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HHO methods: basic ideas

Introduced in [Di Pietro, AE, Lemaire 14] (linear diffusion) and [Di Pietro, AE
15] (locking-free linear elasticity)
Degrees of freedom (dofs) attached to mesh cells and faces

Let us start with polynomials of the same degree k ≥ 0 on cells and
faces (dots do not mean point evaluation here)
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In each cell, one devises a local gradient reconstruction operator
One adds local stabilization to weakly enforce the matching of cell dof
traces with face dofs
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Assembly and static condensation

Cell unknowns Face unknowns

Assembly Static condensation

Global dofs ûh = (uT, uF) (T := {mesh cells}, F := {mesh faces})

Ûh := Pk(T ) × Pk(F ), Pk(T ) :=
?
T∈T
Pk(T), Pk(F ) :=

?
F∈F
Pk(F)

Cell dofs eliminated locally by static condensation
only face dofs are globally coupled
cell dofs recovered by local post-processing

Dirichlet conditions enforced on face boundary dofs→ subspace Ûh0
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Main assets of HHO methods

General meshes: polytopal cells, hanging nodes

Optimal error estimates
O(ht) H1-error estimate if u ∈ H1+t(Ω), t ∈ ( 12, k + 1]

face dofs of order k ≥ 0 =⇒ O(hk+1) H1-error estimate

duality argument for L2-error estimate

Local conservation
optimally convergent and algebraically balanced fluxes on faces
as any face-based method, balance at cell level

Attractive computational costs
only face dofs are globally coupled
compact stencil
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Local dofs and gradient reconstruction

mesh cell T ∈ T k = 0
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ûT = (uT, u∂T ) with cell dofs uT ∈ P
k(T) and face dofs u∂T ∈ P

k(F∂T )

ûT ∈ ÛT := Pk(T) × Pk(F∂T ), Pk(F∂T ) :=
?

F∈F∂T

Pk(F)

Potential reconstruction RT : ÛT → P
k+1(T)

Main idea: mimic integration by parts (smooth functions u, q):

(∇u,∇q)T = −(u,∆q)T + (u,∇q·nT )∂T

We require that ∀q ∈ Pk+1(T)/P0,

(∇RT (ûT ),∇q)T = −(uT,∆q)T + (u∂T,∇q·nT )∂T

together with (RT (ûT ), 1)T = (uT, 1)T

Gradient reconstruction GT (ûT ) := ∇RT (ûT ) ∈ [P
k(T)]d
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Local stabilization and bilinear form

In all cases, the local bilinear form writes

aT (ûT, ŵT ) := (∇RT (ûT ),∇RT (ŵT ))T︸                      ︷︷                      ︸
≈(∇u,∇w)T

+ h−1T (S∂T (ûT ), S∂T (ŵT ))∂T︸                          ︷︷                          ︸
weakly enforces uT |∂T − u∂T ≈ 0

Local stabilization operator acting on δ := uT |∂T − u∂T

S∂T (ûT ) := Πk
∂T

(
δ −

(
(I − Πk

T )RT (0, δ)
)
|∂T︸                     ︷︷                     ︸

high-order correction

)
(Important) variant on cell dofs and stabilization

mixed-order setting: (k + 1) for cell dofs and k ≥ 0 for face dofs
Lehrenfeld–Schöberl HDG stabilization

S∂T (ûT ) := Πk
∂T (δ)

slightly higher cost for static condensation compensated by lower cost for
computing stabilization
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aT (ûT, ŵT ) := (∇RT (ûT ),∇RT (ŵT ))T︸                      ︷︷                      ︸
≈(∇u,∇w)T
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Link to other methods

HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
flux variable in HDG↔ HHO grad. rec.
numerical flux trace in HHO is −∇RT (ûT )·nT + h−1T (S̃

∗
∂T ◦ S̃∂T )(δ)

HHO allows for a simpler analysis based on L2-projections: avoids special
HDG projection

Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
weak gradient↔ HHO grad. rec.
WG often uses plain LS stabilization (in general, suboptimal: face dofs of
order k ≥ 0 =⇒ O(hk) H1-estimate)

HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
HHO dof space ÛT isomorphic to virtual spaceVT

Pk+1(T) ( VT := {v ∈ H1(T) | ∆v ∈ Pk(T), n·∇v|∂T ∈ P
k(F∂T )}

see [Chaumont, AE, Lemaire, Valentin 21] for equivalence with MHM

Different devising viewpoints should be mutually enriching!
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Applications, libraries, textbooks

Broad area of applications (non-exhaustive list...)
solid mechanics: nonlinear elasticity, hyperlasticity and plasticity,
contact, Tresca friction, obstacle pb
fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
Leray-Lions, spectral pb, H−1-loads, magnetostatics, de Rham complexes

Libraries
industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)

Textbooks
Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and
applications (Springer, 2020)
Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics
(Springer Briefs, 2021)
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Main ideas in error analysis (1/3)

Recall aT (ûT, ŵT ) := (∇RT (ûT ),∇RT (ŵT ))T + h−1T (S∂T (ûT ), S∂T (ŵT ))∂T

Discrete problem: Find ûh ∈ Ûh0 s.t.

ah(ûh, ŵh) :=
∑
T∈T

aT (ûT, ŵT ) = (f ,wT)Ω, ∀ŵh ∈ Ûh0

Stability and boundedness: There are 0 < α ≤ ω s.t. for all T ∈ T ,

α‖ûT ‖
2
ÛT
≤ aT (ûT, ûT ) ≤ ω‖ûT ‖

2
ÛT
, ∀ûT ∈ ÛT

with ‖ûT ‖
2
ÛT

:= ‖∇uT ‖
2
T + h−1T ‖uT |∂T − u∂T ‖

2
∂T

‖ûh‖
2
Ûh

:=
∑

T∈T ‖ûT ‖
2
ÛT

defines a norm on Ûh0

Discrete problem is well-posed (Lax–Milgram lemma)
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ah(ûh, ŵh) :=
∑
T∈T
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α‖ûT ‖
2
ÛT
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Main ideas in error analysis (2/3)

Local approximation operator Jhho
T : H1(T) → Pk+1(T)

Jhho
T : H1(T)

ÎT
−→ ÛT

RT
−→ Pk+1(T), ÎT (v) := (Πk

T (v),Π
k
∂T (v|∂T ))

Jhho
T is the elliptic projector onto Pk+1(T)

h−
1
2

T ‖S∂T (ÎT (v))‖∂T . ‖∇(v − Jhho
T (v))‖T . hk+1

T |v|Hk+2(T)

Assume exact solution u is in H1+s(Ω), s > 1
2

Set ‖v‖2
],T := ‖∇v‖2T + hT ‖∇v·nT ‖

2
∂T and ‖v‖2

],T
:=

∑
T∈T ‖v‖2],T

The following error estimate holds:

‖∇T(u − RT(ûh))‖Ω . ‖u − Jhho
T (u)‖],T

with RT and Jhho
T

defined cellwise using RT and Jhho
T

If u ∈ H1+t(Ω) with t ∈ ( 12, k + 1], ‖∇T(u − RT(ûh))‖Ω . ht |u|H1+t(Ω)
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−→ Pk+1(T), ÎT (v) := (Πk

T (v),Π
k
∂T (v|∂T ))

Jhho
T is the elliptic projector onto Pk+1(T)

h−
1
2
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ÎT
−→ ÛT

RT
−→ Pk+1(T), ÎT (v) := (Πk

T (v),Π
k
∂T (v|∂T ))

Jhho
T is the elliptic projector onto Pk+1(T)

h−
1
2

T ‖S∂T (ÎT (v))‖∂T . ‖∇(v − Jhho
T (v))‖T . hk+1

T |v|Hk+2(T)
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2

Set ‖v‖2
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2
∂T and ‖v‖2

],T
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∑
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12/41



