
Study of overland �ow with uncertain in�ltration using stochastic

tools

M. Rousseaua,b, O. Cerdanb, A. Erna, O. Le Maîtrec, P. Sochalab

aUniversité Paris-Est, Cermics, Ecole des Ponts ParisTech, 77455 Marne la Vallée Cedex 2, France
bBRGM, RIS, 45060 Orléans Cedex 2, France

cLIMSI-CNRS, 91403 Orsay, France

Abstract

The e�ects of spatial and temporal scales in uncertain in�ltration processes are investigated
within overland �ow models. The saturated hydraulic conductivity is considered as the
uncertain input parameter. The probabilistic model for this parameter relies on a spatial
organization of the watershed into �elds. In each �eld, the saturated hydraulic conductivity
is assigned a distribution function and is assumed to be independent of those of the other
�elds. Four rainfall events are considered to explore various temporal scales leading to dif-
ferent soil saturation levels. Our results show the important impact of soil saturation on
overland �ow variability and the moderate impact of grass strip localization on runo� vari-
ability. Moreover, the most in�uential input parameter, determined by sensitivity analysis,
depends on its localization in the watershed and the duration of the rainfall event. Finally,
higher probabilities of extreme discharges are observed with three grass strips instead of just
one located near the �eld outlet.

1. Introduction

Water �uxes are a fundamental part of natural ecosystems and are essential to support
human activities. Many research e�orts are therefore devoted to the development and ap-
plication of physically-based models able to improve our understanding and modelling of
these �uxes. One of the main obstacles to the application of such models is the di�culty to
describe the spatial and temporal (non-linear) variability of input parameters [28]. Indeed,
the performance of models directly depends on the validity of input parameters. Even if the
technological progress in sensor development regularly improves the resolution measuring
the di�erent natural and anthropogenic factors [3, 16], it is not possible to capture all their
spatial and temporal variability. In recent years, many e�orts have been undertaken to
evaluate the rainfall input through the development and implementation of rainfall radars
[37]. Furthermore, several plant growth models, such as the Soil Vegetation Atmosphere
Transfer scheme (SVAT) [6], permit to determine operationally input parameters related
to vegetation with a reasonable accuracy. It is more di�cult to estimate the soil parame-
ters, principally because of their heterogeneity and their high variability in space and time.
For rainfall-runo� prediction models, numerous studies show that the saturated hydraulic
conductivity, which is deduced from soil properties, is the most in�uent input parameter
[12, 39].

The saturated hydraulic conductivity, herein denoted by Ks, provides a quantitative
measure of the soil ability to transmit water. Indeed, Ks is one of the key parameters in the
in�ltration process and in water transfer through the unsaturated and saturated parts of
the soil. The parameter Ks yields the maximum value of the in�ltration rate, which is ob-
tained for a saturated state of the soil, and in�uences predominantly the in�ltration capacity
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[12]. Di�erent methodologies have been elaborated to measure directly saturated hydraulic
conductivities. However, the obtained values for Ks depend on the chosen methodology
and most importantly, the spatial representativity of these measurements remains rather
limited [53]. In most model applications, values for Ks are estimated through the appli-
cation of pedo-transfer functions (PTF) using basic soil properties [8, 9, 47]. By testing
di�erent PTF's to predict Ks, it was concluded [45] that predicting Ks using a PTF is not
always accurate owing to the inherent variability of Ks. Furthermore, using a set of data
to compare di�erent measurement and estimation methods, a high variability of Ks (more
than 79%) has been observed [4]. To overcome this lack of accuracy, a possible approach
consists in calibrating parameters, but the resulting values are often valid only for the used
con�guration and moderate variations thereof.

An alternative approach already suggested in [15, 35, 40, 46] consists in considering Ks

