ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR
HETEROGENEOUS DIFFUSION PROBLEMS WITH
LOW-REGULARITY SOLUTIONS

DANIELE A. DI PIETRO! AND ALEXANDRE ERN?

ABsTrACT. We study the convergence of the Symmetric Weighted Interior
Penalty discontinuous Galerkin method for heterogeneous diffusion problems
with low-regularity solutions only belonging to W2? with p € (1,2]. In 2d we
infer an optimal algebraic convergence rate. In 3d we achieve the same result
for p > 6/5 , and for p € (1,6/5] we prove convergence without algebraic rate.

1. INTRODUCTION

In this work we analyze the convergence of a discontinuous Galerkin (dG) ap-
proximation to low-regularity solutions of the model problem

—V:(kVu)=f inQ,

(1) u=0 on 0L,

where, for d € {2,3}, Q denotes a bounded connected polyhedral domain with
boundary 99, f € L?(Q) is the forcing term, and x € L>®(Q) is the diffusion
coefficient such that A < x < X a.e. in Q for positive real numbers A and .
Owing to the Lax—Milgram Lemma, this problem is well-posed in the energy space
V = H}(Q).

In practice, the diffusion coefficient has more regularity than just belonging to
L>(€)). In what follows, we assume that there is a partition Pq := {Q;}1<i<n, of
Q such that

(i) each ©Q;, 1 <i < Ngq, is an open polyhedron;

(ii) the restriction of k to each €;, 1 <14 < Ngq, is constant.
The regularity of the exact solution for interface problems matching the above
assumption has been studied by Nicaise and Sandig [13], where it is proven that

(2) There exists p € (1,2] s.t. u € Vy := W2P(Py),

where W?2P(Pq) denotes the broken Sobolev space spanned by those functions v
such that v|g, € W2P(Q;) for all 1 < i < Ng. However, up to date, the convergence
analysis of dG methods for the interface problem (1) has generally hinged on a more
stringent regularity assumption on the exact solution, namely u € H”/ 2+¢(Pg) with
e > 0. The goal of this paper is to fill the gap by using only the regularity (2). We
fully achieve this goal in 2d, whereby we derive energy norm error estimates with
optimal algebraic convergence rates. A similar result has been established recently
by Wihler and Riviére [18] in the simpler case of the Laplace equation in 2d. As
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2 D. A. DI PIETRO AND A. ERN

in [18] our analysis hinges on discrete stability, strong consistency and bounded-
ness of the discrete bilinear form, but handling the heterogeneity of the diffusion
coefficient requires special care to achieve robustness. The boundedness property is
also formulated in a somewhat different way. In 3d the situation is more delicate.
For p € (6/5,2] we also derive optimal algebraic convergence rates for the energy
norm error. In this case, owing to the Sobolev embedding, the exact solution is
indeed in H'**(Pq) with o > 0. For brevity, we treat the 2d case with p € (1, 2]
and the 3d case with p € (6/5,2] simultaneously; the analysis readily extends to
p € (2¢/d+2,2] in any space dimension. Finally, in 3d with p € (1,6/5], we present
for the sake of completeness a convergence proof without algebraic rates. The anal-
ysis, valid in any space dimension, follows the compactness argument introduced
in [5]. Herein, we consider shape-regular meshes. An alternative approach based on
geometrically refined meshes has been investigated, e.g., by Wihler, Frauenfelder,
and Schwab [17].

The focus is here on the Symmetric Weighted Interior Penalty (SWIP) dG
method to approximate the model problem (1) (accounting for variations in sym-
metry is straightforward). The SWIP method has been introduced in the more
general context of diffusion-advection-reaction problems by Di Pietro, Ern, and
Guermond [6] and Ern, Stephansen, and Zunino [9]. For the model problem (1), the
differences with respect to the classical Symmetric Interior Penalty (SIP) method
of Arnold |2] lay in the use of diffusion-dependent, weighted average trace operators
and of a penalty parameter proportional to the harmonic average of the diffusion
at interfaces. This allows one to infer energy norm error estimates with multi-
plicative constant independent of diffusion heterogeneity, which makes the SWIP
method particularly suited to diffusion-advection problems with sharp internal lay-
ers. The possibility of using non-arithmetic averages in dG methods has been
pointed out and used in various contexts, e.g., by Stenberg [14] and by Heinrich
and co-workers [10,[12]. The idea of connecting the actual value of the weights
to the diffusion coefficient was originally proposed by Burman and Zunino in
the context of mortaring techniques for a singularly perturbed diffusion-advection
equation.

