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A THREE-FIELD AUGMENTED LAGRANGIAN FORMULATION
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Abstract. We investigate unilateral contact problems with cohesive forces, leading to the constrained
minimization of a possibly nonconvex functional. We analyze the mathematical structure of the mini-
mization problem. The problem is reformulated in terms of a three-field augmented Lagrangian, and
sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and ana-
lyze mixed finite element approximations to the stationarity conditions of the three-field augmented
Lagrangian. The finite element spaces for the bulk displacement and the Lagrange multiplier must
satisfy a discrete inf-sup condition, while discontinuous finite element spaces spanned by nodal basis
functions are considered for the unilateral contact variable so as to use collocation methods. Two iter-
ative algorithms are presented and analyzed, namely an Uzawa-type method within a decomposition-
coordination approach and a nonsmooth Newton’s method. Finally, numerical results illustrating the
theoretical analysis are presented.
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1. Introduction

The purpose of this work is to analyze augmented Lagrangian methods for solving static unilateral contact
problems with cohesive forces. Problems of this kind arise in fracture mechanics, such as crack initiation and
growth in brittle and ductile materials as well as delamination of composite materials [5,14]. Unilateral contact
problems without cohesive forces have been widely studied from both theoretical and numerical standpoints;
see, for instance, [16,20]. They can be formulated as the minimization of a convex functional or, equivalently, as
a monotone variational inequality. The presence of cohesive forces in addition to the unilateral contact makes
the functional to be minimized possibly nonconvex or, equivalently, the operator in the variational inequality
possibly non-monotone. This complicates substantially the problem.

Consider a prototypical unilateral contact problem with cohesive forces, as illustrated in Figure 1. The
domain Ω ⊂ R

d (d = 2 or d = 3) represents a deformable body. The material is assumed to be linear isotropic
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Figure 1. Example of unilateral contact problem with cohesive forces.

ψ(x)

x

t(x)

σΓ

vΓ

Figure 2. Example of cohesive law.

elastic, with Lamé coefficients λ and μ. Let u : Ω→ R
d be the displacement field. The linearized strain tensor

and stress tensor, ε(u) : Ω→ R
d,d and σ(u) : Ω→ R

d,d, are respectively defined as

ε(u) =
1
2

(
∇u+∇uT

)
and σ(u) = λ tr ε(u)I + 2με(u).

An external load f is applied to the body. The boundary ∂Ω is partitioned into three disjoint open subsets
∂ΩD, ∂ΩN , and Γ (the measure of ∂ΩD is supposed to be positive). An homogeneous Dirichlet condition and
a Neumann condition are prescribed on ∂ΩD and ∂ΩN , respectively. The normal load on ∂ΩN is denoted by g.

On Γ, we impose a unilateral contact condition with cohesive forces. The cohesive forces depend on the
displacement on Γ. The present model belongs to the class of so-called cohesive zone models; see, e.g., [5,14].
For the sake of simplicity, we restrict ourselves to the case where the cohesive forces are normal and depend
only on the normal displacement. Let n be the outward normal to Ω and let vΓ := −v|Γ ·n and σΓ := n ·σ|Γ ·n
respectively denote the normal displacement and the normal stress on Γ. Then, (i) vΓ cannot be negative; (ii) if
vΓ is zero, σΓ must be lower than a yield σc; and (iii) if vΓ is positive, σΓ obeys the cohesive law σΓ = t(vΓ).
Hence, the cohesive law is a function t : R

+ → R, and we define a cohesive energy ψ : R
+ → R such that ψ′ = t

and, say, ψ(0) = 0. For later convenience, we extend the domain of ψ to R by setting for s ≥ 0, ψ(−s) = −ψ(s).
There is a large variety of cohesive laws. Their common feature is a softening behavior: when the displacement
increases, the cohesive force decreases. Consequently, the boundary condition is non-monotone and the cohesive
energy is nonconvex. Typical functions t and ψ are represented on the left part of Figure 2. The boundary
condition is represented on the right part of Figure 2.
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Let V and H be function spaces on Ω and Γ, respectively, defined in Section 2 below. Consider the functionals

W : V � v �−→W (v) :=
1
2

∫
Ω

σ(v) : ε(v)−
∫

Ω

f · v −
∫
∂ΩN

g · v ∈ R, (1.1)

Ψ : H � q �−→ Ψ(q) :=
∫

Γ

ψ (q) ∈ R, (1.2)

and the linear operator
B : V � v �−→ Bv := v|Γ · n ∈ H. (1.3)

The unilateral contact problem with cohesive forces can be expressed in the abstract variational form

{ min
v∈V

W (v) + Ψ(Bv)

subject to Bv ∈ H+
(1.4)

where H+ := {q ∈ H ; q ≥ 0}.
Problem (1.4) is a constrained minimization problem. For solving numerically such a problem, the main tech-

niques are penalty methods, feasible direction methods, linear programming methods, and Lagrangian methods.
These techniques are thoroughly discussed in [4]. The main drawbacks of the first three methods can be sum-
marized in this way: penalty methods generally yield ill-conditioned problems, feasible direction methods are
often expensive due to the projection step, and linear programming methods are limited to linear constraints
and quadratic objective functions. In contrast, Lagrangian methods are based on a reformulation of the con-
strained minimization problem. The new problem consists in seeking a saddle-point (or a stationary point) of
a Lagrangian. This can be achieved efficiently by Uzawa algorithms or Newton methods. Uzawa algorithms
generally feature good global convergence properties (in the sense that they do not need an initialization value
close to the optimum), but their speed of convergence is only linear. Newton methods feature a quadratic
speed of convergence, but this is achieved only locally (that is, if the initialization is close to the optimum).
Furthermore, augmenting the Lagrangian offers some additional advantages. Whenever the objective function
is actually convex, this augmentation improves the performance of the algorithms. In the nonconvex case,
the ordinary Lagrangian formulation is not necessarily well-posed and the augmentation enables to recover
well-posedness. More details on augmented Lagrangian methods can be found in [3,4].

In the present work, we analyze two augmented Lagrangian methods for the problem of unilateral contact with
cohesive forces: a decomposition-coordination method and a nonsmooth Newton’s method. These two methods
are based on the same three-field augmented Lagrangian formulation. The decomposition-coordination method
has been proposed by Fortin and Glowinski [13] as a general method for solving nonlinear problems. The idea is
to solve separately the linear and nonlinear parts of the problem at each iteration. This method can be seen as
an Uzawa-like algorithm. It is closely related to the so-called Latin method [23] and also to splitting operator
methods. Such methods have been applied to various unilateral contact problems, as for instance in [6,15]. In
the case of a convex functional split into two convex parts, the convergence of the algorithm has been proved
in [13]. Furthermore, Newton’s method is a standard method for solving nonlinear systems of equations and, as
such, can be used to find a stationary point of the augmented Lagrangian. In the case of unilateral constraints,
the resulting system is only piecewise continuously differentiable and Newton’s method can be extended to this
class of nonsmooth systems [28]. Newton’s method for unilateral contact problems has been used for instance
in [1,22]. In particular, it has been applied to the problem of unilateral contact with cohesive forces in [25].

This paper is organized as follows. In Section 2, we specify the mathematical structure of the original con-
strained minimization problem (1.4) and investigate its well-posedness. In particular, we establish an existence
result where the lack of convexity is compensated by a compactness argument. In Section 3, we introduce
the three-field augmented Lagrangian formulation and study its well-posedness, namely the existence of a local
saddle-point of the augmented Lagrangian. This result is well-known in the convex case [11]. In the noncon-
vex case, a result is available only in a finite-dimensional setting [3]. Here, we extend this latter approach
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to the (infinite-dimensional) problem of unilateral contact with cohesive forces, assuming the surjectivity of the
operator B defined by (1.3) and using a compactness argument in the (closure of the) cone of feasible direc-
tions. Sections 2 and 3 are set in a general framework encompassing the particular case of unilateral contact
problems with cohesive forces. In Section 4, we analyze mixed finite element approximations of the augmented
Lagrangian formulation of unilateral contact problems with cohesive forces. Since a nonlinear problem needs
to be solved for the normal displacement on Γ, it is convenient to use a collocation method. In the same way,
numerical integration can be employed to build the Jacobian matrix in Newton’s method. A key point is the
use of discontinuous finite element spaces leading to a collocation method, while ensuring an inf-sup condition
which is the discrete counterpart of the surjectivity of the operator B. The resulting mixed finite element ap-
proximation is nonconforming. Numerous works have been devoted to the error analysis of mixed formulations
for unilateral contact problems, especially for two-field formulations (bulk displacement-displacement on Γ or
bulk displacement-normal stress on Γ). To our knowledge, the only work dealing with the three-field augmented
Lagrangian formulation is [7] in a conforming and consistent case. Here, we prove a priori error estimates in
the present nonconforming setting for various finite element spaces under the simplifying assumption that the
cohesive forces are mild enough. In Section 5, we describe the algorithms. We prove the convergence of the
decomposition-coordination method in the particular case of a convex functional split into a convex part and a
nonconvex part. Finally, numerical simulations illustrating the theoretical results are presented in Section 6.

2. Well-posedness of the continuous problem

The main result of this section is the existence of a minimizer for problem (1.4). The lack of convexity
is compensated by a compactness argument. We also specify a sufficient condition for uniqueness based on
α-convexity and give some hints on the regularity of the solution.

We make the following assumptions on the mathematical structure of problem (1.4).
(H1) V and H are Hilbert spaces and B ∈ L(V,H) (the continuity constant is denoted by cB).
(H2) W is α-convex on V (the α-convexity constant is denoted by αW ).
(H3) H+ is a nonempty closed convex subset of H .
(H4) There is a Hilbert space M ≡M ′ with scalar product (·, ·)M such that H ↪→M with compact imbedding

(the continuity constant of the imbedding is denoted by cM ) and Ψ : M → R is bounded and continuous.
(H5) W and Ψ are continuously differentiable on V and M respectively, and Ψ′ is Lipschitz continuous on M

(the Lipschitz constant of Ψ′ is denoted by kΨ′).
Let V + := {v ∈ V ;Bv ∈ H+}, observe that V + is a closed convex subset of V , and define the functional

J : V � v �−→ J(v) := W (v) + Ψ(Bv) ∈ R. (2.1)

Problem (1.4) can be rewritten as
min
v∈V +

J(v). (2.2)

Theorem 2.1. Assume (H1)–(H4). Then, there exists a solution to problem (1.4).

