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Abstract

We consider two-component (typically, water and hydrogen) compressible liquid-gas porous media
flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as moti-
vated by hydrogen production in underground repositories of radioactive waste. Following recent work
by Bourgeat, Jurak, and Smäı, we formulate the governing equations in terms of liquid pressure and
dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic-parabolic
system of PDEs, in which the equations degenerate when the gas phase disappears. We develop a
discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for
time discretization and an incomplete Newton method for linearization. Numerical examples deal with
gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock
types.

1 Introduction

Multicomponent multiphase porous media flows are encountered in several applications including petroleum
engineering and various hydrology models related, e.g., to agricultural engineering and groundwater reme-
diation. Such flows have received an enhanced attention recently in connection with gas sequestration and
the disposal of radioactive waste in underground repositories. This last application actually constitutes the
main motivation for the present work. In such repositories, the corrosion of metallic components, and also
marginally the radiolysis of water, leads to hydrogen production. An important issue in the design and
safety analysis of the underground repository is then to understand and predict the migration of hydrogen
through the host rock. A typical model to describe this situation is to consider a two-phase (liquid and gas),
two-component (water and hydrogen) flow. During the simulation, the gas phase is generally not present in
the whole domain, as hydrogen gradually penetrates into the host rock which is initially saturated. When
both phases are present, the hydrogen component is assumed to be in thermodynamic equilibrium between
both phases, and in the context of moderate hydrogen concentrations, this equilibrium is described by the
linear Henry law for hydrogen dissolution. For simplicity, we assume herein that water does not vaporize,
which is a reasonable assumption in the present context. Additionally, the compressibility of the gas phase
must be accounted for.

Multicomponent multiphase porous media flows are described by well-established models covered in
several monographs, see, e.g., Bear [6], Chavent and Jaffré [10], Helmig [20], Marle [26], and Peaceman [30].
There is a satisfactory mathematical theory for incompressible two-phase flows hinging on the theory of
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elliptic-parabolic PDEs, see, e.g., [2, 7, 23, 24, 28]. Recent mathematical results in the compressible case
can be found in [3, 25] without mass exchange between phases and in [27, 33, 34] with mass exchange.

The possibility of gas-phase disappearance rises the issue of selecting the main unknowns in the governing
equations since, typically, the phase saturations are not appropriate for that purpose. Following [8, 32], we
select here the liquid pressure together with the dissolved hydrogen density. This choice is motivated by the
fact that the liquid phase is always present in the whole domain, while the dissolved hydrogen density is
always well defined, regardless of the presence of a gas phase. As observed in [22], Henry’s law can be used
within a formulation with complementary constraints to determine the presence of the gas phase. Here,
as in [8, 32], we adopt the simpler approach where the gas-phase saturation is recovered from the main
unknowns using the reciprocal function of the capillary pressure extended by zero. An alternative approach
to phase disappearance (where both phases can disappear in different parts of the domain) is discussed
in [1, 29].

The goal of the present work is to design and evaluate numerically a discontinuous Galerkin (dG) method
for two-component compressible liquid-gas porous media flows including mass exchange between phases.
The dG method is used for space discretization, in conjunction with a backward Euler scheme for time
discretization and an inexact Newton solver for linearization. Of special interest in the numerical evaluation
of the dG method are test cases featuring gas-phase (dis)appearance, ill-prepared initial conditions, and
heterogeneous problems with different rock types. Introduced forty years ago, dG methods have experienced
a vigorous development over the last decade in many fields of engineering. Attractive features offered by dG
methods include the possibility of enforcing locally basic conservation principles, the flexibility in designing
the mesh and local degrees of freedom, and the ability to enforce interface conditions in the context of multi-
domain problems. We refer to [4, 14] for a unified analysis of dG methods and to recent monographs on
the subject [21, 31, 11]. DG methods for incompressible two-phase porous media flows without inter-phase
mass exchange have been developed, e.g., in [5, 13, 15, 16, 18], but, to our knowledge, this is the first time
where compressible flows with inter-phase mass exchange are covered.

This paper is organized as follows. In §2, we present the governing equations and formulate the mathe-
matical model. In §3, we describe the numerical method and, in particular, design the dG method for space
discretization. Finally, in §4, we present the numerical results and draw some conclusions.

2 Problem setting

In this section, we first present the governing equations in their basic form. Then, we specify the choice of
main unknowns and derive the mathematical model.