The material is organized as follows. In §2] we present the discrete setting.
In §3] we derive algebraic convergence rates for exact solutions in W?2P(Pg) with
p € (2d/a+2,2]. Finally, the convergence for the remaining cases is covered in §4]
Numerical results have already been presented in [8, for the well-known 2d four-
corner problem, whereby the convergence rates derived herein have been observed
numerically.

2. THE DISCRETE SETTING

2.1. Meshes and faces. Let (7},)nen be a sequence of refined simplicial meshes
covering () exactly, where H denotes a countable set having zero as unique accu-
mulation point. Meshes can possess hanging nodes. Quite importantly, meshes are
assumed to be compatible with the partition P, that is, such that for all h € H
and all T € 7j,, there exists a unique €); of the partition Py such that T C ;.
Since the diffusion coefficient is piecewise constant on the partition Pg, it is also
piecewise constant on each compatible mesh.

For a mesh element T" € 73, hr denotes its diameter and np its unit outward
normal defined a.e. on 07. The mesh-size is h := maxreg, hy. The following
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FIGURE 1. The set Fr for the element T (shaded) contains in this
case the four mesh faces with vertices in bold line

definitions apply for every h € H. For every integer k > 0, we introduce the space
Ph(T5) = {vn € L*(Q) | VT € Ty, vn|r € PE(T)},

where PX(T') in spanned by the restriction to T of polynomial functions in d variables
of total degree < k. We say that a (closed) subset F of Q is a mesh face if F
has positive (d — 1)-dimensional measure and if one of the two following mutually
exclusive conditions is satisfied:
(i) There are distinct mesh elements Ty, Ts € Ty, such that F = 971 N9T5; in such
case, F' is called an interface and we set np := nr,, the unit normal vector to
F pointing from T} to Ty (the orientation of ng is arbitrary depending on the
choice of T7 and T, but kept fixed in what follows);
(ii) There is T € 7, such that F = 9T N IJQ; in such case, F is called a boundary
face and we set np := n, the outward unit normal to 0f2.

Interfaces are collected in the set ,il, boundary faces in .7—',';’, and mesh faces in
Fp:=Fi U .7-'};’. Moreover, for every mesh element T' € 7}, the set

Fr:={FeF | FcCoT}

contains the mesh faces composing the boundary of T'. As nonmatching meshes are
allowed, the cardinal number of Fr can be larger than (d + 1); see Figure 1l In
what follows, we assume that (7;)nen is an admissible mesh sequence, that is, 7,
is shape-regular in the usual sense and contact-regular meaning that there exists C'
independent of the mesh-size h such that, for all T € 7;, and all F' € Fr, hy < Chp,
the diameter of F. Letting

Ny := d
3) 0=, max - card(Fr),

contact regularity implies that N is bounded.
2.2. Jumps and weighted averages.

Definition 2.1 (Jumps). Let v be a scalar-valued function defined on Q and assume
that v is smooth enough to admit on all F € F, a (possibly two-valued) trace. Then,
if F € Fi with F = 0Ty N dTx, the jump of v at F is defined for a.e. x € F as

[v]F(2) :==vlr, (2) — v|n, (2),
while if F € FP with F = 9T N 0Q, we set [v]r(z) := v|r(x).
Definition 2.2 (Weighted averages). Let v be a scalar-valued function defined on §2
and assume that v is smooth enough to admit on all F € F, a (possibly two-valued)

trace. To any interface F € F} with F = 9Ty N 0Tx, we assign two non-negative
real numbers wr, g and wr, g such that

wry,F +wr,F =1
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Then, the weighted average of v at F € Fi is defined for a.e. x € F as
{v}o,p(x) == wr poln (2) + W, FU[1, (2).
while on boundary faces F € Fp with F = 0T N0, we set {v}, r(z) == v|r(z).