Proof. Let (vn)n∈N be a minimizing sequence of J in V +. Since the functional J is coercive (W is α-convex
and Ψ is bounded), the sequence (vn)n∈N is bounded in V . Hence, we can extract a subsequence, still denoted
by (vn)n∈N, which converges weakly to v∞ in V . The limit v∞ belongs to V + since a strongly closed convex set
is weakly closed. Moreover, owing to the continuity of B from V to H and the compactness of the imbedding
H ↪→ M , the sequence (Bvn)n∈N strongly converges to Bv∞ in M . Using the continuity of Ψ on M , we
conclude that limn→∞ Ψ(Bvn) = Ψ(Bv∞). Furthermore, since the functional W is convex and continuous
on V , lim infn→∞W (vn) ≥W (v∞). Thus, v∞ ∈ V + is a global minimizer of J in V +. �
Proposition 2.2. Assume (H1)–(H5). Then, J is differentiable on V so that a solution u to (1.4) satisfies

〈J ′(u), v − u〉V ′,V ≥ 0, ∀v ∈ V +. (2.3)
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Furthermore, if
αW − kΨ′c2Mc

2
B > 0, (2.4)

then J is α-convex on V and the solution to (1.4) is unique.

Proof. The first statement is evident. Concerning the second one, observe that for all (v, w) ∈ V × V ,

〈J ′(v) − J ′(w), v − w〉V ′,V ≥ 〈W ′(v) −W ′(w), v − w〉V ′,V + (Ψ′(Bv)−Ψ′(Bw), Bv −Bw)M

≥ αW ‖v − w‖2V − kψ′‖Bv −Bw‖2M
≥ αW ‖v − w‖2V − kψ′c2M‖Bv −Bw‖2H
≥ (αW − kΨ′c2Mc

2
B)‖v − w‖2V ,

which proves the α-convexity of J under the condition (2.4), and hence the uniqueness of the solution. �

Remark 2.3. Relation (2.3) links problem (1.4) to the theory of variational inequalities. When J is convex,
the operator J ′ is monotone. In the general case, the proof of Theorem 2.1 shows that J ′ is pseudo-monotone.

We now verify that the unilateral contact problem with cohesive forces defined in the introduction fits the
above abstract framework. Recalling the definitions (1.1)–(1.3) of W , Ψ, and B, we also set

V := {v ∈ H1(Ω)d; v|∂ΩD = 0}, H := H
1
2
00(Γ, ∂Γ0), M := L2(Γ),

where ∂Γ0 := ∂ΩD ∩Γ (see Fig. 1). The space H
1
2
00(Γ, ∂Γ0) is the space of functions of H

1
2 (Γ) that are zero in a

certain sense on ∂Γ0. It can be built by interpolation between L2(Γ) and H1
0 (Γ, ∂Γ0); see [24] for more details.

Furthermore, H+ := {q ∈ H ; q ≥ 0 a.e. in Γ} and observe that with the above notation,

Ψ(q) = (ψ(q), 1)M . (2.5)

Finally, for further use, we set M+ = {q ∈M ; q ≥ 0 a.e. in Γ}.

Proposition 2.4. Assumptions (H1)–(H3) hold. If ψ is continuous and bounded on R, assumption (H4) holds.
If ψ′ is Lipschitz continuous on R with Lipschitz constant kψ′ , assumption (H5) holds with kΨ′ = kψ′ .

Proof. Assumption (H1) holds by construction. Assumption (H2) is a direct consequence of Korn’s first in-
equality [8]. Assumption (H3) is readily verified. Concerning assumptions (H4) and (H5), we first observe that,

by construction, H
1
2
00(Γ, ∂Γ0) is compactly imbedded in L2(Γ). Furthermore, to prove the regularity of Ψ, we

use a basic result of nonlinear analysis [10]; see Lemma 2.5 below. Using this lemma with φ = ψ, p = 2, and
q = 1 along with the boundedness of ψ to verify condition (2.6), we infer that Sψ is continuous from L2(Γ)
into L1(Γ). Since for all q ∈ L2(Γ), Ψ(q) = (Sψ(q), 1)M , the operator Ψ is continuous on M . Moreover, since
for all q, r ∈ L2(Γ),

Ψ(q + r) −Ψ(q)− (Sψ′ (q), r)M =
∫

Γ

(∫ 1

0

(ψ′(q(x) + tr(x)) − ψ′(q(x)))dt
)
r(x)dx

≤ 1
2
kψ′

∫
Γ

|r(x)|2dx,

owing to the Lipschitz continuity of ψ′, Ψ is differentiable on M with (Ψ′(q), r)M = (Sψ′(q), r)M . Using
Lemma 2.5 with φ = ψ′ and p = q = 2 along with the Lipschitz continuity of ψ′ readily shows that Ψ′ is
Lipschitz continuous on M with Lipschitz constant kψ′ . Finally, the differentiability of W is obvious. �
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Lemma 2.5. Let φ : R → R be a continuous function. Consider a measurable function q : Γ ⊂ R
n → R. The

superposition operator (or Nemitsky operator) Sφ maps q to φ ◦ q. If q and r are measurable functions that
coincide almost everywhere on Γ, then Sφ(q) and Sφ(r) are measurable functions that coincide almost everywhere
on Γ. Moreover, if φ satisfies the growth condition,

∃a, b ∈ R, ∀x ∈ R, |φ(x)| ≤ a+ b|x|p/q, (2.6)

then the superposition operator maps Lp(Γ) into Lq(Γ) and is strongly continuous (p, q ∈ [1; +∞[).

Remark 2.6. The α-convexity condition (2.4) can be interpreted in terms of the problem parameters. The
constant αW is proportional to the Young modulus of the material. The constant kψ′ is larger when the
cohesive forces decrease fast. By a scaling argument, it can be seen that cMcB decreases to zero with the
(d − 1)-dimensional measure |Γ|. Thus, condition (2.4) is more likely to be met when the Young modulus is
large, the cohesive force decreases slowly, or |Γ| is small.

A detailed study of the regularity of the solution to the minimization problem (1.4) is beyond the scope of
the present work. However, let us mention some results in particular cases. For a unilateral contact problem
without cohesive forces under body forces in L2(Ω)d, the displacement is in H2

loc(Ω ∪ Γ)d [21]. Furthermore,
for a scalar elliptic problem in 2D with unilateral contact and homogeneous Dirichlet condition, the regularity
of the solution has been studied near the junction between these boundary conditions [27]. Under body forces
in L2(Ω) and for a smooth junction, the solution is in H

3
2 (Ω). For an angular junction (of internal angle ω),

the solution is in H2(Ω) if ω ≤ π/2, and in H1+ π
2ω (Ω) otherwise. With a sufficiently smooth cohesive law, it

seems reasonable to expect at least the same kind of regularity. Furthermore, cohesive zone models have been
designed to avoid unphysical infinite stresses at the crack tip. Yet, the question whether an appropriate choice
of cohesive interface and law can lead to more regular solutions is still mathematically open.

3. A three-field augmented Lagrangian formulation

We introduce a new unknown q representing the normal displacement on Γ. The decomposed problem is{ min
(v,q)∈V×H+

W (v) + Ψ(q)

subject to Bv = q.
(3.1)

The decomposed problem (3.1), which is obviously equivalent to the initial minimization problem (1.4), is a
minimization problem under a linear equality constraint. We treat this constraint by an augmented Lagrangian
method. Introduce the space Y := V ×H (equipped with its natural norm) and the convex set K := V ×H+.
Define

J0 : Y � y := (v, q) �−→ J0(y) := W (v) + Ψ(q) ∈ R,

B̃ : Y � y := (v, q) �−→ B̃y := Bv − q ∈ H,

so that (3.1) amounts to
min

y∈K∩ker B̃
J0(y). (3.2)

The augmented Lagrangian associated with the decomposed problem is

Lr : Y ×H ′ � (y, λ) �−→ Lr(y, λ) := J0(y) + 〈λ, B̃y〉H′,H +
r

2
‖B̃y‖2M ∈ R, (3.3)

where r is an arbitrary non-negative constant. For y ∈ Y , set

Jr(y) := J0(y) +
r

2
‖B̃y‖2M . (3.4)
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A couple (x, θ) ∈ K ×H ′ is said to be a local saddle-point of the augmented Lagrangian if it satisfies

∀λ ∈ H ′, Lr(x, λ) ≤ Lr(x, θ) ≤ Lr(y, θ), ∀y ∈ U, (3.5)

where U ⊂ K is a neighborhood of x. The introduction of the augmented Lagrangian is motivated by the
following proposition whose proof is straightforward.

Proposition 3.1. If (x, θ) ∈ K × H ′ is a local saddle-point of the augmented Lagrangian, then x is a local
minimizer of the decomposed problem (3.1).

The converse of this statement is more difficult to establish. We first prove, under the key assumption that B
is surjective from V to H , that if x ∈ K ∩ ker B̃ is a local minimizer of J0, there is (a unique) θ ∈ H ′ such that
(x, θ) is a stationary point of the augmented Lagrangian Lr. Then, we prove, under an additional assumption,
that such a stationary point is a local saddle-point of Lr. A couple (x, θ) ∈ K ×H ′ is said to be a stationary
point of Lr if it satisfies

〈∂yLr(x, θ), y − x〉Y ′,Y ≡ 〈J
′
r(x), y − x〉Y ′,Y + 〈θ, B̃(y − x)〉H′,H ≥ 0, ∀y ∈ K, (3.6)

〈∂λLr(x, θ), λ〉H,H′ ≡ 〈λ, B̃x〉H′,H = 0, ∀λ ∈ H ′. (3.7)

Observe that being a stationary point of the augmented Lagrangian is a property independent of r since (3.7)
implies B̃x = 0 so that J ′

r(x) = J ′
0(x). Notice also that (3.6) can be rewritten for x := (u, p) as

〈W ′(u), v〉V ′,V + 〈θ,Bv〉H′,H = 0, ∀v ∈ V, (3.8)

(ψ′(p), q − p)M − 〈θ, q − p〉H′,H ≥ 0, ∀q ∈ H+. (3.9)

Proposition 3.2. Let x ∈ K ∩ ker B̃ be a local minimizer of the decomposed problem (3.1). If B is surjective
from V to H, there exists a unique θ ∈ H ′ such that (x, θ) is a stationary point of the augmented Lagrangian.

Proof. Let x ∈ K ∩ ker B̃ be a local minimizer of the decomposed problem. Then, B̃x = 0 and (3.7) obviously
holds. Let us now prove (3.6). For all r ≥ 0, x minimizes Jr over K ∩ ker B̃ and hence it satisfies

〈J ′
r(x), y − x〉Y ′,Y ≥ 0, ∀y ∈ K ∩ ker B̃.

