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Abstra
t. We study the 
onvergen
e of the Symmetri
 Weighted Interior
Penalty dis
ontinuous Galerkin method for heterogeneous di�usion problems
with low-regularity solutions only belonging to W 2,p with p ∈ (1, 2]. In 2d we
infer an optimal algebrai
 
onvergen
e rate. In 3d we a
hieve the same result
for p > 6/5 , and for p ∈ (1, 6/5] we prove 
onvergen
e without algebrai
 rate.

1. Introdu
tion

In this work we analyze the 
onvergen
e of a dis
ontinuous Galerkin (dG) ap-

proximation to low-regularity solutions of the model problem

(1)
−∇·(κ∇u) = f in Ω,

u = 0 on ∂Ω,

where, for d ∈ {2, 3}, Ω denotes a bounded 
onne
ted polyhedral domain with

boundary ∂Ω, f ∈ L2(Ω) is the for
ing term, and κ ∈ L∞(Ω) is the di�usion


oe�
ient su
h that λ ≤ κ ≤ λ a.e. in Ω for positive real numbers λ and λ.
Owing to the Lax�Milgram Lemma, this problem is well-posed in the energy spa
e

V := H1
0 (Ω).

In pra
ti
e, the di�usion 
oe�
ient has more regularity than just belonging to

L∞(Ω). In what follows, we assume that there is a partition PΩ := {Ωi}1≤i≤NΩ
of

Ω su
h that

(i) ea
h Ωi, 1 ≤ i ≤ NΩ, is an open polyhedron;

(ii) the restri
tion of κ to ea
h Ωi, 1 ≤ i ≤ NΩ, is 
onstant.

The regularity of the exa
t solution for interfa
e problems mat
hing the above

assumption has been studied by Ni
aise and Sändig [13℄, where it is proven that

(2) There exists p ∈ (1, 2] s.t. u ∈ V† := W 2,p(PΩ),

where W 2,p(PΩ) denotes the broken Sobolev spa
e spanned by those fun
tions v
su
h that v|Ωi

∈W 2,p(Ωi) for all 1 ≤ i ≤ NΩ. However, up to date, the 
onvergen
e

analysis of dG methods for the interfa
e problem (1) has generally hinged on a more

stringent regularity assumption on the exa
t solution, namely u ∈ H3/2+ǫ(PΩ) with
ǫ > 0. The goal of this paper is to �ll the gap by using only the regularity (2). We

fully a
hieve this goal in 2d, whereby we derive energy norm error estimates with

optimal algebrai
 
onvergen
e rates. A similar result has been established re
ently

by Wihler and Rivière [18℄ in the simpler 
ase of the Lapla
e equation in 2d. As
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in [18℄ our analysis hinges on dis
rete stability, strong 
onsisten
y and bounded-

ness of the dis
rete bilinear form, but handling the heterogeneity of the di�usion


oe�
ient requires spe
ial 
are to a
hieve robustness. The boundedness property is

also formulated in a somewhat di�erent way. In 3d the situation is more deli
ate.

For p ∈ (6/5, 2] we also derive optimal algebrai
 
onvergen
e rates for the energy

norm error. In this 
ase, owing to the Sobolev embedding, the exa
t solution is

indeed in H1+α(PΩ) with α > 0. For brevity, we treat the 2d 
ase with p ∈ (1, 2]
and the 3d 
ase with p ∈ (6/5, 2] simultaneously; the analysis readily extends to

p ∈ (2d/d+2, 2] in any spa
e dimension. Finally, in 3d with p ∈ (1, 6/5], we present

for the sake of 
ompleteness a 
onvergen
e proof without algebrai
 rates. The anal-

ysis, valid in any spa
e dimension, follows the 
ompa
tness argument introdu
ed

in [5℄. Herein, we 
onsider shape-regular meshes. An alternative approa
h based on

geometri
ally re�ned meshes has been investigated, e.g., by Wihler, Frauenfelder,

and S
hwab [17℄.

The fo
us is here on the Symmetri
 Weighted Interior Penalty (SWIP) dG

method to approximate the model problem (1) (a

ounting for variations in sym-

metry is straightforward). The SWIP method has been introdu
ed in the more

general 
ontext of di�usion-adve
tion-rea
tion problems by Di Pietro, Ern, and

Guermond [6℄ and Ern, Stephansen, and Zunino [9℄. For the model problem (1), the

di�eren
es with respe
t to the 
lassi
al Symmetri
 Interior Penalty (SIP) method

of Arnold [2℄ lay in the use of di�usion-dependent, weighted average tra
e operators

and of a penalty parameter proportional to the harmoni
 average of the di�usion

at interfa
es. This allows one to infer energy norm error estimates with multi-

pli
ative 
onstant independent of di�usion heterogeneity, whi
h makes the SWIP

method parti
ularly suited to di�usion-adve
tion problems with sharp internal lay-

ers. The possibility of using non-arithmeti
 averages in dG methods has been

pointed out and used in various 
ontexts, e.g., by Stenberg [14℄ and by Heinri
h

and 
o-workers [11, 10, 12℄. The idea of 
onne
ting the a
tual value of the weights

to the di�usion 
oe�
ient was originally proposed by Burman and Zunino [4℄ in

the 
ontext of mortaring te
hniques for a singularly perturbed di�usion-adve
tion

equation.

