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Abstract. A new space semi-discretization for the dynamic Signorini problem, based on a
modification of the mass term, has been recently proposed. We prove the convergence of the space
semi-discrete solutions to a solution of the continuous problem in the case of a visco-elastic material.
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1. Introduction

The dynamic Signorini problem models the infinitesimal deformations of a solid
body which can come into contact with a rigid obstacle. Many textbooks dealing
with the mathematical theory of contact mechanics have appeared recently; see, e.g.,
[1, 7, 9] and references therein. Usual space-time discretizations for this problem com-
bine finite element space approximation and time-stepping schemes. In this frame-
work, most methods exhibit spurious oscillations and/or poor behavior in long time.
The modified mass method proposed by Khenous, Laborde and Renard in [5] is a
space semi-discrete formulation overcoming these two difficulties: the mass term is
modified (the mass associated with the nodes at the contact boundary is set to zero),
and the contact condition is enforced by a variational inequality. Owing to the mass
modification, inertial forces cannot trigger spurious oscillations at the boundary. Fur-
thermore, the system conserves an energy, which ensures a good behavior in long
time.

The purpose of the present work is to strengthen the mathematical foundations of
the modified mass method. Our main result is the convergence, up to a subsequence,
of the space semi-discrete solutions to a solution of the continuous dynamic Signorini
problem in the case of a visco-elastic material. In the elastic case, that is, in the
absence of viscosity, it is already known [5] that the space semi-discrete problem
is equivalent to a Lipschitz system of ordinary differential equations (ODEs) and is,
therefore, well-posed (such a result cannot be established when using a standard mass
term). However, the existence of a continuous solution is still an open problem in the
elastic case, and the convergence proof of the space semi-discrete solutions is still out
of reach. Instead, in the visco-elastic case, the existence of a continuous solution has
been proven using a penalty method [1, §4.2.2]; the uniqueness of the solution is still
an open problem. Our convergence proof takes a fairly standard path, namely a priori
estimates on the space semi-discrete solutions and compactness arguments, but the
mass modification at the contact boundary requires special care when passing to the
limit. In both cases (penalty method or finite-dimensional variational inequality), the
a priori estimate on the velocity delivered by the viscosity term plays a crucial role
in the proof; as such, the argument cannot be extended to the vanishing viscosity
limit. Incidentally, the present convergence proof provides an alternate, albeit more
complex, way to prove the existence of a continuous solution.
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2. Continuous formulation

Consider the infinitesimal deformations of a body occupying a reference domain
QCR? (d=2 or d=3) during a time interval [0,7]. We use the following assumptions
and notation. The boundary of the domain €2 is piecewise smooth, so that its outward
normal, n, is well defined almost everywhere at the boundary. The material is linear
visco-elastic (Kelvin—Voigt model). The tensors of elasticity and viscosity, denoted
by A and B respectively, are symmetric positive definite and taken to be constant
for simplicity. The mass density, denoted by p:Q2—R, is bounded by below by a
constant pg>0. An external load f is applied to the body. The boundary 0f) is
partitioned into three disjoint open subsets I'?, TV and T'¢ (the measure of I'" is
positive). Homogeneous Dirichlet and Neumann conditions are prescribed on I'P and
'V respectively. On I'°, a unilateral contact condition is imposed. Let u : (0, 7)x Q2 —
R?, e(u):(0,T)x Q—R% and o(u):(0,T) x Q2 —R%? be the displacement field, the
linearized strain tensor and the stress tensor, respectively. Let u,:=ujpq-n and
Onn :=n"0|gq 1 respectively denote the normal displacement and the normal stress on
0Q. At the initial time, the displacement and velocity fields are u’ and v°. Denoting
time-derivatives by dots, the strong formulation of the dynamic Signorini problem is

pi—dive=f, o=A:e+B:¢, e:%(Vu—l—Vut) in Qx(0,7), (2.1)
Un <0, 0pp <0, Oppu, =0 on I'“x(0,7), (2.2)
o-n=0 onTVx(0,T), u=0 onTP”x(0,7), (2.3)
uw(0)=u", w(0)=+v" in Q. (2.4)

Consider the functional spaces V = H}(Q,TP)d={ve H'(Q)% v=0 a.e. on I'P}
and M = L?(2)%, and the closed convex cone K ={v€V; vjpq-n<0 a.e. on I'°}. The
space M and its topological dual space are identified. Standard notation is used for
spaces of time-dependent functions valued in a Banach space B, e.g., C*([0,T]; B) and
so on; see [6, 10]. We assume the following regularity on the data: f € C°([0,T]; M),
peL>®(Q), u’ € K and v’ € M. Define the following bilinear and linear forms

m:MxMB(v,w)r—>/va~w, (2.5)
a:VxVB(v,w)»—>/Qe(v):A:e(w), (2.6)
b:VxVa(v,w)H/Qe(v):B:e(w), 2.7)
l:[O,T]xVa(t,v)H/Qf(t)-v. (2.8)

Owing to Korn’s first inequality and the assumptions on A and B, the bilinear forms
a and b are V-elliptic. We consider the following variational formulation of equations
(2.1)-(2.4) (see [1] for its derivation).