Clearly, the usual (arithmetic) average at interfaces corresponds to the particular
hoi = =1 H forth id ific diffusion-d dent
choice wr, r = wr, r = 5. Henceforth, we consider a specific diffusion-dependen
choice for the weights, namely for all F' € F;, F' = 0Ty N 015,

K2 K1

le,F = ng,F =

) )
K1+ K2 K1+ K2

where k; = &|r,, i € {1,2}. In particular, the case of homogeneous diffusion yields
the usual (arithmetic) averages. When v is vector-valued, the above average and
jump operators act componentwise. Whenever no confusion can arise, both the
subscript F' and the variable x are omitted.

2.3. The discrete problem. We aim at approximating the exact solution u of
by a dG method using the discrete space

Vi =Pk(T),  k>1
Define for all (vj,, wp,) € Vi, X Vj,

(4)  an(vn,wp) := /Q/‘ivhvh’vhthr Z ﬁfy;;: /F[[Uhﬂ[[’wh]]

FeF,

-y /F{thvh}w'nF[[wh]]— > /F[[vh]]{ffvhwh}w'nm

FeFy FeFn

where Vj, denotes the usual broken gradient operator on 7, n > 0 is a user-
dependent penalty parameter (to be chosen large enough to ensure discrete stability,
see Lemma([3.4), while the diffusion-dependent penalty parameter 7, r is such that
for all F € f}L with F' = 0T1 N 9T,

2/‘61/{2
9
K1+ Ko

7,5 1 € {1,2}, while for all F € FP, F = 0T N 99,

Ve, F =

where, as above, k; = K

Ve, F = :‘i|T~

We notice that the above choice for the penalty parameter v, r on interfaces cor-
responds to the harmonic mean of the two diffusion coefficients on either side of
the interface. In what follows, the terms in the second line of are respectively
referred to as consistency and symmetry terms, as they serve the enforcement of the
corresponding property at the discrete level. The bilinear form a, defined by
is termed the Symmetric Weighted Interior Penalty (SWIP) bilinear form [6, 9].
Whenever & is constant in 2, the usual (arithmetic) averages are recovered in the
consistency and symmetry terms. Finally, the discrete problem is

(5) Find up € Vi, s.t. ap(up,vp) = / fop, for all v, € V.
Q
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2.4. Extension of the discrete bilinear form. To assert consistency for the
discrete problem in the usual strong form, we need to plug the exact solution
u into the first argument of the bilinear form aj. This requires in turn to give a
meaning to the normal gradient of u independently on each mesh face. The fact
that —Au = f € L*(T) for all T € 7;, is insufficient, as it only yields Vunr €
H~'2(9T). The regularity (2) is thus crucial, since owing to mesh compatibility, it
implies for all v € V4, all T € 7, and all F' € Fr,

(6) Vv € LP(F).
As a result, the discrete bilinear form a;, can be extended to Vi, x Vj, with
Vin == Vi + Vh,

and V; defined by (2).

3. CONVERGENCE ANALYSIS IN 2D AND IN 3D FOR p € (6/5, 2]

In this section we prove optimal convergence rates for the method (5) in 2d and
in 3d for p > 6/5, that is, p > 2d/a+2. Owing to the Sobolev embedding theorem,
the regularity (2) yields

1 1
(7) UGHH—“(PQ) Witha::1+d(2—) > 0.
D

The error analysis in this section proceeds by establishing consistency, discrete
stability, and boundedness for the SWIP bilinear form aj. The error is measured
in the following energy norm: For all v € Vi,

/3
®) ol = (187 nolfaae + o)

with jump seminorm

1/2
1/2
Vr,F
0 |v|J,K:=(Zv|§,K,F> b= (BE) T Ml

FeFy

3.1. Technical results. This section collects some useful technical results. We
recall the following inverse and trace inequalities (see, e.g., |3,7]): For all y, € V},
and all F' € Fp,