as a stochastic parameter instead of being estimated by deterministic approaches. It is today
well admitted that probabilistic modelling provides e�cient means to quantify parameter
uncertainty. Uncertainty Analysis (UA) considers the uncertain parameters of a model as
random objects, and the objective is to compute or characterize the induced variability in
the model solution or in quantities of interest. For highly uncertain data within non-linear
models, as in hydrology applications, so-called global UA methods, which study the e�ects
of all the input parameters simultaneously, are needed. One essential step in UA is the
de�nition of a random model for the uncertain parameters. Random models with di�erent
levels of complexity can be considered. For instance, a relatively simple approach is the
Generalized Likelihood Uncertainty Estimation (GLUE) procedure [5] which is a Monte
Carlo (MC) method generating a high number of parameter sets to compare the predicted
model responses with observed responses and to accept or not some simulations through
some chosen likelihood measure. Being a Bayesian approach, this likelihood measure can
be updated for each new set of observed responses. Numerous studies are based on a
Bayesian framework [27, 29, 30, 44]. Bayesian statistics mean that input parameters are
considered as probabilistic variables having a joint posterior probability density function
(pdf). Di�erent methods exist for sampling posterior pdf's. The Monte Carlo Markov
Chain (MCMC) sampler is often used in hydrology models, the earliest general (and most
popular) method being the Metropolis�Hastings algorithm [25, 34]. In hydrology, various
recent studies have aimed at improving MCMC samplers: the Shu�ed Complex Evolution
(SCE) Metropolis (SCEM) algorithm [49], which is a modi�ed version of the SCE global
optimization algorithm [17], or the Di�erential Evolution Adaptive Metropolis algorithm
(DREAM) [50]. In contrast with Bayesian statistics, an alternative approach providing a
complete probabilistic description considers the unknown parameters as random variables
described by a �xed pdf. This approach, which is more adapted to problems where little
data is available, is undertaken in the present work. Once the probabilistic framework is
settled, it remains to characterize the model output variability in terms of input variability.
To this purpose, MC methods are often employed since such methods provide an e�ective
and robust methodology to generate a sample set of model solutions by sampling input
parameters. Another recent methodology is based on stochastic spectral methods [22]. The
advantage is that a more complete probabilistic description of model output is achieved,
but the methodology becomes computationally demanding when the input parameters are
described by a large number of random variables.

In the present paper, we focus on the impact of the variability in the saturated hydraulic
conductivity Ks on overland �ows with runon processes [41]. A general probabilistic descrip-
tion of the saturated hydraulic conductivity is to model it as a random �eld. Although very
rich, this type of model needs a substantial amount of information for its description, and is,
therefore, not well adapted to the present setting. Moreover, extracting simple information
in view of practical hydrology purposes from complex probabilistic models is an intricate
issue. For these reasons, we rely on simpler probabilistic models where realizations of the sat-
urated hydraulic conductivity lead to constant values over distinct portions of the simulation
domain which are identi�ed a priori and referred to as �elds. In each �eld, a unique Random
Variable (RV) yields the corresponding saturated hydraulic conductivity. In addition, the
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saturated hydraulic conductivity within a �eld is assumed to be statistically independent
from the others. As a result, the uncertain hydraulic conductivity �eld is modelled using
a �nite set of independent random variables, whose cardinality is equal to the number of
�elds considered in the simulation. This idealization is motivated by the physical reality.
If one thinks of �elds as agricultural plots, the variability of Ks inside the �eld is usually
negligible compared to the variability from a �eld to another because of the homogenization
created by agricultural practices. Moreover, the present model can be subsequently re�ned
by introducing inner variability within the parcels if additional information on soil properties
within �elds is available. Within this framework for spatial localization, the probabilistic
model is speci�ed by the choice of a probability density function for Ks in each �eld. In the
present work, we consider uniform distributions because of the relatively low range of values
taken by Ks within each �eld (however, high contrasts are considered between �elds). In
computational hydrology Ks often follows a log-normal distribution [31, 36, 38]. We have
veri�ed that in our test cases both choices for the distribution (uniform or log-normal) with
proper matching of mean value and variance lead to the same conclusions.

The objective of this work is twofold. Firstly we consider test cases with di�erent spatial
and temporal scales to investigate the e�ect of these scales in uncertainty propagation. Our
�rst salient result is that the most in�uential input parameter on model output variability
depends on the spatial and temporal scales of the processes of interest. This information is,
for instance, important to decide on where to concentrate additional measurement e�orts to
improve �eld knowledge. Moreover, within a given test case, we consider various possibilities
for the spatial organization of the parcels so as to study the e�ect of this organization on
model output variability. Our second salient result, relevant to landscape management
issues, is the comparison between three grass strips distributed evenly within a �eld and
a single grass strip located near the �eld outlet. We show that the presence of the grass
strips leads to less probable extreme values for the maximal discharges, thereby reducing
the erosion risk. We focus on two-dimensional settings where the �ow is described by
the one-dimensional shallow water equations including friction and in�ltration, the latter
being described by the Green�Ampt model. More elaborate �ow models can be considered.
We also mention a di�erent approach [51, 52] to compute pdf's of in�ltration rates and
in�ltration depths.

