Implementation of the dG method

Matteo Cicuttin

CERMICS - Ecole Nationale des Ponts et Chaussées
Marne-la-Vallée

March 6, 2017

Outline

Model problem, fix notation
Representing polynomials
Computing integrals

Assembly, solve, postprocess

Matlab code to solve 1D model problem

Model problem

Let Q C R with d € {1,2,3} be an open, bounded and connected
polytopal domain. We will consider the model problem

—Au=f inQ,
u=0 on 01,

with f € L(Q). By setting V := H}(Q), its weak form is

Find u € V such that (Vu, Vv)q = (f,v)q forallve V.

Notation |: mesh and elements

Let 7 be a suitable subdivision of in polytopal elements T. We define
the skeleton I' := Upc 70T

Moreover, we define:
o Iy, =T)\00 /
e T+ and T~ generic < T irint)
elements sharing a face T+ Ve

ee:=TtNT~ CTim
e nt and n~ normals of T'F
and T~ one

Notation Il: jump and average

Let ¢: Q — R and ¢ :— R?

Average: {a}le = 5(a" +47) [} = 5(6" +67)

Jump: [q]le =g T+ ¢ T [Blle=¢" nT+ o7 nT

If e belongs to the boundary of the domain (i.e. e C 9T N ON) we just
drop the terms with —:

{$}e =0T and [q]le:=g¢tn"

Symmetric Interior Penalty dG

SIP dG method is derived from the following equation:

/Vu Vo / (Vu} - [o] +{Vo} - [u] = n[u] [/fv— (f,v)

TeT

In SIP dG we approximate the solution of our equation using piecewise
continuous polynomials on the elements.

Sp = {wh € L*(Q) : w,|T € PX(T), T e T}
SIP dG method will then be:
Find uj, € S7 s.t. a(up,vn) = (f,vn), Yoy, € S}

where a(u,v) : S} x S} — R

a(u,v) Z/Vu Vv—/({Vu} [v] + {Vv} - [u] — 0] - [v])

TeT

Representing polynomials

We need to be able to represent d-variate polynomials of degree k on
cells: p(x) € PX(T). We introduce a basis of P%(T): in 1D for example
{1,z,2%,...}.

Once the basis is fixed, the coefficients p; fully determine the polynomial.

Ni
p(z) = Z pidi(z)
i=1

where N¥ is the size of the basis for P¥(T):

k+d
Wi (")

The coefficients of the basis will be called degrees of freedom (DoFs).

Scaled monomial basis

It is better, however, to use the so-called “scaled monomial basis”
centered on the barycenter x of T":

d
P*(T) = span {H G
i=1

where X7 = (x — Xr)/hr and Z7; is the i-th component of Xr.

d
1<i<d A0S o
=1

1

051

05}

TTIATAR
abwNEO

-0.5

0.5

Integrals and mass matrix

We want to compute fT p(z)q(z), where p,q € P, As we discussed, we
can express polynomials as linear combinations of basis functions:

N¥ N¥
Ammmzégymmgymu>
Introduce mass matrix:
M;; = /T@‘(x)(bj(x)

Rewrite using mass matrix:

Ni Ng

| p@n@ =30 S M,
Let p={p;} and g = {¢; }:

/ pq = q" Mp.
T

Mass matrix

The integral is now hidden inside the mass matrix

M;; Z/T@(x)cﬁj(a?)-

How to compute it? We need to do numerical integration using
quadrature rules.

Quadrature rules

Quadrature Q = (Qu, @p): collection of |Q| points and associated
weights. Definite integrals are computed as weighted sum of evaluations
of the integrand on the points prescribed by the quadrature:

1 QI
/1f(37)d$:zwif($i)7 Wi € Qu, T € Qp
- i=1

A quadrature is given on a specific reference element. Because of that
you need to map it on your physical element. In particular:

o Map points from the reference 4
to physical (affine transform)
@ Multiply weights by measure of .

physical element (Jacobian) > >

Quadratures in practice

There are lots of different types of quadrature. Keywords for simplices:
@ 1D: Gauss, Gauss-Lobatto, ...
@ 2D: Dunavant, Grundmann-Moeller, ...
@ 3D: Keast, ARBQ, Grundmann-Moeller, ...

