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TIME-INTEGRATION SCHEMES FOR THE FINITE ELEMENT
DYNAMIC SIGNORINI PROBLEM∗
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Abstract. A large variety of discretizations have been proposed in the literature for the nu-
merical solution of the dynamic Signorini problem. We classify the different discretizations into
four groups. The first three groups correspond to different ways of enforcing the contact condition:
exact enforcement, enforcement with penalty, and enforcement with contact condition in velocity.
The fourth approach is based on a modification of the mass matrix. Numerical simulations on two
one-dimensional benchmark problems with analytical solutions illustrate the properties of represen-
tative methods within each class, focusing first on spurious oscillations triggered by contact and then
on energy behavior after multiple impacts. Selected schemes are also tested on a two-dimensional
benchmark.
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1. Introduction. The design of robust and efficient numerical methods for dy-
namic contact problems has motivated a large amount of work over the last two
decades and remains challenging. Here, we focus on the dynamic Signorini problem,
which models the infinitesimal deformations of a solid body that can come into con-
tact with a rigid obstacle. This problem is the simplest dynamic contact problem, but
also the first step toward more complex situations such as multibody problems, large
deformation problems, contact with friction, etc. For an overview of the different
contact problems, we refer the reader to [21, 25, 38].

In structural dynamics, the usual space-time discretization combines finite ele-
ments in space and a time-stepping scheme. In this framework, the discretization of
the dynamic Signorini problem involves mainly three choices: (i) the finite element
space, (ii) the enforcement of the contact condition, (iii) the time-stepping scheme.
The combination of these three ingredients presents some difficulties. For instance, it
is well known that the combination of an exact enforcement of the contact condition
and an implicit Newmark scheme yields spurious oscillations as well as poor energy
behavior, that is, sizeable deviations from the exact value. Moreover, the combination
of an exact enforcement and an explicit scheme is not straightforward, whereas the
use of a penalty contact condition tightens the stability condition of explicit schemes.
Consequently, various alternative discretizations have been designed for the dynamic
Signorini problem. The aim of this work is to classify the different discretizations and
to numerically illustrate their main properties.

We classify the discretizations into four groups. The first three groups correspond
to different ways of enforcing the contact condition: exact enforcement [6, 8, 18, 27,
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(david.doyen@edf.fr).
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31, 32, 36, 37], enforcement with penalty [1, 3, 15], and enforcement with contact
condition in velocity [2, 3, 26]. The fourth approach is based on a modification of
the mass matrix [14, 20]; it can be seen as an alternative choice of the finite element
space. These four classes yield different space semidiscrete problems, which in turn
can be discretized in time using various time-stepping schemes, either implicit or
semiexplicit. We select representative discretizations within each class and examine
their main properties: presence of spurious oscillations, energy behavior after multiple
impacts, and stability in the case of explicit schemes. By energy conservation we mean
that the variation of the energy is equal to the work of the external forces (the contact
forces should not work). To illustrate these properties, numerical simulations on two
one-dimensional (1D) benchmarks have been performed. The first benchmark, the
impact of an elastic bar on a rigid surface, is well known and allows one to detect
spurious oscillations. The second, for which we derive the exact solution, deals with
the bounces of an elastic bar and is geared toward energy behavior, insofar as multiple
impacts occur; it is, to our knowledge, a new benchmark. Additionally, some of the
schemes are tested on a two-dimensional (2D) benchmark (without analytical solution)
associated with the impact and multiple bounces of a disk on a rigid surface. Some
of the presented Newmark-based schemes are also compared in three dimensions in
[23]. The mathematical analysis of the different methods is beyond the scope of this
article, but we mention, whenever they exist, the theoretical results (well-posedness
of the discrete problems and convergence of the discrete solutions). Dynamic contact
problems yield shock waves, and spurious oscillations appear near the shock in the
numerical solutions, owing to the so-called Gibbs phenomenon (see, e.g., [13] and
references therein). These oscillations can be eliminated using dissipative schemes (or,
equivalently, by filtering). This issue, being important but not specific to dynamic
contact problems, is not further addressed here (see also Remark 4.4).

The material is organized as follows. We formulate the dynamic Signorini prob-
lem in the continuous setting (section 2.1), and we introduce the main ingredients for
its approximation (sections 2.2 and 2.3). We present the two 1D benchmark problems
with their analytical solutions (section 3). We describe the four classes of discretiza-
tions together with numerical results in one dimension: exact enforcement of the
contact condition (section 4), enforcement with penalty contact condition (section 5),
enforcement with contact condition in velocity (section 6), and modification of the
mass matrix (section 7). Finally, we present numerical results on the 2D benchmark
for selected schemes (section 8) and draw some conclusions (section 9).

2. The dynamic Signorini problem.

2.1. Governing equations. We consider the infinitesimal deformations of a
body occupying a reference domain Ω ⊂ R

d (d ∈ {1, 2, 3}) during a time interval [0, T ].
The tensor of elasticity is denoted by A, and the mass density is denoted by ρ. An
external load f is applied to the body. Let u : (0, T )×Ω → R

d, ε(u) : (0, T )×Ω → R
d,d,

and σ(u) : (0, T )× Ω → R
d,d be the displacement field, the linearized strain tensor,

and the stress tensor, respectively. Denoting time-derivatives by dots, the momentum
conservation equation reads

(2.1) ρü− div σ = f, σ = A : ε, ε =
1

2
(∇u+ T∇u) in Ω× (0, T ).

The boundary ∂Ω is partitioned into three disjoint open subsets, ΓD, ΓN , and Γc.
Dirichlet and Neumann conditions are prescribed on ΓD and ΓN , respectively u = uD

on ΓD × (0, T ) and σ · n = fN on ΓN × (0, T ), where n denotes the outward unit
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normal to Ω. We set un := u|∂Ω · n and σn := n · σ|∂Ω · n, the normal displacement
and the normal stress on ∂Ω, respectively. On Γc, a unilateral contact condition, also
called Signorini condition, is imposed:

(2.2) un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on Γc × (0, T ).

At the initial time, the displacement and velocity fields are prescribed. The above
problem is an evolution partial differential equation under unilateral constraints. Here,
the equation is second-order in time, and the constraint holds on the displacement;
this is not the most favorable case. The existence and uniqueness of a solution has
been proven only in one dimension, when the contact boundary is reduced to a point
[28, 11]. In one dimension, it has also been proven that the variation of energy is
equal to the work of the external forces; the contact force does not work [28, 11]. In
higher dimensions, the existence of a solution is proven in the case of a viscoelastic
material, and, under certain assumptions, existence and uniqueness are proven for the
wave equation [28, 11].