This paper is organized as follows. Section 2 brie�y describes the rainfall-runo� model
and the numerical method used in the deterministic overland �ow simulations once values
for the random input parameters are speci�ed. Section 3 introduces the stochastic approach
and the statistic tools used to propagate and analyze the uncertainties in model output.
Section 4 presents the two test cases designed to evaluate the impact of uncertainties in Ks

and of the spatial localization of these uncertainties on overland �ow. Results are discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2. The setting

In this section, we present the physical model and its numerical resolution.

2.1. Physical model

We are interested in overland �ows with runon processes. We assume that the water
depth is much smaller than the characteristic horizontal size of the �eld of study (see Figure
1). Such �ows can be described by the 2D shallow water (SW) equations which are obtained
from the 3D incompressible free-surface Navier�Stokes equations by averaging on the ver-
tical direction under some simplifying assumptions, in particular hydrostatic pressure and
negligible vertical velocity [21, 43, 48]. Neglecting also the �ow transverse to the main slope
direction, we obtain the 1D SW equations which express mass and momentum conservation
as follows:

∂th+ ∂x(hu) = R− I, (1)

∂t (hu) + ∂x
(
hu2 + 1

2gh
2
)

= −gh (∂xz + Sf) , (2)
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Figure 1: Geometric con�guration and basic notation: h(x) is the water depth, u(x) the depth-averaged
velocity, z(x) the ground surface elevation, R(x) the rainfall rate, and I(x) the in�ltration rate.

where h [L] is the water depth, u [L/T] the depth-averaged velocity, z [L] the ground surface
elevation, and g [L/T2] the gravitational constant (where L and T denote length and time
units, respectively). The source term R − I [L/T] corresponds to the di�erence between
the rainfall rate R and the in�ltration rate I. The quantity Sf [L/L] accounts for friction
e�ects. The value of Sf depends on the properties of the soil surface and can be estimated
from calibration or published values. Darcy�Weisbach's formula is often used [14, 19, 20]:

Sf = f
|u|
8gh

u, (3)

where f is the possibly time and space-dependent Darcy�Weisbach's roughness coe�cient
and |u| the module of the velocity u.

We use the Green�Ampt model [23] to predict cumulative in�ltration through dry or
wet soils. Herein, we consider the formulation developed in [33] for rainfall-runo� predictive
models. This formulation postulates, at any point x in space, a well-de�ned wetting front
propagating vertically and separating a fully saturated zone from a zone at the initial soil
moisture. At any point on the soil surface, the in�ltration capacity Ic(t) [L/T] at time t is
calculated as follows (the dependency on the space variable is omitted for simplicity):

Ic(t) = Ks

(
1 + (θs − θi)

hf + h(t)
I∗(t)

)
, (4)

where I∗(t) [L] is the cumulative in�ltration up to time t, Ks [L/T] the saturated hydraulic
conductivity, hf [L] the wetting front capillary pressure head, and θi and θs the initial and
saturated water content. Over the time interval [t, t + δt], the model assumes that if the
water depth h(t) is smaller than Ic(t) × δt, all the water volume is in�ltrated; otherwise,
the in�ltrated volume is equal to the in�ltration capacity and the remaining water streams.
Hence, the in�ltration rate I over the time interval [t, t+ δt] is equal to min(Ic(t), h(t)/δt).

2.2. Numerical resolution

A well-balanced �nite volume method is used to discretize the SW equations, which we
rewrite in the general form ∂tU + ∂xF (U) = S(U), where U is the vector of conservative
variables, F the �ux vector, and S the source term. Speci�cally,

U =
(
h
hu

)
, F (U) =

(
hu

hu2 + 1
2gh

2

)
, S(U) =

(
R− I

−gh(∂xz + Sf)

)
.