Main ideas in error analysis (3/3)
Bound on consistency error: For all ŵh ∈ Ûh0,

(f, wT )Ω =
∑
T∈T
(−∆u, wT )T =

∑
T∈T
(∇u, ∇wT )T − (∇u·nT, wT )∂T

=
∑
T∈T
(∇u, ∇wT )T − (∇u·nT, wT − w∂T )∂T

Key step where regularity assumption u ∈ H1+s(Ω), s > 1
2 , is used

Recalling Jhho
T = RT ◦ ÎT and definition of RT (ŵT ) gives

χ(ŵh) := (f, wT )Ω −
∑
T∈T

aT (ÎT (u), ŵT ) = (f, wT )Ω −
∑
T∈T
(∇Jhho

T (u), ∇RT (ŵT ))T + stb.

=
∑
T∈T
(∇η, ∇wT )T − (∇η ·nT, wT − w∂T )∂T + stb.

with η |T := u|T − Jhho
T (u), . . . so that |χ(ŵh)| . ‖η‖],T ‖ŵh‖Ûh

Regularity assumption s > 1
2 is classical for any nonconforming method

(CR, Nitsche, dG, HDG, ...); how to circumvent it?
modify RHS using suitable bubble functions; see [Veeser, Zanotti, 18-] for
general theory and [AE, Zanotti, 20] for HHO =⇒ optimal in H1

keep RHS but give weaker meaning to facewise normal derivative [AE,
Guermond 21 (FoCM)] =⇒ allow for any s > 0
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HHO for biharmonic problem
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Model problem

Open, bounded, polytopal Lipschitz domain Ω ⊂ Rd, d ≥ 2

Load f ∈ L2(Ω)

∆
2u = f + BC’s

{
u = 0, ∂nu = 0 (type I)
u = 0, ∂nnu = 0 (type II)

Focusing on type I BC’s, the weak formulation is

Find u ∈ H2
0(Ω) s.t. (∇2u,∇2w)Ω = (f ,w)Ω ∀w ∈ H2

0(Ω)

This problem is well-posed (Lax–Milgram lemma)

It is also possible to consider type II BC’s, non-homogeneous BC’s, and
mix both BC’s
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Local HHO dofs

Recall for second-order PDEs that local HHO dofs comprise
cell dofs to approximate the solution in mesh cells
face dofs to approximate the solution trace on mesh faces

ÛT := Pk+1(T) × Pk(F∂T ) or Pk(T) × Pk(F∂T ) k ≥ 0

For biharmonic problem, we need additional face dofs
either approximating the full gradient trace on mesh faces (vector-valued)
or just the normal derivative on mesh faces (scalar-valued)

The choice studied in [Bonaldi, Di Pietro, Geymonat, Krasucki, 18] is

ÛT := Pk(T) × Pk(F∂T ) × [P
k(F∂T )]

d k ≥ 1

We consider instead the following two alternatives, both with k ≥ 0

ÛT :=

{
Pk+2(T) × Pk+1(F∂T ) × P

k(F∂T ) d = 2 → HHO(A)
Pk+2(T) × Pk+2(F∂T ) × P

k(F∂T ) d ≥ 2 → HHO(B)
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Local reconstruction

Let T ∈ T

We want to mimic the integration by parts formula (smooth v,w):

(∇2v,∇2w)T = (v,∆2w)T − (v, ∂n∆w)∂T + (∂nv, ∂nnw)∂T + (∂tv, ∂ntw)∂T

Let v̂T := (vT, v∂T, γ∂T ) ∈ ÛT

Potential reconstruction RT : ÛT → P
k+2(T) s.t. ∀w ∈ Pk+2(T)/P1,

(∇2RT (v̂T ),∇
2w)T = (vT,∆

2w)T−(v∂T, ∂n∆w)∂T+(γ∂T, ∂nnw)∂T+(∂tv∂T, ∂ntw)∂T

together with (RT (v̂T ), ξ)T = (vT, ξ)T for all ξ ∈ P1(T)