The material is organized as follows. In �2 we present the dis
rete setting.

In �3 we derive algebrai
 
onvergen
e rates for exa
t solutions in W 2,p(PΩ) with

p ∈ (2d/d+2, 2]. Finally, the 
onvergen
e for the remaining 
ases is 
overed in �4.

Numeri
al results have already been presented in [8, 15℄ for the well-known 2d four-


orner problem, whereby the 
onvergen
e rates derived herein have been observed

numeri
ally.

2. The dis
rete setting

2.1. Meshes and fa
es. Let (Th)h∈H be a sequen
e of re�ned simpli
ial meshes


overing Ω exa
tly, where H denotes a 
ountable set having zero as unique a

u-

mulation point. Meshes 
an possess hanging nodes. Quite importantly, meshes are

assumed to be 
ompatible with the partition PΩ, that is, su
h that for all h ∈ H
and all T ∈ Th, there exists a unique Ωi of the partition PΩ su
h that T ⊂ Ωi.

Sin
e the di�usion 
oe�
ient is pie
ewise 
onstant on the partition PΩ, it is also

pie
ewise 
onstant on ea
h 
ompatible mesh.

For a mesh element T ∈ Th, hT denotes its diameter and nT its unit outward

normal de�ned a.e. on ∂T . The mesh-size is h := maxT∈Th
hT . The following
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T

Figure 1. The set FT for the element T (shaded) 
ontains in this


ase the four mesh fa
es with verti
es in bold line

de�nitions apply for every h ∈ H. For every integer k ≥ 0, we introdu
e the spa
e

Pk
d(Th) :=

{

vh ∈ L2(Ω) | ∀T ∈ Th, vh|T ∈ P
k
d(T )

}

,

where Pk
d(T ) in spanned by the restri
tion to T of polynomial fun
tions in d variables

of total degree ≤ k. We say that a (
losed) subset F of Ω is a mesh fa
e if F
has positive (d − 1)-dimensional measure and if one of the two following mutually

ex
lusive 
onditions is satis�ed:

(i) There are distin
t mesh elements T1, T2 ∈ Th su
h that F = ∂T1∩∂T2; in su
h


ase, F is 
alled an interfa
e and we set nF := nT1
, the unit normal ve
tor to

F pointing from T1 to T2 (the orientation of nF is arbitrary depending on the


hoi
e of T1 and T2, but kept �xed in what follows);

(ii) There is T ∈ Th su
h that F = ∂T ∩ ∂Ω; in su
h 
ase, F is 
alled a boundary

fa
e and we set nF := n, the outward unit normal to ∂Ω.

Interfa
es are 
olle
ted in the set F i
h, boundary fa
es in Fb

h , and mesh fa
es in

Fh := F i
h ∪ F

b
h . Moreover, for every mesh element T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T}


ontains the mesh fa
es 
omposing the boundary of T . As nonmat
hing meshes are

allowed, the 
ardinal number of FT 
an be larger than (d + 1); see Figure 1. In

what follows, we assume that (Th)h∈H is an admissible mesh sequen
e, that is, Th

is shape-regular in the usual sense and 
onta
t-regular meaning that there exists C
independent of the mesh-size h su
h that, for all T ∈ Th and all F ∈ FT , hT ≤ ChF ,

the diameter of F . Letting

(3) N∂ := max
h∈H, T∈Th

card(FT ),


onta
t regularity implies that N∂ is bounded.

2.2. Jumps and weighted averages.

De�nition 2.1 (Jumps). Let v be a s
alar-valued fun
tion de�ned on Ω and assume

that v is smooth enough to admit on all F ∈ Fh a (possibly two-valued) tra
e. Then,

if F ∈ F i
h with F = ∂T1 ∩ ∂T2, the jump of v at F is de�ned for a.e. x ∈ F as

JvKF (x) := v|T1
(x)− v|T2

(x),

while if F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set JvKF (x) := v|T (x).

De�nition 2.2 (Weighted averages). Let v be a s
alar-valued fun
tion de�ned on Ω
and assume that v is smooth enough to admit on all F ∈ Fh a (possibly two-valued)

tra
e. To any interfa
e F ∈ F i
h with F = ∂T1 ∩ ∂T2, we assign two non-negative

real numbers ωT1,F and ωT2,F su
h that

ωT1,F + ωT2,F = 1.
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Then, the weighted average of v at F ∈ F i
h is de�ned for a.e. x ∈ F as

{v}ω,F (x) := ωT1,F v|T1
(x) + ωT2,F v|T2

(x).

while on boundary fa
es F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set {v}ω,F (x) := v|T (x).

Clearly, the usual (arithmeti
) average at interfa
es 
orresponds to the parti
ular


hoi
e ωT1,F = ωT1,F = 1
2 . Hen
eforth, we 
onsider a spe
i�
 di�usion-dependent


hoi
e for the weights, namely for all F ∈ F i
h, F = ∂T1 ∩ ∂T2,

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
,

where κi = κ|Ti
, i ∈ {1, 2}. In parti
ular, the 
ase of homogeneous di�usion yields

the usual (arithmeti
) averages. When v is ve
tor-valued, the above average and

jump operators a
t 
omponentwise. Whenever no 
onfusion 
an arise, both the

subs
ript F and the variable x are omitted.