2.2. Basic time-integration schemes in linear elastodynamics. In this
section, we briefly recall some basic facts about time-integration schemes in linear
elastodynamics; most of this material can be found in [17]. First, we discretize the
problem in space with a finite element method. To simplify the notation, we still
denote by u the space semidiscrete displacement. The number of degrees of freedom
is denoted by Nd. Let K, M , and F (t) be the stiffness matrix, the mass matrix, and
the column vector of the external forces, respectively. The space semidiscrete problem
consists of seeking u : [0, T ] → R

Nd such that, for all t ∈ [0, T ],

(2.3) Mü(t) +Ku(t) = F (t),

with the initial conditions u(0) = u0 and u̇(0) = v0. For solving such a system of or-
dinary differential equations (ODEs), linear one-step schemes are the most frequently
used. For simplicity, the interval [0, T ] is divided into equal subintervals of length Δt.
We set tn = nΔt and denote by un, u̇n, and ün the approximations of u(tn), u̇(tn), and
ü(tn), respectively. We define the convex combination �n+ω := (1 − ω)�n + ω�n+1,
where � stands for u, u̇, ü or t, and ω ∈ [0, 1]. We use a slightly different definition for

the external load, namely, Fn+α := F (tn+α); for instance, Fn+ 1
2 = F (tn+

1
2 ) generally

differs from 1
2 (F

n + Fn+1). Moreover, at time tn, the energy of the system is given
by En := 1

2
Tu̇nMu̇n + 1

2
TunKun. Now we can formulate some of the most common

time-stepping schemes in linear elastodynamics.
Discretization 2.1 (Hilber–Hughes–Taylor (HHT)-Newmark). Seek un+1, u̇n+1,

ün+1 ∈ R
Nd such that

Mün+1 +Kun+1+α = Fn+1+α,(2.4)

un+1 = un +Δt u̇n +
Δt2

2
ün+2β,(2.5)

u̇n+1 = u̇n +Δt ün+γ ,(2.6)

where α, β, γ are real parameters. The choice α = 0 yields Newmark schemes, while
the choice α ∈ [−1/3, 0], β = 1/4(1− α)2, and γ = 1/2− α yields HHT schemes.
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Discretization 2.2 (midpoint). Seek un+1, u̇n+1, ün+ 1
2 ∈ R

Nd such that

Mün+ 1
2 +Kun+ 1

2 = Fn+ 1
2 ,(2.7)

un+1 = un +Δt u̇n+ 1
2 ,(2.8)

u̇n+1 = u̇n +Δt ün+ 1
2 .(2.9)

Discretization 2.3 (central differences). Seek un+1 ∈ R
Nd such that

(2.10) M

(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn.

HHT schemes are implicit, unconditionally stable, second-order accurate, and
dissipative in the high frequencies. The amount of dissipation is controlled by the
parameter α. Newmark schemes do not, in general, conserve the energy; such schemes

instead conserve the quadratic form En
β,γ := En + Δt2

2

(
β − 1

2γ
)
TünMün since there

holds [24]

En+1
β,γ − En

β,γ = T

(
1

2
(Fn+1 + Fn) +

(
γ − 1

2

)
(Fn+1 − Fn)

)
(un+1 − un)

−
(
γ − 1

2

)(
T(un+1 − un)K(un+1 − un)

+

(
β − 1

2
γ

)
T(ün+1 − ün)M(ün+1 − ün)

)
.

The quadratic form En
β,γ coincides with the energy only if β = 1

2γ. For β �= 1
2γ, we

refer to En
β,γ as a shifted energy; the sign of the difference between En

β,γ and En depends

only on the sign of (β− 1
2γ). The particular choice β = 1/4, γ = 1/2 yields an implicit,

unconditionally stable, and second-order accurate scheme. It is energy-conserving in
the sense that

En+1 − En = T

(
Fn+1 + Fn

2

)
(un+1 − un).

The midpoint scheme is implicit, unconditionally stable, and second-order accurate.
It is energy-conserving in the sense that

En+1 − En = TFn+ 1
2 (un+1 − un).

The central difference scheme is explicit (lumping the mass matrix avoids solving any
linear system), conditionally stable, and second-order accurate. Here it is written as
a two-step linear scheme involving only the displacement, but it can be formulated
as a one-step scheme. Actually, it is a Newmark scheme with parameters β = 0,
γ = 1/2; the velocity and acceleration are then u̇n = 1

2Δt (u
n+1 − un−1) and ün =

1
Δt2 (u

n+1 − 2un + un−1). The central difference scheme does not conserve the energy
En but the shifted energy En

0, 12
in the sense that

En+1
0, 12

− En
0, 12

= T

(
Fn+1 + Fn

2

)
(un+1 − un).

There exist also explicit schemes with high-frequency dissipation, such as the Chung–
Hulbert or Tchamwa–Wielgosz schemes (see [30] and references therein).
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2.3. Enforcing the contact condition. The enforcement of a contact con-
dition in a finite element setting has been widely studied in the case of the static
Signorini problem [21]. We assume that the mesh is compatible with the partition of
the boundary. Let Nc be the number of nodes lying on the contact boundary. We
define the linear normal trace operator on Γc, g : v �−→ −v|Γ · n, and the associated
matrix G. Note that the dimension of G is Nc ×Nd. We denote by {Gi}1≤i≤Nc the
rows of the matrix G. Thus, Giu yields the value of the normal displacement at the
ith node of the contact boundary. With an exact enforcement, the static Signorini
problem consists of seeking a displacement u ∈ R

Nd and a contact pressure r ∈ R
Nc

such that

Ku = F + TGr,(2.11)

Gu ≥ 0, r ≥ 0, TrGu = 0.(2.12)

Here the problem is formulated as a complementarity problem. Other formalisms can
be found in the literature, e.g., variational inequality, Lagrangian formulation, and
formulation with subderivatives. If the matrix K is positive definite, problem (2.11)–
(2.12) has a unique solution. For solving this problem, a large variety of methods have
been developed [21, 38]: Uzawa algorithms, active set methods, semismooth Newton
methods, the Lemke algorithm, the monotone multigrid method, etc.

Penalty formulations are another classical way of dealing with constrained prob-
lems. We have to define a penalty function Rε : RNc → R

Nc . For instance, we can
choose Rε(v) = 1

ε (v)
−, where (v)− denotes the negative part of v. The penalized

static Signorini problem consists now of seeking u ∈ R
Nd such that

(2.13) Ku = F + TGRε(Gu).

A third way of enforcing the contact condition, specific to the dynamic problem, is
to replace the Signorini condition by an approximation involving the velocity instead
of the displacement [11, 29]. Assume that un = 0 at a certain time tc. Then, on a
short time interval afterwards, un ≈ (t− tc)u̇n. This motivates the following contact
condition in velocity:

(2.14) u̇n ≤ 0, σn(u) ≤ 0, σn(u)u̇n = 0 on Γc.

It must be stressed that condition (2.14) is applicable only during contact phases.
This condition is not applicable during noncontact phases because a positive normal
velocity is not allowed.

3. 1D benchmark problems. To compare the different methods, we test them
on two 1D problems. Both problems can be formulated in the same setting. We con-
sider an elastic bar dropped against a rigid ground. The bar is dropped, undeformed,
from a height h0, with an initial velocity −v0, under a gravity acceleration g0 ≥ 0.
The length of the bar is denoted by L, the Young modulus by E, and the density by ρ.

Let c0 :=
√

E
ρ denote the wave speed. The reference domain is Ω = [0, L]. In this

context, the governing equations presented in section 2.1 for the continuous problem
take the form

ρü− E
∂2u

∂x2
= −ρg0 in Ω× (0, T ),(3.1)

u(0, t) ≥ 0, r(t) ≥ 0, r(t)u(0, t) = 0 on (0, T ),(3.2)

∂u

∂x
(L, t) = 0 on (0, T ), u(·, 0) = h0, u̇(·, 0) = −v0,(3.3)
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Fig. 1. Impact of an elastic bar.

where u is the scalar-valued displacement of the bar and r the contact pressure equal
to the normal stress −E ∂u

∂x at x = 0. Problem (3.1)–(3.3) has a unique solution, and
the variation of the energy is equal to the work of the gravity force [28],

(3.4)
d

dt

(
1

2

∫
Ω

ρu̇2 +
1

2

∫
Ω

E

∣∣∣∣∂u∂x
∣∣∣∣
2
)

=

∫
Ω

−ρg0u̇ ∀t ∈ [0, T ].

