Implementation of the dG method

Matteo Cicuttin
CERMICS - École Nationale des Ponts et Chaussées
Marne-la-Vallée

March 6, 2017

Outline

- Model problem, fix notation
- Representing polynomials
- Computing integrals
- Assembly, solve, postprocess
- Matlab code to solve 1D model problem

Model problem

Let $\Omega \subset \mathbb{R}^{d}$ with $d \in\{1,2,3\}$ be an open, bounded and connected polytopal domain. We will consider the model problem

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

with $f \in L^{2}(\Omega)$. By setting $V:=H_{0}^{1}(\Omega)$, its weak form is
Find $u \in V$ such that $(\nabla u, \nabla v)_{\Omega}=(f, v)_{\Omega}$ for all $v \in V$.

Notation I: mesh and elements

Let \mathcal{T} be a suitable subdivision of Ω in polytopal elements T. We define the skeleton $\Gamma:=\cup_{T \in \mathcal{T}} \partial T$

Moreover, we define:

- $\Gamma_{i n t}=\Gamma \backslash \partial \Omega$
- T^{+}and T^{-}generic elements sharing a face
- $e:=T^{+} \cap T^{-} \subset \Gamma_{i n t}$
- \boldsymbol{n}^{+}and \boldsymbol{n}^{-}normals of T^{+} and T^{-}on e

Notation II: jump and average

Let $q: \Omega \rightarrow \mathbb{R}$ and $\phi: \rightarrow \mathbb{R}^{d}$

$$
\begin{array}{rlrl}
\text { Average: }\left.\{q\}\right|_{e} & :=\frac{1}{2}\left(q^{+}+q^{-}\right) & \left.\{\boldsymbol{\phi}\}\right|_{e}:=\frac{1}{2}\left(\boldsymbol{\phi}^{+}+\boldsymbol{\phi}^{-}\right) \\
\text {Jump: }\left.\llbracket q \rrbracket\right|_{e}:=q^{+} \boldsymbol{n}^{+}+q^{-} \boldsymbol{n}^{-} & \left.\llbracket \boldsymbol{\phi} \rrbracket\right|_{e}:=\boldsymbol{\phi}^{+} \cdot \boldsymbol{n}^{+}+\boldsymbol{\phi}^{-} \cdot \boldsymbol{n}^{-}
\end{array}
$$

If e belongs to the boundary of the domain (i.e. $e \subset \partial T \cap \partial \Omega$) we just drop the terms with -:

$$
\left.\{\boldsymbol{\phi}\}\right|_{e}:=\boldsymbol{\phi}^{+} \quad \text { and }\left.\quad \llbracket q \rrbracket\right|_{e}:=q^{+} \boldsymbol{n}^{+}
$$

Symmetric Interior Penalty dG

SIP dG method is derived from the following equation:

$$
\left.\sum_{T \in \mathcal{T}} \int_{T} \nabla u \cdot \nabla v-\int_{\Gamma}(\{\nabla u\} \cdot \llbracket v \rrbracket+\{\nabla v\}\} \cdot \llbracket u \rrbracket-\eta \llbracket u \rrbracket \cdot \llbracket v \rrbracket\right)=\int_{\Omega} f v=(f, v)
$$

In SIP dG we approximate the solution of our equation using piecewise continuous polynomials on the elements.

$$
S_{h}^{p}:=\left\{w_{h} \in L^{2}(\Omega): w_{h} \mid T \in \mathbb{P}_{d}^{k}(T), T \in \mathcal{T}\right\}
$$

SIP dG method will then be:

$$
\text { Find } u_{h} \in S_{h}^{p} \text { s.t. } a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in S_{h}^{p}
$$

where $a(u, v): S_{h}^{p} \times S_{h}^{p} \rightarrow \mathbb{R}$

$$
a(u, v)=\sum_{T \in \mathcal{T}} \int_{T} \nabla u \cdot \nabla v-\int_{\Gamma}(\{\nabla u\} \cdot \llbracket v \rrbracket+\{\nabla v\} \cdot \llbracket u \rrbracket-\eta \llbracket u \rrbracket \cdot \llbracket v \rrbracket)
$$

Representing polynomials

We need to be able to represent d-variate polynomials of degree k on cells: $p(x) \in \mathbb{P}_{d}^{k}(T)$. We introduce a basis of $\mathbb{P}_{d}^{k}(T)$: in 1D for example $\left\{1, x, x^{2}, \ldots\right\}$.

Once the basis is fixed, the coefficients p_{i} fully determine the polynomial.

$$
p(x)=\sum_{i=1}^{N_{d}^{k}} p_{i} \phi_{i}(x)
$$

where N_{d}^{k} is the size of the basis for $\mathrm{P}_{d}^{k}(T)$:

$$
N_{d}^{k}=\binom{k+d}{d}
$$

The coefficients of the basis will be called degrees of freedom (DoFs).

