
UPMC–M2R Parcours ANEDP

Discontinuous Galerkin Methods and Applications

Exam – 13 April 2015

The exam lasts three hours. The only authorized document is, as announced in class, one
A4 sheet of paper with hand-written annotations (recto and verso).

Important. Write on separate sheets your answers for Part A and Part B.

1 Part A

1.1 Error analysis (3 pts)

a) Consider the following problem :
{

Find u ∈ V such that

a(u,w) = ℓ(w), ∀w ∈ W,

where V and W are Hilbert spaces with norms ‖·‖V and ‖·‖W , a a bounded bilinear
form on V ×W and ℓ a bounded linear form on W . Specify the necessary and sufficient
conditions for this problem to be well-posed.

b) Consider a finite-dimensional space Vh and the discrete problem
{

Find uh ∈ Vh such that

ah(uh, wh) = ℓ(wh), ∀wh ∈ Vh.

What does it mean that the approximation is consistent ?

c) Assume there is Csta > 0 such that

∀vh ∈ Vh, Csta|||vh||| ≤ sup
wh∈Vh\{0}

ah(vh, wh)

|||wh|||
,

where |||·||| is a norm defined on V(h) := V + Vh, and there is Cbnd such that

∀(v, wh) ∈ V(h) × Vh, |ah(v, wh)| ≤ Cbnd|||v||||||wh|||.

Assuming consistency, state and prove an error estimate.

1.2 Advection-reaction (3 pts)

Consider the steady advection-reaction equation

µu+ β·∇u = f in Ω,

u = 0 on ∂Ω−,

where µ ∈ L∞(Ω), β ∈ W 1,∞(Ω)d with µ− 1
2∇·β ≥ µ0 > 0 and ∂Ω− = {x ∈ ∂Ω; β·n(x) <

0}.
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a) Consider the discontinuous Galerkin approximation using upwind fluxes and the broken
polynomial space P

k
d(Th). Specify the discrete bilinear form ah, the right-hand side of

the discrete problem, and formulate the discrete problem in local form using fluxes (no
proof is required).

b) Prove that the bilinear form ah is consistent and coercive for a norm to be specified
(assuming the exact solution is smooth enough so that (β·nF )[[u]]F = 0 for all F ∈ F i

h).

c) Give (without proof) a norm (stronger than the coercivity norm) for which the discrete
bilinear form ah is inf-sup stable.

1.3 Diffusion : Symmetric Interior Penalty (4 pts)

a) Consider the following problem :







Find u ∈ H1
0 (Ω) such that

∫

Ω
∇u·∇w =

∫

Ω
fw, ∀w ∈ H1

0 (Ω).

Write the Symmetric Interior Penalty bilinear form to be used to approximate this
problem on the broken polynomial space P

k
d(Th), k ≥ 1.

b) In which norm do we have coercivity and what is the condition on the penalty coefficient
(a proof is expected) ?

c) Devise the local formulation using fluxes (introduce the discrete gradient Gl
h(uh) with

l ∈ {k − 1, k}).

d) Consider the discrete flux σh = Gl
h(uh). Prove that the pair (σh, uh) solves the following

local formulation, for all T ∈ Th,

∫

T

σh·ζ −

∫

T

uh∇·ζ +
∑

F∈FT

ǫT,F

∫

F

ûF (ζ·nF ) = 0,

−

∫

T

σh·∇ξ +
∑

F∈FT

ǫT,F

∫

F

(σ̂F ·nF )ξ =

∫

T

fξ,

for all ζ ∈ [Pk
d(T )]

d and all ξ ∈ P
k
d(T ), where the fluxes ûF and σ̂F have to be specified.
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2 Part B

2.1 Linear transport (2 pts)

We consider the ordinary differential equation

dtuh(t) +A
up
h uh(t) = 0,

uh(0) = u0,h,

where A
up
h denotes the operator associated to the DG-upwind linear form and u0,h is a

given function. Find a set of coefficients

A = (aij) ∈ R
3×3, b = (bi) ∈ R

3,

such that the Runge–Kutta method

ki = −A
up
h

(

unh + δt

3
∑

j=1

aijkj
)

, i = 1, 2, 3,

un+1
h = unh + δt

3
∑

i=1

biki,

is explicit and of order 3. Justify your answer.

2.2 Nonlinear conservation laws (2 pts)

a) Recall the definition of a monotone numerical flux and show that the Rusanov flux

ΦRusanov(n, u
−, u+) =

fn(u
−) + fn(u

+)

2
+ sup

v∈U
|f ′

n(v)|
(u− − u+)

2

is monotone. Give its precise form in the particular case of the linear equation with
f(u) = βu.

b) Recall the definition of the Roe numerical flux and show that it can be written in an
equivalent way as

ΦRoe(n, u
−, u+) =

{

fn(u
+) if fn(u+)−fn(u−)

u+−u−
≥ 0,

fn(u
−) if fn(u+)−fn(u−)

u+−u−
< 0.

2.3 Implementation (2 pts)

a) Explain the advantages and disadvantages of a high-order method with respect to a
low-order method.

b) What are the consequences of the choice of the basis functions in the approximation
space for an unsteady and a steady problem ?
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2.4 Stokes equation (4 pts)

a) Let

bh(vh, qh) := −

∫

Ω
qh∇h · vh +

∑

F∈Fh

∫

F

[[vh]] · nF {qh}

Show the following equality

bh(vh, qh) =

∫

Ω
∇hqh · vh −

∑

F∈F i

h

∫

F

{vh} · nF [[qh]],

for all vh ∈ [Pk
d(Th)]

d and qh ∈ P
k
d(Th).

b) Let qh ∈ Ph. We know that there exists vqh ∈ U such that ∇·vqh = qh and βΩ‖vqh‖U ≤
‖qh‖P with βΩ > 0. Show that

‖qh‖
2
P = −

∫

Ω
∇hqh · vqh +

∑

F∈F i

h

∫

F

[[qh]]vqh · nF .

c) Then, show that

‖qh‖
2
P = −bh(Πhvqh , qh) +

∑

F∈F i

h

∫

F

[[qh]]{vqh −Πhvqh} · nF ,

where Πh : [L2(Ω)]d → Uh is the component-wise L2(Ω)-projection such that

|||Πhv|||vel ≤ CΠ‖v‖U , ∀v ∈ U,

‖v −Πhv‖[L2(F )]d ≤ Ch
1

2

T ‖v‖[L2(T )]d×d , ∀v ∈ U, T ∈ Th, F ∈ FT .

d) Finally, show that there exists β > 0 such that

∀qh ∈ Ph, β ‖qh‖P ≤ sup
wh∈Uh\{0}

bh(wh, qh)

|||wh|||vel
+ |qh|P .

Reminder on the notation :

U = [H1
0 (Ω)]

d, P =
{

q ∈ L2(Ω) |

∫

Ω
q = 0

}

, Uh = [Pk
d(Th)]

d, Ph = P
k
d(Th) ∩ P,

‖v‖2U =
d

∑

i=1

‖vi‖
2
H1(Ω), ‖q‖P = ‖q‖L2(Ω),

|||vh|||
2
vel = ‖∇hvh‖

2
[L2(Ω)]d×d +

∑

F∈Fh

h−1
F ‖[[vh]]‖

2
[L2(F )]d , |qh|

2
P =

∑

F∈F i

h

hF ‖[[vh]]‖
2
L2(F )
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