Hessian reconstructionHT (v̂T ) := ∇2RT (v̂T ) ∈ [P
k(T)]d×d
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Local stabilization

The goal of stabilization is to weakly enforce

vT |∂T ≈ v∂T, ∂nvT |∂T ≈ γ∂T, ∀v̂T := (vT, v∂T, γ∂T ) ∈ ÛT

For HHO(B) with ÛT := Pk+2(T) × Pk+2(F∂T ) × P
k(F∂T ),

S∂T (v̂T, v̂T ) := h−3T ‖vT |∂T − v∂T ‖
2
∂T + h−1T ‖Π

k
∂T (∂nvT |∂T ) − γ∂T ‖

2
∂T

→ natural extension of LS stabilization to biharmonic problem

For HHO(A) with ÛT := Pk+2(T) × Pk+1(F∂T ) × P
k(F∂T ) and d = 2

S∂T (v̂T, v̂T ) := h−3T ‖Υ
k+1
∂T (vT |∂T − v∂T )‖

2
∂T + h−1T ‖Π

k
∂T (∂nvT |∂T ) − γ∂T ‖

2
∂T

where on each face F ∈ F∂T , Υk+1
∂T matches endpoint values and

moments on F up to degree (k − 1)
commuting property with tangential derivative (cf. 1D de Rham complex)
similar operator available for any d ≥ 2 but maps onto Pk+d−1(F∂T )
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Discrete problem (1/2)

The local bilinear form writes

aT (v̂T, ŵT ) := (∇2RT (v̂T ),∇
2RT (ŵT ))T + S∂T (v̂T, ŵT )

Global dofs v̂h := (vT, vF, γF) ∈ Ûh with

Ûh := Pk+2(T ) × Pk+δ(F ) × Pk(F ), δ ∈ {1, 2}

all faces oriented by fixed unit normal nF , γF approximates nF ·∇v
local dofs of v̂h in a mesh cell T ∈ T : (vT, (vF)F∈F∂T , ((nT ·nF)γF)F∈F∂T

Type I BC’s enforced on face boundary dofs by setting vF = γF = 0 for
all F ⊂ ∂Ω→ subspace Ûh0
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2RT (ŵT ))T + S∂T (v̂T, ŵT )
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Discrete problem (2/2)

Discrete problem: Find ûh ∈ Ûh0 s.t.

ah(ûh, ŵh) :=
∑
T∈T

aT (ûT, ŵT ) = (f ,wT)Ω, ∀ŵh ∈ Ûh0

Cell dofs eliminated locally by static condensation
only face dofs are globally coupled
cell dofs recovered by local post-processing

Comparison of globally coupled unknowns per mesh interface
d = 2: (3k + 3) in [Bonaldi et al., 18] vs. (2k + 3) in HHO(A)
d = 3: (4k + 4) in [Bonaldi et al., 18] vs. (2k + 4) in HHO(B)
static condensation is slightly more expensive in HHO(A-B), but cost is
compensated by simpler stabilization
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Stability

Stability and boundedness: There are 0 < α ≤ ω s.t. for all T ∈ T ,

α‖v̂T ‖
2
ÛT
≤ aT (v̂T, v̂T ) ≤ ω‖v̂T ‖

2
ÛT
, ∀v̂T ∈ ÛT

with ‖v̂T ‖
2
ÛT

:= ‖∇2vT ‖
2
T + h−3T ‖vT − v∂T ‖

2
∂T + h−1T ‖∂nvT |∂T − γ∂T ‖

2
∂T

‖v̂h‖
2
Ûh

:=
∑

T∈T ‖v̂T ‖
2
ÛT

defines a norm on Ûh0

Discrete problem is well-posed (Lax–Milgram lemma)
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with ‖v̂T ‖
2
ÛT
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Approximation

