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1. Introduction

The dynamic Signorini problem models the infinitesimal deformations of a solid
body which can come into contact with a rigid obstacle. Many textbooks dealing
with the mathematical theory of contact mechanics have appeared recently; see, e.g.,
[1, 7, 9] and references therein. Usual space-time discretizations for this problem com-
bine finite element space approximation and time-stepping schemes. In this frame-
work, most methods exhibit spurious oscillations and/or poor behavior in long time.
The modified mass method proposed by Khenous, Laborde and Renard in [5] is a
space semi-discrete formulation overcoming these two difficulties: the mass term is
modified (the mass associated with the nodes at the contact boundary is set to zero),
and the contact condition is enforced by a variational inequality. Owing to the mass
modification, inertial forces cannot trigger spurious oscillations at the boundary. Fur-
thermore, the system conserves an energy, which ensures a good behavior in long
time.

The purpose of the present work is to strengthen the mathematical foundations of
the modified mass method. Our main result is the convergence, up to a subsequence,
of the space semi-discrete solutions to a solution of the continuous dynamic Signorini
problem in the case of a visco-elastic material. In the elastic case, that is, in the
absence of viscosity, it is already known [5] that the space semi-discrete problem
is equivalent to a Lipschitz system of ordinary differential equations (ODEs) and is,
therefore, well-posed (such a result cannot be established when using a standard mass
term). However, the existence of a continuous solution is still an open problem in the
elastic case, and the convergence proof of the space semi-discrete solutions is still out
of reach. Instead, in the visco-elastic case, the existence of a continuous solution has
been proven using a penalty method [1, §4.2.2]; the uniqueness of the solution is still
an open problem. Our convergence proof takes a fairly standard path, namely a priori
estimates on the space semi-discrete solutions and compactness arguments, but the
mass modification at the contact boundary requires special care when passing to the
limit. In both cases (penalty method or finite-dimensional variational inequality), the
a priori estimate on the velocity delivered by the viscosity term plays a crucial role
in the proof; as such, the argument cannot be extended to the vanishing viscosity
limit. Incidentally, the present convergence proof provides an alternate, albeit more
complex, way to prove the existence of a continuous solution.
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2 Convergence of a modified mass method for the dynamic Signorini problem

2. Continuous formulation

Consider the infinitesimal deformations of a body occupying a reference domain
Ω⊂R

d (d=2 or d=3) during a time interval [0,T ]. We use the following assumptions
and notation. The boundary of the domain Ω is piecewise smooth, so that its outward
normal, n, is well defined almost everywhere at the boundary. The material is linear
visco-elastic (Kelvin–Voigt model). The tensors of elasticity and viscosity, denoted
by A and B respectively, are symmetric positive definite and taken to be constant
for simplicity. The mass density, denoted by ρ :Ω→R, is bounded by below by a
constant ρ0 >0. An external load f is applied to the body. The boundary ∂Ω is
partitioned into three disjoint open subsets ΓD, ΓN and Γc (the measure of ΓD is
positive). Homogeneous Dirichlet and Neumann conditions are prescribed on ΓD and
ΓN , respectively. On Γc, a unilateral contact condition is imposed. Let u : (0,T )×Ω→
R

d, ǫ(u) : (0,T )×Ω→R
d,d and σ(u) : (0,T )×Ω→R

d,d be the displacement field, the
linearized strain tensor and the stress tensor, respectively. Let un :=u|∂Ω ·n and
σnn :=n ·σ|∂Ω ·n respectively denote the normal displacement and the normal stress on
∂Ω. At the initial time, the displacement and velocity fields are u

0 and v
0. Denoting

time-derivatives by dots, the strong formulation of the dynamic Signorini problem is

ρü−divσ =f, σ =A : ǫ+B : ǫ̇, ǫ=
1

2
(∇u+∇ut) in Ω×(0,T ), (2.1)

un ≤0, σnn ≤0, σnnun =0 on Γc×(0,T ), (2.2)