For all v ∈ ker B, y := x + (v, 0) belongs to K ∩ ker B̃ so that 〈J ′
r(x), (v, 0)〉Y ′,Y = 0. Since B is surjective,

(ker B)⊥ = im B∗ by the closed range theorem. As a consequence, there exists θ ∈ H ′ such that

〈J ′
r(x), (v, 0)〉Y ′,Y + 〈θ,Bv〉H′,H = 0, ∀v ∈ V.

Since J ′
r(x) = J ′

0(x), θ does not depend on r. Now let y := (v, q) ∈ K and let w ∈ V be such that Bw = q.
Then,

〈J ′
r(x), y − x〉Y ′,Y + 〈θ, B̃(y − x)〉H′,H = 〈J ′

r(x), y − x〉Y ′,Y + 〈θ,B(v − w)〉H′ ,H

= 〈J ′
r(x), (w, q) − x〉Y ′,Y ≥ 0,

since (w, q) is by construction in K ∩ ker B̃. Hence, (3.6) also holds. Finally, the relation 〈J ′
r(x), (v, 0)〉Y ′,Y +

〈θ,Bv〉H′,H = 0 for all v ∈ V and the surjectivity of B from V to H imply that θ is unique. �

Remark 3.3. In the context of unilateral contact problems, the Lagrange multiplier θ can be interpreted as
the normal stress on Γ, namely θ = σ(u)Γ where x := (u, uΓ). This results from the relation (3.6).

Remark 3.4. A more general existence result for mixed linear variational inequalities can be found in [29].
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We now examine whether a stationary point of the augmented Lagrangian is a local saddle-point. The cone
of feasible directions at the point x := (u, p) ∈ K can be defined as (V × C+(x)) ∩ ker B̃ where

C+(x) := {d ∈ H ; ∃α > 0, p+ αd ∈ H+}. (3.10)

Proposition 3.5. Assume that W and Ψ are of class C2. Let (x, θ) ∈ K × H ′ be a stationary point of the
augmented Lagrangian. Assume that (x, θ) satisfies the following second-order condition (indices on brackets
are dropped for second-order derivatives)

〈J ′′
0 (x), (d, d)〉 > 0, ∀d ∈ (V × C+(x)) ∩ ker B̃ \ {0}. (3.11)

Then, there exists r0 ≥ 0 such that (x, θ) is a local saddle-point of the augmented Lagrangian Lr0 . Furthermore,
for all r ≥ r0, (x, θ) is a local saddle-point of the augmented Lagrangian Lr.

Proof. The left inequality in (3.5) is obvious for all r ≥ 0. If the right inequality holds for r0 ≥ 0, then it holds
also for r ≥ r0. Now we shall prove by contradiction that there exist r0 ≥ 0 and a neighborhood U of x such
that Lr(x, θ) ≤ Lr(y, θ), ∀y ∈ U, ∀r ≥ r0. Suppose there exists a sequence of positive reals (rk)k∈N tending to
infinity and a sequence (xk)k∈N of elements of K tending to x such that

Lrk
(xk, θ) ≤ Lrk

(x, θ). (3.12)

Consider the sequence (ek)k∈N such that ek := (evk, e
q
k) := −1

k (xk−x) where k := ‖xk−x‖Y . Since this sequence
is bounded in Y , there exists a subsequence, still denoted by (ek)k∈N, weakly converging to e := (ev, eq) in Y .
To obtain a contradiction, we shall now prove that e ∈ (V × C+(x)) ∩ ker B̃ and that 〈J ′′

0 (x), (e, e)〉 ≤ 0.
A second-order Taylor expansion of L0(·, θ) at x in the Y -norm yields

L0(xk, θ) = L0(x, θ) + 〈∂yL0(x, θ), xk − x〉Y ′,Y +
1
2
〈J ′′

0 (x), (xk − x, xk − x)〉+ o(2
k).

Since xk = x+ ke+ k(ek − e),

L0(xk, θ) = L0(x, θ) + 〈∂yL0(x, θ), xk − x〉Y ′,Y + α2
k〈J ′′

0 (x), (ek − e, e)〉

+
α2
k

2
〈J ′′

0 (x), (e, e)〉+ α2
k

2
〈J ′′

0 (x), (ek − e, ek − e)〉+ o(2
k). (3.13)

Since (x, θ) is a stationary point of the augmented Lagrangian, 〈∂yL0(x, θ), xk − x〉Y ′,Y ≥ 0. Now observe that
B̃xk = B̃x+ kB̃ek = kB̃ek. Hence, substituting (3.13) into (3.12), it is inferred that

α2
k〈J ′′

0 (x), (ek − e, e)〉+
α2
k

2
〈J ′′

0 (x), (e, e)〉+ α2
k

2
〈J ′′

0 (x), (ek − e, ek − e)〉+
rk
2
2
k‖B̃ek‖2M + o(2

k) ≤ 0. (3.14)

Since the sequence (ek)k∈N converges weakly to e in Y , 〈J ′′
0 (x), (ek−e, e)〉 tends to 0. By convexity 〈W ′′(x), (evk−

ev, evk − ev)〉 ≥ 0 and by compactness, eqk tends to eq in M so that 〈Ψ′′(x), (eqk − eq, e
q
k − eq)〉 tends to 0. Hence,

lim infk〈J ′′
0 (x), (ek − e, ek − e)〉 ≥ 0. By compactness, the sequence (B̃ek)k∈N converges strongly to B̃e in M .

Dividing (3.14) by 2
krk and passing to the limit, we obtain ‖B̃e‖2M ≤ 0 and thus e ∈ ker B̃. Moreover, since

xk = x + kek, it is clear that for all k ≥ 0, eqk ∈ C+(x). Observing that C+(x) is convex, it is inferred that
eq ∈ C+(x). Hence, e ∈ (V × C+(x)) ∩ ker B̃; furthermore, by construction, e �= 0. Finally, dividing (3.14)
by 2

k, dropping the positive terms, and passing to the limit leads to 〈J ′′
0 (x), (e, e)〉 ≤ 0. �
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4. Approximation by mixed finite elements

In this section, we discretize the augmented Lagrangian formulation of unilateral contact problems with
cohesive forces by a Galerkin method with finite element spaces. The augmented Lagrangian formulation is
a three-field formulation: the bulk displacement, the normal displacement on Γ, and the Lagrange multiplier
(which can be interpreted as the normal stress on Γ). The two key ideas in the design of the mixed finite
element approximation are the following. Firstly, we want to solve the nonlinear part of the problem concerning
the normal displacement on Γ by a collocation method. This leads to the use of discontinuous finite element
spaces spanned by nodal basis functions for approximating this quantity. Secondly, a surjectivity condition in
the form of a discrete inf-sup condition must be satisfied, linking the discrete spaces for the bulk displacement
and the Lagrange multiplier. In the sequel, we refer to a 3D/2D setting when Ω is 3D and Γ is 2D, and to
a 2D/1D setting when Ω is 2D and Γ is 1D. Moreover, A � B means the inequality A ≤ cB with a positive
constant c independent of the mesh-size. Henceforth, the minimal regularity requirement for ψ is that ψ′ is
Lipschitz continuous.

4.1. The discrete setting

Let {Th}h>0 be a shape-regular family of affine meshes covering exactly Ω, where the parameter h stands for
the maximum size of the elements in Th. Without loss of generality, we assume h ≤ 1. Let Fh collect the mesh
faces located on Γ. To alleviate technicalities, the mesh family {Fh}h>0 is assumed to be quasi-uniform on Γ,
but this assumption can be relaxed. Let Vh, Mh, and Λh respectively denote the finite element approximation
spaces for the bulk displacement, the normal displacement on Γ, and the Lagrange multiplier. Henceforth, we
assume that

Vh ⊂ V, and Λh ⊂Mh ⊂M. (4.1)
Thus, the approximation is conforming for the bulk displacement and the Lagrange multiplier, but not for the
normal displacement on Γ since in general Mh �⊂ H . In fact, motivated by the use of a collocation method, we
will choose Mh as a discontinuous finite element space spanned by nodal basis functions; see Remark 4.6 below
for further insight. Let ΠΛh

denote the L2-orthogonal projection from M onto Λh and define the operator

Bh : V � v �−→ Bhv := ΠΛh
Bv ∈ Λh. (4.2)

The choice for the spaces Vh and Λh is linked by the following discrete inf-sup condition

∃βh > 0, ∀λh ∈ Λh, βhh
1/2‖λh‖M ≤ sup

vh∈Vh

(Bhvh, λh)M
‖vh‖V

· (4.3)

This means that the restriction of the operator Bh to Vh is surjective onto Λh. Henceforth, we assume that this
condition holds.

Remark 4.1. The scaling factor h1/2 has been introduced since the natural norm for λh is the H− 1
2 -norm.

Consider the following finite element spaces

Pkc (Th) = {vh ∈ C0(Ω); ∀T ∈ Th, vh|T ∈ Pk}, (4.4)

Pkd (Fh) = {qh ∈ L2(Γ); ∀F ∈ Fh, qh|F ∈ Pk}, Pkc (Fh) = Pkd (Fh) ∩ C0(Γ), (4.5)

where for an integer k, Pk denotes the space of polynomials with total degree ≤ k. We are interested in analyzing
the following situations

Mh = P0
d(Fh), Λh = Mh, Vh ⊃ P1

c (Th)d, (4.6)

Mh = P1
d(Fh), Λh = Mh, Vh ⊃ P2

c (Th)d, (4.7)

Mh = P1
d(Fh), Λh = P1

c (Fh), Vh = P2
c (Th)d. (4.8)
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In (4.6) and (4.7), the most robust choice is to take for Vh, respectively, the continuous first-order and second-
order finite element spaces augmented with suitable face bubbles on Γ, leading to an inf-sup constant βh in (4.3)
independent of h in both 2D/1D and 3D/2D settings; see [2,17]. In 2D/1D whenever at least one of the endpoints
of Γ is free, it is also possible to take Vh = P1

c (Th)d in (4.6) or Vh = P2
c (Th)d in (4.7); then, the discrete inf-sup

condition (4.3) still holds, but the constant βh is of order h. The choice (4.8) has been introduced in [25] and
differs from the two previous choices in the fact that Λh �= Mh. The idea is to avoid the use of face bubbles on Γ
by simply taking Vh = P2

c (Th)d, to ensure a robust discrete inf-sup condition (with βh independent of h) by
restricting Λh to P1

c (Fh), and to keep Mh as a discontinuous finite element space to be able to use a collocation
method.

