UPMC-M2R Parcours ANEDP
 Discontinuous Galerkin Methods and Applications
 Exam - 13 April 2015

The exam lasts three hours. The only authorized document is, as announced in class, one A4 sheet of paper with hand-written annotations (recto and verso).
Important. Write on separate sheets your answers for Part A and Part B.

1 Part A

1.1 Error analysis (3 pts)

a) Consider the following problem :

$$
\left\{\begin{array}{l}
\text { Find } u \in V \text { such that } \\
a(u, w)=\ell(w), \quad \forall w \in W,
\end{array}\right.
$$

where V and W are Hilbert spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}, a$ a bounded bilinear form on $V \times W$ and ℓ a bounded linear form on W. Specify the necessary and sufficient conditions for this problem to be well-posed.
b) Consider a finite-dimensional space V_{h} and the discrete problem

$$
\left\{\begin{array}{l}
\text { Find } u_{h} \in V_{h} \text { such that } \\
a_{h}\left(u_{h}, w_{h}\right)=\ell\left(w_{h}\right), \quad \forall w_{h} \in V_{h} .
\end{array}\right.
$$

What does it mean that the approximation is consistent?
c) Assume there is $C_{\text {sta }}>0$ such that

$$
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}\left\|v_{h}\right\| \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|}
$$

where $\|\cdot\| \|$ is a norm defined on $V_{(h)}:=V+V_{h}$, and there is $C_{\text {bnd }}$ such that

$$
\forall\left(v, w_{h}\right) \in V_{(h)} \times V_{h}, \quad\left|a_{h}\left(v, w_{h}\right)\right| \leq C_{\mathrm{bnd}}\|v\|\| \| w_{h} \| .
$$

Assuming consistency, state and prove an error estimate.

1.2 Advection-reaction (3 pts)

Consider the steady advection-reaction equation

$$
\begin{aligned}
\mu u+\beta \cdot \nabla u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega^{-},
\end{aligned}
$$

where $\mu \in L^{\infty}(\Omega), \beta \in W^{1, \infty}(\Omega)^{d}$ with $\mu-\frac{1}{2} \nabla \cdot \beta \geq \mu_{0}>0$ and $\partial \Omega^{-}=\{x \in \partial \Omega ; \beta \cdot n(x)<$ $0\}$.
a) Consider the discontinuous Galerkin approximation using upwind fluxes and the broken polynomial space $\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$. Specify the discrete bilinear form a_{h}, the right-hand side of the discrete problem, and formulate the discrete problem in local form using fluxes (no proof is required).
b) Prove that the bilinear form a_{h} is consistent and coercive for a norm to be specified (assuming the exact solution is smooth enough so that $\left(\beta \cdot n_{F}\right) \llbracket u \rrbracket_{F}=0$ for all $F \in \mathcal{F}_{h}^{i}$).
c) Give (without proof) a norm (stronger than the coercivity norm) for which the discrete bilinear form a_{h} is inf-sup stable.

1.3 Diffusion : Symmetric Interior Penalty (4 pts)

a) Consider the following problem :

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\int_{\Omega} \nabla u \cdot \nabla w=\int_{\Omega} f w, \quad \forall w \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

Write the Symmetric Interior Penalty bilinear form to be used to approximate this problem on the broken polynomial space $\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), k \geq 1$.
b) In which norm do we have coercivity and what is the condition on the penalty coefficient (a proof is expected)?
c) Devise the local formulation using fluxes (introduce the discrete gradient $G_{h}^{l}\left(u_{h}\right)$ with $l \in\{k-1, k\})$.
d) Consider the discrete flux $\sigma_{h}=G_{h}^{l}\left(u_{h}\right)$. Prove that the pair (σ_{h}, u_{h}) solves the following local formulation, for all $T \in \mathcal{T}_{h}$,

$$
\begin{aligned}
\int_{T} \sigma_{h} \cdot \zeta & -\int_{T} u_{h} \nabla \cdot \zeta+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \hat{u}_{F}\left(\zeta \cdot n_{F}\right)=0 \\
& -\int_{T} \sigma_{h} \cdot \nabla \xi+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F}\left(\hat{\sigma}_{F} \cdot n_{F}\right) \xi=\int_{T} f \xi
\end{aligned}
$$

for all $\zeta \in\left[\mathbb{P}_{d}^{k}(T)\right]^{d}$ and all $\xi \in \mathbb{P}_{d}^{k}(T)$, where the fluxes \hat{u}_{F} and $\hat{\sigma}_{F}$ have to be specified.

2 Part B

2.1 Linear transport (2 pts)

We consider the ordinary differential equation

$$
\begin{aligned}
\mathrm{d}_{t} u_{h}(t)+A_{h}^{\mathrm{up}} u_{h}(t) & =0, \\
u_{h}(0) & =u_{0, h},
\end{aligned}
$$

where A_{h}^{up} denotes the operator associated to the DG-upwind linear form and $u_{0, h}$ is a given function. Find a set of coefficients

$$
A=\left(a_{i j}\right) \in \mathbb{R}^{3 \times 3}, \quad b=\left(b_{i}\right) \in \mathbb{R}^{3},
$$

such that the Runge-Kutta method

$$
\begin{aligned}
k_{i} & =-A_{h}^{\mathrm{up}}\left(u_{h}^{n}+\delta t \sum_{j=1}^{3} a_{i j} k_{j}\right), \quad i=1,2,3, \\
u_{h}^{n+1} & =u_{h}^{n}+\delta t \sum_{i=1}^{3} b_{i} k_{i},
\end{aligned}
$$

is explicit and of order 3. Justify your answer.