σ ·n=0 on ΓN ×(0,T ), u=0 on ΓD×(0,T ), (2.3)

u(0)=u
0, u̇(0)=v

0 in Ω. (2.4)

Consider the functional spaces V =H1
0 (Ω,ΓD)d ={v∈H1(Ω)d; v =0 a.e. on ΓD}

and M =L2(Ω)d, and the closed convex cone K ={v∈V ; v|∂Ω ·n≤0 a.e. on Γc}. The
space M and its topological dual space are identified. Standard notation is used for
spaces of time-dependent functions valued in a Banach space B, e.g., Ck([0,T ];B) and
so on; see [6, 10]. We assume the following regularity on the data: f ∈C0([0,T ];M),
ρ∈L∞(Ω), u

0∈K and v
0∈M . Define the following bilinear and linear forms

m :M ×M ∋ (v,w) 7−→

∫

Ω

ρv ·w, (2.5)

a :V ×V ∋ (v,w) 7−→

∫

Ω

ǫ(v) :A : ǫ(w), (2.6)

b :V ×V ∋ (v,w) 7−→

∫

Ω

ǫ(v) :B : ǫ(w), (2.7)

l : [0,T ]×V ∋ (t,v) 7−→

∫

Ω

f(t) ·v. (2.8)

Owing to Korn’s first inequality and the assumptions on A and B, the bilinear forms
a and b are V -elliptic. We consider the following variational formulation of equations
(2.1)-(2.4) (see [1] for its derivation).

Problem 2.1. Seek u∈L2(0,T ;K)∩H1(0,T ;V )∩C1([0,T ];M) such that for all v∈
L2(0,T ;K)∩H1(0,T ;M),

∫ T

0

{

−m(u̇, v̇− u̇)+a(u,v−u)+b(u̇,v−u)
}

dt+m(u̇(T ),v(T )−u(T ))−

m(v0,v(0)−u
0)≥

∫ T

0

l(t,v−u)dt.

(2.9)
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Fig. 3.1. Decomposition of the domain Ω; bullets (resp., circles) indicate nodes indexed by
elements of the set N ∗

k
(resp., N c

k
).

Remark 2.2. Since the space H1(0,T ;M) is continuously imbedded in C0([0,T ];M),
the quantities v(0) and v(T ) are well defined in (2.9).

3. Semi-discrete formulation

For the sake of simplicity, we assume that in 2D (resp., in 3D) the domain Ω is a
polygon (resp., a polyhedron) and the contact boundary Γc is a straight line (resp., a
polygon). The outward normal to Γc is then constant and is denoted by nc. We also

suppose that ΓD∩Γc =∅. Let (Tk)k∈N be a quasi-uniform family of simplicial meshes
over Ω (triangles in 2D and tetrahedra in 3D). The meshes are possibly unstructured,
but supposed to be compatible with the partition of the boundary. The notation A.B
means that A≤ cB with a constant c independent of k. The space V is approximated
by the usual conforming space of linear finite elements,

Vk ={vk ∈C0(Ω)d; vk|T ∈ (P1)
d, ∀T ∈Tk, and vk =0 on ΓD}. (3.1)

Let {xi,k}i∈Nk
be the nodes of the mesh not lying on ΓD and {φi,k}i∈Nk

the associated
scalar basis functions. Let {eα}1≤α≤d be the canonical basis of R

d. The space Vk is
spanned by {φi,keα}i∈Nk,1≤α≤d. Denote by N c

k the set of indices of nodes lying on Γc,
and by N ∗

k the complementary of N c
k in Nk. We set V ∗

k =span({φi,keα}i∈N∗

k
,1≤α≤d)

and V c
k =span({φi,keα}i∈N c

k
,1≤α≤d). The space Vk is clearly the direct sum of V ∗

k and
V c

k so that any discrete function vk ∈Vk can be decomposed as

vk =v∗
k +vc

k with v∗
k ∈V ∗

k , vc
k ∈V c

k . (3.2)

Let T c
k be the set of elements such that at least one vertex belongs to Γc, and let T ∗

k

be its complement in Tk. We set Ωc
k =int

(

∪T∈T c

k
T

)

and Ω∗
k =int

(

∪T∈T ∗

k
T

)

(see Fig.
3.1). We observe that V ∗

k is the subset of functions in Vk that vanish on Γc, while V c
k is

the subset of functions in Vk that vanish in Ω∗
k. The constraint set K is approximated

by the set Kk :={vk ∈Vk; vk ·nc ≤0 on Γc}={vk ∈Vk; vk(xi,k) ·nc ≤0, ∀i∈N c
k}.