Local approximation operator Jhho
T : H2(T) → Pk+2(T)

Jhho
T : H2(T)

ÎT
→ ÛT

RT
→ Pk+2(T)

ÎT (v) :=

{
(Πk+2

T (v),Υ
k+1
∂T (v|∂T ),Π

k
∂T (nT ·∇v|∂T )) for HHO(A)

(Πk+2
T (v),Π

k+2
∂T (v|∂T ),Π

k
∂T (nT ·∇v|∂T )) for HHO(B)

For all v ∈ H2+s(T), s > 3
2 , set

‖v‖2
],T := ‖∇2v‖T + h3T ‖∂n∆v‖2∂T + hT ‖∂n∇v‖2∂T

The following optimal approximation properties hold:

‖v − Jhho
T (v)‖],T . ‖v − Π

k+2
T (v)‖],T

S∂T (ÎT (v), ÎT (v))
1
2 . ‖∇2(v − Πk+2

T (v))‖T

Moreover, for HHO(A), Jhho
T coincides with the H2-elliptic projector
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‖v − Jhho
T (v)‖],T . ‖v − Π

k+2
T (v)‖],T

S∂T (ÎT (v), ÎT (v))
1
2 . ‖∇2(v − Πk+2

T (v))‖T

Moreover, for HHO(A), Jhho
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Consistency

Assume exact solution u is in H2+s(Ω), s > 3
2

Key step when bounding the consistency error: For all ŵh ∈ Ûh0,

(f, wT )Ω =
∑
T∈T
(∆2u, wT )Ω

=
∑
T∈T
(∇2u, ∇2wT )T + (∂n∆u, wT )∂T − (∂nnu, ∂nwT )∂T − (∂ntu, ∂twT )∂T

=
∑
T∈T
(∇2u, ∇2wT )T + (∂n∆u, wT − w∂T )∂T − (∂nnu, ∂nwT − γ∂T )∂T − (∂ntu, ∂t(wT − w∂T ))∂T

Then, letting χ(ŵh) := (f ,wT)Ω − ah(ÎT(u), ŵh), we obtain

|χ(ŵh)| . ‖η‖],T ‖ŵh‖Ûh
, η |T := u|T − Jhho

T (u)

and ‖η‖],T is bounded by ‖u−Πk+2
T
(u)‖],T (with ‖·‖2

],T
:=

∑
T∈T ‖·‖

2
],T )
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Error estimate

Recall assumption u ∈ H2+s(Ω), s > 3
2

The following error estimate holds:

‖∇2T(u − RT(ûh))‖Ω . ‖u − Πk+2
T
(u)‖],T

If k ≥ 1 and u ∈ Hk+3(Ω), ‖∇2
T
(u − RT(ûh))‖Ω . hk+1 |u|Hk+3

If k = 0, ‖∇2
T
(u − RT(ûh))‖Ω . h(|u|H3 + hσ |u|H3+σ ), σ := min(s − 1, 1)

Circumventing regularity assumption
[Veeser, Zanotti, 18-19] for Morley element and C0-IPDG (f ∈ H−2(Ω) in
2D); extension to 3D with arbitrary degree not obvious
[Carstensen, Nataraj, 21] for further results on lowest-order methods
it is also possible to extend the techniques of [AE, Guermond, 21 (FoCM)]
=⇒ allow for any s > 1 (and even s > 0 for type II BC’s)
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Literature overview

Comparison with WG
WG are designed using suboptimal plain least-squares stabilization
in the table, all the methods deliver O(hk+1) H2-error estimate

method cell face grad k ref.
WG k + 2 k + 2 [k + 1]d k ≥ 0 [Mu, Wang, Ye, 14]

k + 2 k + 2 k + 1 k ≥ 0 [Mu, Wang, Ye, 14]
k + 2 k + 1 k + 1 k ≥ 0 [Zhang, Zhai, 15]
1 1 [1]d k = 0 [Ye, Zhang, Zhang, 20]

