use a consistent Nitsche's penalty technique to enforce jump conditions [Hansbo, Hansbo 02]
- ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across faces near curved boundary/interface)

Motivation for unfitted meshes

- Use of unfitted meshes for interface problems
- curved interface can cut arbitrarily through mesh cells
- numerical method must deal with badly cut cells
- Classical FEM on unfitted meshes
- double unknowns in cut cells and use a consistent Nitsche's penalty technique to enforce jump conditions [Hansbo, Hansbo 02]
- ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across faces near curved boundary/interface)
- An alternative to ghost penalty: local cell agglomeration
- natural for polytopal methods as dG [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13]
- cG agglomeration procedure in [Badia, Verdugo, Martín 18]

Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
- double cell and face dofs in cut cells, no dofs on curved boundary/interface
- local cell agglomeration to counter bad cuts
- mixed-order setting: $k \geq 0$ for face dofs and $(k+1)$ for cell dofs

Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
- double cell and face dofs in cut cells, no dofs on curved boundary/interface
- local cell agglomeration to counter bad cuts
- mixed-order setting: $k \geq 0$ for face dofs and $(k+1)$ for cell dofs
- Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]
- novel gradient reconstruction, avoiding that the penalty parameter in Nitsche's method is large enough
- robust cell agglomeration procedure (guaranteeing locality)
- Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]
- Wave propagation [Burman, Duran, AE 21] hal-03086432

Local dofs

- Mesh still composed of polytopal cells (with planar faces)
- Decomposition of cut cells: $\bar{T}=\overline{T_{1}} \cup \overline{T_{2}}, T^{\Gamma}=T \cap \Gamma$
- Decomposition of cut faces: $\partial\left(T_{i}\right)=(\partial T)^{i} \cup T^{\Gamma}, i \in\{1,2\}$
- Local dofs (no dofs on T^{Γ} !)

$$
\hat{u}_{T}=\left(u_{T_{1}}, u_{T_{2}}, u_{(\partial T)^{1}}, u_{(\partial T)^{2}}\right) \in \mathbb{P}^{k+1}\left(T_{1}\right) \times \mathbb{P}^{k+1}\left(T_{2}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{(\partial T)^{1}}\right) \times \mathbb{P}^{k}\left(\mathcal{F}_{(\partial T)^{2}}\right)
$$

Gradient reconstruction in cut cells

- Gradient reconstruction $\mathbf{G}_{T_{i}}\left(\hat{u}_{T}\right) \in \mathbb{P}^{k}\left(T_{i} ; \mathbb{R}^{d}\right)$ in each subcell
- (Option 1) Independent reconstruction in each subcell

$$
\left(\mathbf{G}_{T_{i}}(\hat{u} T), \mathbf{q}\right)_{T_{i}}=-\left(u_{T_{i}}, \operatorname{div} \mathbf{q}\right)_{T_{i}}+\left(u_{(\partial T)^{i}}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{(\partial T)^{i}}+\left(u_{T_{i}}, \mathbf{q} \cdot \mathbf{n}_{T_{i}}\right)_{T^{\Gamma}}
$$

- (Option 2) Reconstruction mixing data from both subcells

$$
\left(\mathbf{G}_{T_{i}}\left(\hat{u}_{T}\right), \mathbf{q}\right)_{T_{i}}=-\left(u_{T_{i}}, \operatorname{div} \mathbf{q}\right)_{T_{i}}+\left(u_{(\partial T)^{i}}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{(\partial T)^{i}}+\left(u_{T_{3-i}}, \mathbf{q} \cdot \mathbf{n}_{T_{i}}\right)_{T^{\Gamma}}
$$

- Both options avoid Nitsche's consistency terms
- no penalty parameter needs to be taken large enough!