On quads, we usually tensorize.
Look here for code: https://people.sc.fsu.edu/~jburkardt/.

In Matlab code we use Golub-Welsch algorithm to compute Gauss
quadrature.

Mass matrix and stiffness matrix

We are now able to compute the mass matrix:

Q|

”f/asv 216,(0) = 3 (216, 2.

where w; and &; are the quadrature weights and points after the
transformations.
It is possible to build the stiffness matrix in the same way:

Q|
S, / CCROEESSACIDRC

These matrices will have size N} x Nk

The numerical solution of a PDE, in general, consists of three phases:

@ Assembly:
Compute the local contributions for every T" and put them in the
global system matrix,

@ Solve:
Solve the linear system Au = f,

@ Postprocess:
Recover the values of the solution from the DoFs computed in the
previous step.

Assembly - Cell contributions

/ Vs, - Vo / (Fun}-[on]+{Von}-[un]—nfun]-[onl) = (f. vn)
TeT *

Remember:
@ vy, can be any function in S%; we choose all the coefficients to be 1
o for linearity, you can write one equation per basis function
o the coefficients u; are the unknowns

Then, for the terms in red, locally we get for 1 <n < Ng

uI/Twl-v¢1+...+un/Tv¢n-v¢>l=f¢1

ul/Twl-V¢n+...+un/Tv¢>n-v¢n=f¢n

e've go ocal equations for each element in 7.
W'gtN§I|qtf h el tinT

Assembly - Cell contributions

We now put the equations we obtained in a global matrix.

T T3 Ty Ty Consider a 1D mesh composed on 5
elements (depicted in blue).

@ Each element gets its own set
of equations in the global
— — matrix.

k
d

L | @ The structure of the global
matrix is related to the mesh.

card(T) x

@ Knowing the mesh, it is easy
- = to determine the size of the
card(T) x Nj system.

We haven't assembled the other terms yet. Note the decoupling.

Assembly - Face-related terms

) /Tvuh'vvh_ /r({Vuh,} [on] +{Von} - [un] = nlun] - [on]) = (f,vn)

TeT

@ We have three additional terms to
assemble

@ We expand them with the expressions for
jump and average

@ They will “couple” adjacent elements

Assembly - Face-related terms

/{Vu} /(vu +Vu)-(vtnt foTnT) =

—2/[(Vu+ vint) + + +(Vu v n7)]

@ The terms in red will be on the diagonal

@ The terms in will be off-diagonal

ATt = %/Vzﬁ cvtn T AT = /Vu
7+:%/Vu_-v+n+ Affzi/Vu_-v_n

Assembly - Face-related terms

T

T3

T3

Ty

Ts

A+t

A+-

Suppose TT =Ty and T~ =Ty
@ You can see that the off-diagonal

terms introduce a coupling between
adjacent elements

@ Remember that since in 1D faces are
just points, integrating means that
you need to just evaluate the
functions there

Assembly - Face-related terms

We have the two remaining terms, you handle them exactly as the
previous one.

o [{Vu}-[u]=12%[(Vvr+Vv) (unT+un")
o [onlul - [l = [, n(wtnt +u=n") - (Fnt o no)
Don't forget the two boundary faces!

Once we have assembled the problem, we must solve it. In Matlab there
are different ways:

@ Use the backslash operator u = A\f
@ Use one of the iterative solvers, pcg() is ok

Postprocess

By solving, we computed the coefficients u; ,, 1 <17 < Nél“ for each
element 1 < n < card(T). To recover the values of the solution at any
point, we must evaluate them against the basis.

@ We choose N, equispaced points on each element
@ We evaluate there

o We plot the result