As mentioned in the introduction, the key idea is to remove the mass associated
with the nodes at the contact boundary. We consider an approximate mass term mk

such that

mk(φi,keα,wk)=mk(wk,φi,keα)=0, ∀i∈N c
k , ∀α∈{1,..,d}, ∀wk ∈Vk. (3.3)
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Many choices are possible to build the rest of the mass term. In [4, 5], the authors
devise various methods to preserve some features of the standard mass term (the
total mass, the center of gravity and the moments of inertia). Here we will focus for
simplicity on the choice

mk :Vk×Vk ∋ (vk,wk) 7−→

∫

Ω∗

k

ρvk ·wk. (3.4)

In the elastic case, owing to the property (3.3), the semi-discrete problem reduces to
a system of ODEs. To keep this property in the visco-elastic case also, we also modify
the viscosity term at the boundary by setting

bk :Vk×Vk ∋ (vk,wk) 7−→

∫

Ω∗

k

ǫ(vk) :B : ǫ(wk). (3.5)

It is also convenient to modify the external load term at the boundary as

lk : [0,T ]×Vk ∋ (t,vk) 7−→

∫

Ω∗

k

f(t) ·vk. (3.6)

The modification of the viscosity and external load terms is convenient from a theoret-
ical viewpoint. In practice, it is probably not needed. Owing to the above definitions,
there holds for all vc

k ∈V c
k and all wk ∈Vk,

mk(vc
k,wk)=mk(wk,vc

k)= bk(vc
k,wk)= bk(wk,vc

k)= lk(t,vc
k)=0. (3.7)

The approximate initial values u
0
k and v

0
k are chosen such that u

0
k ∈Kk, v

0
k ∈Vk, and

u
0
k →u

0 in V, v
0
k →v

0 in M. (3.8)

If the initial data are continuous, such values can be built by Lagrange interpo-
lation. We now formulate the space semi-discrete problem and examine its properties.

Problem 3.1. Seek uk ∈C0([0,T ];Kk) such that u∗
k ∈C2([0,T ];V ∗

k ) and for all vk ∈
Kk and all t∈ [0,T ],

mk(ü∗
k,vk−uk)+a(uk,vk−uk)+bk(u̇∗

k,vk−uk)≥ lk(t,vk−uk), (3.9)

with the initial conditions u∗
k(0)=u

0∗
k and u̇∗

k(0)=v
0∗
k in Ω.

Proposition 3.2. (i) The variational inequality (3.9) is equivalent to

mk(ü∗
k,v∗

k)+a(u∗
k +qk(u∗

k),v∗
k)+bk(u̇∗

k,v∗
k)= lk(t,v∗

k), ∀v∗
k ∈V ∗

k , ∀t∈ [0,T ], (3.10)

uc
k = qk(u∗

k), ∀t∈ [0,T ], (3.11)

where qk :V ∗
k →V c

k is a Lipschitz function.
(ii) There exists a unique solution uk to Problem 3.1. Moreover, uk ∈W 1,∞(0,T ;Vk).
(iii) The value of uk at the initial time is uk(0)=u

0∗
k +qk(u0∗

k ) and ‖uk(0)‖V .‖u0
k‖V .

(iv) For all t0∈ [0,T ], the following energy balance holds,

Ek(uk(t0))−Ek(uk(0))=

∫ t0

0

{

lk(t,u̇∗
k(t))−bk(u̇∗

k(t),u̇∗
k(t))

}

dt, (3.12)
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where Ek(vk)= 1
2 (mk(v̇k

∗, v̇k
∗)+a(vk,vk)).