(d—1
(10) lynllpa(r) < Cohp ynllL2(r),
and the following trace inequality: For all y;, € Vj, all T' € 7y, and all F' € Frp,

G-D)

(11) Wl lynll 2y < Corllynll 2 (ry-

The quantity Cj. only depends on d, k, and mesh regularity, while there holds
Cy < max(1l,Cy) [16] where C only depends on d, k, and mesh regularity. For a
real number r € (1, 400), we set

b=y +@-1(3-1),

2
and observe that for r = 2, Gy = % We consider the following seminorm

1/r
0] 4, = (Z > hzﬁr||/-5/2W|T-nF||zr<F>> :

TeT, FEFr
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In particular, for r = 2,

1/2
Vi = (Z > hF||"€1/2VU|T'DF|%2(F)> .

TeT, FEFT

The main result of this section is a bound on the consistency and symmetry terms
in the SWIP bilinear form aj. In what follows, we set ¢q := p’%l so that % + % =1
and g € [2,400).

Lemma 3.1 (Bound on consistency and symmetry terms). There holds:
(i) For all (vp,w) € Vi, X Vip,

Z /F{chhvh}w.np [w]

FeFn
(i) For all (v,wp) € Vip x Vp,

> [ xViodenrlon]

FeFn

Proof. (i) Proof of (12). Let (vy,w) € Vj x Vip. For all F € F}, with F = 0T, N1,
r,np, i € {1,2}. The Cauchy—

(12) < fvnlt,m,2|w]y k-

11
(13) <2277 Cg|vlt mplwn

J,Kk-

set w; = wr, p, Ki = K|y, and a; = H;/z(vhvh)
Schwarz inequality yields

/{/{thh}wnp[[w]] = /(wmihal +wz/<;;/2a2)[w]]
F F

1/2
1
(3heUor Esqey + laaliogry))

IN

1/2
x (2whnn + Wbz Meller) )
and since 2(wik1 + wika) = Y, , it is inferred that
1 2
[ oTononetul < (ghetoraey +loalEaqey)) Il
Moreover, for all F' € .7-'}? with F =0T NoQ and a = (k/>Vup)|rnp,

[T tumelul < B o ol
F

Summing over the mesh faces, using the Cauchy—-Schwarz inequality, and regrouping

the face contributions of each mesh element yields (12).

(ii) Proof of (13). Let (v,ws) € Vi X Vi. For all F € Fi, letting now a; =
1/2

ki (Vi)

-np, © € {1,2}, Holder’s inequality yields

1/p
1
(Y iokonplwn] < (5P (lavl, o + lazllZ )
F 2

1/q
1/p q q —qPp
x 2"/ ((u)g/ﬁh + wgmzh)th H[[’wh]]H%q(F))
We observe that since ¢ > 2,
(H1ﬁ2)4/2
(I‘i1 + Hz)q

(Iillﬁg)q/z

a/2 a/2 <
(FC] +112 ) (I€1—|—I€2)q

(WIKY? +wind?) = < (R + Ra) "2 = 2722
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Moreover, owing to the inverse inequality (10) and since % + % =1,

B, —Bpy (d=1)(5-3) -1
W [Twn] | agry < Coh™ b N lwnlllzzry = Coh " ITwnlll 2 (r)-

1 1

11 1
Hence, since 2772 = 22

2

)

l/p
1.8, 11
0ot onrlund < (G Qaall i + Naalfary) % 2275yl

Moreover, for all F' € FP, proceeding as above with a = (k"/?V,v)|rnp yields

l/p
[ nnokomefon] < (Kl ) % Colunl
'

Summing over mesh faces, applying one last time Holder’s inequality, and regroup-
1 1

ing the face contributions of each mesh element (since 1 < 2274« for boundary

faces), we infer

Z /F{F;th}w-np [wn]

FeF,

l/q
1_1
< folpwp X 22790, ( > |wh|§,~,F> )

FeFy

and since ¢ > 2, we obtain

l/q 1/2
( Z |wh§,n,F> < ( Z whﬁ,n,F) = |wh|-]7'€’

FeFy, FeFn
thereby yielding (13). O

3.2. Counsistency.

Lemma 3.2 (Jumps of exact solution). The exact solution u is such that
(14) [u] =0 YF e F,
(15) [«Vu]np =0 VF € F.