In the first problem, v0 > 0 and g0 = 0 so that there is a single impact. This
benchmark has been widely used in the literature (see, e.g., [38]). It enables us to
examine the possible spurious oscillations triggered by the numerical schemes. In the
second problem, v0 = 0 and g0 > 0, so that the bar can make several bounces. With
a suitable choice of parameters, the motion of the bar is periodic in time, and we
can calculate the exact solution. This benchmark enables us to examine the time
evolution of energy after multiple impacts and is, to our knowledge, new.

3.1. Impact of an elastic bar. Let us describe the solution of the first problem
(Figure 1). Before the impact, the bar is undeformed and has a uniform velocity −v0.
The bar reaches the ground at time t1 := h0

v0
. After the impact, the bar stays in

contact with the ground. A shock wave travels from the bottom of the bar to the
top. Above the shock wave, the velocity is −v0; below, the velocity is zero. Then, the
shock wave travels from the top to the bottom. Above the shock wave, the velocity is
v0; below, the velocity is still zero. As soon as the wave reaches the bottom, the bar
takes off, undeformed, with a uniform velocity v0. The speed of the shock wave is c0.
Thus, the wave takes a time τw := L

c0
to travel along the bar, and the bar takes off at

time t2 := t1 + 2τw. The analytical solution can be easily expressed using travelling
wave solutions. Defining the auxiliary function Hv(x, t) = −vmin(x/c0, τw−|t−τw|),
the exact solution is

u(x, t) =

⎧⎪⎨
⎪⎩
h0 − v0t if t ≤ t1,

Hv0(x, t− t1) if t1 < t ≤ t2,

v0(t− t2) if t2 < t.

In particular, the displacement at the bottom of the bar and the contact pressure are

u(0, t) =

⎧⎪⎨
⎪⎩
h0 − v0t if t ≤ t1,

0 if t1 < t ≤ t2,

v0(t− t2) if t2 < t,

r(t) =

⎧⎪⎨
⎪⎩
0 if t ≤ t1,
Ev0
c0

if t1 < t ≤ t2,

0 if t2 < t.

These two quantities are represented in Figure 2 (with the parameters chosen in
section 3.3).
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Fig. 2. Impact of an elastic bar. Displacement at the bottom of the bar (left) and contact
pressure (right).
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Fig. 3. Bounces of an elastic bar.

3.2. Bounces of an elastic bar. In the second problem (Figure 3), the bar

is dropped, undeformed, with a zero initial velocity. It takes a time τf :=
√

2h0

g0
to

reach the ground. At the impact, at time t1 := τf , the bar is undeformed and has
uniform velocity −vf , where vf :=

√
2h0g0. After the impact, as in the previous

benchmark, the bar stays in contact with the ground during a time 2τw. During
this contact phase, the response of the bar is the superposition of a shock wave
due to velocity at the impact and a vibration due to the gravity, as reflected by
the series S1 and S2 below. When the bar takes off, at time t2 := t1 + 2τw, it
has a uniform velocity vf but it is compressed. (By symmetry, u(x, t2) = ũ(x) :=
g0
c20
(x2−2Lx) is twice the static deformation with homogeneous Dirichlet and Neumann

conditions at x = 0 and x = L, respectively.) Consequently, during the flight phase,
the response of the bar is the superposition of a rigid parabolic motion (due to the
gravity and the velocity) and a vibration (due to the initial deformation). If we
choose τf = pτw for a positive integer p (for instance, τf = 3τw), we can ensure
that the bar reaches the ground with uniform velocity −vf and with displacement
field ũ. When we do this, the second impact occurs at time t3 := t2 +2τf = t2 +6τw.
When the bar takes off again, at time t4 := t3 + 2τw, it is undeformed and has a
uniform velocity vf . The next flight phase is a rigid parabolic movement. Then this
sequence of two contact phases and two flight phases repeats periodically. To compute
the analytical solution, we use a decomposition on the eigenmodes in addition to
the travelling wave solutions. We set t4k+1 = 3τw + 16kτw, t4k+2 = t4k+1 + 2τw,
t4k+3 = t4k+1+8τw, and t4k+4 = t4k+1+10τw. We also define the auxiliary functions
P (x, t) = h0 − 1

2g0(t − τf )
2, S1(x, t) =

∑∞
n=1 an(1 − cos(c0νnt)) sin(νnx), S2(x, t) =

− 2g0L
2

3c20
+
∑∞

n=1 bn cos(c0λnt) cos(λnx), where an = −2g0
c20Lν3

n
, νn = (n− 1

2 )
π
L , bn = 4g0

c20λ
2
n
,
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λn = n π
L . The function S1 corresponds to the vibration of a bar, clamped at its

bottom, initially at rest, under a gravity g0. The function S2 corresponds to the
vibration of a bar, free at its two extremities, with the initial displacement ũ, a zero
initial velocity, and no external force. The computation of the series S1 and S2 is
standard; see [7], for instance. The exact solution is

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P (x, t+ τf ) if t ≤ t1,

Hvf (x, t− t4k+1) + S1(x, t− t4k+1) if t4k+1 < t ≤ t4k+2,

P (x, t− t4k+2) + S2(x, t− t4k+2) if t4k+2 < t ≤ t4k+3,

Hvf (x, t4k+4 − t) + S1(x, t4k+4 − t) if t4k+3 < t ≤ t4k+4,

P (x, t− t4k+4) if t4k+4 < t ≤ t4(k+1)+1.

The displacement at the bottom of the bar is represented in Figure 4 (with the pa-
rameters chosen in section 3.3).
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Fig. 4. Bounces of an elastic bar. Displacement at the bottom of the bar.

3.3. Numerical simulations. The parameters used in the numerical simula-
tions are E = 900, ρ = 1, L = 10, h0 = 5. In the first benchmark, v0 = 10, g0 = 0; in
the second benchmark, v0 = 0, g0 = 10. The bar is discretized with a uniform mesh
size Δx, and linear finite elements are used. We define νc := c0

Δt
Δx as the Courant

number, which is the relevant ratio to link the mesh size and the time step. In par-
ticular, central difference schemes with lumped mass matrix are stable in the linear
case under the condition νc ≤ 1. In what follows, we take νc = 1.5 for unconditionally
stable schemes and νc = 0.75 (thereby halving the time step) for central difference
schemes. To describe the numerical results, we consider the following quantities: the
displacement at the bottom node of the bar (denoted by un

0 ), the stress at the bot-
tom node of the bar (denoted by (Kun)0), the contact pressure rn, and the energy
En − TFun (the load vector being time-independent, we denote it by F ). Note that,
because of the finite element discretization, the stress at the bottom node and the
contact pressure are not equal.