Scaled monomial basis

It is better, however, to use the so-called "scaled monomial basis" centered on the barycenter $\overline{\mathbf{x}}_{T}$ of T :

$$
\mathbb{P}_{d}^{k}(T)=\operatorname{span}\left\{\prod_{i=1}^{d} \tilde{x}_{T, i}^{\alpha_{i}} \mid 1 \leq i \leq d \wedge 0 \leq \sum_{i=1}^{d} \alpha_{i} \leq k\right\} .
$$

where $\tilde{\mathbf{x}}_{T}=\left(\mathbf{x}-\overline{\mathbf{x}}_{T}\right) / h_{T}$ and $\tilde{x}_{T, i}$ is the i-th component of $\tilde{\mathbf{x}}_{T}$.

Integrals and mass matrix

We want to compute $\int_{T} p(x) q(x)$, where $p, q \in \mathbb{P}_{d}^{k}$. As we discussed, we can express polynomials as linear combinations of basis functions:

$$
\int_{T} p(x) q(x)=\int_{T} \sum_{i=1}^{N_{d}^{k}} q_{i} \phi_{i}(x) \sum_{j=1}^{N_{d}^{k}} p_{j} \phi_{j}(x)
$$

Introduce mass matrix:

$$
\mathbf{M}_{i j}=\int_{T} \phi_{i}(x) \phi_{j}(x)
$$

Rewrite using mass matrix:

$$
\int_{T} p(x) q(x)=\sum_{i=1}^{N_{d}^{k}} q_{i} \sum_{j=1}^{N_{d}^{k}} \mathbf{M}_{i j} p_{j}
$$

Let $\mathbf{p}=\left\{p_{j}\right\}$ and $\mathbf{q}=\left\{q_{i}\right\}$:

$$
\int_{T} p q=\mathbf{q}^{T} \mathbf{M} \mathbf{p}
$$

Mass matrix

The integral is now hidden inside the mass matrix

$$
\mathbf{M}_{i j}=\int_{T} \phi_{i}(x) \phi_{j}(x)
$$

How to compute it? We need to do numerical integration using quadrature rules.

Quadrature rules

Quadrature $Q=\left(Q_{w}, Q_{p}\right)$: collection of $|Q|$ points and associated weights. Definite integrals are computed as weighted sum of evaluations of the integrand on the points prescribed by the quadrature:

$$
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{|Q|} w_{i} f\left(x_{i}\right), \quad w_{i} \in Q_{w}, x_{i} \in Q_{p}
$$

A quadrature is given on a specific reference element. Because of that you need to map it on your physical element. In particular:

- Map points from the reference to physical (affine transform)
- Multiply weights by measure of physical element (Jacobian)

Quadratures in practice

There are lots of different types of quadrature. Keywords for simplices:

- 1D: Gauss, Gauss-Lobatto, ...
- 2D: Dunavant, Grundmann-Moeller, ...
- 3D: Keast, ARBQ, Grundmann-Moeller, ...

On quads, we usually tensorize.
Look here for code: https://people.sc.fsu.edu/~jburkardt/.
In Matlab code we use Golub-Welsch algorithm to compute Gauss quadrature.

Mass matrix and stiffness matrix

We are now able to compute the mass matrix:

$$
\mathbf{M}_{i j}=\int_{T} \phi_{i}(x) \phi_{j}(x)=\sum_{i=1}^{|Q|} \tilde{w}_{i} \phi_{i}\left(\tilde{x}_{i}\right) \phi_{j}\left(\tilde{x}_{i}\right),
$$

where \tilde{w}_{i} and \tilde{x}_{i} are the quadrature weights and points after the transformations.
It is possible to build the stiffness matrix in the same way:

$$
\mathbf{S}_{i j}=\int_{T} \nabla \phi_{i}(x) \cdot \nabla \phi_{j}(x)=\sum_{i=1}^{|Q|} \tilde{w}_{i} \nabla \phi_{i}\left(\tilde{x}_{i}\right) \cdot \nabla \phi_{j}\left(\tilde{x}_{i}\right) .
$$

These matrices will have size $N_{d}^{k} \times N_{d}^{k}$.

A code

The numerical solution of a PDE, in general, consists of three phases:

- Assembly:

Compute the local contributions for every T and put them in the global system matrix,

- Solve:

Solve the linear system $\mathbf{A u}=\mathbf{f}$,

- Postprocess:

Recover the values of the solution from the DoFs computed in the previous step.

Assembly - Cell contributions

$$
\sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h}-\int_{\Gamma}\left(\left\{\nabla u_{h}\right\} \cdot \llbracket v_{h} \rrbracket+\left\{\nabla v_{h}\right\} \cdot \llbracket u_{h} \rrbracket-\eta \llbracket u_{h} \rrbracket \cdot \llbracket v_{h} \rrbracket\right)=\left(f, v_{h}\right)
$$

Remember:

- v_{h} can be any function in S_{h}^{p}; we choose all the coefficients to be 1
- for linearity, you can write one equation per basis function
- the coefficients u_{j} are the unknowns

Then, for the terms in red, locally we get for $1 \leq n \leq N_{d}^{k}$

$$
\begin{gathered}
u_{1} \int_{T} \nabla \phi_{1} \cdot \nabla \phi_{1}+\ldots+u_{n} \int_{T} \nabla \phi_{n} \cdot \nabla \phi_{1}=f \phi_{1} \\
\vdots \\
u_{1} \int_{T} \nabla \phi_{1} \cdot \nabla \phi_{n}+\ldots+u_{n} \int_{T} \nabla \phi_{n} \cdot \nabla \phi_{n}=f \phi_{n}
\end{gathered}
$$

We've got N_{d}^{k} local equations for each element in \mathcal{T}.