Proof. Property (14) is classical for functions in Hg(£2). To prove (15), let ¢ €
C§° (). Since —V-(kVu) = f € L3(Q),

[ evine = [ v

Furthermore, we obtain using the Green theorem and (6), for all T € 7},

/T(fV(nVu))ga:/TnVqua—/aT(nVu-nT)go.

Summing over mesh elements and accounting for the fact that ¢ vanishes on 0f2

yields

> [ @swulnre=o,

rer ' F
whence the assertion is inferred by choosing the support of ¢ covering a single
interface and using a density argument. O

Lemma 3.3 (Consistency). For all wy, € Vj,

ah(uvwh,):Afwh-
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Proof. Plug v into the first argument of the bilinear form aj given by (4). Inte-
grating by parts the first term yields
/ k(Vung)wy.
orT

(16) / KVuVpw, =— Y / V- (sVu)ws + Y
Q2 TeT;, T TEeT,

Rewriting the second term on the right-hand side of the above expression as a sum
over mesh faces leads to

Z / K(Vunr)w, = Z / [(kVu)wp]np + Z / K(Vun)wy,.

TeT;, /0T rer T Ferp l
We now observe that for all F' € F},

[(«Vuw)wy] = {kVu},[wr] + [£Vu]{ws}=,

where {wp,}z = wr, pwp|r, + wr Fwh|r,. To prove this identity, we set a; =
(kVu) T, w; = wr, p, 4 € {1,2}, so that

[(kVu)wy] = a1by — azbs
= (wiay +w2az2) (b1 — b2) + (a1 — az)(waby + wibz)
= {&Vu},[wr] + [cVu]{wn }=z,
since w; + wy = 1. As a result, accounting for boundary faces,
Z / k(Vunr)w, = Z / {kVu},npfws] + Z / [£Vu] np{wh}az
TeT;, 70T Fer, ' F reri 7 F

Combining this expression with (4) and (16) yields
onwin) = = 3 [ VeTuwn+ 3 0 [ [ulfun]

T;, by = wp,

TeTh FeFn
+ Z / [£Vu] np{ws}z — Z / [ul[{xVhwp}wnr.
FeF), F FeF, ' F
This yields the assertion owing to (14)-(15) and to —V-(kVu) = f in €. O

3.3. Stability. We now establish the discrete coercivity of the SWIP bilinear form
under the usual assumption that the penalty parameter 7 is large enough. An im-
portant point is that the minimal threshold on the penalty parameter is independent
of the diffusion coefficient.

Lemma 3.4 (Discrete coercivity). For all n > C2Npy, the SWIP bilinear form ay,
is coercive on Vi, with respect to the ||-||,.-norm, i.e.,

v'Uh S Vh, ah(vhavh) 2 Csta‘”vhmiv
with Cya := (1 — C&Np){max(1/2,n + CZNy)} L.
Proof. Let v, € V},. We first observe that

an(vn, vn) = |72V honlFaqpe =2 D /{thvh}w'nF[[vhﬂ + nval3 .
FeFy, F

and bound the second term on the right-hand side using to obtain

ap(vp,vp) > ||n1/2thh||[2L2(Q)]d = 20nlt 20850 + NlVR]] .-
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Owing to the discrete trace inequality (11), we readily infer
(17) [vhlm2 < CeeNg |87 Vhvn |22 oo
Using the inequality 2ab < ea? + (1/¢€)b? valid for any € > 0 yields
an(vn,vn) > (1= CoNoe) |6V ion 2y + (01— 1/€) [unl3 -
It now suffices to take e = 2(n + C2Ny)~! to infer the assertion. O

As a straightforward consequence of the Lax—Milgram Lemma, Lemma[3.4]yields
the well-posedness of the discrete problem (5).