4. Discretizations with exact enforcement of the contact condition. In
this section we combine standard finite elements in space and an exact enforcement
of the contact condition at each node of the contact boundary. This leads to the
semidiscrete problem

Mü(t) +Ku(t) = F (t) + TGr(t),(4.1)

Gu(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu(t) = 0.(4.2)
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Problem (4.1)–(4.2) is a system of differential equations under unilateral constraints.
The same kind of formulation arises in rigid-body dynamics with impact [5, 35], so
the mathematical results and the numerical methods developed in this framework can
in general be applied to problem (4.1)–(4.2). Mathematically, this problem turns out
to be delicate. First, the functional framework is not obvious. Due to the unilateral
constraints, the velocity can be discontinuous, and there is in general no strong so-
lution (i.e., twice differentiable in time) to this problem. One possibility is to look
for a weak solution such that the displacement u is continuous in time, the veloc-
ity u̇ is a function with bounded variation in time, and the acceleration ü and the
contact pressure r are measures (they contain impulses). Second, this weak solution
is in general not unique. Consider the simple example of a point mass impacting a
rigid foundation. Before the impact, the motion of the point mass is uniquely deter-
mined. After the impact, an infinity of velocities and trajectories are admissible. To
recover uniqueness, an additional condition, specifying the velocity after an impact, is
needed. Denoting by v− the normal velocity before the impact and by v+ the normal
velocity after the impact, a usual approach is to prescribe v+ = −ev−, where e is a
nonnegative parameter. In the present space semidiscrete setting, it seems reasonable
to take e = 0. Indeed, in the dynamic Signorini problem, the unilateral constraint
holds on the boundary, and the boundary does not bounce after an impact. We can
now formulate the semidiscrete problem with impact law.

Problem 4.1. Seek a displacement u : [0, T ] → R
Nd and a contact pressure

r : [0, T ] → R
Nc such that

Mü+Ku = F + TGr,(4.3)

Gu ≥ 0, r ≥ 0, TrGu = 0,(4.4)
Tri(t)Giu̇(t

+) = 0 if Giu(t) = 0,(4.5)

with the initial conditions u(0) = u0 and u̇(0) = v0.
Equation (4.5) constitutes the impact law. Most of the mathematical terms in

(4.3)–(4.5) must be understood in the sense of measures. In particular, TrGu and
Tri(t)Giu̇(t

+) should be defined with suitable duality products. For more details, we
refer the reader to [5, 35].

Remark 4.1. The impact law (4.5) is a consequence of the discretization in space.
Indeed, the continuous problem does not need an impact law to have a unique solution.
This fact is proven in one dimension [11, 28]; in higher dimensions, uniqueness is still
an open problem, but the difficulty does not seem to come from the absence of an
impact law.

Remark 4.2. Another difference from the continuous solution is that the semidis-
crete solution does not conserve the energy since there is a loss of energy at each
impact of a node. Actually, energy is conserved for e = 1, but this is not satisfactory
since the contact is never established for a time interval of nonzero length.

Remark 4.3. The impact law is different from the concept of persistency condition
sometimes encountered in the literature [1, 25, 26, 27]. The persistency condition is
defined in the continuous setting and in the fully discrete setting. It requires that the
contact force does not work. Note that, in the continuous problem, the persistency
condition seems to be a consequence of the Signorini condition (it is at least proven
in one dimension).

4.1. Implicit schemes. We consider first dissipative schemes and then schemes
dealing with the impact.
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Fig. 5. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 4.1 with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.
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Fig. 6. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 4.1 with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.

4.1.1. Dissipative schemes. To motivate the discussion, let us begin with an
ill-founded discretization. We choose a Newmark scheme (trapezoidal rule) for the
elastodynamics part, and we enforce the contact condition (4.4) at a certain time,
say tn+1. We pay no attention to the impact law (4.5). This choice corresponds to
Discretization 4.1 with α = 0, β = 1/4, γ = 1/2.

Discretization 4.1 (HHT-Newmark). Seek un+1, u̇n+1, ün+1 ∈ R
Nd, and

rn+1 ∈ R
Nc such that

Mün+1 +Kun+1+α = Fn+1+α + TGrn+1,(4.6)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0,(4.7)

un+1 = un +Δtu̇n +
Δt2

2
ün+2β ,(4.8)

u̇n+1 = u̇n +Δt ün+γ .(4.9)

At each time step, the problem (4.6)–(4.9) is equivalent to a linear complemen-
tarity problem and is well-posed. In contrast to the static case, the matrix K does
not need to be positive definite for the problem to be well-posed (Dirichlet bound-
ary conditions are not needed). When this scheme is tested on the first benchmark,
we observe large spurious oscillations on the contact pressure and small spurious os-
cillations on the displacement during the contact phase (Figure 5). On the second
benchmark, we observe a poor displacement and a poor energy behavior (Figure 6).
Let us try to explain what happens exactly. Suppose that there is contact at the ith
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Fig. 7. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 4.1 with α = −0.2, β = 1/4(1 − α)2, γ = 1/2− α. Δx = 0.1, Δt = 0.005, νc = 1.5.

node of the contact boundary at time tn+1 (i.e., Giu
n+1 = 0); then

Giu̇
n+1 = − γ

βΔt
Giu

n +

(
1− γ

β

)
Giu̇

n +Δt
2β − γ

2β
Giü

n,(4.10)

Giü
n+1 = − 1

βΔt2
Giu

n − 1

βΔt
Giu̇

n − 1− 2β

2β
Giü

n.(4.11)

Thus, the impact law is not satisfied since we expect that after an impact, Giu̇
n+1 =

Giü
n+1 = 0. During a contact phase following an impact, the velocity and the

acceleration oscillate. In the simple case of an impact without initial acceleration and
initial velocity vi, the magnitude of the acceleration oscillations after the impact is
vi
Δt . These oscillations trigger oscillations of magnitude mivi

Δt on the contact pressure,
where mi is the mass associated with the node i (Figure 5). Moreover, the energy
balance takes the form

En+1 − En = T

(
rn+1 + rn

2

)
(Gun+1 −Gun) + T

(
Fn+1 + Fn

2

)
(un+1 − un),

so that the contact force works when a node changes status. When a node comes
into contact (Giu

n > 0, rn = 0, Giu
n+1 = 0, rn+1 > 0), the work is negative; when

a node is released (Giu
n = 0, rn > 0, Giu

n+1 > 0, rn+1 = 0), the work is positive.
As the contact pressure is polluted by large oscillations, this strongly perturbs the
rest of the structure (Figure 6). The poor behavior of the Newmark scheme can be
summarized as follows: large oscillations of the acceleration at the contact boundary
⇒ large oscillations of the contact pressure ⇒ perturbation of the whole structure.

In themselves the oscillations of the acceleration at the contact boundary are not a
problem. The oscillations of the contact pressure are more troublesome if a Lagrangian
method is used for solving the linear complementarity problem at each time step (the
Lagrange multiplier being equal to the contact pressure). Of course, the perturbation
of the whole structure must be avoided. Several options can be considered in designing
better algorithms. The first option consists of using dissipative schemes, such as HHT
schemes (Discretization 4.1). The spurious oscillations are then damped (Figure 7),
but at the expense of poor energy behavior (Figure 8). The selected value α = −0.2
here achieves a reasonable compromise between dissipation of spurious oscillations
and energy. First-order schemes like θ-schemes, which are implicit, unconditionally
stable, dissipative schemes, yield the same kind of results (Discretization 4.2).
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Fig. 8. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 4.1 with α = −0.2, β = 1/4(1 − α)2, γ = 1/2− α. Δx = 0.1, Δt = 0.005, νc = 1.5.

Discretization 4.2 (θ-schemes [37]). Seek un+1, u̇n+1 ∈ R
Nd , and rn+1 ∈ R

Nc

such that

Mün+ 1
2 +Kun+θ = Fn+θ + TGrn+1,(4.12)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0,(4.13)

un+1 = un +Δt u̇n+θ,(4.14)

u̇n+1 = u̇n +Δt ün+ 1
2 .(4.15)

Remark 4.4. It is sometimes argued in the literature that first-order schemes
must be preferred to second-order schemes for dynamic contact problems, due to the
nonsmoothness of the solution. We must distinguish two issues: the treatment of the
contact condition and the treatment of the shock waves induced by the contact. As
discussed previously, a proper treatment of the contact condition is not related to the
order of the scheme. As for the shock waves, they require a scheme with dissipation,
and there exist second-order accurate schemes with dissipation, such as the HHT or
Chung–Hulbert schemes. Note also that the amount of dissipation needed to treat the
shock waves in the bulk is much smaller than that needed to dissipate the oscillations
caused by the contact condition.