Proof. (i) The variational inequality (3.9) is clearly equivalent to the following
system

mk(ü∗
k,v∗

k)+a(uk,v∗
k)+bk(u̇∗

k,v∗
k)= lk(t,v∗

k), ∀v∗
k ∈V ∗

k , ∀t∈ [0,T ], (3.13)

a(uk,vc
k−uc

k)≥0, ∀vc
k ∈V c

k ∩Kk, ∀t∈ [0,T ]. (3.14)

Consider (3.14). If we fix u∗
k ∈V ∗

k , there exists a unique uc
k satisfying the variational

inequality (3.14) (indeed it is equivalent to the minimization of a strictly convex
functional over a convex set). Denote by qk :V ∗

k →V c
k the application such that for a

given u∗
k ∈V ∗

k , uc
k = qk(u∗

k) is the unique solution of (3.14). The system (3.13)-(3.14)
is then equivalent to the system (3.10)-(3.11). Now we study the regularity of qk. Let
v∗

k,w∗
k ∈V ∗

k . Set vc
k = qk(v∗

k) and wc
k = qk(w∗

k). Owing to (3.14), it follows that

a(vc
k−wc

k,vc
k−wc

k)≤a(v∗
k−w∗

k,wc
k−vc

k).

The bilinear form a being continuous and elliptic, a straightforward calculation yields
‖vc

k−wc
k‖V .‖v∗

k−w∗
k‖V , which proves that qk is Lipschitz continuous.

(ii) The system of ODEs (3.10) is globally Lipschitz. Owing to the Cauchy–Lipschitz
theorem, there exists a unique solution u∗

k ∈C2(0,T ;V ∗
k ) satisfying the initial condi-

tions of Problem 3.1. From (3.11), uk =u∗
k +uc

k =u∗
k +qk(u∗

k). Therefore, Problem
(3.1) has a unique solution uk ∈C0(0,T ;Kk). Rademacher’s theorem [3] states that
in finite dimension a Lipschitz function is differentiable almost everywhere; hence,
uk ∈W 1,∞(0,T ;Vk).

(iii) The value of uk at the initial time is uk(0)=u
0∗
k +qk(u0∗

k ). Since u
0
k ∈Kk, we

can apply (3.14) with vc
k =u

0c
k , so that a(uk(0),u0c

k −uc
k(0))≥0. Since u∗

k(0)=u
0∗
k ,

a(uk(0),u0
k−uk(0))=a(uk(0),u0c

k −uc
k(0))≥0. Hence, ‖uk(0)‖V .‖u0

k‖V .

(iv) Without loss of generality, we assume that e1 =nc. Recalling that the fam-
ily {φi,keα}i∈N c

k
,1≤α≤d is a basis of V c

k , we decompose uc
k on this basis yielding

uc
k =

∑

i∈N c

k

∑d

α=1uα
k,iφk,ieα. The normal and tangential components of uc

k at the

node indexed by i∈N c
k are given by Nk,iu

c
k =u1

k,iφk,inc and Tk,iu
c
k =

∑d

α=2uα
k,iφk,ieα,

so that uc
k =

∑

i∈N c

k

(Tk,iu
c
k +Nk,iu

c
k). Owing to (3.14), a(uk,Tk,iu̇

c
k)=0. Moreover,

define C0
i :={t∈ [0,T ]; u1

k,i =0} and C−
i :={t∈ [0,T ]; u1

k,i <0}. The sets C0
i and C−

i

are respectively closed and open, and they form a partition of [0,T ]. On int(C0
i ),

Nk,iu̇
c
k =0. Owing to (3.14), a(uk,Nk,iu̇

c
k)=0 on C−

i . Finally, a(uk,Nk,iu̇
c
k)=0 on

int(C0
i )∪C−

i , and hence almost everywhere (since an open set in R is a countable
union of open intervals, so that its boundary has zero measure). Hence,

a(uk,u̇c
k)=0, a.e. on ]0,T [. (3.15)