2.3. The dis
rete problem. We aim at approximating the exa
t solution u of (1)

by a dG method using the dis
rete spa
e

Vh := Pk
d(Th), k ≥ 1.

De�ne for all (vh, wh) ∈ Vh × Vh,

ah(vh, wh) :=

∫

Ω

κ∇hvh·∇hwh +
∑

F∈Fh

η
γκ,F

hF

∫

F

JvhKJwhK(4)

−
∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JwhK−
∑

F∈Fh

∫

F

JvhK{κ∇hwh}ω·nF ,

where ∇h denotes the usual broken gradient operator on Th, η > 0 is a user-

dependent penalty parameter (to be 
hosen large enough to ensure dis
rete stability,

see Lemma 3.4), while the di�usion-dependent penalty parameter γκ,F is su
h that

for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

γκ,F :=
2κ1κ2

κ1 + κ2
,

where, as above, κi = κ|Ti
, i ∈ {1, 2}, while for all F ∈ Fb

h , F = ∂T ∩ ∂Ω,

γκ,F := κ|T .

We noti
e that the above 
hoi
e for the penalty parameter γκ,F on interfa
es 
or-

responds to the harmoni
 mean of the two di�usion 
oe�
ients on either side of

the interfa
e. In what follows, the terms in the se
ond line of (4) are respe
tively

referred to as 
onsisten
y and symmetry terms, as they serve the enfor
ement of the


orresponding property at the dis
rete level. The bilinear form ah de�ned by (4)

is termed the Symmetri
 Weighted Interior Penalty (SWIP) bilinear form [6, 9℄.

Whenever κ is 
onstant in Ω, the usual (arithmeti
) averages are re
overed in the


onsisten
y and symmetry terms. Finally, the dis
rete problem is

(5) Find uh ∈ Vh s.t. ah(uh, vh) =

∫

Ω

fvh for all vh ∈ Vh.
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2.4. Extension of the dis
rete bilinear form. To assert 
onsisten
y for the

dis
rete problem (5) in the usual strong form, we need to plug the exa
t solution

u into the �rst argument of the bilinear form ah. This requires in turn to give a

meaning to the normal gradient of u independently on ea
h mesh fa
e. The fa
t

that −∆u = f ∈ L2(T ) for all T ∈ Th is insu�
ient, as it only yields ∇u·nT ∈
H−1/2(∂T ). The regularity (2) is thus 
ru
ial, sin
e owing to mesh 
ompatibility, it

implies for all v ∈ V†, all T ∈ Th, and all F ∈ FT ,

(6) ∇v·nT ∈ Lp(F ).

As a result, the dis
rete bilinear form ah 
an be extended to V†h × Vh with

V†h := V† + Vh,

and V† de�ned by (2).

3. Convergen
e analysis in 2d and in 3d for p ∈ (6/5, 2]

In this se
tion we prove optimal 
onvergen
e rates for the method (5) in 2d and

in 3d for p > 6/5, that is, p > 2d/d+2. Owing to the Sobolev embedding theorem,

the regularity (2) yields

(7) u ∈ H1+α(PΩ) with α := 1 + d

(

1

2
−

1

p

)

> 0.

The error analysis in this se
tion pro
eeds by establishing 
onsisten
y, dis
rete

stability, and boundedness for the SWIP bilinear form ah. The error is measured

in the following energy norm: For all v ∈ V†h,

(8) |||v|||κ :=
(

‖κ
1/2∇hv‖2[L2(Ω)]d + |v|2J,κ

)1/2

,

with jump seminorm

(9) |v|J,κ :=

(

∑

F∈Fh

|v|2J,κ,F

)1/2

, |v|J,κ,F :=

(

γκ,F

hF

)1/2

‖JvK‖L2(F ).

3.1. Te
hni
al results. This se
tion 
olle
ts some useful te
hni
al results. We

re
all the following inverse and tra
e inequalities (see, e.g., [3, 7℄): For all yh ∈ Vh

and all F ∈ Fh,

(10) ‖yh‖Lq(F ) ≤ Cqh
(d−1)( 1

q
− 1

2
)

F ‖yh‖L2(F ),

and the following tra
e inequality: For all yh ∈ Vh, all T ∈ Th, and all F ∈ FT ,

(11) h
1/2

F ‖yh‖L2(F ) ≤ Ctr‖yh‖L2(T ).

The quantity Ctr only depends on d, k, and mesh regularity, while there holds

Cq ≤ max(1, C∞) [16℄ where C∞ only depends on d, k, and mesh regularity. For a

real number r ∈ (1,+∞), we set

βr :=
1

2
+ (d− 1)

(

1

2
−

1

r

)

,

and observe that for r = 2, β2 = 1
2 . We 
onsider the following seminorm

|v|†,κ,r :=

(

∑

T∈Th

∑

F∈FT

hrβr

F ‖κ
1/2∇v|T ·nF ‖

r
Lr(F )

)1/r

.
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In parti
ular, for r = 2,

|v|†,κ,2 =

(

∑

T∈Th

∑

F∈FT

hF ‖κ
1/2∇v|T ·nF ‖

2
L2(F )

)1/2

.

The main result of this se
tion is a bound on the 
onsisten
y and symmetry terms

in the SWIP bilinear form ah. In what follows, we set q := p
p−1 so that 1

p + 1
q = 1

and q ∈ [2,+∞).