4.1.2. Schemes dealing with the impact. First we briefly discuss a naive
stabilized Newmark scheme where an extra step is used to enforce the impact law
(Discretization 4.3). Then, we consider two schemes with dissipative contact using a
midpoint (Discretization 4.4) or a Newmark (Discretization 4.5) scheme. Finally, an
improvement of these schemes based on the velocity-update method introduced in [27]
can be considered; in the case of the Newmark scheme, this yields Discretization 4.6.
An alternative approach to prevent the oscillations of the acceleration from transfer-
ring to the contact pressure consists in removing the mass at the contact boundary.
This approach will be developed in section 7.

To motivate the discussion, let us look for a scheme which satisfies the impact
law or, more precisely, a scheme which forces the acceleration to be zero during the
contact phases. No implicit Newmark scheme achieves this. An extra step is needed
to enforce the impact law (Discretization 4.3).

Discretization 4.3 (naive stabilized Newmark).
1. Seek un+1 ∈ R

Nd , u̇n+1 ∈ R
Nd, ün+1 ∈ R

Nd , and rn+1 ∈ R
Nc satisfying

(4.6)–(4.9).
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Fig. 9. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 4.3 with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.
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Fig. 10. Impact of an elastic bar. Contact pressure rn (left) and stress (Kun)0 (right). Dis-
cretization 4.4. Δx = 0.1, Δt = 0.005, νc = 1.5.

2. If Giu
n ≥ 0 and Giu

n+1 = 0, then u̇n+1 and ün+1 are modified so that
Giu̇

n+1 = 0 and Giü
n+1 = 0.

As illustrated in Figure 9, the large spurious oscillations have disappeared. How-
ever, this stabilization takes effect only one step after the impact, which explains
the peak in the contact pressure just after the impact. A possible remedy consists
of finding a time discretization where the contact force does not work or is at least
dissipative. For instance, the midpoint scheme with an enforcement of the contact
condition at time tn+1 (Discretization 4.4) achieves the following energy balance:

En+1 − En = Trn+1(Gun+1 −Gun) + TFn+ 1
2 (un+1 − un).

It is easy to check that the work of the contact force is always nonpositive. As
illustrated in Figure 10, the contact pressure still oscillates, but the stress is practically
free of oscillations. The oscillations of the stress after the bar has taken off are due
to vibrations. However, energy losses, even if they are not substantial, do have an
impact on the solution (Figure 11). It can also be noticed that energy losses do not
vanish as Δt approaches zero, but these losses decrease with the mesh size.

Discretization 4.4 (midpoint-implicit contact). Seek un+1, u̇n+1 ∈ R
Nd , and

rn+1 ∈ R
Nc such that

Mün+ 1
2 +Kun+ 1

2 = Fn+ 1
2 + TGrn+1,(4.16)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0,(4.17)

un+1 = un +Δt u̇n+ 1
2 ,(4.18)

u̇n+1 = u̇n +Δt ün+ 1
2 .(4.19)
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Fig. 11. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 4.4. Δx = 0.1, Δt = 0.005, νc = 1.5.

Another scheme with dissipative contact has been proposed in [18]. The Newmark
scheme with parameters β = 1/2 and γ = 1 and with an enforcement of the contact
condition at time tn+1 yields the following energy balance:

En+1−En = Trn+1(Gun+1−Gun)− 1

2
T(un+1−un)K(un+1−un)+TFn+1(un+1−un).

The work of the contact force is always nonpositive, but there is a strong bulk dis-
sipation. To remove this dissipation, one can, as proposed in [18], discretize the
acceleration coming from the contact forces with the dissipative parameters (β = 1/2
and γ = 1), and the acceleration coming from the elastic forces with a trapezoidal rule
(β = 1/4 and γ = 1/2). This yields Discretization 4.5. With such a discretization,
the energy balance is

En+1 − En = Trn+1(Gun+1 −Gun) + TFn+1(un+1 − un).

The numerical results are similar to those obtained with Discretization 4.4.
Discretization 4.5 (Newmark with dissipative contact [18]). Seek un+1, u̇n+1,

ün+1
int , ün+1

con ∈ R
Nd , and rn+1 ∈ R

Nc such that

Mün+1 +Kun+1 = Fn+1 + TGrn+1,(4.20)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0,(4.21)

un+1 = un +Δtu̇n +
Δt2

2
ün+2β
int +

Δt2

2
ün+1
con ,(4.22)

u̇n+1 = u̇n +Δtün+γ
int +Δtün+1

con ,(4.23)

where ün+1 = ün+1
int + ün+1

con and Mün+1
con = TGrn+1.

To compensate for energy losses in schemes with dissipative contact, the so-called
velocity-update method can be considered [27]. Applied to Discretization 4.4, this
procedure does not significantly improve the solution on our second benchmark. In
[8], the authors add to Discretization 4.5 a stabilization procedure (Discretization 4.6);
for a consistency result under the assumption of viscoelastic material, see [22].

Discretization 4.6 (stabilized Newmark [8]).
1. Seek un+1

pred ∈ R
Nd and λn+1 ∈ R

Nc such that

Mun+1
pred = Mun +ΔtMu̇n,(4.24)

Gun+1
pred ≥ 0, λn+1 ≥ 0, Tλn+1Gun+1

pred = 0.(4.25)
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2. Seek un+1, u̇n+1, ün+1
int , ün+1

con ∈ R
Nd , and rn+1 ∈ R

Nc satisfying (4.20), (4.21),
and (4.23), while (4.22) is replaced by

un+1 = un+1
pred +

Δt2

2
ün+2β
int +

Δt2

2
ün+1
con .(4.26)

The additional step required by Discretization 4.6 is not expensive compared with
the main step, especially if the mass matrix is lumped. With this scheme, the contact
pressure is now almost free of oscillations (Figure 12). Although the impact law is not

fulfilled, Giü
n+2β
int + Giü

n+1
con = 0 holds true if Giu

n+1 = Giu
n+1
pred = 0. Energy losses

still remain sizeable in the second benchmark (Figure 13).
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Fig. 12. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). Δx = 0.1, Δt = 0.005,
νc = 1.5.
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Fig. 13. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). Δx = 0.1, Δt = 0.005,
νc = 1.5.

4.2. Semiexplicit schemes. Now, we try to discretize the elastodynamics part
of the problem with an explicit scheme, such as the central difference scheme. It is
not possible to enforce an explicit exact contact condition. Nevertheless, the contact
condition can be enforced implicitly as in [31, 32].