PROBLEM 2.1. Seek ue L?(0,T; K)NHY(0,T;V)NC*([0,T]; M) such that for all ve
L2(0,T; K) N H(0,T; M),

/ { —m(t, v — )+ a(u,v—u)+b(u,v —u)}dt+m(u(T),v(T) —u(T))—
0 (2.9)

T
mVO'U 7l10 vV—U .
(+0,0(0) — u®) > / I(t,0—u)dt
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Fic. 3.1. Decomposition of the domain Q; bullets (resp., circles) indicate nodes indexed by
elements of the set Nj¥ (resp., Ni).

REMARK 2.2. Since the space H*(0,T;M) is continuously imbedded in C°([0,T]; M),
the quantities v(0) and v(T') are well defined in (2.9).

3. Semi-discrete formulation

For the sake of simplicity, we assume that in 2D (resp., in 3D) the domain (2 is a
polygon (resp., a polyhedron) and the contact boundary I'“ is a straight line (resp., a
polygon). The outward normal to I'® is then constant and is denoted by n.. We also
suppose that TP NT¢={. Let (7;)ren be a quasi-uniform family of simplicial meshes
over () (triangles in 2D and tetrahedra in 3D). The meshes are possibly unstructured,
but supposed to be compatible with the partition of the boundary. The notation A< B
means that A <c¢B with a constant ¢ independent of k. The space V' is approximated
by the usual conforming space of linear finite elements,

Vi={v, €C°(Q)%; Vg € (P)4, VT €T}, and vy =0 on T'P}. (3.1)

Let {x;  }icnr, be the nodes of the mesh not lying on I'P and {¢; x }ien;, the associated
scalar basis functions. Let {eqs}1<a<a be the canonical basis of R?. The space Vj is
spanned by {¢; rea tien;,1<a<d. Denote by N the set of indices of nodes lying on Te,
and by Ny the complementary of N in Ny. We set V' =span({¢; xea tienr 1<a<d)
and V¢ =Span({(bi,k@a}ie/\f,g71gagd)- The space V, is clearly the direct sum of V;* and
V¢ so that any discrete function v, €V}, can be decomposed as

ve=vp+vp with of eV v eV (3.2)

Let 7, be the set of elements such that at least one vertex belongs to T¢, and let T;
be its complement in 7. We set Qf =int (UTGT;T) and Qf =int (UTE%*T) (see Fig.
3.1). We observe that V;* is the subset of functions in Vj, that vanish on I'®, while V¢ is
the subset of functions in V, that vanish in Q}. The constraint set K is approximated
by the set Ky :={vy € Vi; vk -ne. <0 on '} ={vg € Vi; v (1) ne <0, Vie N}

As mentioned in the introduction, the key idea is to remove the mass associated
with the nodes at the contact boundary. We consider an approximate mass term my
such that

mk(¢i7kea,wk):mk(wk,¢i7kea):0, ViGNkC,, Vae{l,..,d}, Yw, € V. (33)
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Many choices are possible to build the rest of the mass term. In [4, 5], the authors
devise various methods to preserve some features of the standard mass term (the
total mass, the center of gravity and the moments of inertia). Here we will focus for
simplicity on the choice

my,: Vi, kaB(vk,wk)n—> PUE - Wi (34)
L

In the elastic case, owing to the property (3.3), the semi-discrete problem reduces to
a system of ODEs. To keep this property in the visco-elastic case also, we also modify
the viscosity term at the boundary by setting

bi s Vi x Vi, 3 (vg,w) — | €(vg) : Bre(wg). (3.5)
%

It is also convenient to modify the external load term at the boundary as

Ik :[0,T) x Vi, 3 (t,v) — o f@)-vg. (3.6)

The modification of the viscosity and external load terms is convenient from a theoret-
ical viewpoint. In practice, it is probably not needed. Owing to the above definitions,
there holds for all vi € V¢ and all wy €V},

my (v, wi) = my (Wi, v5) = by (v, wk ) = bi (Wi, v;) =1k (¢, v5) =0. (3.7)
The approximate initial values uf) and v{ are chosen such that u) € K, v) €V, and
0

wp—u’inV, vi—v"in M. (3.8)

If the initial data are continuous, such values can be built by Lagrange interpo-
lation. We now formulate the space semi-discrete problem and examine its properties.