The domain is divided into cells (indexed by i) of the form Ci = [xi−1/2, xi+1/2] and of
length ∆x > 0 taken constant for simplicity. The Green�Ampt model is applied locally in
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each mesh cell. To obtain a second-order scheme, the variables need to be reconstructed at
cell interfaces. We denote by Ui+1/2± the conservative variables computed at either side of
the interface xi+1/2 using an ENO-type (Essentially Non Oscillatory) reconstruction [24].
Moreover, the ground surface elevation z is described as a piecewise constant function, and
cell-interface values zi+1/2± are also reconstructed. This yields the following scheme written
here in space semi-discrete form:

∆x
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = ∆x

(
Ri − Ii
−ghiSf,i

)
+ ∆x

(
0
Ss,i

)
,

where the subscript i refers to the value in the cell Ci and the �uxes Fi±1/2 are computed
using the HLL �ux (see e.g., [7]). The source term Ss,i accounts for the term −gh∂xz in
the source term S. To evaluate the �uxes Fi±1/2 and the source term Ss,i, an hydrostatic
reconstruction scheme is applied, as described in [1, 2, 7, 32]. Speci�cally, we set

hi+1/2L = max
(
0, hi+1/2− + zi+1/2− −max(zi+1/2−, zi+1/2 +)

)
,

hi−1/2R = max
(
0, hi−1/2 + + zi−1/2 + −max(zi−1/2−, zi−1/2 +)

)
,

Ui+1/2L =
(
hi+1/2L, hi+1/2Lui+1/2−

)t
,

Ui−1/2R =
(
hi−1/2R, hi−1/2Rui−1/2 +

)t
,

where the indices L and R indicate reconstructed variables on the left and right side of the
interface i+ 1/2. Then, the HLL �ux is evaluated using (Ui+1/2L, Ui+1/2R), and the source
term Ss,i is evaluated as

Ss,i =
1

∆x
g

2

((
h2
i+1/2L − h

2
i+1/2−

)
+
(
h2
i−1/2 + − h

2
i−1/2R

)
+
(
hi−1/2 + − hi+1/2−

) (
zi+1/2− − zi−1/2 +

))
.

Finally, for time discretization, we use a second-order explicit Runge�Kutta method
based on the Heun scheme, except for the friction term Sf which is treated semi-implicitly
at each stage of the Heun scheme [11]. This leads to a second-order accurate overland �ow
model with in�ltration that we now use to study uncertainty propagation.

3. Stochastic model and statistic tools

In this section, we describe the stochastic model and the statistic tools used to analyze
the results.

3.1. Stochastic model

We are interested in uncertainty propagation stemming from the uncertain input param-
eter Ks in the SW equations. Our stochastic model consists in subdividing the physical
domain into p (with typically p = 2 or 3 in our numerical results) �elds and assigning to
each �eld a single uncertain parameter Ks which is a RV with known pdf. As a result, the
random �eld Ks(x, θ), where θ is a random event, becomes

Ks(x, θ) =
p∑
i=1

1Ωi
(x)Ks,i(θ), (5)

where 1Ωi
is the indicator function of the i-th spatial �eld and {Ks,i(θ)} is a set of (posi-

tive) real-valued RV's which are regrouped into a single vector-valued RV such that X =
(X1, . . . , Xp) = (Ks,1, . . . ,Ks,p). We assume that the RV's Xi are independent, but can
have di�erent pdf's denoted by pXi . We consider a uniform distribution for all the �elds
because of the relatively low range of values taken by Ks within each �eld (however, high
contrasts are considered between �elds). In the present setting, the pdf pXi

depends on its
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corresponding �eld i only through the minimal and maximal bounds on Ks,i. Moreover,
since the RV's Xi are assumed to be independent, the pdf of X factorizes into the form

∀x = (x1, · · · , xp), pX(x) =
p∏
i=1

pXi
(xi). (6)

The uncertain output quantities of the model are the peak runo� rate and the runo�
coe�cient for a speci�c rainfall event. Let Y denote any of these output quantities. Once
a realization of X, say x, is known, a realization of Y , say y(x), is obtained by solving
numerically the corresponding deterministic problem described in Section 2.