Setting v∗
k = u̇∗

k in (3.13) and using (3.15), we obtain

mk(ü∗
k,u̇∗

k)+a(uk,u̇k)+bk(u̇∗
k,u̇∗

k)= lk(t,u̇∗
k), a.e. on ]0,T [. (3.16)

The energy balance (3.12) readily follows by integrating in time. The equality holds
for all time since the energy is continuous in time.
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4. Convergence of the semi-discrete solutions

This section is organized as follows. First we establish a priori estimates on
the space semi-discrete solutions (Lemma 4.3). Owing to these estimates and using
compactness arguments, we extract a weakly convergent subsequence (Lemma 4.4).
Then we check that this weak limit is a solution of the continuous problem (Theorem
4.5). In the sequel, to alleviate the notation, we do not renumber subsequences.

We first recall two useful results on time-dependent functional spaces; for their
proof, see respectively [6] and [10, §III.2]. For two Banach spaces B1 and B2, let
W(B1,B2) :={v : (0,T )→B1;v∈L2(0,T ;B1), v̇∈L2(0,T ;B2)}, equipped with the
norm v 7→‖v‖L2(0,T ;B1) +‖v̇‖L2(0,T ;B2).

Lemma 4.1 (Lions-Magenes). Let V1⊂V2 be two Hilbert spaces. Assume that
V1 is continuously imbedded in V2. Then, W(V1,V2) is continuously imbedded in
C0([0,T ];[V1,V2] 1

2

), where [V1,V2] 1

2

is the interpolation space of exponent 1
2 .

Lemma 4.2 (Aubin). Let B1⊂B⊂B2 be three reflexive Banach spaces. Assume
that B1 is compactly imbedded in B and B is continuously imbedded in B2. Then,
W(B1,B2) is compactly imbedded in L2(0,T ;B).

Owing to the modifications in the space semi-discrete formulation, a priori esti-
mates are obtained only on restrictions of u̇k and ük to Ω∗

k. Let Γ∗
k := int(∂Ω∗

k∩∂Ωc
k)

(see Fig. 3.1) and set W =H1
0 (Ω,ΓD ∪Γc)d. Define the cut-off operators χk :M →M

such that

χkv =v on Ω∗
k, χkv =0 on Ωc

k. (4.1)

Of course, ‖χkv‖M =‖v|Ω∗

k
‖M(Ω∗

k
). Furthermore, for any node index i∈N c

k , pick a

node xi∗,k of the same element as xi,k and lying on Γ∗
k, and define the operator

ξk :Vk →Vk such that

ξkvk =vk on Ω∗
k, ∀i∈N c

k , ξkvk(xi,k)= ξkvk(xi∗,k). (4.2)

Using standard finite element techniques (details are skipped for brevity) yields
‖ξkvk‖V .‖vk|Ω∗

k
‖V (Ω∗

k
).

Lemma 4.3. Let (uk)k∈N be the sequence of solutions to Problem 3.1. Then, the
following estimates hold:

‖uk‖C0([0,T ];V ) +‖ξkuk‖H1(0,T ;V ) +‖χku̇k‖C0([0,T ];M) +‖χkük‖L2(0,T ;W ′) .1. (4.3)

Proof. (i) Let t0∈ [0,T ]. The energy balance (3.12) implies

‖χku̇k(t0)‖
2
M+‖uk(t0)‖

2
V +

∫ t0

0

‖u̇k|Ω∗

k
(t)‖2

V (Ω∗

k
)dt

.

∫ t0

0

‖f(t)‖M‖u̇k|Ω∗

k
(t)‖M(Ω∗

k
)dt+‖uk(0)‖2

V +‖χku̇k(0)‖2
M .

(4.4)

Since u
0
k →u

0 in V and v
0
k →v

0 in M , we obtain ‖u0
k‖V .‖u0‖V and ‖v0

k‖M .‖v0‖M .
Hence, ‖uk(0)‖V .‖u0‖V and ‖χku̇k(0)‖M .‖v0‖M . Then, owing to (4.4) and using
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‖·‖M(Ω∗

k
) .‖·‖V (Ω∗

k
) together with Young’s inequality yields

‖χku̇k(t0)‖
2
M +‖uk(t0)‖

2
V +

∫ t0

0

‖u̇k|Ω∗

k
(t)‖2

V (Ω∗

k
)dt.