2.1 Governing equations

We assume that the porous medium is isothermal and undeformable. We adopt the terminology of our
targeted application related to hydrogen production within geological repositories of radioactive waste. The
two phases are indicated by a subscript α ∈ {l, g} referring to liquid and gas respectively. We consider two
components, indicated by a superscript β ∈ {w, h} referring to water and hydrogen respectively.

The mass conservation equation for each component β ∈ {w, h} can be written as

Φ
∑

α∈{l,g}

∂t(sα̺β
α) +

∑

α∈{l,g}

∇ · (̺β
αqα + jβα) = F β , (1)

where Φ denotes the porosity, sα the saturation of phase α, ̺β
α the density of component β in phase α, qα

the volumetric flow rate for phase α, jβα the mass diffusion flux of component β in phase α, and F β the
source term of component β. The volumetric flow rate of each phase is obtained from the Darcy–Muskat
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law in the form

qα = −Kλα(sα)∇pα, α ∈ {l, g}, (2)

where K denotes the absolute permeability of the medium (taken to be scalar-valued for simplicity), λα

the mobility of phase α (assumed to be a given function of the saturation sα such that λα vanishes if the
phase α is absent), and pα the pressure of phase α. For simplicity, gravity forces are neglected in (2). The
phase saturations take values in [0, 1] (in hydrogeology models, they often take values in a subinterval of
[0, 1] depending on residual saturations of both phases, cf §4) and are such that

sl + sg = 1. (3)

Furthermore, assuming that the gas phase is the non-wetting phase, the phase pressures are such that

pg = pl + π(sg), (4)

where π : [0, 1) → [π(0),+∞) denotes the capillary pressure (assumed to be a given function of the gas
saturation). The quantity π(0) denotes the possibly nonzero entry pressure.

Concerning the water component, we assume incompressibility in the liquid phase and we neglect water
vaporization. As a result,

̺w
l = ̺std

l , ̺w
g = 0, (5)

where ρstd
l denotes the standard water density at the given temperature of the medium. Concerning the

hydrogen component, we assume the ideal gas law in the gas-phase and that hydrogen phase changes are in
thermodynamic equilibrium as governed by Henry’s law. This leads to

̺h
g = Cgpg, Cg =

Mh

RT
, (6)

and

̺h
l = Chpg, Ch = HMh, (7)

where Mh denotes the hydrogen molar mass, R the universal gas constant, T the (absolute) temperature,
and H the (temperature-dependent) constant in Henry’s law. Furthermore, the hydrogen diffusion flux in
the liquid phase, jhl , is evaluated using a Fick-type law in the form

jhl = −ΦslD
h
l ∇̺h

l , (8)

where Dh
l denotes the (temperature-dependent) molecular diffusion coefficient of hydrogen in the liquid

phase. Since for a two-component system, the diffusion fluxes in the liquid phase satisfy
∑

β∈{w,h} j
β
l = 0,

we infer jwl = −jhl . The use of the Fick-type law (8) using density, and not concentration, gradients and
neglecting cross-diffusion effects is reasonable as long as the hydrogen component is dilute in the liquid
phase.

To sum up, the above simplifying assumptions allow us to recast the mass conservation equations (1)
for both components as

Φ̺std
l ∂tsl + ∇ · (̺std

l ql − jhl ) = Fw, (9a)

Φ∂t(̺
h
l sl + Cgpgsg) + ∇ · (̺h

l ql + Cgpgqg + jhl ) = Fh. (9b)
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2.2 Mathematical model

Owing to the possible disappearance of the gas phase in some parts of the computational domain that are
a priori unknown, it is not appropriate to select any of the saturations or the gas pressure as one of the
main unknowns of the mathematical model. Indeed, the saturations vanish identically, or are identically
equal to one, in those regions where only the liquid phase is present, while the gas pressure is not even
defined in those regions. Following the recent ideas of Smäı [32] (see also Bourgeat, Jurak, and Smäı [8] for
a slightly different choice), we select as main unknowns of the mathematical model the liquid pressure pl

(since the liquid phase is always present throughout the domain) and the dissolved hydrogen density ̺h
l . In

what follows, we set
y = (y1, y2), y1 := pl, y2 := ̺h

l . (10)

The mass conservation equations (9) can then be recast into the form

∂tb1(y) −∇ · (A11(y)∇y1 + A12(y)∇y2) = F1, (11a)