Discretization 4.7 (central differences-implicit contact [31, 32]). Seek un+1 ∈
R

Nd and rn+1 ∈ R
Nc such that

M

(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn + TGrn+1,(4.27)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0.(4.28)
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With a lumped mass matrix, this scheme is equivalent to that proposed in [6]
where the contact condition is enforced by a projection step in the following semiex-
plicit way (observe that the first step is explicit):

1. Seek un+1 ∈ R
Nd such that

M

(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn.(4.29)

2. If Giu
n+1 < 0, then un+1 is modified so that Giu

n+1 = 0.
It is easy to check that, with Discretization 4.7, the acceleration at the contact bound-
ary vanishes during a contact phase (after two steps). Indeed, if Giu

n+1 = Giu
n =

Giu
n−1 = 0, then Giü

n = Gi

(
un+1−2un+un−1

Δt2

)
= 0. Consequently, there are (almost)

no spurious oscillations (Figure 14). The shifted energy balance reads

En+1
0, 12

− En
0, 12

= T

(
rn+2 + rn+1

2

)
(Gun+1 −Gun) + T

(
Fn+1 + Fn

2

)
(un+1 − un).

Energy losses, although moderate, affect the quality of the solution after some im-
pacts (Figure 15). In one dimension, the convergence of the discrete solutions to the
continuous solution, provided a stability condition is met (the same as in the linear
case), has been established in [34]. The convergence of the discrete solutions to a
semidiscrete solution has been proven in [31, 32].

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

di
sp

la
ce

m
en

t

time

ex./central differences-implicit contact
exact solution

-100

 0

 100

 200

 300

 400

 500

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

co
nt

ac
t p

re
ss

ur
e

time

ex./central differences-implicit contact
exact solution

Fig. 14. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 4.7 (lumped mass matrix). Δx = 0.1, Δt = 0.0025, νc = 0.75.
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Fig. 15. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 4.7 (lumped mass matrix). Δx = 0.1, Δt = 0.0025, νc = 0.75.
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Fig. 16. Impact of an elastic bar. Displacement un
0 (left) and contact pressure TGRε(Gun)

(right). Discretization 5.1 with α = 0, β = 1/4, γ = 1/2, ε = 10−4. Δx = 0.1, Δt = 0.005, νc = 1.5.
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Fig. 17. Impact of an elastic bar. Contact pressure TGRε(Gun). Discretization 5.1 with α = 0,
β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5. ε = 10−3 (left) and ε = 10−5 (right).

5. Discretizations with penalty contact condition. In this part we combine
standard finite elements in space and a penalty approximation of the contact condition
(the penalty parameter is denoted by ε). Then, the semidiscrete problem is a mere
system of ODEs.

Problem 5.1. Seek a displacement u : [0, T ] → R
Nd such that, for all t ∈ [0, T ],

(5.1) Mü(t) +Ku(t) = f(t) + TGRε(Gu(t)),

with the initial conditions u(0) = u0 and u̇(0) = v0.
Problem 5.1, being a system of ODEs with a Lipschitz continuous right-hand side,

has one and only one solution, which is furthermore twice differentiable in time.

5.1. Implicit schemes. To begin with, we discretize Problem 5.1 with an im-
plicit Newmark scheme.

Discretization 5.1 (Newmark). Seek un+1, u̇n+1, ün+1 ∈ R
Nd , such that

Mün+1 +Kun+1 = Fn+1 + TGRε(Gun+1),(5.2)

un+1 = un +Δtu̇n +
Δt2

2
ün+2β ,(5.3)

u̇n+1 = u̇n +Δtün+γ .(5.4)

We observe that the penalty formulation tends to reduce spurious oscillations
(Figure 16). Nevertheless, the oscillations grow with 1/ε (Figure 17). This is not
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Fig. 18. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 5.1 with α = 0, β = 1/4, γ = 1/2, and ε = 10−4. Δx = 0.1, Δt = 0.005, νc = 1.5.

surprising, since the penalty contact condition tends to the exact contact condition
when 1/ε tends to infinity. If the oscillations are too large, stabilization procedures
can be used (see, for instance, the procedure described in [1]). With the addition
of a penalty term, the Newmark scheme (trapezoidal rule) no longer conserves the
energy. The energy losses are moderate but not so marginal (Figure 18); the energy
behavior is poorer when 1/ε grows. In [1, 15], the authors proposed a discretization
of the penalty term which enables one to recover energy control by conserving an
augmented energy (Discretization 5.2). It is based on a midpoint scheme. On our
benchmark problems, it does not yield significantly better results.

Discretization 5.2 (energy-controlling midpoint [1, 15]). Seek un+1, u̇n+1 ∈
R

Nd such that

Mün+ 1
2 +Kun+ 1

2 = Fn+ 1
2 + TGR̃ε(Gun+1, Gun),(5.5)

un+1 = un +Δtu̇n+ 1
2 ,(5.6)

u̇n+1 = u̇n +Δtün+ 1
2 ,(5.7)

where

(5.8) (R̃ε(Gun+1, Gun))i =

⎧⎪⎨
⎪⎩

1
2ε

((Giu
n+1)−)2−((Giu

n)−)2

Giun+1−Giun if Giu
n �= Giu

n+1,

0 if Giu
n = Giu

n+1 ≥ 0,
1
2ε (Gun+1 +Gun) if Giu

n = Giu
n+1 < 0.

Defining the augmented energy En
pen := En + 1

2ε((Gun)−)2, there holds

En+1
pen − En

pen = TFn+ 1
2 (un+1 − un).

Since En
pen is an upper bound of En, controlling En

pen allows one to control En.

5.2. Explicit schemes. We can also use an explicit scheme for Problem 5.1.
Discretization 5.3 (central differences). Seek un+1 ∈ R

Nd such that

M

(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn + TGRε(Gun).(5.9)

The results are similar to those obtained with the implicit approach. Unfortu-
nately, the penalty term stiffens the system of ODEs, which limits the stability domain
of the schemes. More precisely, it introduces a constraint on the time step of the form
Δt ≤ O(

√
ρεΔxc), where Δxc is the mesh size near the contact boundary [3].
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6. Discretizations with contact condition in velocity. In this section, stan-
dard finite elements in space are combined with an approximation of the contact
condition involving the velocity.

Problem 6.1. Seek a displacement u : [0, T ] → R
Nd and a contact pressure

r : [0, T ] → R
Nc such that, for almost every t ∈ [0, T ],

Mü(t) +Ku(t) = f(t) + TGr(t),(6.1)

Gu̇(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu̇(t) = 0,(6.2)

with the initial conditions u(0) = u0 and u̇(0) = v0.
With this contact condition in velocity, the semidiscrete problem is much simpler

than (4.1)–(4.2). Problem 6.1 is still a system of ODEs under unilateral constraints,
but the constraint now involves the velocity instead of the displacement. The general
theory developed in [4, 12] applies to Problem 6.1. The solution u is unique [4].
Furthermore, u is continuous and u̇ is differentiable in time almost everywhere, so
that the equations have a sense at almost every time. The time discretization has
been extensively studied in [12].

Unfortunately, the contact condition in velocity is not equivalent to the Signorini
condition as discussed in section 2.3. The strategy adopted is the following: if a node
satisfies the noninterpenetration condition, then at the next iteration no constraint
is enforced on this node; if a node breaks the noninterpenetration condition, then at
the next iteration the contact condition in velocity will be applied to this node. This
approach allows for slight interpenetration. At each time step, we define the matrix
Gn whose rows Gn

i are

(6.3) Gn
i =

{
(0 . . . 0) if Giu

n ≥ 0,

Gi if Giu
n < 0.

This approach based on a contact condition in velocity has also been widely used in
rigid-body dynamics with impacts (see, e.g., [35]).

6.1. Implicit schemes. A midpoint scheme with contact condition in velocity
has been proposed in [26]; see also [19] for the contact condition.