Assembly - Cell contributions

We now put the equations we obtained in a global matrix.

Consider a 1D mesh composed on 5 elements (depicted in blue).

- Each element gets its own set of equations in the global matrix.
- The structure of the global matrix is related to the mesh.
- Knowing the mesh, it is easy to determine the size of the system.
We haven't assembled the other terms yet. Note the decoupling.

Assembly - Face-related terms

$$
\sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h}-\int_{\Gamma}\left(\left\{\nabla u_{h}\right\} \cdot \llbracket v_{h} \rrbracket+\left\{\nabla v_{h}\right\} \cdot \llbracket u_{h} \rrbracket-\eta \llbracket u_{h} \rrbracket \cdot \llbracket v_{h} \rrbracket\right)=\left(f, v_{h}\right)
$$

- We have three additional terms to assemble
- We expand them with the expressions for jump and average
- They will "couple" adjacent elements

Assembly - Face-related terms

$$
\begin{aligned}
& \int_{e}\{\nabla u\} \cdot \llbracket v \rrbracket=\frac{1}{2} \int_{e}\left(\nabla u^{+}+\nabla u^{-}\right) \cdot\left(v^{+} \boldsymbol{n}^{+}+v^{-} \boldsymbol{n}^{-}\right)= \\
= & \frac{1}{2} \int_{e}\left[\left(\nabla u^{+} \cdot v^{+} \boldsymbol{n}^{+}\right)+\left(\nabla u^{+} \cdot v^{-} n^{-}\right)+\left(\nabla u^{-} \cdot v^{+} n^{+}\right)+\left(\nabla u^{-} \cdot v^{-} \boldsymbol{n}^{-}\right)\right]
\end{aligned}
$$

- The terms in red will be on the diagonal
- The terms in green will be off-diagonal

$$
\begin{array}{ll}
A_{1}^{++}=\frac{1}{2} \int_{e} \nabla u^{+} \cdot v^{+} \boldsymbol{n}^{+} & A_{1}^{+-}=\frac{1}{2} \int_{e} \nabla u^{+} \cdot v^{-} \boldsymbol{n}^{-} \\
A_{1}^{-+} & =\frac{1}{2} \int_{e} \nabla u^{-} \cdot v^{+} \boldsymbol{n}^{+}
\end{array} A_{1}^{--}=\frac{1}{2} \int_{e} \nabla u^{-} \cdot v^{-} \boldsymbol{n}^{-} .
$$

Assembly - Face-related terms

Suppose $T^{+}=T_{2}$ and $T^{-}=T_{3}$

- You can see that the off-diagonal terms introduce a coupling between adjacent elements
- Remember that since in 1D faces are just points, integrating means that you need to just evaluate the functions there

Assembly - Face-related terms

We have the two remaining terms, you handle them exactly as the previous one.

$$
\begin{aligned}
& \text { - } \int_{e}\{\nabla v\} \cdot \llbracket u \rrbracket=\frac{1}{2} \int_{e}\left(\nabla v^{+}+\nabla v^{-}\right) \cdot\left(u^{+} \boldsymbol{n}^{+}+u^{-} \boldsymbol{n}^{-}\right) \\
& \text {- } \int_{e} \eta \llbracket u \rrbracket \cdot \llbracket v \rrbracket=\int_{e} \eta\left(u^{+} \boldsymbol{n}^{+}+u^{-} \boldsymbol{n}^{-}\right) \cdot\left(v^{+} \boldsymbol{n}^{+}+v^{-} \boldsymbol{n}^{-}\right)
\end{aligned}
$$

Don't forget the two boundary faces!

Solve

Once we have assembled the problem, we must solve it. In Matlab there are different ways:

- Use the backslash operator $u=A \backslash f$
- Use one of the iterative solvers, pcg() is ok

Postprocess

By solving, we computed the coefficients $u_{i, n}, 1 \leq i \leq N_{d}^{k}$ for each element $1 \leq n \leq \operatorname{card}(\mathcal{T})$. To recover the values of the solution at any point, we must evaluate them against the basis.

- We choose N_{p} equispaced points on each element
- We evaluate there
- We plot the result

$$
u_{n}\left(x_{j}\right)=\sum_{i=1}^{N_{d}^{k}} u_{i, n} \phi_{i}\left(x_{i}\right), \quad 1 \leq j \leq N_{p}
$$