Lemma 3.1 (Bound on 
onsisten
y and symmetry terms). There holds:

(i) For all (vh, w) ∈ Vh × V†h,

(12)

∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JwK

∣

∣

∣

∣

∣

≤ |vh|†,κ,2|w|J,κ.

(ii) For all (v, wh) ∈ V†h × Vh,

(13)

∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hv}ω·nF JwhK

∣

∣

∣

∣

∣

≤ 2
1

2
− 1

q Cq|v|†,κ,p|wh|J,κ.

Proof. (i) Proof of (12). Let (vh, w) ∈ Vh×V†h. For all F ∈ F
i
h with F = ∂T1∩∂T2,

set ωi = ωTi,F , κi = κ|Ti
, and ai = κ

1/2

i (∇hvh)|Ti
·nF , i ∈ {1, 2}. The Cau
hy�

S
hwarz inequality yields
∫

F

{κ∇hvh}ω·nF JwK =

∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)JwK

≤

(

1

2
hF (‖a1‖

2
L2(F ) + ‖a2‖

2
L2(F ))

)1/2

×
(

2(ω2
1κ1 + ω2

2κ2)h
−1
F ‖JwK‖2L2(F )

)1/2

,

and sin
e 2(ω2
1κ1 + ω2

2κ2) = γκ,F , it is inferred that

∫

F

{κ∇hvh}ω·nF JwK ≤

(

1

2
hF (‖a1‖

2
L2(F ) + ‖a2‖

2
L2(F ))

)1/2

|w|J,κ,F .

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω and a = (κ1/2∇hvh)|T ·nF ,

∫

F

{κ∇hvh}ω·nF JwK ≤ h
1/2

F ‖a‖L2(F )|w|J,κ,F .

Summing over the mesh fa
es, using the Cau
hy�S
hwarz inequality, and regrouping

the fa
e 
ontributions of ea
h mesh element yields (12).

(ii) Proof of (13). Let (v, wh) ∈ V†h × Vh. For all F ∈ F i
h, letting now ai =

κ
1/2

i (∇hv)|Ti
·nF , i ∈ {1, 2}, Hölder's inequality yields

∫

F

{κ∇hv}ω·nF JwhK ≤

(

1

2
h

pβp

F (‖a1‖
p
Lp(F ) + ‖a2‖

p
Lp(F ))

)1/p

× 2
1/p

(

(ωq
1κ

q/2

1 + ωq
2κ

q/2

2 )h
−qβp

F ‖JwhK‖qLq(F )

)1/q

.

We observe that sin
e q ≥ 2,

(ωq
1κ

q/2

1 + ωq
2κ

q/2

2 ) =
(κ1κ2)

q/2

(κ1 + κ2)q
(κ

q/2

1 + κ
q/2

2 ) ≤
(κ1κ2)

q/2

(κ1 + κ2)q
(κ1 + κ2)

q/2 = 2−
q/2γ

q/2

κ,F .
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Moreover, owing to the inverse inequality (10) and sin
e 1
p + 1

q = 1,

h
−βp

F ‖JwhK‖Lq(F ) ≤ Cqh
−βp

F h
(d−1)( 1

q
− 1

2
)

F ‖JwhK‖L2(F ) = Cqh
−1/2

F ‖JwhK‖L2(F ).

Hen
e, sin
e 2
1

p
− 1

2 = 2
1

2
− 1

q ,
∫

F

{κ∇hv}ω·nF JwhK ≤

(

1

2
h

pβp

F (‖a1‖
p
Lp(F ) + ‖a2‖

p
Lp(F ))

)1/p

× 2
1

2
− 1

q Cq|wh|J,κ,F .

Moreover, for all F ∈ Fb
h , pro
eeding as above with a = (κ1/2∇hv)|T ·nF yields

∫

F

{κ∇hv}ω·nF JwhK ≤
(

h
pβp

F ‖a‖pLp(F )

)1/p

× Cq|wh|J,κ,F .

Summing over mesh fa
es, applying one last time Hölder's inequality, and regroup-

ing the fa
e 
ontributions of ea
h mesh element (sin
e 1 ≤ 2
1

2
− 1

q for boundary

fa
es), we infer
∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hv}ω·nF JwhK

∣

∣

∣

∣

∣

≤ |v|†,κ,p × 2
1

2
− 1

q Cq

(

∑

F∈Fh

|wh|
q
J,κ,F

)1/q

,

and sin
e q ≥ 2, we obtain
(

∑

F∈Fh

|wh|
q
J,κ,F

)1/q

≤

(

∑

F∈Fh

|wh|
2
J,κ,F

)1/2

= |wh|J,κ,

thereby yielding (13). �

3.2. Consisten
y.

Lemma 3.2 (Jumps of exa
t solution). The exa
t solution u is su
h that

JuK = 0 ∀F ∈ Fh,(14)

Jκ∇uK·nF = 0 ∀F ∈ F i
h.(15)

Proof. Property (14) is 
lassi
al for fun
tions in H1
0 (Ω). To prove (15), let ϕ ∈

C∞
0 (Ω). Sin
e −∇·(κ∇u) = f ∈ L2(Ω),

∫

Ω

(−∇·(κ∇u))ϕ =

∫

Ω

κ∇u·∇ϕ.