Discretization 6.1 (midpoint [26]). Seek un+1, u̇n+1 ∈ R
Nd , and rn+1 ∈ R

Nc

such that

Mün+ 1
2 +Kun+ 1

2 = Fn+ 1
2 + TGnrn+

1
2 ,(6.4)

Gnu̇n+ 1
2 ≥ 0, rn+

1
2 ≥ 0, Trn+

1
2Gnu̇n+ 1

2 = 0,(6.5)

un+1 = un +Δt u̇n+ 1
2 ,(6.6)

u̇n+1 = u̇n +Δt ün+ 1
2 .(6.7)

An interesting feature of this scheme is to be energy-conserving,

En+1 − En = TFn+ 1
2 (un+1 − un).

The contact pressure does not perturb the structure despite its oscillations (Figure 19).
Energy is preserved, and the solution for the second benchmark is quite satisfactory,
although not as accurate as with Discretization 5.1 after several impacts (Figure 20).
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Fig. 19. Impact of an elastic bar. Displacement un
0 (left) and stress (right). Discretization 6.1

with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.
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Fig. 20. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 6.1 with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.

6.2. Semiexplicit schemes. A semiexplicit scheme with contact condition in
velocity has been proposed in [3].

Discretization 6.2 (central differences [3]). Seek un+1 ∈ R
Nd and rn+1 ∈ R

Nc

such that

M

(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn + TGnrn+1,(6.8)

Gn(un+1 − un) ≥ 0, rn+1 ≥ 0, Trn+1Gn(un+1 − un) = 0.(6.9)

Numerical simulations suggest that the stability condition of the central difference
scheme is not tightened by the contact condition. The results are similar to those
obtained with Discretization 4.7 (Figures 21 and 22).

7. Discretizations with modified mass. In the previous three sections, we
have considered various ways of enforcing the contact condition. Here we describe
methods based on a modification of the mass matrix. Such methods are thus compat-
ible with any enforcement of the contact condition. For brevity, we restrict ourselves
to an exact enforcement of the contact condition. In the modified mass matrix, the
entries associated with the normal displacements at the contact boundary are set to
zero. The motivation for this modification is very simple: if the mass is removed,
the inertial forces and the oscillations are eliminated. This approach was introduced
in [20].

Set N∗
d := Nd − Nc. For the sake of simplicity, suppose that the degrees of

freedom associated with normal displacements at the contact boundary are numbered
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Fig. 21. Impact of an elastic bar. Displacement un
0 (left) and contact pressure rn (right).

Discretization 6.2 (lumped mass matrix). Δx = 0.1, Δt = 0.0025, νc = 0.75.
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Fig. 22. Bounces of an elastic bar. Displacement un
0 (left) and energy En − TFun (right).

Discretization 6.2 (lumped mass matrix). Δx = 0.1, Δt = 0.0025, νc = 0.75.

from N∗
d + 1 to Nd. The modified mass matrix is defined as

M∗ =

(
M∗∗ 0
0 0

)
.

Many choices are possible in building the block M∗∗. In [14, 20], the authors devise
various methods for preserving some features of the standard mass matrix (the total
mass, the center of gravity, and the moments of inertia); see also [33] for further results.
We can also simply keep the corresponding block in the standard mass matrix (and
this is what we will do in our numerical simulations below). The modified problem
reads

M∗ü(t) +Ku(t) = F (t) + TGr(t),(7.1)

Gu(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu(t) = 0.(7.2)

If we set u(t) =
(u∗(t)
uc(t)

)
, K =

(
K∗∗
Kc∗

K∗c
Kcc

)
, F (t) =

(F∗(t)
Fc(t)

)
, and G = (0 Gc), then (7.1)

and (7.2) can be recast as

M∗∗ü∗(t) +K∗∗u∗(t) +K∗cuc(t) = F∗(t),(7.3)

Kc∗u∗(t) +Kccuc(t) = Fc(t) +
TGcr(t),(7.4)

Gcuc(t) ≥ 0, r(t) ≥ 0, Tr(t)Gcuc(t) = 0.(7.5)
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For given t and u∗(t), there exists one and only one uc(t) satisfying (7.4) and (7.5).
Denote by Q : [0, T ]× R

N∗
d → R

Nc the nonlinear map such that uc(t) = Q(t, u∗(t)).
Problem 7.1. Seek a displacement u : [0, T ] → R

Nd such that, for all t ∈ [0, T ],

M∗∗ü∗(t) +K∗∗u∗(t) +K∗cQ(t, u∗(t)) = F∗(t),(7.6)

uc(t) = Q(t, u∗(t)),(7.7)

with the initial conditions u(0) = u0 and u̇(0) = v0.
The operator Q(t, ·) is Lipschitz continuous at each time t, so that (7.6) is a

Lipschitz system of ODEs. Therefore, it has a unique solution u∗, twice differentiable
in time. Owing to (7.7), uc is differentiable in time almost everywhere. The detailed
mathematical analysis of the space semidiscrete modified mass formulation can be
found in [20, 9]. A result of convergence of the space semidiscrete solutions to a
continuous solution is proven for viscoelastic materials in [9].

Remark 7.1. In contrast to the semidiscrete problem with standard mass matrix,
the semidiscrete problem with modified mass matrix does not require an impact law
and conserves a modified energy where the mass modification is accounted for in the
kinetic energy [20].

7.1. Implicit schemes. An HHT-Newmark scheme can be used for Problem 7.1.
Discretization 7.1 (HHT-Newmark [20]). Seek un+1 ∈ R

Nd, u̇n+1
∗ ∈ R

Nd, and
ün+1∗ ∈ R

Nd such that

M∗∗ün+1
∗ +K∗∗un+1+α

∗ +K∗cQ(tn+1+α, un+1+α
∗ ) = Fn+1+α

∗ ,(7.8)

un+1+α
c = Q(tn+1+α, un+1+α

∗ ),(7.9)

un+1
∗ = un

∗ +Δtu̇n
∗ +

Δt2

2
ün+2β
∗ ,(7.10)

u̇n+1
∗ = u̇n

∗ +Δtün+γ
∗ .(7.11)

The equations can be recast as a linear complementarity problem,

M∗ün+1 +Kun+1+α = Fn+1+α + TGrn+1,(7.12)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0,(7.13)

un+1 = un +Δtu̇n +
Δt2

2
ün+2β ,(7.14)

u̇n+1 = u̇n +Δtün+γ .(7.15)

In spite of the modification of the mass matrix, the problem is well-posed. In practice,
we use this set of equations to compute the solution. As expected, the large oscillations
have disappeared during the contact phase (Figure 23). The energy behavior is also
very satisfactory (Figure 24), since

En+1
∗ − En

∗ = T

(
rn+1 + rn

2

)
(Gun+1 −Gun) + T

(
Fn+1 + Fn

2

)
(un+1 − un),

where the modified energy En∗ has the same expression as En, except thatM is replaced
by M∗. The displacement after several impacts is quite satisfactory, although not as
accurate as with Discretization 5.1 (Figure 24).
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Fig. 23. Impact of an elastic bar. Displacement un
0 and contact pressure rn. Discretization 7.1

with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.
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Fig. 24. Bounces of an elastic bar. Displacement un
0 (left) and modified energy En∗ − TFun

(right). Discretization 7.1 with α = 0, β = 1/4, and γ = 1/2. Δx = 0.1, Δt = 0.005, νc = 1.5.

7.2. Semiexplicit schemes. We can discretize Problem 7.1 with an explicit
scheme, such as the central difference scheme. This yields a semiexplicit scheme.