∂tb2(y) −∇ · (A21(y)∇y1 + A22(y)∇y2) = F2, (11b)

or, in more compact form, for all i ∈ {1, 2},

∂tbi(y) −
∑

j∈{1,2}

∇ · (Aij(y)∇yj) = Fi, (12)

with source terms F1 := Fw, F2 := Fh, and

b1(y) = −Φ̺std
l sg(y), (13a)

b2(y) = Φa(sg(y))y2, (13b)

A11(y) = ̺std
l Kλl(1 − sg(y)), (13c)

A12(y) = −Φ(1 − sg(y))Dh
l , (13d)

A21(y) = y2Kλl(1 − sg(y)), (13e)

A22(y) = y2Kλg(sg(y))ωC−1
h + Φ(1 − sg(y))Dh

l , (13f)

where ω =
Cg

Ch
and a(s) = 1 + (ω − 1)s. Finally, the gas saturation is recovered from

sg(y) = π−1

(

y2

Ch
− y1

)

, (14)

where π−1 : R → [0, 1) denotes the extension by zero to R of the inverse function of the capillary pressure
π, cf Figure 1. We observe that sg is a continuous function of y; this function is actually differentiable if
the van Genuchten model is considered for the capillary pressure, as is often the case in hydrogeology and
is actually the case in our numerical experiments presented in §4 below. If the Brooks–Corey model is used
instead, the function π−1 is not differentiable at the entry pressure π(0), and a semi-smooth version of the
linearization procedure described in §3.1 needs to be considered.

The governing equations (12), supplemented with (13) and (14), are posed in the computational domain
Ω which we assume to be a bounded, open, polyhedral domain in R

d, d ≥ 1, with boundary denoted by ∂Ω
and outward unit normal by n. Dirichlet and Neumann boundary conditions are enforced at the boundary.
Given a partition of ∂Ω into ∂ΩD ∪ ∂ΩN , we enforce on ∂ΩD the value y = yD, and on ∂ΩN , we enforce
n · σi(y) = σi for all i ∈ {1, 2}, where the total fluxes σi are defined as

σi(y) = −(Ai1(y)∇y1 + Ai2(y)∇y2). (15)
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Figure 1: Function π−1 : R → [0, 1) used to recover the gas saturation.

It is possible to consider a setting where the partition into Dirichlet and Neumann boundaries depends on
the component i ∈ {1, 2}, but this generality is not needed for the test cases envisaged herein. Finally,
initial conditions are imposed on y in the form y(x, 0) = y0 for all x ∈ Ω.

Equation (11a) is a parabolic equation in y1 (since the liquid phase is always present) that degenerates
into an elliptic equation if the gas phase disappears. Equation (11b) is a parabolic equation in y2 that
degenerates into an elliptic equation if there is no dissolved hydrogen. Therefore, (11a) is loosely termed
the “pressure equation” and (11b) the “hydrogen equation.” To examine the coupled system, we write it in
nondimensional form. Let y1 = p0y1 and y2 = Chp0y2, where p0 denotes a reference pressure. Dividing (11a)
by ̺std

l and (11b) by Chp0 yields

∂tb1(y) −∇ · (A11(y)∇y1 + A12(y)∇y2) = F 1, (16a)

∂tb2(y) −∇ · (A21(y)∇y1 + A22(y)∇y2) = F 2, (16b)

with F 1 := Fw/̺std
l , F 2 := Fh/(Chp0), and letting sg(y) = π−1(p0(y2 − y1)),

b1(y) = −Φsg(y), (17a)

b2(y) = Φa(sg(y))y2, (17b)

A11(y) = p0Kλl(1 − sg(y)), (17c)

A12(y) = −(Chp0/̺std
l )Φ(1 − sg(y))Dh

l , (17d)

A21(y) = y2p0Kλl(1 − sg(y)), (17e)

A22(y) = y2p0Kλg(sg(y))ω + Φ(1 − sg(y))Dh
l , (17f)

where bi(y) is nondimensional and Aij(y) scales as m2/s. The matrix A yields a positive definite quadratic
form (and hence ellipticity on the space differential operator) if and only if

4A11A22 − (A12 + A21)
2 > 0. (18)