PROBLEM 3.1. Seek uy € C°([0,T); Ky) such that u}, € C*([0,T];Vy) and for all vy, €
Ky and all t€10,T7,

mk(ﬁz,vk —uk) —|—a(uk,vk —uk) -‘rbk('[tz,’vk —’U,k) > lk(t,’l)k —uk), (39)
with the initial conditions u}(0)=ud* and u}(0)=v>* in Q.
PROPOSITION 3.2. (i) The variational inequality (3.9) is equivalent to

my (i, vi) +a(ug +qr(ug), o) + 0k (g, vp) = e (8, 05),  Vop e Vi, vie[0,T], (3.10)
uj, = qx(uy), Yt (0,77, (3.11)
where q,: V, — V¢ is a Lipschitz function.
(ii) There ezists a unique solution uy to Problem 3.1. Moreover, u € W1°(0,T;V},).

(iii) The value of uy, at the initial time is ug(0) = ud* 4+ g (ud*) and ||ug(0)|lv < |Judllv-
(iv) For all to€[0,T], the following energy balance holds,

By (un(to)) — Ex (ux(0)) = / i (0) e 1) 1) et (3.12)
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where Ex(vg)= % (mg (U™, U, ™) + a(vg,vr)).

Proof. (i) The variational inequality (3.9) is clearly equivalent to the following
system

my (g, vg) +alug, vg) + bk (U, vg) =k (t,vr), Yo, eV, Yte[0,T], (3.13)
a(ug, v —uj,) >0, Yo, e VENKy, Vt€[0,T].  (3.14)

Consider (3.14). If we fix uj, € V;*, there exists a unique uf, satisfying the variational
inequality (3.14) (indeed it is equivalent to the minimization of a strictly convex
functional over a convex set). Denote by g : V;F — V¢ the application such that for a
given uj € V¥, uf, = qx(u) is the unique solution of (3.14). The system (3.13)-(3.14)
is then equivalent to the system (3.10)-(3.11). Now we study the regularity of g. Let
v, wi € Vi Set vf =g (vy) and wf, =g (wy). Owing to (3.14), it follows that

a(vj, —wi, v —wi) <a(vg —wi,wj = vg).

The bilinear form a being continuous and elliptic, a straightforward calculation yields
[lvg —wi|lv < |lvg — wi|lv, which proves that g is Lipschitz continuous.

(ii) The system of ODEs (3.10) is globally Lipschitz. Owing to the Cauchy—Lipschitz
theorem, there exists a unique solution uj € C*(0,T;Vy") satisfying the initial condi-
tions of Problem 3.1. From (3.11), ur=uj +uf =uj+qi(uy). Therefore, Problem
(3.1) has a unique solution ux € C°(0,T;K). Rademacher’s theorem [3] states that
in finite dimension a Lipschitz function is differentiable almost everywhere; hence,
U € W17°°(0,T;Vk).

(iii) The value of wy at the initial time is uy(0)=ul* +qx(ud*). Since u) € K}, we
can apply (3.14) with vf=ud, so that a(uy(0),ud—ug(0))>0. Since u}(0)=ud",
a(u(0), uf, —ux(0)) = a(ux(0), 0 —u(0)) > 0. Hence, [[ux(0)[lv < [luplv-

(iv) Without loss of generality, we assume that e; =n.. Recalling that the fam-
ily {¢i,k€a}ieN,g,1gagd is a basis of V¢, we decompose uj on this basis yielding
UZ:ZiEN,j Zizlugﬂgbk,iea. The normal and tangential components of uf, at the
node indexed by iEJ\/’kC are given by Ny ;uf = ui7i¢k,inc and Ty, juf = 22:2 uﬁi(bk,iea,
so that UZ:ZiQNﬁ(Tk,iUz‘FNk,z‘UZ)- Owing to (3.14), a(uy, Ty uf)=0. Moreover,
define CP :={t€[0,T]; uj; =0} and C; :={t€[0,T]; uy; <0}. The sets Cf and C;”
are respectively closed and open, and they form a partition of [0,7]. On int(C?),
Njuf=0. Owing to (3.14), a(uk, Ng,u5)=0 on C; . Finally, a(ug,Ng:45)=0 on
int(CY)UC;, and hence almost everywhere (since an open set in R is a countable