In all cases resulting from (4.6)–(4.8), there holds Mh = Pkd (Fh) with k ∈ {0, 1}, and it is readily verified
that there is a family of nodes (ξFi )1≤i≤nq ,F∈Fh

such that
– the associated shape functions form a basis of Mh (in 2D/1D, nq = k + 1 and the usual Gauss nodes

are used; in 3D/2D, if k = 0, nq = 1 and the barycenter of each F ∈ Fh is used, while if k = 1, nq = 3
and the midpoints of the three edges of each F ∈ Fh are used);

– there are positive weights (ωFi )1≤i≤nq,F∈Fh
such that for all qh, rh ∈Mh,

(qh, rh)M =
∑
F∈Fh

nq∑
i=1

ωFi qh(ξ
F
i )rh(ξFi ). (4.9)

In other words, on all F ∈ Fh, the quadrature with nodes (ξFi )1≤i≤nq and weights (ωFi )1≤i≤nq is at
least of degree 2k. For further use, it is convenient to define the bilinear form

C0(Fh)× C0(Fh) � (qh, rh) �−→ (qh, rh)Mh
:=

∑
F∈Fh

nq∑
i=1

ωFi qh(ξ
F
i )rh(ξFi ) ∈ R, (4.10)

where C0(Fh) denotes the space of functions whose restriction to every F ∈ Fh is continuous.

4.2. The discrete augmented Lagrangian formulation

Set Yh = Vh ×Mh and Kh = Vh ×M+
h where

M+
h := {qh ∈Mh; ∀F ∈ Fh, ∀1 ≤ i ≤ nq, qh(ξFi ) ≥ 0}. (4.11)

Observe that M+
h ⊂M+ if k = 0 (that is, functions in M+

h are indeed non-negative), whereas this is no longer
the case if k = 1, thereby introducing an additional source of nonconformity in the approximation. Let

B̃h : Yh � yh := (vh, qh) �−→ B̃hyh := ΠΛh
(Bvh − qh) ∈ Λh. (4.12)

Whenever Λh �= Mh, we will also need the operator

B̃�h : Yh � yh := (vh, qh) �−→ B̃�hyh := ΠMh
Bvh − qh ∈Mh, (4.13)

where ΠMh
denotes the L2-orthogonal projection fromM ontoMh. We define the discrete augmented Lagrangian

as
Lr,h : Yh × Λh � (yh, λh) �−→ Lr,h(yh, λh) := J0,h(yh) + (λh, B̃hyh)M +

r

2
‖B̃�hyh‖

2
M ∈ R, (4.14)

where r is a non-negative parameter. Here, for yh := (vh, qh) ∈ Yh,

J0,h(yh) := W (vh) + (ψ(qh), 1)Mh
, (4.15)
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that is, the energy associated with the cohesive forces is evaluated using a quadrature, and it is convenient to
set

Jr,h(yh) := J0,h(yh) +
r

2
‖B̃�hyh‖2M . (4.16)

Observe that the penalty term in (4.14) and in (4.16) is stronger than the usual penalty term associated with
the constraint B̃hyh = 0 in Λh; indeed, owing to the fact that Λh ⊂Mh, there holds

∀yh ∈ Yh, ‖B̃hyh‖M ≤ ‖B̃�hyh‖M . (4.17)

The discrete decomposed problem takes the following form

min
yh∈Kh∩ker B̃h

Jr,h(yh). (4.18)

Proposition 4.2. There exists a solution to the discrete decomposed problem (4.18).

Proof. The functional Jr,h is coercive and continuous, and the set Kh∩ker B̃h is nonempty and closed. In finite
dimension, this suffices for the existence of a global minimizer. �

We now investigate sufficient conditions for the functional Jr,h to be α-convex over Kh∩ker B̃h (and thus the
solution of (4.18) to be unique). Since we are working in a nonconforming framework (Mh ⊂M , but Mh �⊂ H),
it is convenient to equip Yh ⊂ Z := V ×M with the natural norm of Z and to formulate duality products
using Z. We first treat the simpler case Λh = Mh.

Proposition 4.3. Assume αW − kψ′c2Mc
2
B > 0 and Λh = Mh. Then, the functional Jr,h is α-convex on

Kh ∩ ker B̃h, namely there is α > 0 such that for all r ≥ 0,

∀yh, zh ∈ Kh ∩ ker B̃h, 〈J ′
r,h(yh)− J ′

r,h(zh), yh − zh〉Z′,Z ≥ α‖yh − zh‖2Z . (4.19)

Proof. Let yh, zh ∈ Kh∩ker B̃h with yh := (vh, qh) and zh := (wh, rh). Set A = 〈J ′
r,h(yh)−J ′

r,h(zh), yh−zh〉Z′,Z .
Since Λh = Mh, the penalty term in (4.16) vanishes for yh, zh ∈ ker B̃h. As a result,

A = 〈W ′(vh)−W ′(wh), vh − wh〉V ′,V + (ψ′(qh)− ψ′(rh), qh − rh)Mh

≥ αW ‖vh − wh‖2V − kψ′
∑
F∈Fh

nq∑
i=1

ωFi (qh(ξFi )− rh(ξFi ))2,

where we have used the α-convexity of W , the Lipschitz continuity of ψ′, and the fact that the weights ωFi are
positive. Moreover, since the quadrature is at least of degree 2k, since ΠΛh

B(vh−wh) = qh− rh by assumption,
and owing to the conformity of Vh, it is inferred that

A ≥ αW ‖vh − wh‖2V − kψ′‖qh − rh‖2M
= αW ‖vh − wh‖2V − kψ′‖ΠΛh

B(vh − wh)‖2M
≥ αW ‖vh − wh‖2V − kψ′‖B(vh − wh)‖2M
≥ (αW − kψ′c2Mc

2
B)‖vh − wh‖2V ,

whence the conclusion readily follows since ‖qh − rh‖M ≤ cMcB‖vh − wh‖V . �

Proposition 4.4. Assume αW − 2kψ′c2Mc
2
B > 0. Then, (4.19) still holds if r > 4kψ′ and if h is small enough.
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Proof. Proceeding as above leads to

A ≥ αW ‖vh − wh‖2V − kψ′‖qh − rh‖2M + r‖B̃�h(yh − zh)‖2M
≥ αW ‖vh − wh‖2V − 2kψ′‖ΠΛh

B(vh − wh)‖2M − 2kψ′‖(I − ΠΛh
)(qh − rh)‖2M + r‖B̃�h(yh − zh)‖2M

= (αW − 2kψ′c2Mc
2
B)‖vh − wh‖2V − 2kψ′‖(I −ΠΛh

)(qh − rh)‖2M + r‖ΠMh
B(vh − wh)− (qh − rh)‖2M ,

since ΠΛh
B(vh − wh) = ΠΛh

(qh − rh). The last term in the right-hand side can be transformed into

‖ΠMh
B(vh − wh)− (qh − rh)‖2M = ‖ΠMh

B(vh − wh)−ΠΛh
B(vh − wh)− (I −ΠΛh

)(qh − rh)‖2M

≥ 1
2
‖(I −ΠΛh

)(qh − rh)‖2M − ‖ΠMh
B(vh − wh)−ΠΛh

B(vh − wh)‖2M

≥ 1
2
‖(I −ΠΛh

)(qh − rh)‖2M − ‖(I −ΠΛh
)B(vh − wh)‖2M

since Λh ⊂Mh. Moreover, in all cases for Λh,

‖(I −ΠΛh
)B(vh − wh)‖M � h1/2‖B(vh − wh)‖H � h1/2‖vh − wh‖V .

To conclude, observe that ‖ΠΛh
(qh − rh)‖M = ‖ΠΛh

B(vh − wh)‖M ≤ cMcB‖vh − wh‖V . �

As in the continuous case, the discrete decomposed problem (4.18) is tackled by solving the stationarity
conditions for the discrete augmented Lagrangian Lr,h, that is, we seek xh := (uh, ph) ∈ Vh ×M+

h and θh ∈ Λh
such that

〈W ′(uh), vh〉V ′,V + (θh, Bvh)M + r(ΠMh
Buh − ph, Bvh)M = 0, ∀vh ∈ Vh, (4.20)

(ψ′(ph), qh − ph)Mh
− (θh, qh − ph)M − r(Buh − ph, qh − ph)M ≥ 0, ∀qh ∈M+

h , (4.21)

(λh, Buh − ph)M = 0, ∀λh ∈ Λh. (4.22)

By proceeding as in the continuous case (and using additional simplifications due to the finite-dimensional
setting), the following equivalence result is readily verified.

Proposition 4.5. If (xh, θh) is a local saddle-point of Lr,h on Kh × Λh, then xh ∈ Kh ∩ ker B̃h is a local
minimizer of the discrete decomposed problem (4.18). Conversely, let xh ∈ Kh ∩ ker B̃h be a local minimizer of
the discrete decomposed problem (4.18). Then, there exists a unique θh ∈ Λh such that (xh, θh) is a stationary
point of Lr,h on Kh × Λh. Moreover, if the following second-order condition holds,

〈J ′′
0,h(xh), (dh, dh)〉 > 0, ∀dh ∈ (Vh × C+,h(xh)) ∩ ker B̃h \ {0}, (4.23)

where C+,h(xh) = {dh ∈ Mh; ∃α > 0, ph + αdh ∈ M+
h }, then (xh, θh) is a local saddle-point of the augmented

Lagrangian on Kh × Λh for r large enough.

Remark 4.6. In the decomposition-coordination method or when assembling the Jacobian matrix in Newton’s
method (see Sect. 5), the variational inequality (4.21) has to be solved with fixed uh and θh. This amounts to
a nonlinear problem of size the dimension of Mh, namely of size nq ×NΓ where nq is defined above and where
NΓ stands for the cardinal number of the set Fh. The key point is that since the underlying quadrature is at
least of degree 2k, (4.21) is equivalent to

(ψ′(ph), qh − ph)Mh
− (θh, qh − ph)Mh

− r(Buh − ph, qh − ph)Mh
≥ 0, ∀qh ∈M+

h , (4.24)
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and using the nodal basis of Mh, this leads to nq × NΓ uncoupled one-dimensional nonlinear problems. Note
that (4.24) amounts to the minimization problem

min
qh∈M+

h

(ψh(qh), 1)Mh
− (θh, qh)M +

r

2
‖B̃�h(yh, qh)‖2M . (4.25)

It is readily verified that for r ≥ kψ′ , the above functional is convex so that the minimization problem (4.25)
has a unique solution.