3.4. Boundedness. We consider the following additional norm: For all v € Vi,

ol = llolls + o]t 5.p-
Lemma 3.5 (Boundedness). There holds
V(v,wn) € Vin X Vi, an(v, wn) < Cona[olls; lwnlx-

with Cyna = 141+ 23 5C, + C, N/

Proof. Let (v,wp) € Vi x V), and denote by Ti,...,%, the four terms on the
right-hand side of (4). Using the Cauchy—Schwarz inequality yields
%1 4+ T < (L+n)[lollcllwnlle < X+ n)vllx,; lwn s

Moreover, owing to the bound (13),
11 11
|Ts| < 22 qu|U|T7N,p|wh|J,R <22 qu”|U"|mT|

Finally, using the bounds (12) and (17) leads to

1Tl < [olsuelwnlime < CalNy olslle*Vawnllizz@ye < CulNyTollellwnl.

|wnlx-

Collecting the above bounds yields the assertion. O
3.5. Convergence.

Theorem 3.6 (||-||,-norm error estimate). Assume n > C2Ny. There holds

(18) lle —wnlle < € inf o=yl

with C =1+ C;Cyna. Moreover, recalling the definition (7) of a,

1/p
(19) lw = unlls < ( > ||H|\LN(T)h’%"||UHW2 »(T) ) ;

TeTy
yielding, in particular,

o= wnlle <370 ullwes(zs).

~

Proof. (i) Proof of (18). Let y; € Vj,. Owing to discrete stability and consistency,

ap\Uh — Yh, Wh _ ap\U — Yp, Wh
lun —ynlle < Cql sup AL ZImn) _oon gy, (g wn)
wp €V \{0} lehmﬁ wp €V \{0} ”lwh”lfﬁ

Hence, owing to boundedness,

lun = ynllc < CoaConallu — ynll,, -

Estimate (I8) then results from the triangle inequality, the fact that |Ju — yp[, <
llv — ynlls,;» and that y, is arbitrary in V.
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(ii) To prove (19), we use with y;, = mpu where 7, denotes the L?-orthogonal
projection onto V.. For all T € 7y, using the Sobolev embedding WP(T) — L?(T)
since p > d+2 together with interpolation properties in W?2P?(T), it can be shown
that

14d(4
hitllu = ynllzz ey + 1Va(u =y lieaye She ”u”WzP(T)

Hence, since 7, r < min(k|r,s|r,) for all F € F) with F = 0Ty N Ty, [yn] =
[u—yn] on all F € Fy, and [[v]z2r) S Il 7y 10 ||1/2 for all T € Tp,, F € Fr,

and v € HY(T), we infer

/3
24d(1—
lw—=wnlle < < > N6l Lo ryhy ||U||W2 pm>

TeT,

l/p
2 p|l+d(3—3)
< (Z il g L P]|u||’;vz,pm) ,

TeT),
since for non-negative real numbers (ar)rez,, (Qorer, az)? < (X rer, ah)'e.

1—1 1
Moreover, since |v||r(r) S Hv||Lp(‘})||v||§V1,p(T) for all T € T, F € Fr, and
v € WHP(T), we infer using interpolation properties in W2P?(T) that

IV (u = ) lrng | oo ey S by P||u||W2p(T),

whence, using again (a’T)TEThv (ZTeTh aT) /2 < (ZTeTh aT) /;,7

1/p
p[l+d(3—2
= winns 3 It )

TeTy

The proof is complete since o = 1 + d(% — %) O

4. CONVERGENCE ANALYSIS IN 3D FOR p € (1, 6/5]

We treat here the 3d case with p € (1,6/5]. In this case, the regularity (2) is in-
sufficient to establish convergence rates by proceeding as in the previous section. To
prove convergence still using admissible mesh sequences (and in particular, shape-
regular meshes), we consider here a different analysis technique, inspired by [5] and
relying on a compactness argument. In this case, a weaker form of consistency is in-
voked, which does not require to extend the discrete bilinear form to the continuous
space, thereby making the spaces Vi and V4, unnecessary.