For applications related to hydrogen migration in underground repositories, typical values are p0 = 1
MPa, Chp0 = 1.5·10−2 kg/m3, and using the values listed in Table 1, we obtain the estimates (in m2/s)
A11 ≈ 5·10−11, A12 ≈ 6.8·10−15, A21 ≈ 5·10−11, A22 ≈ 4.5·10−10 (for A22, only the second term is used for
the estimate, but the first term can take much larger values if the gas phase is present). Hence, condition (18)
holds true. We observe that A12 ≪ A11, whence, neglecting A12 (and using only the second term for A22),
we infer from (18) the condition p0Kλl(1) < 4ΦDh

l for ellipticity. In situations where this condition fails
(e.g., because K is too large or Dh

l too small), a smallness condition on the dissolved hydrogen density can
be invoked, with an upper bound typically depending on K and Dh

l . Finally, an important result under the
assumption A12 ≈ 0 is that the change of variables (see Smäı [33, 34])

y1 = u1 + ω−1eωu2 , y2 = eωu2 , (19)
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yields a new system in the variables (u1, u2) fitting the framework of the Alt–Luckhaus theorem for the
existence of weak solutions [2], namely the time-derivative term involves the gradient of a convex potential
and the space-derivative terms yield a symmetric positive definite matrix.

3 Numerical method

In this section, we first present the time discretization together with the linearization procedure and then
describe the dG method for space discretization. We consider the nondimensional form (16); to alleviate
the notation, bars are henceforth omitted.

3.1 Time discretization and linearization

Let {tm}0≤m≤M be a partition of time interval [0, T ] such that t0 = 0 and tM = T , the given simulation
time, and set τm = tm − tm−1 for m = 1, . . . ,M . Time discretization of (12) is achieved using the backward
Euler method: Starting from the initial condition y0 := y0, we seek, for all m = 1, . . . ,M , the function ym

such that, for all i ∈ {1, 2},

1

τm
(bi(y

m) − bi(y
m−1)) −

∑

j∈{1,2}

∇ ·
(

Aij(y
m)∇ym

j

)

= Fm
i ,

where a superscript m on any problem data (e.g., on Fi) indicates evaluation at the discrete time tm.
The linearization procedure is based on an incomplete Newton solver. It first involves a fixed-point

iteration (indicated by an index l) on the coefficients in the diffusive terms, leading to

1

τm
(bi(y

m
l+1) − bi(y

m−1)) −
∑

j∈{1,2}

∇ ·
(

Aij(y
m
l )∇ym

j,l+1

)

= Fm
i .

The fixed-point iteration is initialized with the values at the previous time step, i.e., we take ym
0 := ym−1.

The second ingredient in the linearization procedure is a linear approximation of the time-derivative terms,

1

τm
(bi(y

m
l+1) − bi(y

m−1)) =
1

τm
(bi(y

m
l+1) − bi(y

m
l )) +

1

τm
(bi(y

m
l ) − bi(y

m−1))

≈ ∂1bi(y
m
l )

ym
1,l+1 − ym

1,l

τm
+ ∂2bi(y

m
l )

ym
2,l+1 − ym

2,l

τm
+

bi(y
m
l ) − bi(y

m−1)

τm
.

As a result, for all m = 1, . . . ,M (time loop) and for all l ≥ 0 (fixed-point loop), we seek ym
l+1 such that,

for all i ∈ {1, 2},

−
∑

j∈{1,2}

∇ ·
(

Aij(y
m
l )∇ym

j,l+1

)

+
∑

j∈{1,2}

∂jbi(y
m
l )

ym
j,l+1 − ym

j,l

τm

= Fm
i −

bi(y
m
l ) − bi(y

m−1)

τm
.

Solving for ym
l+1 amounts to solving the linear system of PDEs,

−∇ ·
(

A11(y
m
l )∇ym

1,l+1 + A12(y
m
l )∇ym

2,l+1

)

+
1

τm

(

∂1b1(y
m
l )ym

1,l+1 + ∂2b1(y
m
l )ym

2,l+1

)

= Gm
1,l, (20a)

−∇ ·
(

A21(y
m
l )∇ym

1,l+1 + A22(y
m
l )∇ym

2,l+1

)

+
1

τm

(

∂1b2(y
m
l )ym

1,l+1 + ∂2b2(y
m
l )ym

2,l+1

)

= Gm
2,l, (20b)
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with the right-hand sides, for all i ∈ {1, 2},

Gm
i,l = Fm

i +
1

τm
bi(y

m−1) +
1

τm

(

∂1bi(y
m
l )ym

1,l + ∂2bi(y
m
l )ym

2,l − bi(y
m
l )

)

, (21)

together with the boundary conditions

ym
l+1 = ym

D on ∂ΩD, (22a)

n · σi(y
m
l+1) = σm

i , i ∈ {1, 2}, on ∂ΩN . (22b)