2 7

union of open intervals, so that its boundary has zero measure). Hence,
a(ug,uf)=0, a.e. on]0,T]. (3.15)
Setting v =} in (3.13) and using (3.15), we obtain
my (g, ur) +aug, g ) + b (0f, af) =l (t,45), a.e. on |0,T. (3.16)

The energy balance (3.12) readily follows by integrating in time. The equality holds
for all time since the energy is continuous in time. O
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4. Convergence of the semi-discrete solutions

This section is organized as follows. First we establish a priori estimates on
the space semi-discrete solutions (Lemma 4.3). Owing to these estimates and using
compactness arguments, we extract a weakly convergent subsequence (Lemma 4.4).
Then we check that this weak limit is a solution of the continuous problem (Theorem
4.5). In the sequel, to alleviate the notation, we do not renumber subsequences.

We first recall two useful results on time-dependent functional spaces; for their
proof, see respectively [6] and [10, §I11.2]. For two Banach spaces By and Bs, let
W(B1,Bs):={v:(0,T) — By;ve L*(0,T;B1), v€L*0,T;B2)}, equipped with the
norm v+ [|[v||z2(0,7;8,) +10[| L2 (0,7;B,)-

LeMMA 4.1 (Lions-Magenes). Let Vi CV, be two Hilbert spaces. Assume that
V1 is continuously imbedded in Va. Then, W(V1,Va) is continuously imbedded in
C([0,T7; [V1,V2]1), where [V1,V3]1 is the interpolation space of exponent 1.

LEMMA 4.2 (Aubin). Let By C B C By be three reflexive Banach spaces. Assume

that By is compactly imbedded in B and B is continuously imbedded in Bs. Then,
W(B1,B3) is compactly imbedded in L*(0,T;B).

Owing to the modifications in the space semi-discrete formulation, a priori esti-
mates are obtained only on restrictions of 1, and iy to Q5. Let '} :=int(0Q; N0Q)
(see Fig. 3.1) and set W = Hg(Q,TPUT*)9. Define the cut-off operators yj: M — M
such that

Xkv=0v on QF, xrv=0 on Qf. (4.1)

Of course, ||xxv|lar =|lvjo;: |lar(a;)- Furthermore, for any node index i € N, pick a

k JE—
node z;-j of the same element as 2;; and lying on I'}, and define the operator
& 1 Vip — Vg, such that

Erv =g on QF, Vie NE, Eevr (k) =Epvr (T k). (4.2)

Using standard finite element techniques (details are skipped for brevity) yields
Hé“kkavSIIvm; V()

LEMMA 4.3. Let (ug)ren be the sequence of solutions to Problem 3.1. Then, the
following estimates hold:

lullcoqo,r1;v) + I1€kvn e 0,1;v) + [IxkTk | o o,7y00) + Xk ik | 220, msw) ST (4.3)
Proof. (i) Let to€[0,7]. The energy balance (3.12) implies

to
||Xkﬂk(t0)||?\/1+”uk(t0)||\2/'+/ ||ﬂk|Q;(f)\|%/(Q;)dt
0 (4.4)

to
S/O L ) [z ()| arcez) dt 4wk (0) 3 + [ xaioe (0|3

Since u — u” in V and v — v° in M, we obtain [[u)|v <||u®|lv and [|vY|lar SV |-

Hence, ||ug(0)||yv S||u®||v and [|xxtx(0)]ar S||vP]|ar. Then, owing to (4.4) and using
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- ||M(Q,*;) S HV(Q;) together with Young’s inequality yields

to to
IIthlk(to)ll?w+ch(to)||%/+/ IIiLkm;(t)II%/(Q;)dtS/ LF@ONRdt+ 1 l5 + 113y
0 0
The first three estimates in (4.3) are readily deduced from this inequality.