3.2. Moments and pdf

Assuming that Y has �nite second-moment, the expectation and the variance of Y are
de�ned as

E[Y ] =
∫
y(x)pX(x)dx and V (Y ) =

∫ (
y(x)− E[Y ]

)2

pX(x)dx,

so that V (Y ) = E[Y 2]−E[Y ]2. We are interested in evaluating various statistical quantities
related to the model output Y . To this purpose, we use Monte Carlo (MC) simulations. Let
X = {x(1), . . . ,x(M)} be a sample set of the input stochastic parameters, where M is the
sample set dimension and x(m), 1 ≤ m ≤M , are realizations of X. Let Y = {y(1), . . . , y(M)}
be the corresponding sample set of the model output such that, for each 1 ≤ m ≤ M ,
y(m) = y(x(m)) is the model response to the vector of input parameters x(m). The empirical
estimators for the expectation and the variance are

Ê[Y ] =
1
M

M∑
m=1

y(m) and V̂ (Y ) =
1
M

M∑
m=1

(
y(m) − Ê[Y ]

)2

. (7)

To estimate the pdf of a random variable, we use the kernel density estimator, also called
Parzen�Rozenblatt method, which is a generalization of the histogram method [10]. The
pdf of Y is estimated as

p̂η(y) =
1
Mη

M∑
m=1

G

(
y − y(m)

η

)
,

where G is a speci�c pdf used as kernel and η is a smoothing parameter. The most commonly
used kernel is the Gaussian function G(x) = (2π)−1/2 exp (− 1

2x
2). Thus, the pdf at a point y

is estimated by the number of observations close to y and counterbalanced by the distance of
these observations to y. The kernel distribution function allocates more important weights
to observations near the point y and weaker weights to distant observations. The parameter
η �xes the kernel function width and, therefore, controls the smoothness of the estimated
pdf p̂η. The smaller the parameter, the more accurate the estimation of the pdf; however,
too small values for η can generate spurious data artifacts if the sample set is not su�ciently
large. An illustration is presented in Section 4.2.

3.3. Sensitivity analysis

Sensitivity Analysis (SA) allows one to assess the relative contribution of each uncertain
input parameter to model output variability and, in particular, to identify key parameters
by establishing a hierarchy within the input parameters according to their in�uence on the
output variability. Variance-based global SA methods based on Sobol indices [42] determine
which part of the response variance results from the variance of each input or group of
inputs. The sensitivity of the response Y to the input parameter Xi can be quanti�ed by
the �rst-order sensitivity index Si de�ned as

Si =
Vi

V (Y )
, Vi = E

[
E[Y |Xi]2

]
− E[Y ]2,
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where E [Y |Xi] is the conditional expectation of Y given the value of Xi (see (8) below for
its de�nition). More generally, higher-order sensitivity indices quantify the sensitivity of the
model response to interactions among input parameters. Let i denote a non-empty subset
of indices such that i ⊆ {1, . . . , p} and let ∼i = {1, . . . , p} \ i. The sensitivity index Si is
de�ned as

Si =
Vi

V (Y )
, Vi = V (E [Y |Xi])−

∑
∅6=j(i

Vj ,

where V (E [Y |Xi]) is the variance of the conditional expectation of Y given the value of
Xi. This conditional expectation is de�ned as

E [Y |Xi] =
∫
y(x)pX∼i

(x∼i)dx∼i, (8)

where pX∼i
and dx∼i are, respectively, the density and the probability measure of x∼i (con-

ventionally, E [Y |Xi] = Y if i = {1, . . . , p} and ∼i is empty). Observing that E [E[Y |Xi]] =
E[Y ], we obtain

V (E[Y |Xi]) = E
[
E[Y |Xi]2

]
− E[Y ]2.

Furthermore, the law of total variance states that
∑
∅6=i⊆{1,...,p} Vi = V (Y ), so that∑

∅6=i⊆{1,...,p}

Si = 1.

Following Homma and Saltelli [26], it is convenient to consider for a single index i ∈
{1, . . . , p}, the total sensitivity index ST,i which evaluates the total sensitivity of the model
response Y to the input parameter Xi, including Xi alone and all interactions with the other
input parameters Xj , j 6= i. Computing this index instead of the high-order sensitivity
indices allows one to reduce computational costs by avoiding tedious calculations. The total
sensitivity index ST,i is evaluated as follows:

ST,i = 1− V∼i
V (Y )

, V∼i = E
[
E[Y |X∼i]2

]
− E[Y ]2,

where V∼i is the variance of the conditional expectation of Y given all the parameters
except Xi. The interpretation of the indices Si and ST,i is the following: Xi is an in�uential
parameter if Si is important, whereas Xi is not an in�uential parameter if ST,i is small.
Moreover, Si close to ST,i means that interactions between Xi and the other parameters are
negligible.

