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Abstract

We introduce a new H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems.
The reconstructed flux is computed elementwise and its divergence equals the L

2-orthogonal projection of the
source term onto the discrete space. Moreover, the energy-norm of the error in the flux is bounded by the discrete
energy-norm of the error in the primal variable, independently of diffusion heterogeneities. To cite this article: A.
Ern, S. Nicaise, and M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I (2007).

Résumé

Une reconstruction précise du flux dans H(div) pour des approximations par la méthode de Galer-

kine discontinue de problèmes elliptiques. On introduit une nouvelle reconstruction dans H(div) du flux
pour des approximations par la méthode de Galerkine discontinue de problèmes elliptiques. Le flux reconstruit est
calculé localement sur chaque maille et sa divergence est égale à la projection L

2-orthogonale du terme source sur
l’espace discret. De plus, l’erreur en norme d’énergie sur le flux est bornée par l’erreur en norme d’énergie discrète
sur la variable primale, indépendamment des hétérogénéités dans la diffusion. Pour citer cet article : A. Ern, S.
Nicaise, and M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I (2007).

1. Introduction

The approximation of elliptic problems by the discontinuous Galerkin (dG) method has been introduced
in the late 1970s and has been, more recently, the subject of extensive research; see, e.g., [2,6] and references
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therein. Advantages of dG methods include flexibility in the design of approximation spaces (allowing
for nonmatching meshes and variable polynomial degree), compact discretization stencils amenable to
parallelization, and, in the spirit of finite volumes, a local (elementwise) formulation in terms of numerical
fluxes. An issue that still deserves further investigation is whether an accurate H(div) flux reconstruction
can be performed using the discrete solution provided by the dG method. This type of postprocessing
is important at least in two instances. Firstly, this flux can serve as input data in further calculations;
this is for instance the case when solving contaminant transport problems in porous media where the
flow velocity must be determined first by an approximation of Darcy’s equation. Secondly, this flux can
be used in a posteriori error estimates based on equilibrated fluxes. For conforming approximations, this
type of estimates are explored, e.g., in [1,10] and references therein. Recent work where an H(div) flux
reconstruction is used for a posteriori dG error estimates includes [5,8].

An H(div) flux reconstruction for the so-called nonsymmetric Interior Penalty (IP) Galerkin method
has been proposed and analyzed in [3]. The idea therein is to reconstruct the flux in the Brezzi–Douglas–
Marini finite element space and to use the mean values of the gradient of the dG solution at interfaces
to specify the degrees of freedom. The reconstructed flux is proven to be accurate in the L2-norm. In the
present work, we propose a more accurate reconstruction, namely in the Raviart–Thomas finite element
space, and we address a wider class of IP-like methods. The key improvement achieved when working
with Raviart–Thomas finite element spaces is that the divergence of the reconstructed flux can be proven
to be optimal, i.e., it is equal to the L2-orthogonal projection of the data onto the dG approximation
space. This is a key property when the reconstructed flux is further used as an advective flow velocity
or as a tool for a posteriori error estimation. Moreover, as in [3], the reconstruction procedure can be
performed elementwise; thus, it does not demand significant computational effort.

This Note is organized as follows. §2 introduces the model problem and its dG approximation. In
particular, we treat recently introduced Weighted IP methods to cope satisfactorily with heterogeneities
and anisotropies in the diffusion tensor [9]. §3 presents and analyzes the H(div) flux reconstruction. The
main results are Theorems 3.1 and 3.2.

2. The model problem and its dG approximation

Consider the model elliptic problem

−∇·(K∇u) = f in Ω, (1)

u = 0 on ∂Ω, (2)

with (for simplicity) homogeneous Dirichlet boundary conditions. Here, Ω ⊂ R
d, d = 2, 3, is a polygonal

domain, K ∈ [L∞(Ω)]d,d is the diffusion tensor, and f ∈ L2(Ω) is the source term. The diffusion tensor is
assumed to be symmetric and uniformly positive definite in Ω.

Let {Th}h>0 be a conforming, shape-regular family of affine meshes of Ω consisting of simplices. The
diffusion tensor is assumed to be piecewise constant on Th. On an element T ∈ Th, the maximal and
minimal eigenvalues of K are denoted by ΛK,T and λK,T , respectively. For any integer k ≥ 0, consider
the usual dG approximation space V k

h = {vh ∈ L2(Ω);∀T ∈ Th, vh|T ∈ Pk}, where Pk is the set of
polynomials of total degree less than or equal to k. The L2-scalar product and its associated norm on
a subset R ⊂ Ω are indicated by the subscript 0, R. The L2-orthogonal projection from L2(Ω) onto V k

h

is denoted by Πk
h. Interior and boundary faces are collected in the sets F i

h and F∂
h , respectively, and we

set Fh = F i
h ∪ F∂

h . For F ∈ F i
h, there are T− and T+ in Th such that F = T− ∩ T+. Let nF be the

unit normal vector to F pointing from T− towards T+. For a double-valued function v on F , its jump
is defined as [[v]] = v− − v+ with v± = v|T± . Choosing non-negative weights ωT−,F and ωT+,F such
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that ωT−,F + ωT+,F = 1, the weighted average of v on F is {v}ω = ωT−,F v− + ωT+,F v+. The usual
average consists of taking ωT−,F = ωT+,F = 1

2
. When the diffusion tensor is strongly heterogeneous, it

is better [4,9] to consider diffusion-dependent weights defined as ωT+,F = (δK,F+ + δK,F−)−1δK,F− and
ωT−,F = (δK,F+ + δK,F−)−1δK,F+ where δK,F± = nF (K|T±)nF . On boundary faces, we set [[v]] = v,
{v}ω = v, ωT,F = 1 (where T is the mesh element of which F is a face), and δK,F = nF (K|T )nF where
nF coincides with the outward unit normal of Ω.

