
Implementation of the dG method

Matteo Cicuttin

CERMICS - École Nationale des Ponts et Chaussées
Marne-la-Vallée

March 6, 2017

Outline

Model problem, fix notation

Representing polynomials

Computing integrals

Assembly, solve, postprocess

Matlab code to solve 1D model problem

Model problem

Let Ω ⊂ Rd with d ∈ {1, 2, 3} be an open, bounded and connected
polytopal domain. We will consider the model problem

−∆u = f in Ω,

u = 0 on ∂Ω,

with f ∈ L2(Ω). By setting V := H1
0 (Ω), its weak form is

Find u ∈ V such that (∇u,∇v)Ω = (f, v)Ω for all v ∈ V .

Notation I: mesh and elements

Let T be a suitable subdivision of Ω in polytopal elements T . We define
the skeleton Γ := ∪T∈T ∂T

Moreover, we define:

Γint = Γ \ ∂Ω

T+ and T− generic
elements sharing a face

e := T+ ∩ T− ⊂ Γint

n+ and n− normals of T+

and T− on e

T+T+

T�T�
n+n+

n�n�

�int�int

Notation II: jump and average

Let q : Ω→ R and φ :→ Rd

Average: {q}|e :=
1

2
(q+ + q−) {φ}|e :=

1

2
(φ+ + φ−)

Jump: [[q]]|e := q+n+ + q−n− [[φ]]|e := φ+ · n+ + φ− · n−

If e belongs to the boundary of the domain (i.e. e ⊂ ∂T ∩ ∂Ω) we just
drop the terms with −:

{φ}|e := φ+ and [[q]]|e := q+n+

Symmetric Interior Penalty dG

SIP dG method is derived from the following equation:∑
T∈T

∫
T

∇u ·∇v−
∫

Γ

({∇u}· [[v]]+{∇v}· [[u]]−η[[u]] · [[v]]) =

∫
Ω

fv = (f, v)

In SIP dG we approximate the solution of our equation using piecewise
continuous polynomials on the elements.

Sph :=
{
wh ∈ L2(Ω) : wh|T ∈ Pkd(T), T ∈ T

}
SIP dG method will then be:

Find uh ∈ Sph s.t. a(uh, vh) = (f, vh), ∀vh ∈ Sph
where a(u, v) : Sph × S

p
h → R

a(u, v) =
∑
T∈T

∫
T

∇u · ∇v −
∫

Γ

({∇u} · [[v]] + {∇v} · [[u]]− η[[u]] · [[v]])

Representing polynomials

We need to be able to represent d-variate polynomials of degree k on
cells: p(x) ∈ Pkd(T). We introduce a basis of Pkd(T): in 1D for example
{1, x, x2, . . .}.

Once the basis is fixed, the coefficients pi fully determine the polynomial.

p(x) =

Nk
d∑

i=1

piφi(x)

where Nk
d is the size of the basis for Pkd(T):

Nk
d =

(
k + d

d

)
The coefficients of the basis will be called degrees of freedom (DoFs).

Scaled monomial basis

It is better, however, to use the so-called “scaled monomial basis”
centered on the barycenter x̄T of T :

Pkd(T) = span

{
d∏
i=1

x̃αi

T,i | 1 ≤ i ≤ d ∧ 0 ≤
d∑
i=1

αi ≤ k
}
.

where x̃T = (x− x̄T)/hT and x̃T,i is the i-th component of x̃T .

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

k=0
k=1
k=2
k=3
k=4
k=5

Integrals and mass matrix

We want to compute
∫
T
p(x)q(x), where p, q ∈ Pkd. As we discussed, we

can express polynomials as linear combinations of basis functions:∫
T

p(x)q(x) =

∫
T

Nk
d∑

i=1

qiφi(x)

Nk
d∑

j=1

pjφj(x)

Introduce mass matrix:

Mij =

∫
T

φi(x)φj(x)

Rewrite using mass matrix:∫
T

p(x)q(x) =

Nk
d∑

i=1

qi

Nk
d∑

j=1

Mijpj .

Let p = {pj} and q = {qi}:∫
T

pq = qTMp.

Mass matrix

The integral is now hidden inside the mass matrix

Mij =

∫
T

φi(x)φj(x).

How to compute it? We need to do numerical integration using
quadrature rules.

Quadrature rules

Quadrature Q = (Qw, Qp): collection of |Q| points and associated
weights. Definite integrals are computed as weighted sum of evaluations
of the integrand on the points prescribed by the quadrature:

∫ 1

−1

f(x) dx =

|Q|∑
i=1

wif(xi), wi ∈ Qw, xi ∈ Qp

A quadrature is given on a specific reference element. Because of that
you need to map it on your physical element. In particular:

Map points from the reference
to physical (affine transform)

Multiply weights by measure of
physical element (Jacobian)

Quadratures in practice

There are lots of different types of quadrature. Keywords for simplices:

1D: Gauss, Gauss-Lobatto, ...