Local bilinear form in cut cells

- Local bilinear form

$$
a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\sum_{i \in\{1,2\}}\left\{\kappa_{i}\left(\mathbf{G}_{T_{i}}\left(\hat{u}_{T}\right), \mathbf{G}_{T_{i}}\left(\hat{w}_{T}\right)\right)_{T_{i}}+s_{T_{i}}\left(\hat{u}_{T}, \hat{w}_{T}\right)\right\}+s_{T}^{\Gamma}\left(u_{T}, w_{T}\right)
$$

- LS stabilization inside each subdomain

$$
s_{T_{i}}\left(\hat{u}_{T}, \hat{w}_{T}\right):=\kappa_{i} h_{T_{i}}^{-1}\left(\Pi_{(\partial T)^{i}}^{k}\left(\left.u_{T_{i}}\right|_{(\partial T)^{i}}-u_{(\partial T)^{i}}\right),\left.w_{T_{i}}\right|_{(\partial T)^{i}}-w_{(\partial T)^{i}}\right)_{(\partial T)^{i}}
$$

- Interface bilinear form

$$
s_{T}^{\Gamma}\left(u_{T}, w_{T}\right):=\eta \kappa_{1} h_{T}^{-1}\left(\llbracket u_{T} \rrbracket_{\Gamma}, \llbracket w_{T} \rrbracket_{\Gamma}\right)_{T^{\Gamma}} \text { with } \eta=O(1)
$$

- The use of two gradient reconstructions allows for robustness w.r.t. contrast ($\kappa_{1} \ll \kappa_{2}$)
- use option 1 in Ω_{1} and option 2 in Ω_{2}
- a_{T} is symmetric, but Ω_{1} / Ω_{2} do not play symmetric roles

Global dofs

- The global dofs are in

$$
\hat{u}_{h} \in \hat{U}_{h}:=\searrow_{T \in \mathcal{T}^{1}} \mathbb{P}^{k+1}\left(T_{1}\right) \times \searrow_{T \in \mathcal{T}^{2}} \mathbb{P}^{k+1}\left(T_{2}\right) \times \searrow_{F \in \mathcal{F}^{1}} \mathbb{P}^{k}\left(F_{1}\right) \times \searrow_{F \in \mathcal{F}^{2}} \mathbb{P}^{k}\left(F_{2}\right)
$$

- We set to zero all the face components attached to $\partial \Omega$
- We collect in \hat{u}_{T} all the global unknowns related to a mesh cell T

Global dofs

- Global problem: Find $\hat{u}_{h} \in \hat{U}_{h}$ such that

$$
a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right)=\ell_{h}\left(\hat{w}_{h}\right), \quad \forall \hat{w}_{h} \in \hat{U}_{h}
$$

with $a_{h}\left(\hat{u}_{h}, \hat{w}_{h}\right)=\sum_{T \in \mathcal{T}} a_{T}\left(\hat{u}_{T}, \hat{w}_{T}\right)$ and $\ell_{h}\left(\hat{w}_{h}\right)=\sum_{T \in \mathcal{T}} \ell_{T}\left(\hat{w}_{T}\right)$ with the consistent rhs

$$
\begin{aligned}
\ell_{T}\left(\hat{w}_{T}\right):= & \left(f, w_{T_{1}}\right)_{T_{1}}+\left(f, w_{T_{2}}\right)_{T_{2}}+\left(g_{N}, w_{T_{2}}\right)_{T^{\Gamma}} \\
& -\kappa_{1}\left(g_{D}, \mathbf{G}_{T_{1}}\left(\hat{w}_{T}\right) \cdot \mathbf{n}_{\Gamma}+\eta h_{T}^{-1} \llbracket w_{T} \rrbracket\right)_{T^{\Gamma}}
\end{aligned}
$$

- All the cell dofs are eliminated locally by static condensation
- Only the face dofs are globally coupled

Error analysis

- Multiplicative and discrete trace inequalities [Burman, AE 18]
- for any cut cell T, there is a ball T^{\dagger} of size $O\left(h_{T}\right)$ containing T and a finite number of its neighbors, and s.t. all $T \cap \Gamma$ is visible from a point in T^{\dagger}
- small ball with diameter $O\left(h_{T}\right)$ present on both sides of interface
- achievable using local cell agglomeration if mesh fine enough