3.2 Space discretization: dG method

Let {Tδ}δ>0 be a family of shape-regular meshes of the domain Ω (possibly containing hanging nodes),
where δ denotes the maximum element diameter in Tδ. We say that the set F is a mesh interface (resp.,
boundary face) if F has nonzero (d − 1)-dimensional measure and if there exist distinct T−, T+ ∈ Tδ such
that F = ∂T− ∩ ∂T+ (resp., if there exists T ∈ Tδ such that F = ∂T ∩ ∂Ω). Interfaces are collected in the
set F i

δ, boundary faces in the set Fb
δ , and we let Fδ := Fb

δ ∪F i
δ. For all F ∈ Fδ, δF denotes its diameter. We

suppose that the meshes Tδ are fitted to the partition ∂Ω = ∂ΩD ∪ ∂ΩN ; accordingly, the set of boundary
faces Fb

δ is partitioned as Fb
δ = FD

δ ∪ FN
δ with obvious notation.

For a scalar- or vector-valued function v that is possibly two-valued at an interface F = ∂T−∩∂T+ ∈ F i
δ,

we define its jump and average at F as

[[v]] = v− − v+, {v} = 1
2 (v− + v+), v± = v|T±

and extend these definitions to boundary faces F = ∂T ∩ ∂Ω ∈ Fb
δ by setting [[v]] = {v} = v|T . For all

F = ∂T− ∩ ∂T+ ∈ F i
δ, we define nF as the unit normal vector to F pointing from T− toward T+, whereas

for F ∈ Fb
δ we set nF = n. The sign arbitrariness in the definition of nF and of the jump across F , for all

F ∈ F i
δ, is irrelevant in what follows.

Let k ≥ 1 be an integer. The dG method is based on the discrete space

V k
δ := {vδ ∈ L2(Ω); ∀T ∈ Tδ, vδ|T ∈ Pk(T )}, (23)

where Pk(T ) denotes the vector space spanned by polynomials of total degree ≤ k on T . Let yδ ∈ [V k
δ ]2 and

let i, j ∈ {1, 2}. The interior penalty dG bilinear form discretizing the differential operator −∇· (Aij(yδ)∇·)
can be written, for all uδ, vδ ∈ V k

δ , as

aij
δ (yδ;uδ, vδ) =

∑

T∈Tδ

∫

T

Aij(yδ)∇uδ · ∇vδ

−
∑

F∈F i
δ
∪FD

δ

∫

F

nF ·{Aij(yδ)∇uδ}[[vδ]]

− θij
∑

F∈F i
δ
∪FD

δ

∫

F

nF ·{Aij(yδ)∇vδ}[[uδ]]

+
∑

F∈F i
δ
∪FD

δ

ηij
F

σk2

δF

∫

F

[[uδ]][[vδ]],

where θij = 0 for i 6= j and θii = 1 for i ∈ {1, 2} (so that the diagonal blocks of the linear system matrix
remain symmetric), while ηij = 0 for i 6= j and ηii

F = ‖Aii‖L∞(Ω) for i ∈ {1, 2} (in the present context, the
variations of Aii in Ω are sufficiently mild to use a global scaling for the penalty parameter). Moreover, the
user-dependent parameter σ is typically set to 10.
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We consider the following dG method: Given ym−1
δ ∈ [V k

δ ]2 from the previous time step (or the L2-
projection of the initial condition), the fixed-point loop is initialized as ym

δ,0 = ym−1
δ , and, for all l ≥ 0, we

seek ym
δ,l+1 ∈ [V k

δ ]2 such that, for all vδ, wδ ∈ V k
δ ,

a11
δ (ym

δ,l; y
m
1,δ,l+1, vδ) + a12

δ (ym
δ,l; y

m
2,δ,l+1, vδ)

+
1

τm

∫

Ω

(

∂1b1(y
m
δ,l)y

m
1,δ,l+1 + ∂2b1(y

m
δ,l)y

m
2,δ,l+1

)

vδ

=

∫

Ω

Gm
1,lvδ −

∑

F∈FN
δ

∫

F

σm
1 vδ

+
∑

F∈FD
δ

∫

F

(

φ11
F (ym

δ,l; vδ)y
m
1,D + φ12

F (ym
δ,l; vδ)y

m
2,D

)

, (24)

a21
δ (ym

δ,l; y
m
1,δ,l+1, wδ) + a22

δ (ym
δ,l; y

m
2,δ,l+1, wδ)