∫ t0

0

‖f(t)‖2
Mdt+‖u0‖2

V +‖v0‖2
M .

The first three estimates in (4.3) are readily deduced from this inequality.

(ii) Let v∈SW :={v∈W ;‖v‖V =1}. The bilinear form m defines a scalar product on
V ∗

k . Let π∗
kv be the m-orthogonal projection of v onto V ∗

k . The mesh family being
quasi-uniform and using standard finite element techniques (see, e.g., [2, §1.6.3]) yields
the following stability property:

‖π∗
kv‖V .‖v‖V . (4.5)

Owing to (3.10),

〈ρχkük(t),v〉W ′,W =m(χkük(t),v)=m(χkük(t),π∗
kv)

=mk(χkük(t),π∗
kv)= lk(t,π∗

kv)−a(uk,π∗
kv)−bk(u̇k|Ω∗

k
,π∗

kv).

Using the stability property (4.5), it is inferred that

〈ρχkük(t),v〉W ′,W .‖f(t)‖M‖π∗
kv‖M +‖uk‖V ‖π∗

kv‖V +‖u̇k|Ω∗

k
‖V (Ω∗

k
)‖π

∗
kv‖V

.‖f(t)‖M +‖uk‖V +‖u̇k|Ω∗

k
‖V (Ω∗

k
).

Using the definition of the norm W ′ and since ρ is uniformly bounded from below,

‖χkük(t)‖W ′ = sup
v∈SW

|〈χkük(t),v〉W ′,W |.‖f(t)‖M +‖uk(t)‖V +‖u̇k|Ω∗

k
(t)‖V (Ω∗

k
).

Hence,

‖χkük‖L2(0,T ;W ′) .‖f‖L2(0,T ;M) +‖uk‖L2(0,T ;V ) +‖u̇k|Ω∗

k
‖L2(0,T ;V (Ω∗

k
)).

This proves the fourth estimate in (4.3).

Lemma 4.4. There exists u∈L2(0,T ;K)∩H1(0,T ;V )∩C1([0,T ];M) such that, up to
a subsequence,

uk ⇀u weakly in L2(0,T ;V ), (4.6)

χku̇k → u̇ in L2(0,T ;M), (4.7)

uk(0)→u
0 in V, (4.8)

χku̇k(0)→v
0 in M, (4.9)

uk(T )⇀u(T ) weakly in V, (4.10)

uk(T )→u(T ) in M, (4.11)

χku̇k(T )⇀u̇(T ) weakly in M. (4.12)

Proof. (i) Closed bounded sets in reflexive Banach spaces are weakly compact.
Therefore, owing to estimates (4.3), there exists u∈L2(0,T ;V ), u1∈H1(0,T ;V ), v∈
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L2(0,T ;M) and w∈L2(0,T ;W ′) such that, up to a subsequence,

uk ⇀u weakly in L2(0,T ;V ), (4.13)

ξkuk ⇀u1 weakly in H1(0,T ;V ), (4.14)

χku̇k ⇀v weakly in L2(0,T ;M), (4.15)

χkük ⇀w weakly in L2(0,T ;W ′). (4.16)

Let φ∈D(Ω×]0,T [). Since φ has compact support, beyond a certain index k, there
holds 〈uk,φ〉= 〈ξkuk,φ〉. Therefore, (uk)k∈N and (ξkuk)k∈N have the same limit
in D′(Ω×]0,T [); hence, u=u1. The same argument yields that (χku̇k)k∈N and
(u̇k)k∈N have the same limit in D′(Ω×]0,T [). Continuity of the differentiation in
D′(Ω×]0,T [) yields u̇k → u̇ in D′(Ω×]0,T [), and thus v = u̇. The equality w= ü is
obtained similarly. Moreover, it is clear that ξku̇k ⇀u̇ weakly in L2(0,T ;V ).