MC simulations are used to estimate the quantities Vi and V∼i in the �rst-order sensitivity
indices Si and the total sensitivity indices ST,i. To save computational costs when evaluating

these variances [42], the expectations E
[
E[Y |Xi]2

]
and E

[
E[Y |X∼i]2

]
are computed as a

unique integral by making use of two independent M-samples of input variables, X and X ∗,
in such a way that

V̂i =
1
M

M∑
m=1

Y
(
x(m)

)
× Y

(
x

(m)
i ,x

∗(m)
∼i

)
− Ê[Y ]2,

V̂∼i =
1
M

M∑
m=1

Y
(
x(m)

)
× Y

(
x
∗(m)
i ,x

(m)
∼i

)
− Ê[Y ]2,

where the starred variables belong to the sample X ∗. Finally, the �rst-order sensitivity index
Si and the total sensitivity index ST,i are estimated as

Ŝi =
V̂i

V̂ (Y )
, ŜT,i = 1− V̂∼i

V̂ (Y )
.
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In practice, the computational procedure requires two samples of input parameters, each
of dimension M , and M × (2p + 1) deterministic model evaluations to calculate all the
�rst-order and total sensitivity indices.

4. Test cases

This section presents the test cases and a brief performance evaluation of the methodol-
ogy.

4.1. Presentation

To evaluate how uncertainties on the values of Ks and its spatial localization can impact
the surface runo� during various types of rainfall events, we focus on two output quantities:
the peak runo� rate at the outlet, Qmax, and the runo� coe�cient, RC, de�ned as the total
volume of runo� divided by the total volume of rainfall.

A one-dimensional constant slope of length L with an inclination gradient ∂xz = 2% is
considered. Uniform friction coe�cient and in�ltration parameters (except Ks) are chosen
with values

f = 0.25, θs − θi = 0.3, hf = 0.023.

A constant rainfall intensity R(t) [L/T] is imposed during a time TR [T] and stopped af-
terwards. The simulation time is denoted by T [T]. Two test cases, and, for each one, two
rainfall events are simulated, a short rainfall event (SRE) and a long rainfall event (LRE).
The values of the rainfall intensity R, the rainfall duration TR, and the simulation time T
are speci�ed in Tables 1 and 3 for the two spatial con�gurations.

For the �rst spatial con�guration, named �Three-�eld�, the domain has length L=4.8
m and is divided into three �elds, referred to as �elds, each one with its own saturated
hydraulic conductivity Ks,i, i ∈ {1, 2, 3}, which is a RV independent of Ks,j , j 6= i. For
each �eld Ks,i has a uniform distribution Ks,i ∼ U [Kmin

s,i ,K
max
s,i ], where Kmin

s,i and Kmax
s,i are

the minimal and maximal values which can be taken by Ks,i. To assign these values, we
consider three choices, each representing realistic values for a given soil type. We refer to
these choices using an index −, o, or + indicating respectively low, intermediate or high
values for Ks. The corresponding values are listed in Table 2. Then, we consider the six
possible spatial localizations of the three �elds: [+o−], [+−o], [o+−], [o−+], [−+o], and
[−o+]. For instance, [+−o] means that the upslope �eld is assigned the RV Ks,+ (and is
therefore the most in�ltrating �eld), the midslope �eld the RV Ks,−, and the downslope �eld
the RV Ks,o, see Figure 2(a). Figure 2(b) presents the hydrographs for the case where Ks,+,
Ks,o, and Ks,− are all equal to their respective mean values (Table 2), and the impermeable
con�guration. The signi�cant di�erences observed emphasize the importance of in�ltration
processes.

L

2%

R(t)

Ks,-
Ks,o

Ks,+

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
x 10

−4

t (s)

Q
 (

m
2
.s

−
1
)

Impermeable
configuration

K
s,mean

Rising limb Steady state Falling limb

(b)

Figure 2: �Three-�eld� test case with the spatial localization [+−o]: (a) initial con�guration ; (b) runo�
hydrograph for the impermeable con�guration and the case where Ks,+, Ks,o, and Ks,− all take their
respective mean value.
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Event R (m.s−1) TR (s) T (s)

SRE 1.66·10−5 125 250

LRE 1.66·10−5 1,250 2,500

Table 1: �Three-�eld� test case, data for
the two rainfall events: rainfall intensity R,
rainfall duration TR, and total simulation
time T .