HHO k k [k]d k ≥ 1 [Bonaldi et al., 18]
HHO(A) k + 2 k + 1 k k ≥ 0 present (d = 2)
HHO(B) k + 2 k + 2 k k ≥ 0 present (d ≥ 2)

Broader literature review
C1-VEM [Brezzi, Marini, 13; Chinosi, Marini, 16; Antonietti, Manzini, Verani,
20], C0-VEM [Zhao, Chen, Zhang, 16]
DG [Mozolevski, Süli, 03; Georgoulis, Houston, 09], C0-IPDG [Engel et al., 02;
Brenner, Sung, 05]
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Further topics

Nitsche’s method and curved boundaries
extends ideas from [Burman, AE, 18; Burman, Cicuttin, Delay, AE, 21] on
second-order (interface) problems
key idea: discard integrals on ∂Ω when building reconstruction operator
boundary-penalty term needs O(1) coefficient

Singular perturbation

−∆u + ε∆2u = f , ε ≥ 0

use local cutoff function σT = max(1, εh−2T ) to weigh stabilization terms
method and analysis fully robust up to ε = 0

C0-HHO: an extension of C0-FEM!
restrict to simplicial/quad/hex meshes
local dofs related to the solution trace no longer needed

ÛT := Pk+2(T) × Pk(F∂T )

error analysis proceeds as above
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Numerical results
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Convergence rates

Smooth solution u(x, y) = sin(πx)2 sin(πy)2

HHO(A), k ∈ {0, 1, 2, 3}, rectangular and polygonal (Voronoi) meshes
Left: H2-seminorm, O(hk+1)

Right: L2-norm, O(hk+3) for k ≥ 1 and O(h2) for k = 0
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Computational times

Time spent on reconstruction, stabilization and static condensation
Comparison of HHO(A), HHO(B), and HHO(C) which uses
reconstruction in stabilization
k ∈ {0, . . . , 5}, polygonal mesh with 16k cells
HHO(A) is the most efficient method
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Comparison with DG

HHO(A) and DG on polygonal mesh (16k cells)
k ∈ {0, 1, 2, 3} for HHO(A) and ` = k + 2 for DG
Disclaimer: simple Matlab implementation, no optimization
Some (preliminary) comments

HHO leads to less dofs and lower assembling time than DG (cell dofs
richer than face ones; numerical DG fluxes longer to evaluate)
solving time smaller for DG for k ≤ 2 and smaller for HHO if k ≥ 3 (HHO
stencil less compact than DG stencil)
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Comparison with Morley, HCT and C0-IPDG

Triangular meshes, finest one has 32k cells & 49k edges
All compared methods deliver same decay rate on H2-error
Morley FEM more efficient than HHO(k = 0)
HCT FEM more efficient than HHO(k = 1) if assembling time is
considered, but not if solving time is considered
HHO(k) more efficient than C0-IPDG(k + 2), k ∈ {0, 1}
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Singular perturbation on curved domain

Triangular mesh composed of 9.4k cells, k = 1
From top to bottom: ε = 1, ε = 10−3, ε = 0(!)
From left to right: solution, gradient, Hessian (reconstructed)
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Error analysis with low regularity
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Localizing normal traces

Brief summary of [AE, Guermond 21 (FoCM & Finite Elements, Chaps. 40-41)]

Let p > 2 and q ∈ ( 2d
d+2, 2]

There is ρ ∈ (2, p] s.t. q ≥ ρd
ρ+d ; let ρ

′ ∈ [p′, 2) s.t. 1
ρ +

1
ρ′ = 1

For all T ∈ T and all F ∈ F∂T , consider

LT
F : W

1
ρ ,ρ
′

(F)
zero extension
−−−−−−−−−−→ W

1
ρ ,ρ
′

(∂T)
trace lifting
−−−−−−−−→ W1,ρ′(T)