Error estimate

Assuming that $\left.u\right|_{\Omega_{i}} \in H^{1+t}\left(\Omega_{i}\right)$ with $t \in\left(\frac{1}{2}, k+1\right]$,

$$
\sum_{T} \sum_{i \in\{1,2\}} \kappa_{i}\left\|\nabla\left(u-u_{T_{i}}\right)\right\|_{T_{i}}^{2} \leq C h^{2 t} \sum_{i \in\{1,2\}} \kappa_{i}|u|_{H^{++1}\left(\Omega_{i}\right)}^{2}
$$

Convergence order $O\left(h^{k+1}\right)$ if $\left.u\right|_{\Omega_{i}} \in H^{k+2}\left(\Omega_{i}\right)$

Agglomeration procedure (1/3)

- Three-stage procedure with proven locality in the agglomeration
(1) for any cell KO in Ω_{1}, find matching partner OK in Ω_{2}
(2) for any cell KO in Ω_{2} not matched, find matching partner OK in Ω_{1}
(3) rearrange locally partnerships to avoid propagation

initial mesh

stage 2

stage 3

Agglomeration procedure (2/3)

- A 16×16 mesh with circular interface

Agglomeration procedure (3/3)

- A $16 x 16$ mesh with flower-like interface

Test case with contrast

- $\kappa_{1}=1, \kappa_{2}=10^{4}, g_{D}=g_{N}=0, \eta=1$
- Circular interface $\left(r^{2}=\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0.5\right)^{2}\right)$
- Exact solution: $u_{1}:=\frac{r^{6}}{\kappa_{1}}, u_{2}:=\frac{r^{6}}{\kappa_{2}}+R^{6}\left(\frac{1}{\kappa_{1}}-\frac{1}{\kappa_{2}}\right)$

Test case with jump

- Flower-like interface, $\kappa_{1}=\kappa_{2}=1$
- Exact solution with jump

$$
u\left(x_{1}, x_{2}\right):= \begin{cases}\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) & \text { in } \Omega_{1} \\ \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)+2+x^{3} y^{3} & \text { in } \Omega_{2}\end{cases}
$$

							4	\sim		\rightarrow						
							\rightarrow			4						
						7					\uparrow					
												\triangle				
		\wedge	-										\downarrow	4		
		\checkmark	4										4	-		
												\rightarrow				
						-					7					
							\rightarrow			4						
							4			\rightarrow						

Wave propagation

- Subdomains $\Omega_{1}, \Omega_{2} \subset \Omega$, interface Γ, jump $\llbracket a \rrbracket_{\Gamma}=a_{\mid \Omega_{1}}-a_{\mid \Omega_{2}}$
- Acoustic wave propagation across interface

$$
\begin{cases}\frac{1}{\kappa} \partial_{t t} p-\operatorname{div}\left(\frac{1}{\rho} \nabla p\right)=f & \text { in } J \times\left(\Omega_{1} \cup \Omega_{2}\right) \\ \llbracket p \rrbracket_{\Gamma}=0, \llbracket \frac{1}{\rho} \nabla p \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma}=0 & \text { on } J \times \Gamma\end{cases}
$$

- Main ideas as for elliptic interface problems
- mixed-order setting $k^{\prime}=k+1$
- distinct gradient reconstructions $\mathbf{G}_{T_{i}}$ in $\mathbb{P}^{k}\left(T_{i} ; \mathbb{R}^{d}\right), i \in\{1,2\}$
- LS stabilization on $(\partial T)^{i}, i \in\{1,2\} \Longrightarrow s_{T_{i}}(\cdot, \cdot)$

Unfitted HHO discretization

- Second-order formulation

$$
\left(\partial_{t t} p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{\kappa} ; \Omega}+\left(\mathbf{G}_{\mathcal{T}}\left(\hat{p}_{h}(t)\right), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\frac{1}{\rho} ; \Omega^{\prime}}+s_{h}^{1,2}\left(\hat{p}_{h}(t), \hat{w}_{h}\right)+s_{h}^{\Gamma}\left(p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}
$$