4.3. Error analysis

This section is devoted to the error analysis for the three choices (4.6)–(4.8) of discrete spaces Vh, Mh,
and Λh. Their analysis is of increasing complexity. In (4.6) and (4.7), Λh = Mh, while M+

h ⊂M+ in (4.6), but
M+
h �⊂M+ in (4.7); finally, in (4.8), Λh �= Mh and M+

h �⊂M+. In all cases, the goal is to obtain error estimates
with (quasi)optimal convergence rates in the mesh-size h under the assumption that the exact solution is unique
and smooth enough. We assume for the sake of simplicity that the functional Jr,h is α-convex on Kh ∩ ker B̃h
so that the discrete solution is also unique. Sufficient conditions for α-convexity and uniqueness are given by
Propositions 4.3 and 4.4 above. In the sequel, (x, θ) with x := (u, p) denotes the exact solution and (xh, θh)
with xh := (uh, ph) denotes the approximate solution. Henceforth, we assume that θ ∈ M . Then, using the
density of H+ in M+, (3.9) yields (ψ′(p)− θ, q − p)M ≥ 0 for all q ∈M+, whence it is classically deduced that
ψ′(p)− θ ∈M+ and that supp(ψ′(p)− θ) ∩ supp(p) has zero measure.

We introduce an additional regularity assumption regarding the topology of the subset of Γ where the
unilateral constraint p ≥ 0 is actually active, namely, letting

Γ0(p) := {x ∈ Γ; p(x) = 0}, and Γ+(p) := Γ \ Γ0(p), (4.26)

we assume that the set ˚Γ0(p) ∩ Γ+(p) is
– in 2D/1D, a finite union of points;
– in 3D/2D, a finite union of Lipschitz curves.

Under this assumption, henceforth referred to as A[p], a sharper error estimate can be obtained by using the
modified Lagrange interpolate introduced by Hüeber and Wohlmuth [19] in the piecewise affine case or its
piecewise quadratic extension in 2D/1D introduced in Lemma 4.13 below.

Since we are working in a nonconforming framework (Mh �⊂ H and possibly M+
h �⊂ M+) and recalling that

we have set Z := V ×M , it is convenient to redefine the operator B̃ as Z � y := (v, q) �→ Bv − q ∈ M and to
extend the domain of the functional Jr to Z. Moreover, taking advantage that for the exact solution θ ∈ M ,
the augmented Lagrangian is now redefined as

Lr : Z ×M � (y, λ) �−→ Lr(y, λ) := Jr(y) + (λ, B̃y)M ∈ R. (4.27)

4.3.1. An abstract error estimate

The proof of the following key abstract error estimate is postponed to Appendix A. Observe that the
error (x − xh) is measured in the ‖·‖Z-norm, that is the H1(Ω)d-norm for the bulk displacement and the
L2(Γ)-norm for the normal displacement on Γ, while the error (θ − θh) on the Lagrange multiplier is measured
in the L2(Γ)-norm scaled by the factor h1/2.

Lemma 4.7. For all yh := (vh, qh) ∈ Kh ∩ ker B̃�h and for all q ∈M+, letting

ηunil(q) := (ψ′(p)− θ, q − ph)M , (4.28)

ηunil(qh) := (ψ′(p)− θ, qh − p)M , (4.29)

ηquad(qh) := sup
rh∈Mh,‖rh‖M=1

|(ψ′(qh), rh)M − (ψ′(qh), rh)Mh
|, (4.30)
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Figure 3. Principle of the Hüeber–Wohlmuth interpolate; left: piecewise affine case; right:
piecewise quadratic case.

there holds

‖x− xh‖2Z � ‖x− yh‖2Z + ηunil(qh) + ηquad(qh)2 + ηunil(q) + hs‖θ −ΠΛh
θ‖2M , (4.31)

βhh
1/2‖θ − θh‖M � h1/2‖θ −ΠΛh

θ‖M + ‖x− xh‖Z , (4.32)

where s = 1 if Λh = Mh and s = 0 otherwise.

Remark 4.8. ηunil(q) measures the nonconformity error resulting from M+
h �⊂M+; indeed, if ph ∈M+, taking

q = ph yields ηunil(q) = 0. ηquad(qh) measures the quadrature error when evaluating the cohesive energy.
Finally, ‖x− yh‖Z + ηunil(qh) measures the interpolation error while accounting for the unilateral constraint.

4.3.2. The case Mh = P0
d(Fh), Λh = Mh, and Vh ⊃ P1

c (Th)d

Theorem 4.9. Let Mh = P0
d(Fh), Λh = Mh, and Vh ⊃ P1

c (Th)d. Assume u ∈ H3/2+ν(Ω) with 0 < ν ≤ 1
2 , so

that p ∈ H1+ν(Γ) and θ ∈ Hν(Γ). Then, in the above framework, there holds

‖x− xh‖Z + βhh
1/2‖θ − θh‖M � h1/2+ν . (4.33)

Proof. We apply Lemma 4.7 in the setting Λh = Mh and B̃�h = B̃h. Since M+
h ⊂ M+ because Mh = P0

d(Fh),
we can take q = ph to obtain ηunil(q) = 0. Moreover, it is readily verified that for piecewise constant functions,
ηquad(qh) = 0. It remains to select yh := (vh, qh) ∈ Kh ∩ ker B̃h to estimate ηunil(qh) and ‖x − yh‖Z . Let
I1

HW be the piecewise affine interpolation operator introduced by Hüeber and Wohlmuth; see [19] and also
the left panel of Figure 3. Recall that I1

HWp ≥ 0 on Γ and that supp(I1
HWp) ⊂ supp(p). In particular,

since supp(ψ′(p) − θ) ∩ supp(p) has zero measure, it is inferred that (ψ′(p) − θ, I1
HWp)M = 0. Hence, setting

qh := ΠMh
I1

HWp, it is clear that qh ∈ M+
h since Mh = P0

d(Fh). Moreover, observing that qh and I1
HWp have

the same support yields
ηunil(qh) = 0.

Now, let I1
Lag be the usual piecewise affine Lagrange interpolation operator (the same notation is used for

interpolating vector-valued functions in Ω and scalar-valued functions on Γ). Define vh ∈ P1
c (Th)d from I1

Lagu

by just modifying the normal component of the nodal values located on Γ so that Bvh = I1
HWp on Γ. Then, by

construction, yh := (vh, qh) ∈ Kh∩ker B̃h. In addition, since u ∈ H3/2+ν(Ω), standard interpolation properties
(see, e.g., [12]) lead to

‖u− I1
Lagu‖V � h1/2+ν ,
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and using an inverse inequality, the triangle inequality, standard approximation properties of I1
Lag, and the fact

that p ∈ H1+ν(Γ) yields

‖I1
Lagu− vh‖V � h−1/2‖I1

Lagp− I1
HWp‖M ≤ h−1/2(h1+ν + ‖p− I1

HWp‖M ).

Assumption A[p] is now used to infer that ‖p−I1
HWp‖M � h1+ν ; see [19]. Collecting the above estimates yields

‖u− vh‖V � h1/2+ν and since

‖p− qh‖M ≤ ‖p−ΠMh
p‖M + ‖ΠMh

(p− I1
HWp)‖M ≤ ‖p−ΠMh

p‖M + ‖p− I1
HWp‖M � h,

and recalling that ν ≤ 1
2 , it is inferred that

‖x− yh‖Z � h1/2+ν .

Finally, since θ ∈ Hν(Γ), ‖θ −ΠΛh
θ‖M � hν , whence the conclusion is straightforward. �

Remark 4.10. Without assumption A[p], ηunil(qh) can be estimated by taking qh = ΠMh
I1

Lagp. Since ψ′ is
Lipschitz continuous and ν ≤ 1

2 , ζ := ψ′(p)− θ ∈ Hν(Γ). Hence, ηunil(qh) ≤ ‖ζ −ΠMh
ζ‖M‖p−ΠMh

I1
Lagp‖M �

hν‖p−ΠMh
I1

Lagp‖M � h1+ν , so that the upper bound in (4.33) becomes h1/2+ν/2.

4.3.3. The case Mh = P1
d(Fh), Λh = Mh, and Vh ⊃ P2

c (Th)d

Theorem 4.11. Let Mh = P1
d(Fh), Λh = Mh, and Vh ⊃ P2

c (Th)d. Assume u ∈ H2+ν(Ω) with 0 < ν ≤ 1
2 , so

that p ∈ H3/2+ν(Γ) and θ ∈ H1/2+ν(Γ). Then, in the above framework, there holds in 3D/2D,

‖x− xh‖Z + βhh
1/2‖θ − θh‖M � h3/4+ν/2. (4.34)

Moreover, in 2D/1D, if ψ is of class C2 with ψ′′ Lipschitz continuous,

‖x− xh‖Z + βhh
1/2‖θ − θh‖M � h1+ν . (4.35)

Proof. Again, we apply Lemma 4.7 in the setting Λh = Mh and B̃�h = B̃h. Consider first ηunil(q). Take
q = Π0ph, where Π0 denotes the M -orthogonal projection onto P0

d(Fh), and observe that q ∈ M+. Letting
ζ := ψ′(p)− θ, this yields

ηunil(q) = (ζ,Π0ph − ph)M = (ζ −Π0ζ,Π0ph − ph)M
= (ζ −Π0ζ,Π0ph −Π0p+ Π0p− p+ p− ph)M
� ‖ζ −Π0ζ‖M (h1/2‖p− ph‖H + ‖Π0p− p‖M ),

where theH-stability of Π0 has been used owing to the quasi-uniformity of the mesh on Γ and since ‖ζ−Π0ζ‖H′ �
h1/2‖ζ −Π0ζ‖M . Moreover,

‖p− ph‖H = ‖Bu−ΠΛh
Buh‖H ≤ ‖Bu−ΠΛh

Bu‖H + ‖ΠΛh
(Bu −Buh)‖H

� ‖Bu−ΠΛh
Bu‖H + ‖Bu−Buh‖H � h1+ν + ‖u− uh‖V .

Since ψ′ is Lipschitz continuous and ν ≤ 1
2 , classical properties of superposition operators [26] yield ζ ∈

H1/2+ν(Γ), so that ‖ζ −Π0ζ‖M � h1/2+ν . Moreover, ‖Π0p− p‖M � h since p ∈ H1(Γ). Hence,

ηunil(q) � h1+ν‖u− uh‖V + h3/2+ν .
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Consider now ηquad(qh) for qh ∈Mh. Since the quadrature is at least of degree 2, letting I1
ξ be the (discontinuous)

interpolation operator at the Gauss nodes, there holds

ηquad(qh) ≤ ‖ψ′(qh)− I1
ξ (ψ

′(qh))‖M .