− o +

Kmin
s 2.78·10−7 2.78·10−6 1.10·10−5

Kmax
s 1.10·10−6 5.50·10−6 1.66·10−5

Table 2: �Three-�eld� test case: minimal and maximal val-
ues of Ks (m.s−1) for the three soil types.

3 narrow GS 1 large GS

2% 2%

field field

R(t) R(t)

3 GS configuration 1 GS configuration

field
field

Figure 3: �Grass strip(s)� test case: initial con�guration.

For the second spatial con�guration, named �Grass strip(s)�, the domain has length
L=318 m and contains grass strips (GS) of total width equal to 6 m. Two spatial localizations
of the GS are considered, as represented in Figure 3: either three narrow, 2 m wide GS are
equally spaced or one large, 6 m wide GS is located at the outlet. We assign a saturated
hydraulic conductivity to the GS and another one to the remaining part of the soil surface
called the �eld. The two Ks are independent RV's with uniform distribution. The values
taken by Ks on the GS are higher than those on the �eld (see Table 4).

Event R (m.s−1) TR (s) T (s)

SRE 8.33·10−6 3,600 5,000

LRE 1.11·10−5 8,500 9,500

Table 3: �Grass strip(s)� test case, data for the
two rainfall events: rainfall intensity R, rainfall
duration TR, and total simulation time T .

�eld GS

Kmin
s 3.57·10−6 2.22·10−5

Kmax
s 6.35·10−6 3.33·10−5

Table 4: �Grass strip(s)� test case: minimal and
maximal values of Ks (m.s−1).

4.2. Performance evaluation

Before discussing our results in the next session, we verify the numerical procedure on
the �Three-�eld� test case with SRE and the spatial localization [+−o] for Ks. Figure 4(a)
presents the convergence of the �rst-order sensitivity indices for the output Qmax as a func-
tion of the sample set dimension M . For the three indices, convergence is already obtained
for M = 1000. The results for the total sensitivity indices ST,i are similar. Figure 4(b)
presents the MC estimate of the expectation and standard deviation of Qmax with ±3 boot-
strap standard error bounds plotted against the sample set dimension M . A sample set
dimension equal to 100,000 appears to be su�cient to achieve convergence. This value for
M is used in this work. Figure 4(c) illustrates the in�uence of the bandwidth η on the
pdf estimation. Here and in what follows, pdf's are standardized so as to have zero mean
value and unit variance. An under-smoothed pdf is obtained with a small value (η = 0.01)
whereas an over-smoothed pdf is obtained with a large value (η = 0.5). The value η = 0.05
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yields a su�ciently smoothed pdf without spurious oscillations. This value for η is used in
what follows.
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Figure 4: Numerical veri�cation for the �Three-�eld� test case with the spatial localization [+−o]: (a) con-
vergence of the �rst-order sensitivity indices for Qmax as a function of sample dimensionM ; (b) convergence
of the MC estimate of Qmax expectation and standard deviation with ±3 standard error as a function of
sample dimension M ; (c) probability density estimation of Qmax, using the kernel density estimator for
di�erent bandwidth values η with a standardized output sample (zero mean value and unit variance); (d)
zoom of probability density estimation of Qmax.

5. Results and discussion

This section discusses the results for the two test cases �Three-�eld� and �Grass-strip(s)�
presented in Section 4.

5.1. Three-�eld test case

Figures 5 and 6 present the 100,000 couples (Qmax,RC) for the six possible spatial
localizations of soil types and for SRE and LRE, respectively. The �rst observation is that
there is, as expected, an important correlation between the two outputs Qmax and RC for
each choice of the spatial localization (in all cases the correlation coe�cients are greater than
0.9.) Concerning SRE (Figure 5), the simulations even tend to line up in a curve. We observe
that Qmax = 0 when the �eld with Ks,+ is located downslope due to a complete in�ltration
of the rain and of the upslope runo�. The cloud of points for the spatial localization [+−o]
contains the one for [−+o] which corresponds to the weakest discharges. The con�gurations
where the �led with Ks,− is located downslope are similar whatever the positions of the
two other �elds because the values of Ks,+ and Ks,o are su�ciently important to in�ltrate
all the rain. Therefore, the clouds of points for SRE essentially depend on the Ks for
the �eld located downslope. Concerning LRE (Figure 6), Qmax and RC take larger values
than for SRE since the rainfall duration is longer. As a result, the in�uence of Ks,+ is
more pronounced for LRE and contributes more to the discharge at the outlet, whereas the
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in�uence of Ks,− decreases. Therefore, the clouds of points for LRE depend essentially on
the position of the most in�ltrating �eld. Figures 5 and 6 stress the importance of the spatial
distribution of the soil types since the outputs are mainly in�uenced by the in�ltration in
the downslope �eld for SRE and by the most in�ltrating �eld for LRE. To better understand
why this di�erence is observed by changing the rainfall duration, we focus on the in�ltration
process over the domain.