- $s_{h}^{\Gamma}\left(p_{\mathcal{T}}(t), w_{\mathcal{T}}\right):=\left(\rho_{1} h_{T}\right)^{-1}\left(\llbracket p_{T} \rrbracket_{\Gamma}, \llbracket w_{T} \rrbracket_{\Gamma}\right)_{T^{\Gamma}}$
- Algebraic realization and Newmark time-stepping as in fitted case

Unfitted HHO discretization

- Second-order formulation

$$
\begin{aligned}
& \left(\partial_{t t} p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{\kappa} ; \Omega}+\left(\mathbf{G}_{\mathcal{T}}\left(\hat{p}_{h}(t)\right), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\frac{1}{\rho} ; \Omega}+s_{h}^{1,2}\left(\hat{p}_{h}(t), \hat{w}_{h}\right)+s_{h}^{\Gamma}\left(p_{\mathcal{T}}(t), w_{\mathcal{T}}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega} \\
& \bullet \\
& \quad s_{h}^{\Gamma}\left(p_{\mathcal{T}}(t), w_{\mathcal{T}}\right):=\left(\rho_{1} h_{T}\right)^{-1}\left(\llbracket p_{T} \rrbracket \rrbracket_{\Gamma}, \llbracket w_{T} \rrbracket_{\Gamma}\right)_{T^{\Gamma}}
\end{aligned}
$$

- Algebraic realization and Newmark time-stepping as in fitted case
- First-order formulation ($\left.v:=\partial_{t} p, \boldsymbol{\sigma}:=\frac{1}{\rho} \nabla p\right)$

$$
\left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\rho ; \Omega}-\left(\mathbf{G}_{\mathcal{T}}\left(\hat{v}_{h}(t)\right), \boldsymbol{\tau}_{\mathcal{T}}\right)_{\Omega}=0 \\
\left(\partial_{t} v_{\mathcal{T}}(t), w_{\mathcal{T}}\right)_{\frac{1}{\kappa} ; \Omega}+\left(\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}\left(\hat{w}_{h}\right)\right)_{\Omega}+\tilde{s}_{h}^{1,2}\left(\hat{v}_{h}(t), \hat{w}_{h}\right)+\tilde{s}_{h}^{\Gamma}\left(v_{\mathcal{T}}(t), w_{\mathcal{T}}\right)=\left(f(t), w_{\mathcal{T}}\right)_{\Omega}
\end{array}\right.
$$

- $\tilde{s}_{h}^{\Gamma}\left(v_{\mathcal{T}}(t), w_{\mathcal{T}}\right):=\sum_{T \in \mathcal{T}_{h}} \tilde{\tau}_{\partial T}^{\Gamma}\left(\llbracket v_{T} \rrbracket_{\Gamma}, \llbracket w_{T} \rrbracket_{\Gamma}\right)_{T^{\Gamma}}$
- $\tilde{\tau}_{\partial T}^{\Gamma}=\left(\rho_{1} c_{1}\right)^{-1}=O(1)$ for ERK, and $\tilde{\tau}_{\partial T}^{\Gamma}=O\left(h_{T}^{-1}\right)$ for SDIRK
- Algebraic realization and RK time-stepping as in fitted case

Fitted-unfitted comparison

- 2D heterogeneous test case with flat interface
- $\Omega_{1}:=\left(-\frac{3}{2}, \frac{3}{2}\right) \times\left(-\frac{3}{2}, 0\right), \Omega_{2}:=\left(-\frac{3}{2}, \frac{3}{2}\right) \times\left(0, \frac{3}{2}\right)$
- Ricker wavelet centered at $\left(0, \frac{2}{3}\right) \in \Omega_{2}$, sensor $S_{1}=\left(\frac{3}{4},-\frac{1}{3}\right) \in \Omega_{1}$
- fitted and unfitted HHO behave similarly, both benefit from increasing k