Since ψ′ is Lipschitz continuous, ψ′(qh) is in H1(Fh), the usual broken Sobolev space on the mesh Fh, and there
holds ‖ψ′(qh)‖H1(Fh) � ‖qh‖H1(Fh). Hence,

ηquad(qh) � h‖qh‖H1(Fh).

Consider now ηunil(qh) and ‖x − yh‖Z . In 3D/2D, we set vh = I2
Lagu, the piecewise quadratic Lagrange

interpolate of u, and qh = ΠMh
I2

Lagp. Then, qh ∈M+
h ; see Lemma 4.12 below. Moreover,

ηunil(qh) � ‖p− qh‖M � h3/2+ν ,

and ‖x− yh‖Z � h1+ν . Finally, ‖θ −ΠΛh
θ‖M � h1/2+ν . Collecting the above estimates yields (4.34).

In 2D/1D, we consider the piecewise quadratic extension, I2
HW, of the Hüeber–Wohlmuth interpolation

operator; see Lemma 4.13 below. Then, we set qh = ΠMh
I2

HWp and vh is obtained from I2
Lagu by just modifying

the normal component of the nodal values located on Γ so that Bvh = I2
HWp. Then, proceeding as in the proof

of Theorem 4.9 yields ηunil(qh) = 0, and ‖x − yh‖Z � h1+ν . Furthermore, owing to the assumption on ψ and
observing that (ψ′(qh))′ = ψ′′(qh)q′h, it is readily seen using inverse inequalities and the fact that qh is piecewise
affine that ‖ψ′(qh)‖H3/2(Fh) � h−1/2‖qh‖2H1(Fh). Hence,

ηquad(qh) � h3/2‖qh‖2H1(Fh).

Finally, still using assumption A[p], the above estimate on ηunil(q) can be sharpened using the fact that (see [18],
Thm. 4.4) (ζ −Π0ζ,Π0p− p)M � h2+2ν yielding

ηunil(q) � h1+ν‖u− uh‖V + h2+2ν .

Collecting the above estimates yields (4.35). �

Lemma 4.12. Let F be a triangle, let u ∈ P2(F ), and assume that u is non-negative at the six interpolation
nodes of I2

Lag in F . Let Π1u be the L2-orthogonal projection of u onto P1(F ). Let (ξFi )1≤i≤3 be the midpoints
of the three edges of F . Then, for all 1 ≤ i ≤ 3, Π1u(ξFi ) ≥ 0.

Proof. Let (φFi )1≤i≤3 be the (Crouzeix–Raviart) basis functions associated with the nodes (ξFi )1≤i≤3. Observe
that for all 1 ≤ i ≤ 3,

1
3
Π1u(ξFi ) =

1
|F |

∫
F

uφFi .

Moreover, using the classical 7-point quadrature of degree 3 yields∫
F

uφF1 =
3
20
u(γF ) +

2
15
u(ξF1 ) +

1
20

(u(σF2 ) + u(σF3 )− u(σF1 )),

where γF denotes the barycenter of F and σFi is the vertex of F opposite the edge containing ξFi . Furthermore,
since u ∈ P2(F ),

u(γF ) =
1
3
(u(σF1 ) + u(σF2 ) + u(σF3 )) +

4
9
(u(ξF1 ) + u(ξF2 ) + u(ξF3 )),

so that
∫
F uφ

F
1 is a linear combination of non-negative terms. The same holds for i ∈ {2, 3}. �
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Lemma 4.13. Assume Ω ⊂ R
2. Then, there exists an interpolation operator I2

HW : H1(Γ)→ P2
c (Fh) such that

(i) if q ≥ 0, then I2
HWq(ξ

F
i ) ≥ 0 for all 1 ≤ i ≤ nq and for all F ∈ Fh;

(ii) supp(I2
HWq) ⊂ supp(q);

(iii) if p ∈ H3/2+ν(Γ), ν ≤ 3
2 , satisfies assumption A[p], then ‖p− I2

HWp‖M � h3/2+ν .

Proof. Consider first the usual, piecewise quadratic Lagrange interpolate of q, say I2
Lagq. Since Ω ⊂ R

2,
each F ∈ Fh is a segment and the restriction of I2

Lagq to F can be specified by its values at the endpoints
and the midpoint of F . Two modifications need to be implemented. Firstly, as for I1

HW, if for F ∈ Fh,
F ∩ {x ∈ Γ; q(x) = 0} has nonzero measure, the three nodal values of I2

HWq are set to zero on F . This suffices
to guarantee property (ii). However, contrary to the construction of I1

HW, this does not suffice to guarantee
property (i). To this purpose a further modification is needed. Let F ∈ Fh and assume that I2

Lagq is negative
at one quadrature node (it cannot take negative values at the two quadrature nodes since it takes non-negative
values at the interval endpoints and midpoint and can have only one minimizer). Then, instead of interpolating
at the midpoint, we interpolate at this quadrature node; see the right panel of Figure 3. To verify that the
resulting quadratic interpolate is still non-negative at the other quadrature node, consider the reference interval
[0, 1] with ξ± = 1

2 (1± 1√
3
). Let λ0(t) = 1−t, λ1(t) = t, and b(t) = 4t(1−t) so that the usual quadratic Lagrange

interpolate of a non-negative function q takes the form

αλ0(t) + βλ1(t) + (γ − 1
2 (α+ β))b(t),

with non-negative coefficients α = q(0), β = q(1), and γ = q(1
2 ). If this interpolate is negative at, say, ξ+, this

yields 1
6 (α+ β) + 2

3γ −
1

2
√

3
(α− β) ≤ 0, so that α ≥ β. Now, the Lagrange interpolate using the two endpoints

and the node ξ+ takes the form

αλ0(t) + βλ1(t) +
3
2
(δ − αλ0(ξ+)− βλ1(ξ+))b(t),

with δ = q(ξ+) and evaluating this expression at ξ− yields δ + 1√
3
(α − β) ≥ 0. This proves property (i).

Finally, property (iii) is established as in [19] using assumption A[p] and the fact that a possible interpolation
at a quadrature node and not at a midpoint does not alter the asymptotic accuracy of the quadratic Lagrange
interpolate. �
Remark 4.14. Similar error estimates have been obtained for quadratic approximations of two-field formula-
tions of unilateral contact problems in [18]. Estimate (4.34) is suboptimal and does not use assumption A[p].
Instead, estimate (4.35) is optimal and relies, in particular, on this latter assumption. Without this assump-
tion, estimate (4.34) holds in 2D/1D; the only modification of the above proof in 3D/2D is in the choice of
qh ∈M+

h to estimate ηunil(qh), where the Lagrange interpolation can be performed at a quadrature node instead
of at the edge midpoint, similarly to the proof of Lemma 4.13. This remark also applies to the conclusions of
Theorem 4.15 below.

4.3.4. The case Mh = P1
d(Fh), Λh = P1

c (Fh), and Vh = P2
c (Th)d

Theorem 4.15. Let Mh = P1
d(Fh), Λh = P1

c (Fh), and Vh = P2
c (Th)d. Assume u ∈ H2+ν(Ω) with 0 < ν ≤ 1

2 ,
so that p ∈ H3/2+ν(Γ), and also assume θ ∈ H1+ν(Γ). Then, in the above framework, there holds in 3D/2D,

‖x− xh‖Z + βhh
1/2‖θ − θh‖M � h3/4+ν/2. (4.36)

Moreover, in 2D/1D, if ψ is of class C2 with ψ′′ Lipschitz continuous,

‖x− xh‖Z + βhh
1/2‖θ − θh‖M � h1+ν . (4.37)

Proof. We apply Lemma 4.7 in the setting Λh �= Mh. We proceed as above, except for the interpolation error
on the Lagrange multiplier for which there holds ‖θ −ΠΛh

θ‖M � h1+ν since θ ∈ H1+ν(Γ). �



340 D. DOYEN ET AL.

5. Algorithms

In this section, we present two iterative algorithms for solving the discrete problem (4.20)–(4.22), namely a
decomposed version of a classical Uzawa algorithm and a nonsmooth Newton’s method.

5.1. A decomposed Uzawa algorithm

The first algorithm we propose is a decomposed version of a classical iterative Uzawa algorithm. Each
iteration of the decomposed algorithm consists of the following steps:

un+1
h ← arg min

vh∈Vh

Lr,h(vh, pnh; θ
n
h), (5.1)

pn+1
h ← arg min

qh∈M+
h

Lr,h(un+1
h , qh; θnh), (5.2)

θn+1
h ← θnh + ρΠΛh

(ΠMh
Bhu

n+1
h − pn+1

h ), (5.3)

where ρ is an arbitrary positive parameter. Instead of minimizing directly the Lagrangian with respect to
the couple (unh, p

n
h), the Lagrangian is minimized with respect to unh and then with respect to pnh. This is the

difference with the classical Uzawa algorithm.
Step (5.1) amounts to the solution of a linear system. Moreover, at each iteration, only the right-hand side

changes. Hence, this step can be efficiently solved once a factorization method has been initially performed
(LU factorization for instance). Step (5.2) is solved by the collocation method described in Section 4.1. Finally,
Step (5.3) is straightforward if Λh = Mh since it can be performed elementwise. Otherwise, it requires a
projection onto Λh by inverting a global mass matrix.

Remark 5.1. This algorithm corresponds to ALG2 in [13], where a slightly different version called ALG3,
equivalent to the LATIN method [23], is also proposed.

We now prove a global convergence result for the decomposed Uzawa algorithm in the case where Λh = Mh

and under the convexity condition (2.4). Recall that this condition implies the α-convexity of the discrete
functional Jr,h and thus the uniqueness of the discrete solution (uh, ph, θh). The following proposition yields
sufficient conditions on the parameters r and ρ for global convergence. Its proof is postponed to Appendix B.

Proposition 5.2. Assume Λh = Mh and the convexity condition αW − 2kψ′c2Mc
2
B > 0. If the parameters r

and ρ are such that
r ≥ ρ ≥ 4kψ′ , (5.4)

algorithm (5.1)–(5.3) is well-defined and converges to the discrete solution (uh, ph, θh) for any initialization.

Remark 5.3. When the functional is nonconvex, a convergence result exists for the classical Uzawa algo-
rithm [3]. We did not try to extend it to the decomposed version described here.

