UPMC-M2R Parcours ANEDP Méthodes de Galerkin Discontinues et Applications Examen – 29 mars 2016

L'examen dure trois heures. Le seul document autorisé est, comme annoncé en cours, une feuille aide-mémoire manuscrite recto-verso format A4.

Analyse d'erreur (3 pts)

a) On considère le problème suivant :

$$\begin{cases} \text{Chercher } u \in V \text{ tel que} \\ a(u, w) = \ell(w), \quad \forall w \in W, \end{cases}$$

où V et W sont des espaces de Hilbert de normes $\|\cdot\|_V$ et $\|\cdot\|_W$, a une forme bilinéaire continue sur $V \times W$ et ℓ une forme linéaire continue sur W. Enoncer les conditions nécessaires et suffisantes pour que ce problème soit bien posé.

b) On considère un espace V_h de dimension finie et le problème discret

$$\begin{cases} \text{Chercher } u_h \in V_h \text{ tel que} \\ a_h(u_h, w_h) = \ell(w_h), \quad \forall w_h \in V_h. \end{cases}$$

Que signifie que cette approximation est consistante?

c) On suppose qu'il existe $C_{\text{sta}} > 0$ telle que

$$\forall v_h \in V_h, \qquad C_{\text{sta}} |\!|\!| v_h |\!|\!| \le \sup_{w_h \in V_h \setminus \{0\}} \frac{a_h(v_h, w_h)}{|\!|\!| w_h |\!|\!|},$$

où $\|\cdot\|$ est une norme définie sur $V_{(h)}:=V+V_h$, et qu'il existe C_{bnd} telle que

$$\forall (v, w_h) \in V_{(h)} \times V_h, \qquad |a_h(v, w_h)| \le C_{\text{bnd}} ||v|| ||w_h||.$$

Sous hypothèse de consistance, énoncer et démontrer une estimation d'erreur.

Advection-réaction (4 pts)

On considère l'équation d'advection-réaction stationnaire

$$\mu u + \beta \cdot \nabla u = f$$
 dans Ω ,
 $u = 0$ sur $\partial \Omega^-$,

où
$$\mu \in L^{\infty}(\Omega), \ \beta \in W^{1,\infty}(\Omega)^d \text{ avec } \mu - \frac{1}{2}\nabla \cdot \beta \geq \mu_0 > 0 \text{ et } \partial \Omega^- = \{x \in \partial \Omega; \ \beta \cdot n(x) < 0\}.$$

- a) On considère l'approximation par Galerkin discontinu de ce problème en utilisant des flux upwind et l'espace polynomial brisé $\mathbb{P}_d^k(\mathcal{T}_h)$, $k \geq 0$. Ecrire la forme bilinéaire discrète a_h (on précisera les notations employées).
- b) Montrer que le problème discret se formule localement à l'aide de flux numériques que l'on précisera.
- c) On suppose que la solution exacte est dans $H^1(\Omega)$. Montrer la consistance du problème discret
- d) Indiquer une norme pour laquelle la forme bilinéaire a_h est coercive. Indiquer une norme plus forte pour laquelle la forme bilinéaire a_h est inf-sup stable. On ne demande pas de preuves pour cette question.

Laplacien: SIPG (5 pts)

On considère le problème suivant :

$$\begin{cases} \text{Chercher } u \in H_0^1(\Omega) \text{ tel que} \\ \int_{\Omega} \nabla u \cdot \nabla w = \int_{\Omega} fw, \quad \forall w \in H_0^1(\Omega). \end{cases}$$

- a) Ecrire la forme bilinéaire Symmetric Interior Penalty pour approcher ce problème dans l'espace polynomial brisé $\mathbb{P}_d^k(\mathcal{T}_h), k \geq 1$.
- b) Préciser la forme du paramètre de stabilisation et rappeler (sans preuve) quelles conditions il doit satisfaire pour assurer la coercivité de la forme bilinéaire.
- c) Rappeler la définition du gradient discret $G_h^k(u_h)$.
- d) Démontrer que le problème discret s'écrit sous forme locale avec le gradient discret et des flux numériques que l'on précisera.
- e) Récrire le probème discret sous forme mixte en précisant les flux numériques pour l'inconnue discrète u_h et la variable duale σ_h (on rappelle que la variable duale exacte (le flux diffusif) est $\sigma = -\nabla u$).

Estimation d'erreur a posteriori (3 pts)

On considère à nouveau le problème de la question précédente et son approximation par la méthode Symmetric Interior Penalty.

- a) Rappeler la définition de l'espace de Raviart–Thomas d'ordre $k \geq 0$ sur un maillage composé de simplexes.
- b) Rappeler la construction d'un flux (diffusif) équilibré à partir de la solution discrète u_h . Montrer que la divergence de ce flux est la projection orthogonale du terme source f sur un espace à préciser.
- c) Montrer une estimation a posteriori pour l'erreur $u-u_h$ mesurée dans la norme de stabilité pour la méthode Symmetric Interior Penalty (on utilisera le flux équilibré ci-dessus et une fonction arbitraire $s_h \in H^1_0(\Omega)$, dont on pourra indiquer un choix raisonnable).

Systèmes de Friedrichs (3 pts)

- a) On considère (d+1) champs $\{A_i\}_{0 \leq i \leq d}$ à valeurs dans $\mathbb{R}^{m \times m}$, $m \geq 1$, et l'opérateur différentiel du premier ordre $Au = \mathcal{A}_0 u + \sum_{i=1}^d \mathcal{A}_i \partial_i u$ pour une fonction u à valeurs dans \mathbb{R}^m . Rappeler les hypothèses sur les champs \mathcal{A}_i pour obtenir un système de Friedrichs.
- b) Expliciter les champs A_i et vérifier les hypothèses ci-dessus pour le système grad-div où $u = (\sigma, p)$, σ à valeurs dans \mathbb{R}^d et p à valeurs dans \mathbb{R} , et $A(\sigma, p) = (\sigma + \nabla u, u + \nabla \cdot \sigma)$.
- c) Toujours pour le système grad-div, quels sauts pénalise-t-on dans une approximation par DG?

Problèmes instationnaires (3 pts)

- a) Donner la définition d'un flux numérique monotone et d'un E-flux. Montrer qu'un flux consistant monotone est un E-flux.
- b) Dans le cas de l'équation de transport linéaire

$$\partial_t u + \nabla \cdot (\beta u) = 0,$$

préciser le flux numérique upwind et montrer qu'il est monotone.

c) Dans le cas non-linéaire $\partial_t u + \nabla \cdot f(u) = 0$, préciser le flux de Lax-Friedirchs.