2.2 Nonlinear conservation laws (2 pts)

a) Recall the definition of a monotone numerical flux and show that the Rusanov flux

$$
\Phi_{\text {Rusanov }}\left(n, u^{-}, u^{+}\right)=\frac{f_{n}\left(u^{-}\right)+f_{n}\left(u^{+}\right)}{2}+\sup _{v \in \mathcal{U}}\left|f_{n}^{\prime}(v)\right| \frac{\left(u^{-}-u^{+}\right)}{2}
$$

is monotone. Give its precise form in the particular case of the linear equation with $f(u)=\beta u$.
b) Recall the definition of the Roe numerical flux and show that it can be written in an equivalent way as

$$
\Phi_{\mathrm{Roe}}\left(n, u^{-}, u^{+}\right)= \begin{cases}f_{n}\left(u^{+}\right) & \text {if } \frac{f_{n}\left(u^{+}\right)-f_{n}\left(u^{-}\right)}{u^{+}-u^{-}} \geq 0, \\ f_{n}\left(u^{-}\right) & \text {if } \frac{\left.f_{n}\left(u^{+}\right)-f_{n} u^{-}\right)}{u^{+}-u^{-}}<0 .\end{cases}
$$

2.3 Implementation (2 pts)

a) Explain the advantages and disadvantages of a high-order method with respect to a low-order method.
b) What are the consequences of the choice of the basis functions in the approximation space for an unsteady and a steady problem?

2.4 Stokes equation (4 pts)

a) Let

$$
b_{h}\left(v_{h}, q_{h}\right):=-\int_{\Omega} q_{h} \nabla_{h} \cdot v_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket v_{h} \rrbracket \cdot n_{F}\left\{q_{h}\right\}
$$

Show the following equality

$$
b_{h}\left(v_{h}, q_{h}\right)=\int_{\Omega} \nabla_{h} q_{h} \cdot v_{h}-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{v_{h}\right\} \cdot n_{F} \llbracket q_{h} \rrbracket,
$$

for all $v_{h} \in\left[\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right]^{d}$ and $q_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$.
b) Let $q_{h} \in P_{h}$. We know that there exists $v_{q_{h}} \in U$ such that $\nabla \cdot v_{q_{h}}=q_{h}$ and $\beta_{\Omega}\left\|v_{q_{h}}\right\|_{U} \leq$ $\left\|q_{h}\right\|_{P}$ with $\beta_{\Omega}>0$. Show that

$$
\left\|q_{h}\right\|_{P}^{2}=-\int_{\Omega} \nabla_{h} q_{h} \cdot v_{q_{h}}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket q_{h} \rrbracket v_{q_{h}} \cdot n_{F} .
$$

c) Then, show that

$$
\left\|q_{h}\right\|_{P}^{2}=-b_{h}\left(\Pi_{h} v_{q_{h}}, q_{h}\right)+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket q_{h} \rrbracket\left\{v_{q_{h}}-\Pi_{h} v_{q_{h}}\right\} \cdot n_{F}
$$

where $\Pi_{h}:\left[L^{2}(\Omega)\right]^{d} \rightarrow U_{h}$ is the component-wise $L^{2}(\Omega)$-projection such that

$$
\begin{aligned}
\left\|\Pi_{h} v\right\|_{\mathrm{vel}} & \leq C_{\Pi}\|v\|_{U}, \quad \forall v \in U \\
\left\|v-\Pi_{h} v\right\|_{\left[L^{2}(F)\right]^{d}} & \leq C h_{T}^{\frac{1}{2}}\|v\|_{\left[L^{2}(T)\right]^{d \times d}}, \quad \forall v \in U, T \in \mathcal{T}_{h}, F \in \mathcal{F}_{T} .
\end{aligned}
$$

d) Finally, show that there exists $\beta>0$ such that

$$
\forall q_{h} \in P_{h}, \quad \beta\left\|q_{h}\right\|_{P} \leq \sup _{w_{h} \in U_{h} \backslash\{0\}} \frac{b_{h}\left(w_{h}, q_{h}\right)}{\left\|w_{h}\right\|_{\mathrm{vel}}}+\left|q_{h}\right|_{P}
$$

Reminder on the notation :

$$
\begin{aligned}
U & =\left[H_{0}^{1}(\Omega)\right]^{d}, \quad P=\left\{q \in L^{2}(\Omega) \mid \int_{\Omega} q=0\right\}, \quad U_{h}=\left[\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right]^{d}, \quad P_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right) \cap P, \\
\|v\|_{U}^{2} & =\sum_{i=1}^{d}\left\|v_{i}\right\|_{H^{1}(\Omega)}^{2}, \quad\|q\|_{P}=\|q\|_{L^{2}(\Omega)}, \\
\left\|v_{h}\right\|_{\text {vel }}^{2} & =\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d \times d}}^{2}+\sum_{F \in \mathcal{F}_{h}} h_{F}^{-1} \|\left[v _ { h } \rrbracket \| _ { [L ^ { 2 } (F)] ^ { d } } ^ { 2 } , \quad | q _ { h } | _ { P } ^ { 2 } = \sum _ { F \in \mathcal { F } _ { h } ^ { i } } h _ { F } \| \left[v_{h} \rrbracket \|_{L^{2}(F)}^{2}\right.\right.
\end{aligned}
$$