+
1

τm

∫

Ω

(

∂1b2(y
m
δ,l)y

m
1,δ,l+1 + ∂2b2(y

m
δ,l)y

m
2,δ,l+1

)

wδ

=

∫

Ω

Gm
2,lwδ −

∑

F∈FN
δ

∫

F

σm
2 wδ

+
∑

F∈FD
δ

∫

F

(

φ21
F (ym

δ,l;wδ)y
m
1,D + φ22

F (ym
δ,l;wδ)y

m
2,D

)

, (25)

with φij
F (yδ; vδ) = −θijnF ·Aij(yδ)∇vδ + ηij

F
σk2

δF
vδ, for all i, j ∈ {1, 2}. Integrating by parts elementwise the

volume term in the bilinear forms aij
δ , it is seen that the above formulation weakly enforces the PDEs (11) in

each mesh element, the boundary conditions (22) on all boundary faces, and, on all mesh interfaces F ∈ F i
δ,

the transmission conditions

[[yi]] = 0, nF · [[σi(y)]] = 0, ∀i ∈ {1, 2}, (26)

consistently with the properties satisfied by the exact solution.

Remark 3.1. For heterogeneous media consisting of different rocks with contrasting properties, weighted
averages can be considered in the formulation of the dG method, as in [12, 17] for linear advection-diffusion
equations. Furthermore, we observe that (26) implies that the dissolved hydrogen density ̺h

l is continuous
at any interface. Owing to Henry’s law, the gas pressure (if this phase exists on both sides of the interface)
is also continuous; hence, since the liquid pressure is continuous (also by (26)), the capillary pressure is also
continuous at the interface. However, the gas saturation is in general discontinuous at the interface; this
fact is illustrated in the test case of §4.3. Instead, for two-component porous media flows without inter-phase
mass exchange where one of the saturations is used as one of the main unknowns, the penalty strategy in
the dG method must be revised to enforce weakly a nonlinear jump condition on the saturation, cf [16].

4 Numerical results

In this section, we evaluate numerically the dG method derived in §3 on three one-dimensional test cases,
dedicated respectively to gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous prob-
lems with different rock types. The first two test cases have been proposed within the GNR MoMaS in
connection with the Couplex-Gas benchmark proposed by the French National Radioactive Waste Manage-
ment Agency (ANDRA); reference solutions can be found in [19]. The third test case has been investigated
in [9].
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We use the van Genuchten model for capillary pressure and the van Genuchten–Mualem model for
relative permeability, i.e.,

π(sg) = Pr

(

sle(sg)
−1/m − 1

)1/n

, (27a)

λl(sg) =
1

µl
sle(sg)

1/2
(

1 − (1 − sle(sg)
1/m)m

)2

, (27b)

λg(sg) =
1

µg
sge(sg)

1/2
(

1 − sle(s)
1/m

)2m

, (27c)

where m = 1 − 1
n , µl and µg are viscosities, while

sge(sg) =
sg − sgr

1 − slr − sgr
, sle(sg) = 1 − sge(sg), (28)

are the relative gas and liquid saturations and sgr, slr are the residual saturations in the gas and liquid phases
respectively. Values for the above physical parameters are specified below for each test case. In all cases,
the convergence criterion in the incomplete Newton method uses a tolerance of 10−8 in the L2(Ω)-norm,
and, in the present one-dimensional setting, a direct solver is used for the linear systems.

4.1 Gas-phase (dis)appearance

In this test case, hydrogen is injected into the porous medium Ω = (0, 200) (m) initially saturated by
water. Injection is performed through the left boundary x = 0 during the injection time Tinj = 105 (years),
while the simulation time is T = 106 (years). There are no external sources, i.e., Fw = Fh = 0. This
example illustrates the potential of the method to simulate gas-phase appearance and disappearance related
to hydrogen injection.

Porous medium Fluid characteristics
Param. Value Param. Value

Φ 0.15 (-) Dh
l 3 10−9 m2/s

K 5 10−20 m2 µl 1 10−3 Pa·s
Pr 2 106 Pa µg 9 10−6 Pa·s

n 1.49 (-) H(303K) 7.65 10−6 mol/Pa/m3

slr 0.4 (-) Mh 2 10−3 kg/mol

sgr 0 (-) ̺std
l 103 kg/m3

Table 1: Parameter values for the porous medium and fluid characteristics used in test case 1.