Furthermore, we obtain using the Green theorem and (6), for all T ∈ Th,
∫

T

(−∇·(κ∇u))ϕ =

∫

T

κ∇u·∇ϕ−

∫

∂T

(κ∇u·nT )ϕ.

Summing over mesh elements and a

ounting for the fa
t that ϕ vanishes on ∂Ω
yields

∑

F∈F i

h

∫

F

(Jκ∇uK·nF )ϕ = 0,

when
e the assertion is inferred by 
hoosing the support of ϕ 
overing a single

interfa
e and using a density argument. �

Lemma 3.3 (Consisten
y). For all wh ∈ Vh,

ah(u,wh) =

∫

Ω

fwh.
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Proof. Plug u into the �rst argument of the bilinear form ah given by (4). Inte-

grating by parts the �rst term yields

(16)

∫

Ω

κ∇u·∇hwh = −
∑

T∈Th

∫

T

∇·(κ∇u)wh +
∑

T∈Th

∫

∂T

κ(∇u·nT )wh.

Rewriting the se
ond term on the right-hand side of the above expression as a sum

over mesh fa
es leads to
∑

T∈Th

∫

∂T

κ(∇u·nT )wh =
∑

F∈F i

h

∫

F

J(κ∇u)whK·nF +
∑

F∈Fb

h

∫

F

κ(∇u·n)wh.

We now observe that for all F ∈ F i
h,

J(κ∇u)whK = {κ∇u}ωJwhK + Jκ∇uK{wh}ω,

where {wh}ω := ωT2,F wh|T1
+ ωT1,F wh|T2

. To prove this identity, we set ai =
(κ∇u)|Ti

, bi = wh|Ti
, ωi = ωTi,F , i ∈ {1, 2}, so that

J(κ∇u)whK = a1b1 − a2b2

= (ω1a1 + ω2a2)(b1 − b2) + (a1 − a2)(ω2b1 + ω1b2)

= {κ∇u}ωJwhK + Jκ∇uK{wh}ω,

sin
e ω1 + ω2 = 1. As a result, a

ounting for boundary fa
es,

∑

T∈Th

∫

∂T

κ(∇u·nT )wh =
∑

F∈Fh

∫

F

{κ∇u}ω·nF JwhK +
∑

F∈F i

h

∫

F

Jκ∇uK·nF {wh}ω.

Combining this expression with (4) and (16) yields

ah(u,wh) = −
∑

T∈Th

∫

T

∇·(κ∇u)wh +
∑

F∈Fh

η
γκ,F

hF

∫

F

JuKJwhK

+
∑

F∈F i

h

∫

F

Jκ∇uK·nF {wh}ω −
∑

F∈Fh

∫

F

JuK{κ∇hwh}ω·nF .

This yields the assertion owing to (14)�(15) and to −∇·(κ∇u) = f in Ω. �

3.3. Stability. We now establish the dis
rete 
oer
ivity of the SWIP bilinear form

under the usual assumption that the penalty parameter η is large enough. An im-

portant point is that the minimal threshold on the penalty parameter is independent

of the di�usion 
oe�
ient.

Lemma 3.4 (Dis
rete 
oer
ivity). For all η > C2
trN∂ , the SWIP bilinear form ah

is 
oer
ive on Vh with respe
t to the |||·|||κ-norm, i.e.,

∀vh ∈ Vh, ah(vh, vh) ≥ Csta|||vh|||
2
κ,

with Csta := (η − C2
trN∂){max(1/2, η + C2

trN∂)}−1.

Proof. Let vh ∈ Vh. We �rst observe that

ah(vh, vh) = ‖κ
1/2∇hvh‖

2
[L2(Ω)]d − 2

∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JvhK + η|vh|
2
J,κ,

and bound the se
ond term on the right-hand side using (12) to obtain

ah(vh, vh) ≥ ‖κ
1/2∇hvh‖

2
[L2(Ω)]d − 2|vh|†,κ,2|vh|J,κ + η|vh|

2
J,κ.
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Owing to the dis
rete tra
e inequality (11), we readily infer

(17) |vh|†,κ,2 ≤ CtrN
1/2

∂ ‖κ
1/2∇hvh‖[L2(Ω)]d .

Using the inequality 2ab ≤ ǫa2 + (1/ǫ)b2 valid for any ǫ > 0 yields

ah(vh, vh) ≥
(

1− C2
trN∂ǫ

)

‖κ
1/2∇hvh‖

2
[L2(Ω)]d + (η − 1/ǫ) |vh|

2
J,κ.

It now su�
es to take ǫ = 2(η + C2
trN∂)−1 to infer the assertion. �

As a straightforward 
onsequen
e of the Lax�Milgram Lemma, Lemma 3.4 yields

the well-posedness of the dis
rete problem (5).

3.4. Boundedness. We 
onsider the following additional norm: For all v ∈ V†h,

|||v|||κ,† := |||v|||κ + |v|†,κ,p.