5.2. A nonsmooth Newton’s method

Let (uh, ph, θh) solve (4.20)–(4.22). Given uh and θh, the variational inequality (4.21) is equivalent to the
minimization problem (4.25). Recall that for r ≥ kψ′ , this problem has a unique solution. Hence, ph can be
expressed as a function of uh and θh in the form ph := π(uh, θh). Equations (4.20) and (4.22) can then be recast
as a nonlinear system of equations

〈W ′(uh), vh〉V ′,V + (θh, vh)M + r(Buh − π(uh, θh), Bvh)M = 0, ∀vh ∈ Vh, (5.5)

(λh, Buh − π(uh, θh))M = 0, ∀λh ∈ Λh, (5.6)

or in a compact form with zh := (uh, θh),
F (zh) = 0, (5.7)



AUGMENTED LAGRANGIAN FORMULATION FOR COHESIVE CONTACT PROBLEMS 341

where F maps Vh × Λh onto Vh × Λh. Equation (5.7) can be solved using a Newton’s method. However,
the function F is continuous but non-differentiable owing to the unilateral constraint. F is locally Lipschitz
continuous though, so that, according to Rademacher’s theorem, it is differentiable almost everywhere. Denote
by DF ⊂ Vh × Λh the set where F is differentiable. For the points where F is non-differentiable, we introduce
the generalized Jacobian as defined in [9],

∂F (z) = co

{
lim

zi→z, zi∈DF

∇F (zi)
}
, (5.8)

where co stands for the convex hull of a set. The nonsmooth Newton’s method consists of the step

zn+1
h ← znh −G−1

n F (znh), (5.9)

where Gn ∈ ∂F (znh).

Proposition 5.4. Let (uh, θh) solve (5.7). Assume that all G ∈ ∂F (uh, θh) are nonsingular. Then, if r ≥ kψ′ ,
Newton’s method (5.9) is well-defined and converges to (uh, θh) for any initialization sufficiently close to (uh, θh).

Proof. The function F is said to be semi-smooth at a point z ∈ Vh × Λh if F is locally Lipschitz at z and

lim
G∈∂F (z+td),d→e,t→0+

Gd exists for all e ∈ Vh × Λh. (5.10)

We can verify that F is semi-smooth on Vh × Λh and conclude using a convergence result [28] on Newton’s
method for semi-smooth functions. �

Remark 5.5. Newton’s method is a local method. To globalize it, a line-search technique with the augmented
Lagrangian as merit function can be used.

6. Numerical results

To investigate numerically the proposed methodology, we build a 2D benchmark problem with analytical
solution. Let Ω := ]0, Lx[ × ]0, Ly[, ∂ΩD := {Lx}× ]0, Ly[ and Γ := ]0, Lx[ ×{0}. Consider the cohesive law

t(δ) =

{
σc

(δ−dc)
2

d2c
if δ ∈ [0, dc],

0 if δ > dc.
(6.1)

Let n ≥ 2 and let L0 ∈ R be such that 0 < L0 < Lx. Introducing the functions

s(x) =

{
dc(1− x

L0
)n if x ∈ [0, L0],

0 if x ∈ [L0, Lx],
and φ(x) =

{
t(s(x)) if x ∈ [0, L0],
σc if x ∈ [L0, Lx],

(6.2)

the bulk displacement in the analytical solution is set to

u(x, y) :=
(

−ys′(x)
s(x) + yφ(x)

)
. (6.3)

This solution is built to satisfy the boundary condition of unilateral contact with cohesive forces on Γ. The
normal displacement on Γ is given by the function s, and the contact zone corresponds to the interval [L0, Lx]. To
complete the specification of the test case, it remains to choose suitable external load and boundary conditions
on ∂Ω \ (Γ ∪ ∂ΩD) according to (6.3). We can readily verify that u ∈ Hn−1(Ω). We also observe that uΓ does
not exceed dc so that the regularity of t at dc does not limit the regularity of u.
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Table 1. Errors and convergence rates with Vh = P1
c (Th)d and Mh = Λh = P0

d(Fh).

h ‖u− uh‖H1 ‖p− ph‖L2 ‖θ − θh‖L2

2.83 6.42 e–2 - 2.95 e–2 - 1.04 e–2 -
1.54 2.49 e–2 1.55 1.51 e–2 1.09 5.93 e–3 0.92
0.80 1.02 e–2 1.36 7.60 e–3 1.04 1.17 e–3 2.46
0.40 4.98 e–3 1.04 3.80 e–3 1.01 2.50 e–4 2.25
0.21 2.33 e–3 1.13 1.90 e–3 1.04 5.35 e–5 2.31

Table 2. Errors and convergence rates with Vh = P2
c (Th)d and Mh = Λh = P1

d(Fh).

h ‖u− uh‖H1 ‖p− ph‖L2 ‖θ − θh‖L2

2.83 4.12 e–3 - 3.53 e–3 - 2.94 e–4 -
1.54 8.60 e–4 2.57 8.87 e–4 2.26 1.10 e–5 5.38
0.80 1.90 e–4 2.29 2.22 e–4 2.10 2.95 e–6 2.00
0.40 5.31 e–5 1.86 5.59 e–5 2.01 7.52 e–7 1.99
0.21 1.60 e–5 1.80 1.48 e–5 1.99 1.93 e–7 2.03

Table 3. Number of iterations in the decomposed Uzawa algorithm for various couples (r, ρ).

ρ/r r = kψ′ r = 2kψ′ r = 10kψ′ r = 20kψ′ r = 100kψ′

0.5 ∞ 13 12 9 5
1.0 ∞ 32 7 6 3
1.5 ∞ ∞ 11 7 5
2.0 ∞ ∞ ∞ ∞ ∞

First, we study the convergence rates for two choices of finite element spaces, namely Vh = P1
c (Th)d and

Mh = Λh = P0
d(Fh) (referred to as P1/P0 case) and Vh = P2

c (Th)d and Mh = Λh = P1
d(Fh) (referred to as

P2/P1 case). The simulations are performed with the decomposed Uzawa algorithm. The Young modulus and
the Poisson ratio are E = 2 × 105 and ν = 0.2. Further parameters are Lx = 20, Ly = 6, L0 = 10, σc = 0.001,
and dc = 0.1. Observe that the Young modulus is very large so that the continuous and discrete functionals are
expected to be convex. The analytical solution is chosen to be in H3(Ω) (n = 4). The results are summarized
in Tables 1 and 2. Optimal convergence rates are observed in both cases. In the P1/P0 case, this result matches
the estimate of Theorem 4.9. In the P2/P1 case, the numerical result improves on the estimate of Theorem 4.11
which is suboptimal. Moreover, in both cases, the Lagrange multiplier super-converges although in the present
setting for Vh, the discrete inf-sup condition is not robust with respect to mesh-size.

We now address the convergence of the decomposed Uzawa algorithm. We consider that convergence is
reached when the difference between the exact solution and the approximate solution is below a given tolerance.
The simulations are performed with Vh = P1

c (Th) and Mh = Λh = P0
d(Fh). The numbers of iterations to reach

convergence for various couples of parameters (r, ρ) are collected in Table 3. The two criteria r ≥ ρ and r > 2kψ′

derived in Proposition 5.2 appear to be rather sharp.

Remark 6.1. Numerical results with Newton’s method and the choice Vh = P2
c (Th), Mh = P1

d(Fh), and
Λh = P1

c (Fh) are presented in [25], where optimal convergence rates are reported.
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A. Proof of Lemma 4.7

Proof. Let yh := (vh, qh) ∈ Kh ∩ ker B̃�h. Since ker B̃�h ⊂ ker B̃h (because Λh ⊂Mh), yh ∈ ker B̃h. As a result,
it is inferred from (4.20)–(4.22) that

0 ≤ 〈J ′
r,h(xh), yh − xh〉Z′,Z + (θh, B̃h(yh − xh))M

= 〈J ′
r,h(xh), yh − xh〉Z′,Z .

Set δh = xh − yh := (δvh, δ
p
h) and observe that δh ∈ ker B̃h. Then, since yh ∈ ker B̃�h,

〈J ′
r,h(xh)− J ′

r,h(yh), δh〉Z′,Z ≤ 〈−J ′
r,h(yh), δh〉Z′,Z = 〈−J ′

0,h(yh), δh〉Z′,Z

= 〈−J ′
0(yh), δh〉Z′,Z + 〈J ′

0(yh)− J ′
0,h(yh), δh〉Z′,Z

= 〈−J ′
0(x), δh〉Z′,Z + 〈J ′

0(x)− J ′
0(yh), δh〉Z′,Z + 〈J ′

0(yh)− J ′
0,h(yh), δh〉Z′,Z

= 〈−J ′
0(x), δh〉Z′,Z + 〈J ′

0(x)− J ′
0(yh), δh〉Z′,Z + (ψ′(qh), δ

q
h)M − (ψ′(qh), δ

q
h)Mh

� 〈−J ′
0(x), δh〉Z′,Z + (‖x− yh‖Z + ηquad(qh))‖δh‖Z ,

using the Lipschitz-continuity of J ′
0 and the definition (4.30). Focusing on the first term in the right-hand side,

we observe that for all y := (v, q) ∈ K,

〈−J ′
0(x), δh〉Z′,Z = 〈−J ′

0(x), y − yh〉Z′,Z + 〈−J ′
0(x), xh − y〉Z′,Z

= 〈−J ′
0(x), y − yh〉Z′,Z + (θ, B̃(xh − y))M − 〈∂yL0(x, θ), xh − y〉Z′,Z

= 〈−J ′
0(x), y − x〉Z′,Z + 〈−J ′

0(x), x − yh〉Z′,Z + (θ, B̃(xh − y))M − 〈∂yL0(x, θ), xh − y〉Z′,Z

≤ (θ, B̃(xh − x))M + 〈−J ′
0(x), x − yh〉Z′,Z − 〈∂yL0(x, θ), xh − y〉Z′,Z

= (θ, B̃(xh − yh))M − 〈∂yL0(x, θ), x − yh〉Z′,Z − 〈∂yL0(x, θ), xh − y〉Z′,Z ,

where we have used the fact that 〈−J ′
0(x), y − x〉Z′,Z ≤ (θ, B̃(y − x))M since (x, θ) is the exact solution and

y ∈ K. Furthermore, using the definitions (4.28) and (4.29) and the fact that Vh ⊂ V , it is readily seen that

〈∂yL0(x, θ), yh − x〉Z′,Z = (ψ′(p)− θ, qh − p)M = ηunil(qh),

and
〈∂yL0(x, θ), y − xh〉Z′,Z = (ψ′(p)− θ, q − ph)M = ηunil(q),

so that
〈−J ′

0(x), δh〉Z′,Z ≤ (θ, B̃(xh − yh))M + ηunil(qh) + ηunil(q).
Since H+ is dense in M+, the above estimate can be extended by continuity to q ∈M+. Furthermore, observing
that (xh − yh) ∈ ker B̃h, there holds

〈−J ′
0(x), δh〉Z′,Z ≤ (θ −ΠΛh

θ, B̃(xh − yh))M + ηunil(qh) + ηunil(q)

≤ ‖θ −ΠΛh
θ‖M‖B̃(xh − yh)‖M + ηunil(qh) + ηunil(q).

