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Abstract

We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global
pressure/fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler
step for the saturation equation, equal-order interpolation for the pressure and the saturation, and without any
limiters. An accurate total velocity field is recovered from the global pressure equation to be used in the saturation
equation. Numerical experiments show the advantages of the proposed reconstruction. To cite this article: A. Ern,
I. Mozolevski and L. Schuh, C. R. Acad. Sci. Paris, Ser. I ??? (????).

Résumé

Nous considérons une méthode de Galerkine discontinue pour approcher les écoulements diphasiques non-miscibles
en milieu poreux dans la formulation en pression globale. Une approche séquentielle est utilisée avec un schéma
d’Euler implicite pour l’équation de la saturation, le même ordre polynomial pour la pression et la saturation,
et en l’absence de limiteurs. Nous montrons comment reconstruire à partir de l’équation en pression une vitesse
totale précise pour l’équation de la saturation. Des exemples numériques illustrent les avantages de l’approche
proposée. Pour citer cet article : A. Ern, I. Mozolevski and L. Schuh, C. R. Acad. Sci. Paris, Ser. I ? ? ? ( ? ? ? ?).

1. Introduction

One of the most popular formulations of the governing equations for two-phase immiscible porous
media flows is the so-called global pressure/fractional flow approach introduced by Chavent and Jaffré
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[2]. Finite volume and finite element approximations to this formulation have been analyzed recently;
see, e.g., [3,6]. In the global pressure/fractional flow formulation (for short, GP formulation), an elliptic
equation of Darcy type for the global pressure is coupled to a nonlinear degenerate parabolic equation for
the saturation of, say, the non-wetting phase by means of a total velocity that is calculated from the global
pressure equation. Such weak coupling allows to develop and sequentially use efficient numerical methods
for each type of equation and is considered as one of the important advantages of the GP formulation.

Discontinuous Galerkin (DG) methods are often advocated as a suitable approach to discretize in space
both pressure and saturation equations. Advantages include the flexibility in using non-matching meshes
and variable polynomial degrees and the potential to limit non-physical oscillations near singularities; see,
e.g. [7]. However, one critical issue when approximating the global pressure equation by DG methods is
the accurate recovery of the total velocity to be used sequentially in the saturation equation. One pos-
sibility suggested in [4] is to resort to a fully implicit DG method, since numerical experiments indicate
that non-physical oscillations can be avoided, but this entails substantial computational costs to solve the
full nonlinear system of discrete equations coupling the global pressure and saturation equations. Alterna-
tively, a total velocity can be postprocessed from the broken gradient of the approximate global pressure.
A first approach [1] considers Brezzi–Douglas–Marini finite element spaces and yields a postprocessed
total velocity with continuous normal component at interelement faces. More recently, a reconstruction
using Raviart–Thomas finite element spaces has been proposed [5], thereby improving the accuracy of
the postprocessed velocity.

The aim of this Note is to present a DG method for two-phase, immiscible porous media flows in the GP
formulation that uses an implicit scheme in time for the saturation and equal-order interpolation for the
pressure and the saturation, while still avoiding non-physical oscillations near singularities. The key feature
of the proposed method is to use the postprocessing of [5] to reconstruct accurately the total velocity
from the global pressure distribution. We believe that the present formulation can be useful in petroleum
reservoir and groundwater flow simulations. For simplicity, we consider herein a one-dimensional setting,
but the methodology can be readily extended to multiple space dimensions.

2. The DG approximation of the global pressure/fractional flow formulation

Let P denote the global pressure, u the total velocity, and S the non-wetting phase saturation. The
governing equations are for x ∈ (0, L) and t ∈ (0, T ),

u = −λ(S)K∂xP, −∂x (λ(S)K∂xP ) = 0, (1)

φ∂tS + ∂x (uf(S)) − ∂x (ǫ(S)∂xπ(S)) = 0, (2)

where φ denotes the porosity and K the intrinsic (absolute) permeability, both parameters being taken
constant for simplicity. Moreover, defining the total mobility λ = λw + λn as the sum of the wetting and
non-wetting phase mobilities, f = λn

λ
denotes the fractional flux, π the capillary pressure, and ǫ = λwfK.