The porous medium and fluid characteristics are presented in Table 1. Initial and boundary conditions
are given by

−n · σ1|x=0 = 0, −n · σ2|x=0 = qinj; (29)

pl|x=200 = 106 (Pa), ̺h
l |x=200 = 0; (30)

pl|t=0 = 106 (Pa), ̺h
l |t=0 = 0; (31)

where qinj = 5.57·10−6χ[0,Tinj](t) (kg /m2/year) and χA denotes the characteristic function of the set A.
The ellipticity criterion (18) can be verified at each point in space and in time; the left-hand side of (18)
takes values in the range [1, 8] × 10−4 (m2/year)2.

We consider the first-order dG space V 1
δ (k = 1) and use a uniform mesh of 200 elements in Ω. In time,

we consider the partition [0, 1, 2, 3, 5, 7, 10]·105 (years) of the time interval [0, T ] and use the time steps
τ = [125, 500, 1000, 5000, 1000, 5000] (years) within each time slab.
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Figures 2 and 3 present selected results of our simulations at various times. During an initial transient
up to ≈ 2·103 (years), the dissolved hydrogen molar density increases owing to gas injection, while the
liquid pressure remains roughly constant, and there is no gas phase. The gas phase appears at the time
≈ 1.3·104 (years), and the liquid pressure begins to increase until it reaches its maximum at the time ≈ 105

(years). The gas saturation continues to increase up to the time ≈ 5·105 (years), while the gas pressure
reaches its maximum at x = 0 at the time ≈ 105 (years) and decreases afterward. When the gas injection
is eventually stopped, the liquid pressure starts to decrease (owing to the absence of entering water flux
at x = 0) and reaches its minimum at the time ≈ 5.6·105 (years). Afterward, the water pressure increases
again, the dissolved hydrogen molar density and the gas saturation decrease, while the system has almost
reached equilibrium at the final simulation time. All these results agree well with those presented in [19, 32].

4.2 Ill-prepared initial condition

In this test case, we consider the domain Ω = (0, 1) (m) with zero flux boundary conditions and no external
sources, while uniform liquid pressure and discontinuous gas pressure are considered as initial conditions.
Owing to the discontinuity of the gas pressure, the system is initially out of the mechanical equilibrium. This
example illustrates the potential of the method to simulate the evolution of the system back to equilibrium
starting from an ill-prepared initial condition.

Porous medium Fluid characteristics
Param. Value Param. Value

Φ 0.3 (-) Dh
l 3 10−9 m2/s

K 10−16 m2 µl 1 10−3 Pa·s
Pr 2 106 Pa µg 9 10−6 Pa·s

n 1.54 (-) H(303K) 7.65 10−6 mol/Pa/m3

slr 0.01 (-) Mh 2 10−3 kg/mol

sgr 0 (-) ̺std
l 103 kg/m3

Table 2: Parameter values for the porous medium and fluid characteristics used in test case 2.

The porous medium and fluid characteristics are presented in Table 2. The main difference with Table 1
is the higher value for K. Initial and boundary conditions are given by

−n · σ1|x=0 = 0, −n · σ2|x=0 = 0;

−n · σ1|x=1 = 0, −n · σ2|x=1 = 0;

pl(x, 0) = 106 (Pa), x ∈ (0, 1)

pg(x, 0) =

{

1.5·106 (Pa) if x ∈ (0, 0.5),

2.5·106 (Pa) if x ∈ (0.5, 1).

The left-hand side of (18) takes values in the range [6, 9] × 103 (m2/year)2.
We consider the first-order dG space V 1

δ (k = 1) and use a uniform mesh of 512 elements in Ω. The sim-
ulation time is T = 106 (s). We consider the partition T = [0, 10, 102, 5·102, 103, 5·103, 104, 2·105, 5·105, 106]
(s) of the time interval [0, T ] and use 32 uniform time steps within each time slab.

Figures 4 and 5 present selected results of our simulations at various times. The gas phase is initially
present in the whole domain. Owing to the initial discontinuity in the gas pressure, the gas saturation
and the dissolved hydrogen density are also discontinuous initially. After a short time (10 s), the liquid
pressure exhibits a jump of the order of 0.8 MPa. Then, a liquid pressure front propagates and reaches
the boundaries at ≈ 102 seconds. Afterward, up to the time ≈ 104 seconds, the liquid pressure increases
at the left boundary and decreases at the right boundary. At the time ≈ 104 (s), the difference of left and
right boundary values is of the order of 1 MPa, and the liquid pressure still exhibits a sharp gradient at
x = 0.5. Next, the difference between boundary values begins to decrease, and the liquid pressure smoothly
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converges to its equilibrium position, which it has almost reached at time 106 (s). Furthermore, the initially
discontinuous profile of dissolved hydrogen density is smoothed owing to fast hydrogen diffusion in water.
Thus, this profile reaches equilibrium much earlier than the liquid pressure, at time ≈ 104 (s). Finally, the
gas saturation profile exhibits a very steep front up to the time ≈ 103 (s); then, the shock slowly dissipates,
but the profile still exhibits a sizable gradient at time ≈ 105 (s). The gas saturation profile has almost
relaxed back to equilibrium at the final simulation time. All these results agree well with those reported
in [19].