Fitted-unfitted comparison

- 2D heterogeneous test case with flat interface
- $\Omega_{1}:=\left(-\frac{3}{2}, \frac{3}{2}\right) \times\left(-\frac{3}{2}, 0\right), \Omega_{2}:=\left(-\frac{3}{2}, \frac{3}{2}\right) \times\left(0, \frac{3}{2}\right)$
- Ricker wavelet centered at $\left(0, \frac{2}{3}\right) \in \Omega_{2}$, sensor $S_{1}=\left(\frac{3}{4},-\frac{1}{3}\right) \in \Omega_{1}$
- fitted and unfitted HHO behave similarly, both benefit from increasing k
- HHO-Newmark, σ_{x} signals
- comparison of semi-analytical and HHO (fitted or unfitted) solutions
- $k=1$ (top) and $k=3$ (bottom)
- $c_{2} / c_{1}=\sqrt{3}$ (low contrast, left) or $c_{2} / c_{1}=8 \sqrt{3}$ (high contrast, right)

CFL condition for ERK (1/2)

- Homogeneous test case, flat interface
- CFL condition for $\operatorname{ERK}(s): \frac{c \Delta t}{h} \leq \beta(s) \mu(k)$
- $\beta(s)$ mildly depends on the number of stages
- $\mu(k)$ behaves as $(k+1)^{-1}$ and is quantified by solving a generalized eigenvalue problem with the mass and stiffness matrices
- Additional jump penalties in unfitted HHO only mildly impact $\mu(k)$

k	0	1	2	3
Fitted-HHO	0.118	0.0522	0.0338	0.0229
Unfitted-HHO	0.0765	0.0373	0.0232	0.0159
Ratio	1.5	1.4	1.5	1.4

CFL condition for ERK (2/2)

- Homogeneous test case, circular interface
- study of impact of agglomeration parameter $\theta_{\text {agg }}$ on $\mu(k)$
- "badly cut" cell flagged if relative area of any subcell falls below $\theta_{\text {agg }}$
- Agglomerated cells for $\theta_{\text {agg }}=0.3$ on a sequence of refined quad meshes

CFL condition for ERK (2/2)

- Homogeneous test case, circular interface
- study of impact of agglomeration parameter $\theta_{\text {agg }}$ on $\mu(k)$
- "badly cut" cell flagged if relative area of any subcell falls below $\theta_{\text {agg }}$
- Agglomerated cells for $\theta_{\text {agg }}=0.3$ on a sequence of refined quad meshes

- Behavior of $h \mu(k)$ and impact of $\theta_{\text {agg }}$ on $\mu(k)$
- tolerating badly cut cells deteriorates the CFL condition

k	0	1	2	3
$\theta_{\text {agg }}=0.5$	0.042	0.022	0.014	0.0099
$\theta_{\text {agg }}=0.3$	0.030	0.015	0.0094	0.0065
Ratio	1.4	1.5	1.5	1.5
$\theta_{\text {agg }}=0.1$	0.017	0.0087	0.0055	0.0039
Ratio	2.5	2.6	2.6	2.5

Flower-like interface

- Agglomerated cells for a flower-like interface (quad mesh, $h=2^{-5}$), HHO-SDIRK $(3,4)$ signal for σ_{x} at two sensors, $k \in\{1,2,3\}, c_{2} / c_{1}=\sqrt{3}$

- Pressure isovalues, $\operatorname{SDIRK}(3,4), k=3, h=0.1 \times 2^{-8}, \Delta t=2^{-6}$

$$
t=0.5
$$

$t=1$

Some references

- HHO
- seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
- [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
- [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]

Some references

- HHO
- seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
- [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
- [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
- New Finite Element book(s) (Springer, TAM vols. 72-74, 2021) with J.-L. Guermond, 83 chapters of $12 / 14$ pages plus about 500 exercises

Some references

- HHO
- seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]
- HHO for wave propagation
- [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
- Unfitted HHO
- [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
- New Finite Element book(s) (Springer, TAM vols. 72-74, 2021) with J.-L. Guermond, 83 chapters of $12 / 14$ pages plus about 500 exercises

Thank you for your attention!