The quantities λn, λw, π, and ǫ are smooth functions of S; examples of such functions are given below. The
saturation S takes values in [Srn, 1−Srw], where Srn and Srw respectively denote the residual saturation
of the non-wetting and wetting phases. Since we are concerned with accurate velocity recovery, we avoid
additional difficulties when S approaches the limits of its admissible values; thus, we suppose here that
S is uniformly bounded away from Srn and 1 − Srw, so that the saturation equation is non-degenerate.
Typical boundary and initial conditions are

P |x=0 = P1, P |x=L = P2; S|x=0 = S1, −ǫ(S)∂xπ(S)|x=L = 0; S|t=0 = S0. (3)
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Finally, we observe that owing to the first equation in (1), the total velocity u is constant in space and
only depends on time, i.e., ∂xu = 0. Owing to the choice of boundary conditions, its time evolution is a
priori unknown.

To discretize in space, consider (for simplicity) a uniform partition of the domain (0, L) with M elements
T = {Ti}1≤i≤M and nodes N = {xi}1≤i≤M+1 with Ti = (xi, xi+1) of length h = L

M
. Set N ′ = N\{xM+1}.

Let an integer p ≥ 1 and let Vh denote the space of piecewise polynomials of degree ≤ p on each mesh
element. For any node xi ∈ N , define “the unit normal vector” ni as n1 = −1 and ni = 1 if i > 1.
Moreover, for any smooth enough function v that is possibly two-valued at xi, define its jump and mean-
value at xi respectively as [[v]]i = v|Ti−1

(xi) − v|Ti
(xi) and {v}i = 1

2
(v|Ti−1

(xi) + v|Ti
(xi)) if xi is an

interior node and as [[v]]i = {v}i = v(xi) if xi is a boundary node. Furthermore, to discretize in time, let
N be an integer and let τ = T

N
be the time step.

We consider a sequential scheme with implicit backward Euler time approximation of the saturation
equation, symmetric interior penalty DG method for the global pressure equation and for the diffusion
term in the saturation equation, and Godunov fluxes for the nonlinear hyperbolic term in the saturation
equation. Namely, for n = 0, 1, · · · , N − 1, we solve for Pn+1

h ∈ Vh such that ∀z ∈ Vh,
∑

T∈T

∫

T

λ(Sn
h )KdxPn+1

h dxz −
∑

xi∈N

(

ni{λ(Sn
h )KdxPn+1

h }i[[z]]i + ni{λ(Sn
h )Kdxz}i[[P

n+1
h ]]i

)

(4)

+
∑

xi∈N

γi[[P
n+1
h ]]i[[z]]i = (λ(Sn

h )Kdxz + γ1z)|x=0P1 + (−λ(Sn
h )Kdxz + γM+1z)|x=LP2,

with Sn
h ∈ Vh given from the previous step (n ≥ 1) or by the initial data (n = 0), and then we solve for

Sn+1
h ∈ Vh such that ∀v ∈ Vh,
∑

T∈T

∫

T

φτ−1Sn+1
h v −

∑

T∈T

∫

T

un+1
h f(Sn+1

h )dxv +
∑

xi∈N

Φn+1
hi [[v]]i (5)

+
∑

T∈T

∫

T

ǫ(Sn
h )π′(Sn

h )dxSn+1
h dxv −

∑

xi∈N ′

(

ni{ǫ(S
n
h )π′(Sn

h )dxSn+1
h }[[v]]i + ni{ǫ(S

n
h )π′(Sn

h )dxv}[[Sn+1
h ]]i

)

+
∑

xi∈N ′

δi[[S
n+1
h ]]i[[vh]]i =

∑

T∈T

∫

T

φτ−1Sn
hv + (ǫ(Sn

h )π′(Sn
h )dxv + δ1v)|x=0S1.

The key point, namely the calculation of un+1
h from (4) to be used in (5), is discussed below. Furthermore,

the penalty coefficients γi and δi are evaluated as γi = γ∗p
2h−1K minT ;xi∈∂T {λ(Sn

h )|T (xi)} and δi =
δ∗p

2h−1 minT ;xi∈∂T {ǫ(S
n
h )π′(Sn

h )|T (xi)} with the numerical parameters γ∗ and δ∗ in the range [5, 10].
Godunov’s flux for nondecreasing flux function f coincides with flux upwinding: Φn+1

h1
= un+1

h (x1)f(S1)
and Φn+1

hi = un+1
h (xi)f(Sn+1

h )|Ti−1
(xi) for i ≥ 2.