Moreover, if Λh = Mh,

‖B̃(xh − yh)‖M = ‖(I −ΠΛh
)B(uh − vh)‖M � h1/2‖B(uh − vh)‖H � h1/2‖uh − vh‖V ,

while ‖B̃(xh − yh)‖M � ‖xh − yh‖Z if Λh �= Mh. Thus, in all cases, ‖B̃(xh − yh)‖M � hs/2‖xh − yh‖Z with
s = 1 if Λh = Mh and s = 0 if Λh �= Mh, and this yields

〈−J ′
0(x), δh〉Z′,Z � hs/2‖θ −ΠΛh

θ‖M‖xh − yh‖Z + ηunil(qh) + ηunil(q).
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Collecting the above estimates and using (4.19) together with a Young inequality, it is inferred that

‖xh − yh‖2Z � ‖x− yh‖2Z + ηunil(qh) + ηquad(qh)2 + ηunil(q) + hs‖θ −ΠΛh
θ‖2M ,

whence the bound on ‖x−xh‖Z follows using a triangle inequality. Finally, to derive the bound on h1/2‖θ−θh‖M ,
observe that for vh ∈ Vh and since Vh ⊂ V ,

(θh −ΠΛh
θ,Bhvh)M = (θh −ΠΛh

θ,Bvh)M
= (θh − θ,Bvh)M + (θ −ΠΛh

θ,Bvh)M

= 〈W ′(u)−W ′(uh), vh〉V ′,V + r(B̃�h(u− uh), Bvh)M + (θ −ΠΛh
θ,Bvh −ΠΛh

Bvh)M
� ‖x− xh‖Z‖vh‖V + ‖θ −ΠΛh

θ‖M‖Bvh −ΠΛh
Bvh‖M

� (‖x− xh‖Z + h1/2‖θ −ΠΛh
θ‖M )‖vh‖V ,

whence the desired estimate results from the discrete inf-sup condition and a triangle inequality. �

B. Proof of Proposition 5.2

Proof. The couple (uh, ph) ∈ Vh ×M+
h is such that

〈W ′(uh), vh〉V ′,V + (θh, Bvh)M + r(Buh − ph, Bvh)M = 0, ∀vh ∈ Vh, (B.1)

(ψ′(ph), qh − ph)Mh
− (θh, qh − ph)M − r(Buh − ph, qh − ph)M ≥ 0, ∀qh ∈M+

h , (B.2)

θh = θh + ρ (ΠMh
Buh − ph) . (B.3)

The couple (unh, p
n
h) ∈ Vh ×M+

h is such that

〈W ′(unh), vh〉V ′,V + (θn−1
h , Bvh)M + r(Bunh − pn−1

h , Bvh)M = 0, ∀vh ∈ Vh, (B.4)

(ψ′(pnh), qh − pnh)Mh
− (θn−1

h , qh − pnh)M − r(Bunh − pnh, qh − pnh)M ≥ 0, ∀qh ∈M+
h , (B.5)

θnh = θn−1
h + ρ (ΠMh

Bunh − pnh) . (B.6)

Set θ̄nh := θnh − θh, p̄nh := pnh − ph, and ūnh := unh − uh. Applying (B.1) and (B.4) to vh = ūnh and subtracting
yields

〈W ′(ūnh), ū
n
h〉V ′,V + (θ̄n−1

h , Būnh)M + r‖Būnh‖2M − r(p̄n−1
h , Būnh)M = 0, (B.7)

where the linearity of W ′ has been used. Similarly, using (B.2) with qh = pnh and (B.5) with qh = ph and
subtracting leads to

(ψ′(pnh)− ψ′(ph), pnh − ph)Mh
− (θ̄n−1

h , p̄nh)M + r‖p̄nh‖2M − r(p̄nh , Būnh)M ≤ 0. (B.8)

Adding (B.7) and (B.8) and setting α := αW − 2kψ′c2Mc
2
B and β := r − 2kψ′ yields

−(θ̄n−1
h , Būnh − p̄nh)M ≥〈W ′(ūnh), ū

n
h〉V ′,V + (ψ′(pnh)− ψ′(ph), pnh − ph)Mh

+ r‖Būnh − p̄nh‖2M + r(p̄nh − p̄n−1
h , Būnh)M

≥ αW ‖ūnh‖2V − kψ′‖p̄nh‖2M + r‖Būnh − p̄nh‖2M + r(p̄nh − p̄n−1
h , Būnh)M

≥ αW ‖ūnh‖2V −2kψ′‖Būnh‖2M−2kψ′‖Būnh−p̄nh‖2M + r‖Būnh − p̄nh‖2M+r(p̄nh − p̄n−1
h , Būnh)M

≥ α‖ūnh‖2V + β‖Būnh − p̄nh‖2M + r(p̄nh − p̄n−1
h , Būnh)M . (B.9)
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Adding (B.5) written at iteration n− 1 with qh = pnh and (B.5) written at iteration n with qh = pn−1
h and since

p̄nh − p̄n−1
h = pnh − pn−1

h and so on, yields

−(θ̄n−2
h − θ̄n−1

h , p̄nh − p̄n−1
h )M ≥ (ψ′(pnh)− ψ′(pn−1

h ), pnh − pn−1
h ) + r‖p̄nh − p̄n−1

h ‖2M
− r(p̄nh − p̄n−1

h , Būnh −Būn−1
h )M

≥ (r − kψ′)‖p̄nh − p̄n−1
h ‖2M − r(p̄nh − p̄n−1

h , Būnh −Būn−1
h )M . (B.10)

Owing to (B.3) and (B.6) at iteration (n− 1),

θ̄n−1
h = θ̄n−2

h + ρ
(
ΠMh

Būn−1
h − p̄n−1

h

)
, (B.11)

whence, owing to (B.10),

r(p̄nh − p̄n−1
h , Būnh −Būn−1

h )M ≥ β‖p̄nh − p̄n−1
h ‖2M − ρ(Būn−1

h − p̄n−1
h , p̄nh − p̄n−1

h )M . (B.12)

This equation can be reorganized as

r(Būnh , p̄
n
h − p̄n−1

h )M ≥ β‖p̄nh − p̄n−1
h ‖2M + (r − ρ)(Būn−1

h − p̄n−1
h , p̄nh − p̄n−1

h )M + r(p̄n−1
h , p̄nh − p̄n−1

h )M .

Using the identity 2(p̄n−1
h , p̄nh − p̄n−1

h )M = ‖p̄nh‖2M − ‖p̄n−1
h ‖2M − ‖p̄nh − p̄n−1

h ‖2M , we turn (B.12) into

2r(Būnh , p̄
n
h − p̄n−1

h )M ≥ (2β − r)‖p̄nh − p̄n−1
h ‖2M + r(‖p̄nh‖2M − ‖p̄n−1

h ‖2M )

+ 2(r − ρ)(Būn−1
h − p̄n−1

h , p̄nh − p̄n−1
h )M . (B.13)

Squaring (B.11) at iteration n leads to

‖θ̄n−1
h ‖2M − ‖θ̄nh‖2M ≥ −2ρ(θ̄n−1

h , Būnh − p̄nh)M − ρ2‖Būnh − p̄nh‖2M .

Finally, collecting (B.9) and (B.13) and using r ≥ ρ yields

‖θ̄n−1
h ‖2M − ‖θ̄nh‖2M ≥ 2ρα‖ūnh‖2V + ρ(2β − ρ)‖Būnh − p̄nh‖2M + ρ(2β − r)‖p̄nh − p̄n−1

h ‖2M
+ rρ(‖p̄nh‖2M − ‖p̄n−1

h ‖2M ) + 2ρ(r − ρ)(Būn−1
h − p̄n−1

h , p̄nh − p̄n−1
h )M

⇔ (‖θ̄n−1
h ‖2M + rρ‖p̄n−1

h ‖2M )− (‖θ̄nh‖2M + rρ‖p̄nh‖2M ) ≥ 2ρα‖ūnh‖2V + ρ(2β − ρ)‖Būnh − p̄nh‖2M
+ ρ(2β − r)‖p̄nh − p̄n−1

h ‖2M + 2ρ(r − ρ)(Būn−1
h − p̄n−1

h , p̄nh − p̄n−1
h )M

⇒ (‖θ̄n−1
h ‖2M + rρ‖p̄n−1

h ‖2M )− (‖θ̄nh‖2M + rρ‖p̄nh‖2M ) ≥ 2ρα‖ūnh‖2V + ρ(2β − ρ)‖Būnh − p̄nh‖2M
+ ρ(2β − r)‖p̄nh − p̄n−1

h ‖2M − ρ(r − ρ)(‖Būn−1
h − p̄n−1

h ‖2M + ‖p̄nh − p̄n−1
h ‖2M ). (B.14)

Set εn = ‖θ̄nh‖2M + rρ‖p̄nh‖2M + ρ(r − ρ)‖Būnh − p̄nh‖2M so that (B.14) can be rewritten as

εn−1 − εn ≥ 2ρα‖ūnh‖2V + ρ(2β − r)‖Būnh − p̄nh‖2M + ρ(2β − 2r + ρ)‖p̄nh − p̄n−1
h ‖2M . (B.15)

By assumption, α > 0, 2β−r > 0, and 2β−2r+ρ = ρ−4kψ′ ≥ 0. Hence, the sequence (εn)n∈N, which is clearly
nonnegative, is decreasing; thus it converges. As a consequence, the right-hand side of (B.15) converges to zero,
implying that the sequences (unh)n∈N and (pnh)n∈N converge to uh and ph respectively. Finally, the sequence
(θnh)n∈N is bounded. According to the Bolzano–Weierstrass theorem, there exists a converging subsequence, and
its limit is easily seen to be θh. By uniqueness of the discrete solution (uh, ph, θh), the whole sequence (θnh)n∈N

converges to θh. �
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