(ii) Regularity of the limit u. We have just established that u∈H1(0,T ;V ) and
ü∈L2(0,T ;W ′). Hence, owing to Lemma 4.1, u̇∈C0([0,T ];[V,W ′] 1

2

)=C0([0,T ];M)

(for the proof of the equality [V,W ′] 1

2

=M , see [6]). Furthermore, the set L2(0,T ;K)

is convex and closed in L2(0,T ;V ). Therefore, L2(0,T ;K) is weakly closed. The
sequence (uk)k∈N being in L2(0,T ;K), the weak limit u is also in L2(0,T ;K). Hence,
u∈L2(0,T ;K)∩H1(0,T ;V )∩C1([0,T ];M).

(iii) Proof of (4.7). Let ǫ>0. The functions χku̇ and u̇ only differ on a set
whose measure tends to zero as k→+∞. Since both sequences are bounded in
L2(0,T ;M), it is inferred, up to a subsequence, that there exists k0∈N such that
‖χk0

u̇− u̇‖L2(0,T ;M)≤ ǫ/3. The same argument shows that k0 can be chosen so that
for all k≥k0, ‖χk0

u̇k−χku̇k‖L2(0,T ;M)≤ ǫ/3. The index k0 now being fixed, we define

W (Ω∗
k0

)=H1
0 (Ω∗

k0
,ΓD∪Γ∗

k0
)d, V (Ω∗

k0
)=H1

0 (Ω∗
k0

,ΓD)d and M(Ω∗
k0

)=L2(Ω∗
k0

)d, and
proceeding as in the proof of Lemma 4.3 leads to the a priori estimate

‖u̇k|Ω∗

k0

‖L2(0,T ;V (Ω∗

k0
)) +‖ük|Ω∗

k0

‖L2(0,T ;W (Ω∗

k0
)′) .1,

where the constant can depend on k0 (but not on k). We then use Lemma 4.2 with
B1 =V (Ω∗

k0
), B =M(Ω∗

k0
), and B2 =W (Ω∗

k0
)′, to infer that, up to a subsequence, there

holds u̇k|Ω∗

k0

→vk0
in L2(0,T ;M(Ω∗

k0
)). As previously, we prove that vk0

= u̇|Ω∗

k0

. This

implies that there is k1∈N such that for all k≥k1, ‖χk0
u̇k−χk0

u̇‖L2(0,T ;M)≤ ǫ/3.
Collecting the above bounds, it is inferred that for all k≥max(k0,k1),

‖χku̇k− u̇‖L2(0,T ;M)≤‖χku̇k−χk0
u̇k‖L2(0,T ;M) +‖χk0

u̇k−χk0
u̇‖L2(0,T ;M)

+‖χk0
u̇− u̇‖L2(0,T ;M)≤ ǫ,

which proves (4.7).

(iv) Proof of (4.8) and (4.9). Let ǫ>0. Since uk(0) and u
0
k only differ on a set whose

measure tends to zero as k→+∞ and since both sequences are bounded in V , the
sequence (uk(0)−u

0
k)k∈N converges to zero in V , whence (4.8) is deduced owing to

(3.8). Moreover, (4.9) is a straightforward consequence of (3.8).

(v) Proof of (4.10), (4.11) and (4.12). Owing to estimate (4.3), there exists uT ∈V ,
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vT ∈M such that, up to a subsequence,

uk(T )⇀uT weakly in V, (4.17)

χku̇k(T )⇀vT weakly in M. (4.18)

Since ξkuk ⇀u weakly in H1(0,T ;V ), it is inferred that ξkuk(T )⇀u(T ) weakly in
V . The uniqueness of the limit in the sense of distributions implies that uT =u(T )
and vT = u̇(T ). Since the imbedding V →֒M is compact, uk(T )→u(T ) in M .

Theorem 4.5. The limit u identified in Lemma 4.4 is a solution to Problem 2.1.