Let k ≥ 1. The dG approximation consists of finding uh ∈ V k
h such that Bh(uh, vh) = (f, vh)0,Ω for all

vh ∈ V k
h with the bilinear form

Bh(v, w) =
∑

T∈Th

(K∇v,∇w)0,T +
∑

F∈Fh

αh−1
F γK,F ([[v]], [[w]])0,F

−
∑

F∈Fh

(

(nt
F {K∇v}ω, [[w]])0,F + θ(nt

F {K∇w}ω, [[v]])0,F

)

. (3)

The penalty coefficient γK,F is defined on interior faces as γK,F = (δK,F+ + δK,F−)−1δK,F+δK,F− (i.e., it
depends on the diffusion tensor via the harmonic average of the normal diffusivity) and as γK,F = δK,F

on boundary faces. Furthermore, hF denotes the diameter of F , α is a positive parameter, and θ can take
values in {−1, 0,+1}. As usual with IP-like methods, if θ 6= −1, the parameter α must be chosen large
enough to ensure that the bilinear form Bh is coercive. The threshold depends on the shape-regularity
of the mesh family and the polynomial degree k, but not on the meshsize and the diffusion tensor if the
penalty parameter is designed as above. An optimal (with respect to meshsize) a priori error estimate is
proven in [9] in the discrete energy-norm

|||v|||2Ω =
∑

T∈Th

|||v|||2T , |||v|||2T = (K∇v,∇v)0,T +
∑

F⊂∂T

αh−1
F γK,F ([[v]], [[v]])0,F . (4)

The estimate is robust with respect to diffusion heterogeneities and only depends on local diffusion
anisotropies.

3. The accurate H(div) flux reconstruction

Consider the Raviart–Thomas spaces of vector functions RTk
h = {vh ∈ H(div,Ω) ;vh|T ∈ RTk

T ;∀T ∈
Th} where RTk

T = P
d
k(T )+xPk(T ). The reconstructed flux introduced in this Note, th ∈ RTk

h, is specified
through its natural degrees of freedom, namely for all F ∈ Fh and qh ∈ Pk(F ),

(th·nF , qh)0,F = (−nt
F {K∇uh}ω + αh−1

F γK,F [[uh]], qh)0,F , (5)

and for all T ∈ Th and rh ∈ P
d
k−1(T ),

(th, rh)0,T = −(K∇uh, rh)0,T + θ
∑

F⊂∂T

ωT,F (nt
F Krh, [[uh]])0,F . (6)

Theorem 3.1 There holds ∇·th = Πk
hf .

Proof. For all T ∈ Th and ξ ∈ Pk(T ), (f, ξ)0,T = Bh(uh, ξ × 1T ) = −(th,∇ξ)0,T +
∑

F⊂∂T (th·nT , ξ)0,F =
(∇·th, ξ)0,T owing to (3), (5), and (6). 2

The following result estimates the energy-norm of the error in the diffusive flux in terms of the discrete
energy-norm of the primal error (u − uh). In the sequel, A . B denotes the inequality A ≤ cB with c
independent of meshsize and of K.
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Theorem 3.2 There holds ‖K
1
2∇u + K− 1

2 th‖0,Ω . maxT∈Th
(ΛK,T /λK,T )|||u − uh|||Ω.

Proof. Clearly, it suffices to estimate ‖K
1
2∇uh + K− 1

2 th‖0,Ω. Using scaling arguments and the Piola

transformation, one first shows that for all T ∈ Th and vh ∈ RTk
T ,

‖vh‖
2
0,T . hT

∑

F⊂∂T

‖vh·nF ‖
2
0,F + ‖Πk−1

h vh‖
2
0,T . (7)

We apply this estimate to vh = (K∇uh + th)|T ∈ RTk
T . Owing to (5)–(6) and using inverse inequali-

ties, vh·nF = ω̄T,F nt
F [[K∇uh]] + αh−1

F γK,F [[uh]] and ‖Πk−1

h vh‖0,T . |θ|h
−1/2

T ΛK,T

∑

F⊂∂T ωT,F ‖[[uh]]‖0,F

where ω̄T,F := 1 − ωT,F , so that

λ−1
K,T ‖vh‖

2
0,T .

∑

F⊂∂T

λ−1
K,T hT ω̄2

T,F ‖n
t
F [[K∇uh]]‖2

0,F +
∑

F⊂∂T

λ−1
K,T h−1

F (γ2
K,F + Λ2

K,T ω2
T,F )‖[[uh]]‖2

0,F . (8)

Let X and Y denote the two terms in the right-hand side. The first term is bounded using bubble
functions, similarly to the a posteriori analysis of conforming finite elements; see [7] for details. The
result is X . maxT ′∈∆T

(ΛK,T ′/λK,T ′)2
∑

T ′∈∆T
|||u − uh|||

2
T ′ where ∆T denotes the set of mesh elements

sharing at least a face with T . The second term is bounded observing that λ−1
K,T γ2

K,F ≤ (ΛK,T /λK,T )γK,F

and λ−1
K,T Λ2

K,T ω2
T,F ≤ (ΛK,T /λK,T )2γK,F , leading to Y . (ΛK,T /λK,T )2

∑

T ′∈∆T
|||u − uh|||

2
T ′ . Finally,

summing over the mesh elements yields the desired result. 2

Because of the estimate for |||u−uh|||Ω established in [9], Theorem 3.2 implies the same bound for the recon-

structed flux th. A further consequence is that the computable quantity ‖K
1
2∇uh +K− 1

2 th‖0,Ω is optimal
for the purpose of a posteriori error estimation; see [5,8] for details including numerical experiments.
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