3. Total velocity reconstruction

In the present one-dimensional setting, the total velocity un+1
h belongs to the space Wh spanned by

continuous, piecewise polynomials of degree ≤ p+1 on each mesh element. In a multi-dimensional setting,
the total velocity belongs to the Raviart–Thomas finite element space of order p. Taking inspiration from
[5], un+1

h is defined locally by setting

un+1
h (xi) = −{λ(Sn

h )KdxPn+1
h }i + niγi[[P

n+1
h ]]′i, ∀xi ∈ N , (6)

∫

T

un+1
h w = −

∫

T

λ(Sn
h )KdxPn+1

h w +
∑

xi∈∂T

ni{λ(Sn
h )Kw}i[[P

n+1
h ]]′i, ∀T ∈ T ,∀w ∈ Pp−1(T ), (7)
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where [[Pn+1
h ]]′1 = Pn+1

h (x1) − P1, [[Pn+1
h ]]′M+1 = Pn+1

h (xM+1) − P2, and [[Pn+1
h ]]′i = [[Pn+1

h ]]i otherwise.
To illustrate the impact of the above reconstruction, we present numerical results with the following data:
L = 300m, φ = 0.2, K = 10−11m2, Srw = 0.2, and Srn = 0.15. We use Brooks–Corey model for capillary

pressure and mobilities, π(S) = Pe(1−Se)
− 1

θ , λw(S) = 1
µw

(1−Se)
2+3θ

θ , λn(S) = 1
µn

(Se)
2(1−(1−Se)

2+θ

θ ),

where Se = (S − Srn)(1 − Srw − Srn)−1 denotes the effective saturation, Pe = 103Pa, θ = 2, µw =
0.001kg/ms, and µn = 0.01kg/ms. The boundary condition for saturation is S1 = 0.25 while the initial
condition is S0 = 0.7. The boundary condition for the wetting phase pressure is pw1 = 0.3MPa and
pw2 = 0.15MPa whence the global pressure boundary data P1 = 0.30111MPa and P2 = 0.15217MPa are

calculated from the global pressure formula P = pw +
∫ S

Srn

f(ξ)π′(ξ)dξ + π(Srn) at S = S1 and S =
S0 respectively. First-order polynomial approximation is used both for the global pressure and for the
saturation on a uniform grid with 32 elements; penalty parameter values are γ∗ = δ∗ = 10. Final simulation
time is T = 360 days and the time step is τ = 5 days. Figure 1 compares the results obtained with the
accurate velocity reconstruction (6)–(7) to two more simpler and less accurate velocity reconstructions,
namely (i) taking the piecewise derivative of the global pressure which yields a discontinuous, piecewise
constant velocity (labelled NoRec) and (ii) defining a continuous, piecewise affine velocity by setting its
nodal values to the average of the global pressure fluxes (labelled NodAv). The NodAv-reconstruction
actually amounts in the present setting to the postprocessing proposed in [1]; it accounts partly for
the matching condition (6) (yet disregarding the jump contribution), but does not improve the velocity
profile inside mesh elements by using (7). While the global pressure profile remains fairly insensitive to the
velocity reconstruction, the saturation profile exhibits non-physical oscillations except in the case where
the reconstruction defined by (6)–(7) is used. Moreover, oscillations in the phase pressure profiles can
also occur (not shown). The origin of these instabilities is the oscillatory behavior in space of the NoRec-
and NodAv-velocity reconstructions. Such reconstructions also produce an inaccurate description of the
time evolution of the mean value of the total velocity. To conclude, we observe that the present velocity
reconstruction, which can be extended to multiple dimensions by proceeding as in [5], yields accurate
numerical solutions that are not polluted by spurious oscillations. We emphasize that no limiters were
used in the present simulations.
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Figure 1. Top left: pressure at final time; top right: wetting phase saturation at final time; bottom left: total velocity at

final time; bottom right: mean value of total velocity as a function of time
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