4.1. Lifting and discrete gradients. An important ingredient of the analysis is a
discrete gradient featuring suitable convergence properties for sequences of smooth
and of discrete functions. The discrete gradient is defined in terms of the weighted
lifting operators introduced by Di Pietro, Ern, and Guermond [6]; see also Agélas,
Di Pietro, Eymard, and Masson |1]. More precisely, for any integer [ > 0 and all
F € Fp, we define the linear operator 1!, j : L*(F) — [P4(75)]* such that, for all
v e L*(F),

(20) /Q i p(v) 1 = /F o{mlone V€ [PY(T)]"
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We also define the following global lifting:
(21) R, u(0) = ) 1l p(v).
FeFn

The L?-norm of the global lifting can be bounded in terms of the jump seminorm.
Proceeding as in the proof of (12) yields that for all I > 0 and all v € V4,

(22) I67RL, (oDl z2ye < CuNy 0] -
For all I > 0 and all v, € V},, we define the discrete gradient
(23) GL n(vn) := Vivn — RL j,([on]).

For future use, we also introduce the following data-independent norms,

1/2
1/2 _
boll = (IVavlfe@pe +10B) * fola = (Z hF1||nv1]||%z<F>) -

FeF,

For every integer [ > 0, we also denote by 7} the L%-orthogonal projection onto
[Pil('fh); the same notation is used for the L?-orthogonal componentwise projection
onto [P4(75,)]%.

Lemma 4.1 (Discrete Rellich-Kondrachov). Let (vy)nen be a sequence in (Vi) hen,

uniformly bounded in the ||-||-norm. Then, there exists a function v € H}(Q) such
that as h — 0, up to a subsequence, vy, — v strongly in L*(£2).
Proof. See |5, Theorem 6.3]. O

Lemma 4.2 (Properties of Gfu’h). The discrete gradients Ga7h, l >0, enjoy the
following properties:

(i) For all sequences (vp)ner i (Vi)nen uniformly bounded in the ||-||-norm,
as h — 0, GL } (va) = Vo weakly in [L*(Q)]* with v € Hg(Q) provided by
Theorem[4.1;

i) For all p € C°(Q), as h — 0, GL , (1}¢) — Vo strongly in [L?(2)]%.
0 w,h\Th

Proof. (i) To prove the weak convergence of G/ n(vn) to Vo, let @ € [C5° ()], set

w
Py, = 7T£L<I> and observe that

/QGfWh(vh)*I):f/thV*I)Jr > /E)thcp.an > /QrL,F([[Uh]])-cph

TET, FEF,
= —/ v V-® + Z / [or]{® — Pp}onp =Ty + Ty,
Q rer, V¥

where we have used the definition of the L2-orthogonal projection together with (20)
and (21). As h — 0, T — — [, vV-®. For the second term, the Cauchy-Schwarz
inequality yields

1/2
TQ S |Uh|J,n X ( Z hF’YEl/ |{(I) - (I)h}w|2> )
F

FeFp
which tends to zero owing to the approximation properties of the L?-orthogonal

projection together with the fact that |vy|y . < X1/2|vhh is uniformly bounded by
assumption. This concludes the proof.
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(ii) Let @ = mhe. Then, GL ,(pn) = Vien — RL , ([on]) = 1 + T2, Clearly,
Ty — Vi strongly in [L%(Q)]¢ as h — 0. Moreover, owing to (22), it is inferred that

||Rfu7h([[soh]])||[L2(Q)]d < C’trN;/2|gah|J7,{ = CtrN$/2\cph — |51, which tends to zero as
h — 0, thereby concluding the proof. |

4.2. Convergence. The SWIP bilinear form a;, admits the following equivalent
formulation on Vj, x Vj,: For | € {k —1,k},

(24) an(on, wn) = / KGL (08)-GL () + G (0n, wn),
Q

with jin (v, wp) == = [ KRL , ([on])-RL , ([wa]) + X pe s, Miw.rhp’ [plonl[wa]. We
can now state and prove the main result of this section.