Proof. (i) Integrating by parts (3.9) yields for all vk ∈C0([0,T ];Kk)∩
C1([0,T ];Vk),

∫ T

0

{

−mk(u̇k, v̇k− u̇k)+a(uk,vk−uk)+bk(u̇k,vk−uk)
}

dt

+mk(u̇k(T ),vk(T )−uk(T ))−mk(u̇k(0),vk(0)−uk(0))≥

∫ T

0

lk(t,vk−uk)dt.

(4.19)

(ii) Let v∈L2(0,T ;K)∩H1(0,T ;M) be a test function in Problem 2.1. We can gen-
erate a sequence (vk)k∈N such that vk ∈C0([0,T ];Kk)∩C1([0,T ];Vk) and

vk →v in L2(0,T ;V ),

v̇k → v̇ in L2(0,T ;M),

vk(0)→v(0) in M,

vk(T )→v(T ) in M.

To this purpose, we first consider an interpolation operator Ik :V →Vk preserv-
ing positivity on the boundary. Such an operator can be built by giving local
mean-values to the nodal values (see, e.g., the operators described [8] which
preserve positivity on the whole domain and not only on the boundary). Setting
wk = Ikv yields wk ∈L2(0,T ;Kk)∩H1(0,T ;Vk), wk →v in L2(0,T ;V ), ẇk → v̇ in
L2(0,T ;M), wk(0)→v(0) in M , wk(T )→v(T ) in M . Finally, to obtain a se-
quence (vk)k∈N smooth in time, the sequence (wk)k∈N is regularized by convolution in
time. This preserves positivity on the boundary as well as the convergence properties.

(iii) The last step is to pass to the limit in the inequality (4.19) with the sequence
(vk)k∈N defined above. The bilinear form a being V -elliptic, the function v 7→a(v,v)
is convex and thus lower semi-continuous in V . Using (4.6) then yields

liminf
k→+∞

∫ T

0

a(uk,uk)dt≥

∫ T

0

a(u,u)dt.

For the viscosity term, we observe that

∫ T

0

bk(u̇k,uk)dt=bk(uk(T ),uk(T ))−bk(uk(0),uk(0))

=b(uk(T ),uk(T ))+[bk(uk(T ),uk(T ))−b(uk(T ),uk(T ))]

−b(uk(0),uk(0))− [bk(uk(0),uk(0))−b(uk(0),uk(0))].
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Owing to a convexity argument and (4.10), liminf b(uk(T ),uk(T ))≥ b(u(T ),u(T )),
and, owing to the strong convergence (4.8), limb(uk(0),uk(0))= b(u0,u0). The two
other terms tend to zero since (uk(0))k∈N and (uk(T ))k∈N are bounded in V . Hence,

liminf
k→+∞

∫ T

0

bk(u̇k,uk)dt≥ b(u(T ),u(T ))−b(u(0),u(0))=

∫ T

0

b(u̇,u)dt.

For the inertia term, using (4.7) yields

lim
k→+∞

∫ T

0

mk(u̇k,u̇k)dt= lim
k→+∞

∫ T

0

m(χku̇k,χku̇k)dt=

∫ T

0

m(u̇,u̇)dt.

Moreover, (4.11) and (4.12) imply that

lim
k→+∞

mk(u̇k(T ),uk(T ))=m(u̇(T ),u(T )),

while (4.8) and (4.9) yield

lim
k→+∞

mk(u̇k(0),uk(0))=m(v0,u0).

The limits involving (vk)k∈N are straightforward owing to the strong convergence
properties of the sequence (vk)k∈N. Collecting the above limits leads to the variational
inequality (2.9).

Remark 4.6. The strong convergence of (χku̇k) in L2(0,T ;M), i.e., property (4.7),
plays a key role in the proof. We restate that without the viscosity term, the velocity is
not necessarily bounded in V , and the required compactness argument no longer holds.

Remark 4.7. If the solution to Problem 2.1 were proven to be unique, we could
conclude that the whole sequence (uk)k∈N converged to u.
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