(i) Let ve Sy :={veW;|jv||y =1}. The bilinear form m defines a scalar product on
V. Let mjv be the m-orthogonal projection of v onto V}*. The mesh family being
quasi-uniform and using standard finite element techniques (see, e.g., [2, §1.6.3]) yields
the following stability property:

[mkollv Sllvllv (4.5)

Owing to (3.10),

(oxrin(t), v)w w =m(xrix(t),v) =m(xri(t), T4v)
=mk(Xkiik(t), mhv) =k (8, 750) — a(uk, v) — by (ko , TH0).-

Using the stability property (4.5), it is inferred that

(pxrtin (), v)wr w SIF Ol aellmroll s+ uellv I mrolly + [lage: lve
SIF@ONa+ lukllv + ko lvar)-

Using the definition of the norm W’ and since p is uniformly bounded from below,

Xkt () lwr = sup [{(xriix(t),v)w w| SN FO)ar+ ur@)llv + lldro: (Olv o).

vESW

Hence,

Ixktixll 2 0,mwny SN Fllz20.700) + lukll L2 0,7:v) + ldwiz [ 220,7:v (91))-

This proves the fourth estimate in (4.3). O

LEMMA 4.4. There exists u€ L*(0,T; K)NH(0,T;V)NC([0,T); M) such that, up to
a subsequence,

up —u weakly in L*(0,T;V), (4.6)
Xktg — 0 in L*(0,T; M), (4.7)
ug(0) —u’ in V, (4.8)
kg (0) — V0 in M, (4.9)

up(T) —u(T) weakly in V, (4.10)

up(T) —u(T) in M, (4.11)
Xkl (T) = u(T) weakly in M. (4.12)

Proof. (i) Closed bounded sets in reflexive Banach spaces are weakly compact.
Therefore, owing to estimates (4.3), there exists ue L?(0,T;V), u; € H(0,T;V), v €
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L?(0,T; M) and w € L?(0,T;W') such that, up to a subsequence,

ugp —u weakly in L?(0,T;V), (4.13)
Epug —uy weakly in HY(0,T;V), (4.14)
Xktx —v weakly in L?(0,T; M), ( )
Xniip —w weakly in L2(0,T;W"). (4.16)

Let ¢ € D(2x]0,T[). Since ¢ has compact support, beyond a certain index k, there
holds (ug,d) = ({pur, ). Therefore, (up)reny and (§xur)reny have the same limit
in D'(2x]0,T[); hence, u=wu;. The same argument yields that (xxptx)ren and
(g )gen have the same limit in D’(2x]0,7[). Continuity of the differentiation in
D'(2x]0,T|) yields 4 — 4 in D'(2x]0,T[), and thus v=1x. The equality w=1 is
obtained similarly. Moreover, it is clear that &1, — 1 weakly in L2(0,T;V).

(ii) Regularity of the limit u. We have just established that ue H'(0,T;V) and
i€ L2(0,T;W'). Hence, owing to Lemma 4.1, iLeC’O([O7T];[V,W’}%):CO([O,T];M)
(for the proof of the equality [V,W’], =M, see [6]). Furthermore, the set L?(0,T;K)
is convex and closed in L?(0,7;V). Therefore, L?(0,T;K) is weakly closed. The
sequence (ug)gen being in L2(0,T; K), the weak limit u is also in L?(0,T;K). Hence,
we L2(0,T;K)NH(0,T;V)nCL([0,T]; M).

(iii) Proof of (4.7). Let €>0. The functions xxt and @ only differ on a set
whose measure tends to zero as k— +oo. Since both sequences are bounded in
L?(0,T;M), it is inferred, up to a subsequence, that there exists kg €N such that
l|Xko @ — 1| £2(0,7;0) < €/3. The same argument shows that kg can be chosen so that
for all k> ko, ||Xrotr — X&tx| £2(0,7;:01) < €/3. The index kg now being fixed, we define
W(Q5,)=Hj (2, TP UL} ), VI(Q5,) = Hg (. T'P)? and M(Q)=L*(9;,)¢, and
proceeding as in the proof of Lemma 4.3 leads to the a priori estimate

| <1

ko N2 0.r:v@p ) + lkor 220.mw@p ) S

where the constant can depend on ky (but not on k). We then use Lemma 4.2 with
By=V(Q,), B=M(;, ), and By =W (£ )’, to infer that, up to a subsequence, there
holds ukmzo — v, in L? (0,T;M(S2;,)). As previously, we prove that vy, = umzo. This
implies that there is k1 €N such that for all &> k1, ||xroUr — Xkol| £2(0,7301) < €/3.
Collecting the above bounds, it is inferred that for all k> max(ko,k1),

Xk — uHL?(o,T;M) <|Ixwi — XkouchLz(O,T;M) + {1 X ko U —XkouHL?(O’T;M)
A {1 X ko @ — | L2 0,7;00) <€,

which proves (4.7).