Lemma 3.5 (Boundedness). There holds

∀(v, wh) ∈ V†h × Vh, ah(v, wh) ≤ Cbnd|||v|||κ,† |||wh|||κ.

with Cbnd = 1 + η + 2
1

2
− 1

q Cq + CtrN
1/2

∂

Proof. Let (v, wh) ∈ V†h × Vh and denote by T1, . . . ,T4 the four terms on the

right-hand side of (4). Using the Cau
hy�S
hwarz inequality yields

|T1 + T2| ≤ (1 + η)|||v|||κ|||wh|||κ ≤ (1 + η)|||v|||κ,† |||wh|||κ.

Moreover, owing to the bound (13),

|T3| ≤ 2
1

2
− 1

q Cq|v|†,κ,p|wh|J,κ ≤ 2
1

2
− 1

q Cq|||v|||κ,† |||wh|||κ.

Finally, using the bounds (12) and (17) leads to

|T4| ≤ |v|J,κ|wh|†,κ,2 ≤ CtrN
1/2

∂ |v|J,κ‖κ
1/2∇hwh‖[L2(Ω)]d ≤ CtrN

1/2

∂ |||v|||κ|||wh|||κ.

Colle
ting the above bounds yields the assertion. �

3.5. Convergen
e.

Theorem 3.6 (|||·|||κ-norm error estimate). Assume η > C2
trN∂ . There holds

(18) |||u− uh|||κ ≤ C inf
yh∈Vh

|||u− yh|||κ,† ,

with C = 1 + C−1
staCbnd. Moreover, re
alling the de�nition (7) of α,

(19) |||u− uh|||κ .

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
pα
T ‖u‖

p
W 2,p(T )

)1/p

,

yielding, in parti
ular,

|||u− uh|||κ . λ
1/2

hα‖u‖W 2,p(Th).

Proof. (i) Proof of (18). Let yh ∈ Vh. Owing to dis
rete stability and 
onsisten
y,

|||uh − yh|||κ ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||κ
= C−1

sta sup
wh∈Vh\{0}

ah(u− yh, wh)

|||wh|||κ
.

Hen
e, owing to boundedness,

|||uh − yh|||κ ≤ C−1
staCbnd|||u− yh|||κ,† .

Estimate (18) then results from the triangle inequality, the fa
t that |||u − yh|||κ ≤
|||u− yh|||κ,† , and that yh is arbitrary in Vh.
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(ii) To prove (19), we use (18) with yh = πhu where πh denotes the L2-orthogonal

proje
tion onto Vh. For all T ∈ Th, using the Sobolev embedding W 1,p(T ) →֒ L2(T )
sin
e p > 2d

d+2 together with interpolation properties in W 2,p(T ), it 
an be shown

that

h−1
T ‖u− yh‖L2(T ) + ‖∇h(u− yh)‖[L2(T )]d . h

1+d( 1

2
− 1

p
)

T ‖u‖W 2,p(T ).

Hen
e, sin
e γκ,F ≤ min(κ|T1
, κ|T2

) for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, JyhK =

Ju− yhK on all F ∈ Fh, and ‖v‖L2(F ) . ‖v‖
1/2

L2(T )‖v‖
1/2

H1(T ) for all T ∈ Th, F ∈ FT ,

and v ∈ H1(T ), we infer

|||u− yh|||κ .

(

∑

T∈Th

‖κ‖L∞(T )h
2+d(1− 2

p
)

T ‖u‖2W 2,p(T )

)1/2

≤

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
p[1+d( 1

2
− 1

p
)]

T ‖u‖pW 2,p(T )

)1/p

,

sin
e for non-negative real numbers (aT )T∈Th
, (
∑

T∈Th
a2

T )1/2 ≤ (
∑

T∈Th
ap

T )1/p.

Moreover, sin
e ‖v‖Lp(F ) . ‖v‖
1− 1

p

Lp(T )‖v‖
1

p

W 1,p(T ) for all T ∈ Th, F ∈ FT , and

v ∈W 1,p(T ), we infer using interpolation properties in W 2,p(T ) that

‖∇(u− yh)|T ·nF ‖Lp(F ) . h
1− 1

p

T ‖u‖W 2,p(T ),

when
e, using again (aT )T∈Th
, (
∑

T∈Th
a2

T )1/2 ≤ (
∑

T∈Th
ap

T )1/p,

|u− yh|†,κ,2 .

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
p[1+d( 1

2
− 1

p
)]

T ‖u‖pW 2,p(T )

)1/p

.

The proof is 
omplete sin
e α = 1 + d( 1
2 −

1
p ). �

4. Convergen
e analysis in 3d for p ∈ (1, 6/5]

We treat here the 3d 
ase with p ∈ (1, 6/5]. In this 
ase, the regularity (2) is in-

su�
ient to establish 
onvergen
e rates by pro
eeding as in the previous se
tion. To

prove 
onvergen
e still using admissible mesh sequen
es (and in parti
ular, shape-

regular meshes), we 
onsider here a di�erent analysis te
hnique, inspired by [5℄ and

relying on a 
ompa
tness argument. In this 
ase, a weaker form of 
onsisten
y is in-

voked, whi
h does not require to extend the dis
rete bilinear form to the 
ontinuous

spa
e, thereby making the spa
es V† and V†h unne
essary.