Let σ ∈ Sd(T) := {τ ∈ Lp(T);∇·τ ∈ Lq(T)} ( d stands for divergence)

Define γdT,F(σ) ∈ (W
1
ρ ,ρ
′

(F))′ s.t. for all φ ∈ W
1
ρ ,ρ
′

(F),

〈γdT,F(σ), φ〉F :=
∫

T

{
σ·∇LT

F(φ) + (∇·σ)L
T
F(φ)

}
If σ is smooth, γdT,F(σ) = (σ·nT )|F
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Poisson problem with DG (1/2)

Assume u ∈ V] := {v ∈ H1+s(Ω);∆v ∈ Lq(Ω)}, s > 0

For all v ∈ V], ∇v ∈ Hs(Ω) ↪→ Lp(Ω), p > 2; hence,

∇v ∈ Sd(Ω) := {σ ∈ Lp(Ω);∇·σ ∈ Lq(Ω)}

Bilinear form on (V] + Pk(T )) × Pk(T )

n(2)
]
(v,wT) :=

∑
T∈T

∑
F∈F∂T

〈γdT,F(∇v),wT |F − {wT}F〉F

Notice that n(2)
]
(vT,wT) =

∑
F∈F

∫
F{∇vT}F ·nF[[wT]]F if vT ∈ Pk(T )

Using commuting mollification operators, one proves that for all v ∈ V],

n(2)
]
(v,wT) =

∑
T∈T
(∇v,∇wT )T + (∆v,wT )T

This property essentially appears as an assumption in the medius
analysis [Gudi, 10]
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Poisson problem with DG (2/2)

Consider interior penalty DG (IPDG) [Arnold, 82]

The key relation for consistency is

(f ,wT)Ω =
∑
T∈T
(−∆u,wT )T =

∑
T∈T
(∇u,∇wT )T − n(2)

]
(u,wT)

For IPDG, adg
T
(vT,wT) =

∑
T∈T
(∇vT,∇wT )T − n(2)

]
(vT,wT) + stb.

Letting η := u − Πk
T
(u), the consistency error is bounded as follows:

χ(wT) := (f ,wT)Ω − adg
T (Π

k
T
(u),wT)

=
∑
T∈T
(∇η,∇wT )T − n(2)

]
(η,wT) + stb.

Conclude with boundedness property |n(2)
]
(η,wT)| . ‖η‖],T ‖wT ‖h
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Poisson problem with DG (2/2)

Consider interior penalty DG (IPDG) [Arnold, 82]

The key relation for consistency is

(f ,wT)Ω =
∑
T∈T
(−∆u,wT )T =

∑
T∈T
(∇u,∇wT )T − n(2)

]
(u,wT)

For IPDG, adg
T
(vT,wT) =
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Adaptation to HHO

Exploiting the face variable representing the trace, we define the
following bilinear form on (V] + Pk+1(T )) × Ûh0:

n̂(2)
]
(v, ŵh) :=

∑
T∈T

∑
F∈F∂T

〈γdT,F(∇v),wT |F − w∂T |F〉F

The first key relation is n̂(2)
]
(v, ŵh) = n(2)

]
(v,wT) for all v ∈ V]

The link to the reconstruction operator is as follows:

ah(ÎT(u), ŵh) =
∑
T∈T
(∇Jhho

T (u),∇RT (ŵT ))T + stb.

=
∑
T∈T
(∇Jhho

T (u),∇wT )T − n̂(2)
]
(Jhho
T (u), ŵh) + stb.

Letting η := u − Jhho
T
(u), we recover

χ(ŵh) =
∑
T∈T
(∇η,wT )T − n̂(2)

]
(η, ŵh) + stb.
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n̂(2)
]
(v, ŵh) :=
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T (u),∇RT (ŵT ))T + stb.