4.3 Hydrogen injection in heterogeneous medium

In this test case, we consider the heterogeneous porous medium Ω = (0, 200) (m) composed of two rocks
occupying respectively the subdomains Ω1 = (0, 20) and Ω2 = (20, 200). The porous medium and fluid
characteristics are presented in Table 3. The column for the porous medium contains two values, one for
each rock type. We observe that the rock occupying the subdomain Ω2 has a finer texture.

As in test case 1, the initial and boundary conditions are given by (29), except that the gas injection
is not stopped at time Tinj. This example illustrates the potential of the method to handle heterogeneous
porous media. The left-hand side of (18) takes values in the range [10−4, 1] (m2/year)2.

Porous medium Fluid characteristics
Par. Value Par. Value

Φ (0.3, 0.15) (-) Dh
l 3 10−9 m2/s

K (10−18, 5 10−20) m2 µl 1 10−3 Pa·s
Pr (2 106, 15 106) Pa µg 9 10−6 Pa·s

n (1.54, 1.49) (-) H(303K) 7.65 10−6 mol/Pa/m3

slr (0.01, 0.4) (-) Mh 2 10−3 kg/mol

sgr (0, 0) (-) ̺std
l 103 kg/m3

Table 3: Parameter values for the porous medium and fluid characteristics used in test case 3.

We consider the first-order dG space V 1
δ (k = 1) and use a uniform mesh of 16 elements in Ω1 and 144

elements in Ω2 so that the mesh is fitted to the interface separating Ω1 and Ω2. The simulation time is
T = 106 (years). We consider the partition [0, 6·104, 2·105, 6·105, 106] (years) of the time interval [0, T ] and
use the time steps τ = [200, 1000, 2000, 20000] (years) within each time slab. We recall that the dG method
weakly enforces the continuity of the normal component of the total fluxes and that of the liquid pressure
and of the dissolved hydrogen density, cf (26).

Figures 6 presents selected results of our simulations at various times. Owing to gas injection, the gas
phase appears in the first subdomain at the time ≈ 3·104 (years) and reaches the interface separating the
two rock types at the time ≈ 4.2·104 (years). The saturation at the left of the interface (in the coarser rock)
starts to increase while maintaining the jump in the saturation such that capillary pressure continuity is
preserved, and the gas phase penetrates into the second (finer) rock. Next, at the time ≈ 1.3·105 (years),
the liquid pressure starts to decrease, and the system relaxes back to equilibrium, as reflected by the fact
that the net difference of total hydrogen flow at inflow and outflow boundaries tends to zero. We stress that
the capillary pressure is continuous at the interface at all times. The results are in good agreement with
those reported in [9].

4.4 Conclusions

The above numerical results show that the proposed methodology is capable of delivering accurate discrete
solutions capturing the correct physical behavior in various complex situations. Future work can aim at
assessing the proposed methodology on higher-dimensional test cases and at analyzing the discrete scheme
to derive stability and error estimates.

Acknowledgment. The authors are grateful to Farid Smäı (IRSN) for fruitful discussions.

11



References

[1] Abadpour, A., Panfilov, M.: Method of negative saturations for multiple compositional flow with
oversaturated zones. Transp. Porous Med. 79, 197–214 (2010)

[2] Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341
(1983)
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Figure 2: Liquid pressure pl (top line, MPa), dissolved hydrogen molar density ̺h
l /Mh (second line, mol/m3),

and gas saturation sg (bottom line, %) at times {2·103, 1.4·104, 105, 1.4·105, 5·105} (left column, years) and
{5.1·105, 5.6·105, 6.1·105, 6.6·105, 106} (right column, years).14
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Figure 6: Liquid pressure pl (MPa), dissolved hydrogen molar density ̺h
l /Mh (mol/m3), gas saturation sg
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