4.1. Lifting and dis
rete gradients. An important ingredient of the analysis is a

dis
rete gradient featuring suitable 
onvergen
e properties for sequen
es of smooth

and of dis
rete fun
tions. The dis
rete gradient is de�ned in terms of the weighted

lifting operators introdu
ed by Di Pietro, Ern, and Guermond [6℄; see also Agélas,

Di Pietro, Eymard, and Masson [1℄. More pre
isely, for any integer l ≥ 0 and all

F ∈ Fh, we de�ne the linear operator rl
ω,F : L2(F )→ [Pl

d(Th)]d su
h that, for all

v ∈ L2(F ),

(20)

∫

Ω

rl
ω,F (v)·τh =

∫

F

v{τh}ω·nF ∀τh ∈ [Pl
d(Th)]d.
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We also de�ne the following global lifting:

(21) Rl
ω,h(v) :=

∑

F∈Fh

rl
ω,F (v).

The L2-norm of the global lifting 
an be bounded in terms of the jump seminorm.

Pro
eeding as in the proof of (12) yields that for all l ≥ 0 and all v ∈ V†,

(22) ‖κ
1/2Rl

ω,h(JvK)‖[L2(Ω)]d ≤ CtrN
1/2

∂ |v|J,κ.

For all l ≥ 0 and all vh ∈ Vh, we de�ne the dis
rete gradient

(23) Gl
ω,h(vh) := ∇hvh − Rl

ω,h(JvhK).

For future use, we also introdu
e the following data-independent norms,

|||v||| :=
(

‖∇hv‖2[L2(Ω)]d + |v|2J

)1/2

, |v|J :=

(

∑

F∈Fh

h−1
F ‖JvK‖2L2(F )

)1/2

.

For every integer l ≥ 0, we also denote by πl
h the L2-orthogonal proje
tion onto

Pl
d(Th); the same notation is used for the L2-orthogonal 
omponentwise proje
tion

onto [Pl
d(Th)]d.

Lemma 4.1 (Dis
rete Relli
h�Kondra
hov). Let (vh)h∈H be a sequen
e in (Vh)h∈H,

uniformly bounded in the |||·|||-norm. Then, there exists a fun
tion v ∈ H1
0 (Ω) su
h

that as h→ 0, up to a subsequen
e, vh → v strongly in L2(Ω).

Proof. See [5, Theorem 6.3℄. �

Lemma 4.2 (Properties of Gl
ω,h). The dis
rete gradients Gl

ω,h, l ≥ 0, enjoy the

following properties:

(i) For all sequen
es (vh)h∈H in (Vh)h∈H uniformly bounded in the |||·|||-norm,

as h → 0, Gl
ω,h(vh) ⇀ ∇v weakly in [L2(Ω)]d with v ∈ H1

0 (Ω) provided by

Theorem 4.1;

(ii) For all ϕ ∈ C∞
0 (Ω), as h→ 0, Gl

ω,h(π1
hϕ)→ ∇ϕ strongly in [L2(Ω)]d.

Proof. (i) To prove the weak 
onvergen
e of Gl
ω,h(vh) to ∇v, let Φ ∈ [C∞

0 (Ω)]d, set

Φh := πl
hΦ and observe that

∫

Ω

Gl
ω,h(vh)·Φ = −

∫

Ω

vh∇·Φ +
∑

T∈Th

∫

∂T

vhΦ·nT −
∑

F∈Fh

∫

Ω

rl
ω,F (JvhK)·Φh

= −

∫

Ω

vh∇·Φ +
∑

F∈Fh

∫

F

JvhK{Φ− Φh}ω·nF = T1 + T2,

where we have used the de�nition of the L2-orthogonal proje
tion together with (20)

and (21). As h → 0, T1 → −
∫

Ω
v∇·Φ. For the se
ond term, the Cau
hy�S
hwarz

inequality yields

T2 ≤ |vh|J,κ ×

(

∑

F∈Fh

hF γ−1
F

∫

F

|{Φ− Φh}ω|
2

)1/2

,

whi
h tends to zero owing to the approximation properties of the L2-orthogonal

proje
tion together with the fa
t that |vh|J,κ ≤ λ
1/2

|vh|J is uniformly bounded by

assumption. This 
on
ludes the proof.
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(ii) Let ϕh := π1
hϕ. Then, Gl

ω,h(ϕh) = ∇hϕh − Rl
ω,h(JϕhK) = T1 + T2. Clearly,

T1 → ∇ϕ strongly in [L2(Ω)]d as h→ 0. Moreover, owing to (22), it is inferred that

‖Rl
ω,h(JϕhK)‖[L2(Ω)]d ≤ CtrN

1/2

∂ |ϕh|J,κ = CtrN
1/2

∂ |ϕh − ϕ|J,κ, whi
h tends to zero as

h→ 0, thereby 
on
luding the proof. �

4.2. Convergen
e. The SWIP bilinear form ah admits the following equivalent

formulation on Vh × Vh: For l ∈ {k − 1, k},

(24) ah(vh, wh) =

∫

Ω

κGl
ω,h(vh)·Gl

ω,h(wh) + jh(vh, wh),

with jh(vh, wh) := −
∫

Ω
κRl

ω,h(JvhK)·Rl
ω,h(JwhK) +

∑

F∈Fh
ηγκ,F h−1

F

∫

F
JvhKJwhK. We


an now state and prove the main result of this se
tion.

Theorem 4.3 (Convergen
e to minimal regularity solutions). Let (uh)h∈H be the

sequen
e of approximate solutions generated by solving the dis
rete problems (5).