2D: Dunavant, Grundmann-Moeller, ...

3D: Keast, ARBQ, Grundmann-Moeller, ...

On quads, we usually tensorize.

Look here for code: https://people.sc.fsu.edu/∼jburkardt/.

In Matlab code we use Golub-Welsch algorithm to compute Gauss
quadrature.

Mass matrix and stiffness matrix

We are now able to compute the mass matrix:

Mij =

∫
T

φi(x)φj(x) =

|Q|∑
i=1

w̃iφi(x̃i)φj(x̃i),

where w̃i and x̃i are the quadrature weights and points after the
transformations.
It is possible to build the stiffness matrix in the same way:

Sij =

∫
T

∇φi(x) · ∇φj(x) =

|Q|∑
i=1

w̃i∇φi(x̃i) · ∇φj(x̃i).

These matrices will have size Nk
d ×Nk

d .

A code

The numerical solution of a PDE, in general, consists of three phases:

Assembly:
Compute the local contributions for every T and put them in the
global system matrix,

Solve:
Solve the linear system Au = f ,

Postprocess:
Recover the values of the solution from the DoFs computed in the
previous step.

Assembly - Cell contributions

∑
T∈T

∫
T

∇uh · ∇vh−
∫

Γ

({∇uh}·[[vh]]+{∇vh}·[[uh]]−η[[uh]]·[[vh]]) = (f, vh)

Remember:

vh can be any function in Sph; we choose all the coefficients to be 1

for linearity, you can write one equation per basis function

the coefficients uj are the unknowns

Then, for the terms in red, locally we get for 1 ≤ n ≤ Nk
d

u1

∫
T

∇φ1 · ∇φ1 + . . .+ un

∫
T

∇φn · ∇φ1 = fφ1

...

u1

∫
T

∇φ1 · ∇φn + . . .+ un

∫
T

∇φn · ∇φn = fφn

We’ve got Nk
d local equations for each element in T .

Assembly - Cell contributions

We now put the equations we obtained in a global matrix.

T1T1 T2T2 T3T3 T4T4 T5T5

Local
stiffness
matrices

card(T) ⇥ Nk
dcard(T) ⇥ Nk
d

ca
rd

(T
)
⇥

N
k d

ca
rd

(T
)
⇥

N
k d

=

Consider a 1D mesh composed on 5
elements (depicted in blue).

Each element gets its own set
of equations in the global
matrix.

The structure of the global
matrix is related to the mesh.

Knowing the mesh, it is easy
to determine the size of the
system.

We haven’t assembled the other terms yet. Note the decoupling.

Assembly - Face-related terms

∑
T∈T

∫
T

∇uh·∇vh−
∫

Γ

({∇uh} · [[vh]] + {∇vh} · [[uh]]− η[[uh]] · [[vh]]) = (f, vh)

T+T+

T�T�

We have three additional terms to
assemble

We expand them with the expressions for
jump and average

They will “couple” adjacent elements

Assembly - Face-related terms

∫
e

{∇u} · [[v]] =
1

2

∫
e

(∇u+ +∇u−) · (v+n+ + v−n−) =

=
1

2

∫
e

[
(∇u+ · v+n+) + (∇u+ · v−n−) + (∇u− · v+n+) + (∇u− · v−n−)

]
The terms in red will be on the diagonal

The terms in green will be off-diagonal

A++
1 =

1

2

∫
e

∇u+ · v+n+ A+−
1 =

1

2

∫
e

∇u+ · v−n−

A−+
1 =

1

2

∫
e

∇u− · v+n+ A−−1 =
1

2

∫
e

∇u− · v−n−

Assembly - Face-related terms

T1T1 T2T2 T3T3 T4T4 T5T5

A+�A+�A++A++

A��A��A�+A�+

Suppose T+ = T2 and T− = T3

You can see that the off-diagonal
terms introduce a coupling between
adjacent elements

Remember that since in 1D faces are
just points, integrating means that
you need to just evaluate the
functions there

Assembly - Face-related terms

We have the two remaining terms, you handle them exactly as the
previous one.∫

e
{∇v} · [[u]] = 1

2

∫
e
(∇v+ +∇v−) · (u+n+ + u−n−)∫

e
η[[u]] · [[v]] =

∫
e
η(u+n+ + u−n−) · (v+n+ + v−n−)

Don’t forget the two boundary faces!

Solve

Once we have assembled the problem, we must solve it. In Matlab there
are different ways:

Use the backslash operator u = A\f
Use one of the iterative solvers, pcg() is ok

Postprocess

By solving, we computed the coefficients ui,n, 1 ≤ i ≤ Nk
d for each

element 1 ≤ n ≤ card(T). To recover the values of the solution at any
point, we must evaluate them against the basis.

We choose Np equispaced points on each element

We evaluate there

We plot the result

un(xj) =

Nk
d∑

i=1

ui,nφi(xi), 1 ≤ j ≤ Np