Discretization 7.2 (central differences [10]). Seek un+1 ∈ R
Nd such that

M∗∗

(
un+1∗ − 2un∗ + un−1∗

Δt2

)
+K∗∗un

∗ +K∗cQ(tn, un
∗ ) = Fn

∗ ,(7.16)

un+1
c = Q(tn+1, un+1

∗ ).(7.17)

In practice, the equations are solved as follows: 1. Seek un+1∗ ∈ R
Nd such that

(7.18) M∗∗

(
un+1
∗ − 2un

∗ + un−1
∗

Δt2

)
+K∗∗un

∗ +K∗cun
c = Fn

∗ .

2. Seek un+1
c ∈ R

N∗
d and rn+1 ∈ R

Nc such that

Kc∗un+1
∗ +Kccu

n+1
c = Fn+1

c + TGcr
n+1,(7.19)

Gcu
n+1
c ≥ 0, rn+1 ≥ 0, TrGcu

n+1
c = 0.(7.20)

The first step is explicit, and the mass matrix M∗∗ can be lumped. The second step
is a constrained problem on the variable un+1

c only. Discretization 7.2 amounts to

M∗
(
un+1 − 2un + un−1

Δt2

)
+Kun = Fn + TGrn,

Gun ≥ 0, rn ≥ 0, TrnGun = 0,
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Fig. 25. Bounces of an elastic bar. Displacement un
0 (left) and modified energy En∗ − TFun

(right). Discretization 7.2 (lumped mass matrix). Δx = 0.1, Δt = 0.0025, νc = 0.75.
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Fig. 26. Bounces of an elastic disk. Reference configuration (left), mesh (middle), and de-
formed configuration after the first impact (right).

and yields the modified shifted energy balance

En+1
0, 12∗

− En
0, 12 ∗ = T

(
rn+1 + rn

2

)
(Gun+1 −Gun) + T

(
Fn+1 + Fn

2

)
(un+1 − un),

where En
0, 12∗

has the same expression than En
0, 12

, except that M is replaced by M∗. We

observe numerically that the stability condition on the time step is the same as in the
linear case. Compared with Discretizations 4.7 and 6.2, the semiexplicit modified mass
method shows a better energy behavior and a better solution (Figure 25). Additional
tests show that the amplitude of energy oscillations decreases at least linearly with
Δt at fixed Courant number. Results on the first benchmark are similar to those with
the implicit scheme.

8. A 2D benchmark. We consider the bounces of an elastic disk against a rigid
ground (Figure 26). The reference configuration is the undeformed disk touching the
ground. The disk is dropped, undeformed, with a zero initial velocity, under a gravity
acceleration g0, the displacement of its center being initially h0. The disk has radiusR.
The material is supposed to be linear elastic (plane strain) with a Young modulus E,
a Poisson ratio ν, and a mass density ρ. The contact boundary Γc is the lower half
of the disk boundary. We define the contact condition using the normal vector to the
ground. The parameters are E = 4000, ν = 0.2, ρ = 100, g0 = 5, R = 1, h0 = 0.1.
The disk is meshed with triangles (100 edges on the boundary, 1804 triangles, 953
vertices; see Figure 26) and we use linear finite elements. The number of nodes
lying on the contact boundary is 51. Simulations are performed using FreeFem++

[16]. The Courant number is defined as νc := cd
Δx
Δt , where cd = 20

3 is the speed of
dilatational waves and Δx = 0.0628 the length of boundary edges.



DISCRETIZATIONS FOR THE DYNAMIC SIGNORINI PROBLEM 247

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  2  4  6  8  10

di
sp

la
ce

m
en

t

time

mass/Newmark
ex./stabilized Newmark

vel./midpoint
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0  2  4  6  8  10

en
er

gy

time

mass/Newmark
ex./stabilized Newmark

vel./midpoint

Fig. 27. Bounces of an elastic disk. Displacement of its center (left) and energy or modified
energy (right). Discretizations 4.6, 6.1, and 7.1. Δt = 0.01, νc = 1.06.
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Fig. 28. Bounces of an elastic disk. Displacement of its center (left) and energy or modified
energy (right). Discretizations 4.7 and 7.2. Δt = 0.005, νc = 0.53.

Results are presented for the implicit Discretizations 4.6, 6.1, and 7.1 (Figure 27)
and for the semiexplicit Discretizations 4.7 and 7.2 (Figure 28). For the semiexplicit
schemes, the observed stability condition is νc ≤ 0.65. In all cases, the trajectory
of the disk center is rather well captured, with some discrepancies appearing after
five bounces. The energy behaviors remain consistent with those observed in one
dimension. Note that the present choice of parameters is somewhat severe for energy
behavior because of the relatively high impact velocity and low Young modulus.

9. Conclusions. In this work, we have reviewed various time-integration schemes
for the finite element dynamic Signorini problem. We have classified the schemes into
four groups, the first three depending on the way the contact condition is enforced
while the fourth group corresponds to modifying the mass matrix at the contact
boundary. We have tested in detail the various schemes on two 1D benchmarks, both
with analytical solution. The second benchmark is new and allows one to study the
energy behavior within multiple impacts. Some selected schemes with favorable prop-
erties have been further compared on a 2D benchmark. All in all, we believe that the
schemes with modified mass matrix, either implicit or semiexplicit, offer attractive
properties, including ease of implementation, robustness, and relatively firm mathe-
matical ground. The semiexplicit scheme with modified mass is new and stems from
the combination of two existing ideas. We hope that the present results will stimulate
further interest in the analysis and testing of these schemes.



248 DAVID DOYEN, ALEXANDRE ERN, AND SERGE PIPERNO

REFERENCES

[1] F. Armero and E. Petocz, Formulation and analysis of conserving algorithms for frictionless
dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., 158 (1998),
pp. 269–300.

[2] Y. Ayyad, M. Barboteu, and J. Fernandez, A frictionless viscoelastodynamic contact prob-
lem with energy consistent properties: Numerical analysis and computational aspects,
Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 669–679.

[3] T. Belytschko and M. Neal, Contact-impact by the pinball algorithm with penalty and La-
grangian methods, Internat. J. Numer. Methods Engrg., 31 (1991), pp. 547–572.
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Paris Sér. A, 264 (1967), pp. A928–A931.

[5] B. Brogliato, Nonsmooth Impact Mechanics, Springer-Verlag, London, 1996.
[6] N. Carpenter, R. Taylor, and M. Katona, Lagrange constraints for transient finite element

surface contact, Internat. J. Numer. Methods Engrg., 32 (1991), pp. 103–128.
[7] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience, New

York, 1953.
[8] P. Deuflhard, R. Krause, and S. Ertel, A contact-stabilized Newmark method for dynamical

contact problems, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 1274–1290.
[9] D. Doyen and A. Ern, Convergence of a space semi-discrete modified mass method for the

dynamic Signorini problem, Commun. Math. Sci., 7 (2009), pp. 1063–1072.
[10] D. Doyen, A. Ern, and S. Piperno, A Semi-explicit Modified Mass Method for Dynamic

Contact Problems, Lectures Notes in Appl. Comput. Mech., Springer, New York, 2010.
[11] C. Eck, J. Jarusek, and M. Krbec, Unilateral Contact Problems. Variational Methods and

Existence Theorems, Chapman & Hall/CRC, Boca Raton, FL, 2005.
[12] R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequal-

ities, North–Holland, Amsterdam, 1981.
[13] E. Grosu and I. Harari, Stability of semidiscrete formulations for elastodynamics at small

time steps, Finite Elem. Anal. Des., 43 (2007), pp. 533–542.
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