Then, as h→ 0, (i) uh → u strongly in L2(Ω), (ii) ∇huh → ∇u strongly in

[L2(Ω)]d, (iii) |uh|J → 0, with u ∈ V unique solution to (1).

Proof. (i) A priori estimate. We re
all the dis
rete Poin
aré inequality [5, eq. (75)℄,

(25) ∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||,

with σ2 independent of the mesh-size h. Owing to the 
oer
ivity of ah together

with (25), it is inferred that

Cstaλ|||uh|||
2 ≤ Csta|||uh|||

2
κ ≤ a(uh, uh) =

∫

Ω

fuh

≤ ‖f‖L2(Ω)‖uh‖L2(Ω) ≤ σ2‖f‖L2(Ω)|||uh|||,

hen
e |||uh||| ≤ σ2(Cstaλ)−1‖f‖L2(Ω), that is to say, the sequen
e of dis
rete solutions

is uniformly bounded in the |||·|||-norm.

(ii) Compa
tness. Owing to Theorem 4.1 together with Lemma 4.2i, there exists

u ∈ H1
0 (Ω) su
h that, as h → 0, up to a subsequen
e, uh → u strongly in L2(Ω)

and Gl
ω,h(uh) ⇀ ∇u weakly in [L2(Ω)]d.

(iii) Identi�
ation of the limit. Let ϕ ∈ C∞
0 (Ω) and set ϕh := π1

hϕ. Owing to the

regularity of ϕ, it is 
lear that |||ϕ− ϕh|||κ → 0 as h→ 0. Observe that

ah(uh, ϕh) =

∫

Ω

κGl
ω,h(uh)·Gl

ω,h(ϕh) + jh(uh, ϕh) = T1 + T2.

As h→ 0, T1 →
∫

Ω
κ∇u·∇ϕ owing to the weak 
onvergen
e of Gl

ω,h(uh) to ∇u and

to the strong 
onvergen
e of Gl
ω,h(ϕh) to ∇ϕ proved in Lemma 4.2. Furthermore,

the Cau
hy�S
hwarz inequality together with (22) yield

|T2| = |jh(uh, ϕh)| ≤
(

C2
trN∂ + η

)

|uh|J,κ|ϕh|J,κ ≤
(

C2
trN∂ + η

)

λ
1/2

|uh|J|ϕh|J,κ

Sin
e |uh|J is bounded by point (i), and sin
e |ϕh|J,κ = |ϕh−ϕ|J,κ tends to zero as

h→ 0, it is inferred that T2 → 0. As a result,

(26)

∫

Ω

κ∇u·∇ϕ← ah(uh, ϕh) =

∫

Ω

fϕh →

∫

Ω

fϕ.

Hen
e, by the density of C∞
0 (Ω) in H1

0 (Ω), u = u, the unique solution to (1). Owing

to the uniqueness of u, the whole sequen
e of dis
rete solutions 
onverges.
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(iv) Strong 
onvergen
e of the gradient and of the jumps. Eqs. (22) and (24) yield

(27) ∀vh ∈ Vh, ah(vh, vh) ≥ ‖κ
1/2Gl

ω,h(vh)‖2[L2(Ω)]d +
(

η − C2
trN∂

)

|vh|
2
J,κ.

From the weak 
onvergen
e of Gl
ω,h(uh) to ∇u, we readily infer the weak 
onver-

gen
e of κ1/2Gl
ω,h(uh) to κ1/2∇u. Then, owing to (27) and to weak 
onvergen
e,

lim inf
h→0

ah(uh, uh) ≥ lim inf
h→0

‖κ
1/2Gl

ω,h(uh)‖2[L2(Ω)]d ≥ ‖κ
1/2∇u‖2[L2(Ω)]d .

Furthermore, still owing to (27),

lim sup
h→0

‖κ
1/2Gl

ω,h(uh)‖2[L2(Ω)]d ≤ lim sup
h→0

ah(uh, uh)

= lim sup
h→0

∫

Ω

fuh =

∫

Ω

fu = ‖κ
1/2∇u‖2[L2(Ω)]d .

This 
lassi
ally proves the strong 
onvergen
e of κ1/2Gl
ω,h(uh) to κ1/2∇u in [L2(Ω)]d

and, hen
e, the strong 
onvergen
e of Gl
ω,h(uh) to ∇u in [L2(Ω)]d. Note that

ah(uh, uh)→ ‖κ1/2∇u‖2[L2(Ω)]d also. Using (27) we then infer

(η − C2
trN∂)|uh|

2
J,κ ≤ ah(uh, uh)− ‖κ

1/2Gl
ω,h(uh)‖2[L2(Ω)]d ,

and, sin
e η > C2
trN∂ and the right-hand side tends to zero, |uh|J,κ → 0. To infer

that |uh|J → 0, simply observe that |uh|J ≤ λ−1/2|uh|J,κ. �

Remark 4.4. When extended to V†h × Vh, the dis
rete bilinear form ah de�ned

by (24) is no longer 
onsistent in the usual �nite element sense; see [5, Remark 3.3℄.

However, (26) shows that ah retains a form of weak asymptoti
 
onsisten
y whi
h

su�
es to infer the 
onvergen
e of the method when u only exhibits the minimal

regularity.
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