(iv) Proof of (4.8) and (4.9). Let € >0. Since u;(0) and u) only differ on a set whose
measure tends to zero as k— +oo and since both sequences are bounded in V', the
sequence (uy(0) —u?)ren converges to zero in V, whence (4.8) is deduced owing to
(3.8). Moreover, (4.9) is a straightforward consequence of (3.8).

(v) Proof of (4.10), (4.11) and (4.12). Owing to estimate (4.3), there exists ur €V,
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vp € M such that, up to a subsequence,

ug(T) — ur weakly in V, (4.17)
XUk (T) — vy weakly in M. (4.18)

Since &ruy, —u weakly in HY(0,7;V), it is inferred that &yug(T)—u(T) weakly in
V. The uniqueness of the limit in the sense of distributions implies that up =u(T)
and vy =4(T). Since the imbedding V < M is compact, ug(T) —u(T) in M. 0O

THEOREM 4.5. The limit u identified in Lemma 4.4 is a solution to Problem 2.1.

Proof. (i) Integrating by parts (3.9) yields for all v, e€C°([0,T];K})N
Cl([OaT};Vk)y

T
/ {*mk('&kyi)k — 1)+ a(ug, vy —ug) + b (g, v *Uk)}dt
0 (4.19)

T
+my (uk (T),Uk (T) — U (T)) —my (uk (O)ﬂ/k (O) — U (0)) > /0 I (t,vk — uk)dt.

(i) Let ve L?(0,T; K)NH(0,T; M) be a test function in Problem 2.1. We can gen-
erate a sequence (vg)ren such that v, € CO([0,T]; Kx)NCL([0,T]; Vi) and

v — v in L*(0,T;V),
O — 0 in L*(0,T; M),
v(0) = v(0) in M,
vE(T) —v(T) in M.

To this purpose, we first consider an interpolation operator Ij:V — Vi preserv-
ing positivity on the boundary. Such an operator can be built by giving local
mean-values to the nodal values (see, e.g., the operators described [8] which
preserve positivity on the whole domain and not only on the boundary). Setting
wr = yields wy € L2(0,T;Kx)NHY(0,T;Vy), wp—v in L2(0,T;V), 1p—o in
L2(0,T;M), wi(0)—v(0) in M, wi(T)—v(T) in M. Finally, to obtain a se-
quence (vx)gen sSmooth in time, the sequence (wy, ) ke is regularized by convolution in
time. This preserves positivity on the boundary as well as the convergence properties.

(iii) The last step is to pass to the limit in the inequality (4.19) with the sequence
(vk)ken defined above. The bilinear form a being V-elliptic, the function v a(v,v)
is convex and thus lower semi-continuous in V. Using (4.6) then yields

T T
liminf/ a(uk,uk)dtZ/ a(u,u)dt.
k—+o00 /o 0

For the viscosity term, we observe that

T
/0 b (e 4 )t =i (s (), w0 (T) — b (1 (0), 1 (0))
)sug(

=b(ur (T'),ur(T)) + [br (ur (T'),ur(T)) = b(u (T),ur (T))]
= b(ur(0),ur(0) — [br (ur (0), ur (0)) — b(ur (0),ux (0))].
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Owing to a convexity argument and (4.10), liminfb(ug(T),ux(T)) > b(u(T),u(T)),
and, owing to the strong convergence (4.8), limb(uy(0),ux(0))=b(u",u’). The two
other terms tend to zero since (ug(0))gen and (ur(T))ren are bounded in V. Hence,

T T
%glinj&f;/o bk(ﬁk,uk)dth(u(T),u(T))fb(u(O),u(O)):/O b(t,u)dt.

For the inertia term, using (4.7) yields

T

T T
lim / my (g, u)dt = lim m(Xkuk,Xkﬂk)dtZ/ m (4, u)dt.
k—+o0 Jo k—+o00 /o 0

Moreover, (4.11) and (4.12) imply that
i iy ()0 (T) = m(i(7),u(T)).

while (4.8) and (4.9) yield

i (i(0), 1 (0)) = m (v, ).

The limits involving (vg)ren are straightforward owing to the strong convergence
properties of the sequence (vg)gen. Collecting the above limits leads to the variational
inequality (2.9). O

REMARK 4.6. The strong convergence of (xxt) in L?(0,T; M), i.e., property (4.7),
plays a key role in the proof. We restate that without the viscosity term, the velocity is
not necessarily bounded in V, and the required compactness argument no longer holds.

REMARK 4.7. If the solution to Problem 2.1 were proven to be unique, we could
conclude that the whole sequence (uy)ken converged to u.
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