Theorem 4.3 (Convergence to minimal regularity solutions). Let (un)newn be the
sequence of approximate solutions generated by solving the discrete problems (5).
Then, as h — 0, (i) up, — u strongly in L*(Q), (i) Viup, — Vu strongly in
[L2(Q)])4, (iii) |up|y — 0, with u € V unique solution to (1).

Proof. (i) A priori estimate. We recall the discrete Poincaré inequality |5, eq. (75)],
(25) Yoy, € Vg, [vnllz2@) < o2llvnll,

with o9 independent of the mesh-size h. Owing to the coercivity of aj, together
with (25), it is inferred that

Condlunll® < Coallunll?. < a(un, un) = / Fun
Q

<N fllzzllunllzz @) < o2llfllzz@ llunlls

hence JJup || < 02(Cstad) || fll 220, that is to say, the sequence of discrete solutions
is uniformly bounded in the ||-||-norm.

(i) Compactness. Owing to Theorem [4.1] together with Lemma [4.21, there exists
u € H}(Q) such that, as h — 0, up to a subsequence, u, — u strongly in L?(Q)
and G, ; (up) — Vu weakly in [L?(Q)]%.

(iii) Identification of the limit. Let ¢ € C§°(2) and set ¢, := 7} . Owing to the
regularity of ¢, it is clear that ||¢ — ¢n|lx — 0 as b — 0. Observe that

an (s on) = / KGL p(un)-GL p(on) + G (o) = Tr + Ta.
Q

Ash —0,%; — [, kVu-Vy owing to the weak convergence of GL,h(“h) to Vu and

to the strong convergence of Gi,h(iph) to Vo proved in Lemma [4.2] Furthermore,

the Cauchy—Schwarz inequality together with (22) yield

. ~1/2
%] = |n(un, o) < (CENo +n) [unlylenlse < (CENo +n0) X Junlslenls e

Since |up|; is bounded by point (i), and since |¢p|y.x = |¢n — ¢|.x tends to zero as
h — 0, it is inferred that €5 — 0. As a result,

(26) [ #vave = antunen) = [ o [ s

Hence, by the density of C§°(Q) in H}(Q), @ = u, the unique solution to (1). Owing
to the uniqueness of u, the whole sequence of discrete solutions converges.
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(iv) Strong convergence of the gradient and of the jumps. Eqs. (22) and yield
(27)  Von € Vi, an(on,vn) 2 [|K72GL (00 [F2aya + (1 — C5Na) [onl3
From the weak convergence of le,h(uh) to Vu, we readily infer the weak conver-
gence of Hl/szU7h(Uh) to £7/°Vu. Then, owing to (27) and to weak convergence,

lim inf an(un, up) > lim inf ||/fl/2G£;,h(Uh)||[2L2(Q)]d > ||H1/2VUH[2L2(Q)]4-

Furthermore, still owing to (27)),

hmsup |K72GL h(uh)||[L2 oy < thllp an(un, up)

:limsup/ fun f/fuf |5 /2VU|| [L2(Q)]¢

h—0
This classically proves the strong convergence of /2Gfd’h(uh) to K"V in [L2(Q)]
and, hence, the strong convergence of Gi7h(uh) to Vu in [L2(Q2)]?. Note that
ap(up,up) — H/{l/QVuH[ZLZ(Q)]d also. Using we then infer

(n = CaNo)unl3 e < an(un,un) — [|£72GL , (un) 2 (e

and, since 7 > C2 Ny and the right-hand side tends to zero, |up|yx — 0. To infer
O

that |up|; — 0, simply observe that |up|; < A

Remark 4.4. When extended to Vi, x Vj,, the discrete bilinear form a; defined
by is no longer consistent in the usual finite element sense; see [5, Remark 3.3].
However, (26) shows that ay, retains a form of weak asymptotic consistency which
suffices to infer the convergence of the method when u only exhibits the minimal
regularity.
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