=
∑
T∈T
(∇Jhho

T (u),∇wT )T − n̂(2)
]
(Jhho
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Biharmonic problem

Above technique extends to IPDG/HHO for biharmonic problem

The critical step is to give a meaning to ∂n∆v on mesh faces

If u ∈ H3+s(Ω), s > 0, and f ∈ Lq(Ω), q ∈ ( 2d
2+d , 2], then

σ := ∇∆u ∈ Sd(Ω)

=⇒ γdT,F(σ) is well defined on all the mesh faces
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C0-methods with type II BC’s (1/2)

In this setting, we can lower the regularity even further

u ∈ H2+s(Ω), s > 0, f ∈ H−1(Ω)

With type II BC’s, one has ∆u ∈ H1
0(Ω) =⇒ ∇∆u ∈ L2(Ω)!

Let us set V] := {v ∈ H2+s(Ω);∆v ∈ H1
0(Ω)}

In C0-HHO, the cell dofs are in Pg,k(T ) := Pk(T ) ∩ H1
0(Ω)

We consider on (V] × Pg,k(T )) × Pg,k(T ) the bilinear form

n(4)
]
(v,wT) :=

∑
T∈T

∑
F∈F∂T

∑
i∈{1:d}

〈γdT,F(∇∂iv), nT,i(∂nwT −nT ·{∇wT}F)|F〉F

Notice that ∇∂iv ∈ Sd(Ω) for all i ∈ {1:d} (with q = 2)
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C0-methods with type II BC’s (2/2)

The key relation for consistency in C0-IPDG is

〈∆2u,wT〉H−1,H1
0
=

∑
T∈T
(∇2u,∇2wT )T − n(4)

]
(u,wT)

For C0-HHO, one exploits the presence of the face variable representing
the normal derivative by setting

n̂(4)
]
(v, ŵh) :=

∑
i∈{1:d}

∑
T∈T

∑
F∈F∂T

〈γdT,F(∇∂iv), nT,i(∂nwT − χ∂T )|F〉F

The link to the reconstruction operator is as follows:

ah(ÎT(u), ŵh) =
∑
T∈T
(∇2Jhho

T (u),∇
2wT )T − n̂(4)

]
(Jhho
T (u), ŵh) + stb.

Moreover,

〈∆2u,wT〉H−1,H1
0
=

∑
T∈T
(∇2u,∇2wT )T − n̂(4)

]
(u, ŵh)

40/41



C0-methods with type II BC’s (2/2)

The key relation for consistency in C0-IPDG is

〈∆2u,wT〉H−1,H1
0
=

∑
T∈T
(∇2u,∇2wT )T − n(4)

]
(u,wT)

For C0-HHO, one exploits the presence of the face variable representing
the normal derivative by setting

n̂(4)
]
(v, ŵh) :=
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T (u), ŵh) + stb.

Moreover,

〈∆2u,wT〉H−1,H1
0
=

∑
T∈T
(∇2u,∇2wT )T − n̂(4)

]
(u, ŵh)

40/41



C0-methods with type II BC’s (2/2)

The key relation for consistency in C0-IPDG is

〈∆2u,wT〉H−1,H1
0
=

∑
T∈T
(∇2u,∇2wT )T − n(4)

]
(u,wT)

For C0-HHO, one exploits the presence of the face variable representing
the normal derivative by setting

n̂(4)
]
(v, ŵh) :=
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40/41



Some references

HHO
[Di Pietro, AE, Lemaire 14 (CMAM); Di Pietro, AE 15 (CMAME)]

HHO for biharmonic problem
[Bonaldi et al. 18 (M2AN)]
[Dong & AE 21 (hal-03185683); 21 (M2AN)]

Error analysis with low regularity [AE, Guermond 21 (FoCM)]

Recent Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Thank you for your attention!
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