Figure 5: �Three-�eld� test case and Short Rainfall Event: peak runo� rates Qmax and runo� coe�cients
RC for the six possible spatial localizations of the �elds.

Equation (4) implies that the ratio Ic/Ks tends to 1 when the in�ltrated water volume
tends to in�nity (corresponding to a saturated soil). To study the e�ect of increasing the
rainfall duration on soil saturation, Figure 7 presents the con�dence interval (i.e. minimal
and maximal values for the 100,000 model responses) of the ratio Ic/Ks at �nal time, as
a function of spatial position, in grey for SRE and in black for LRE. As expected, the soil
is more saturated for LRE and the ratio is closer to 1. Additionally, the variability of the
con�dence interval is in general the highest for the least in�ltrating �eld and the weakest
for the most in�ltrating �eld. The variability decreases as a function of soil saturation since
the more saturated the soil, the smaller the variability, except for some limit cases where
there is no runo� on the concerned �eld.

Table 5 presents the mean µ, the standard deviation σ, the coe�cient of variation cov =
σ/µ, the median P50, and the 90th percentile P90 related to Qmax (white rows) and RC
(grey rows). On the whole, there is more dispersion on the estimated values for SRE. For
instance, cov is equal to 10% for [+o−] and [o+−], to 42% for [+−o], and to 217% for
[−+o]. Besides, the values are higher for SRE than for LRE. The increase of the rainfall
duration leads to a decrease in the dispersion values, therefore dispersion depends on the
state of soil saturation (as the variability of the ratio Ic/Ks observed previously in Figure
7). Furthermore, for SRE, the distribution is not uniform when Ks,o is assigned to the
downslope �eld since the median and the mean are di�erent. Finally, similar conclusions
can be drawn from the statistical values of RC. Moreover, we observe that for both SRE
and LRE, cov takes higher values for RC than for Qmax.

Figures 8(a) and 8(b) present the pdf's of Qmax estimated by the Parzen�Rozenblatt
method with standardized output samples and plotted by groups in function of the Ks

which in�uences the most the discharge at the outlet. A �rst important point is that the
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Figure 6: �Three-�eld� test case and Long Rainfall Event: peak runo� rates Qmax and runo� coe�cients
RC for the six possible spatial localizations of the �elds.
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Figure 7: �Three-�eld� test case: con�dence interval of the ratio Ic/Ks at �nal time as a function of spatial
position and for the six possible localizations of the �elds; Short Rain�al Event (in grey) and Long Rainfall
Event (in black).

pdf shape shows that the process studied is not Gaussian. Concerning SRE, the spatial local-
izations of the �elds yielding clouds of points that are correlated and uniformly distributed
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Short Rainfall Event Long Rainfall Event

Ks,− downslope Ks,o downslope Ks,+ upslope Ks,+ midslope Ks,+ downslope

+ o − o + − + − o − + o + o − + − o o + − − + o o − + − o +

µ 1.8·10−5 1.8·10−5 1.5·10−5 2.6·10−7 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 8.7·10−5 5.9·10−7 8.2·10−3 8.1·10−3 6.9·10−3 6.2·10−3 6.2·10−3 6.2·10−3

σ 1.8·10−6 1.8·10−6 6.1·10−6 5.6·10−7 1.8·10−6 1.8·10−6 3.4·10−6 3.3·10−6 3.3·10−6 3.3·10−6

6.3·10−5 6.3·10−5 6.1·10−5 1.5·10−6 5.2·10−4 5.4·10−4 6.6·10−4 8.2·10−4 8.3·10−4 8.3·10−4

cov 10% 10% 42% 217% 5% 5% 9% 9% 9% 8%

22% 22% 70% 250% 6% 7% 10% 13% 13% 13%

P50 1.8·10−5 1.8·10−5 1.5·10−5
0 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 7.8·10−5
0 8.2·10−3 8.1·10−3 6.8·10−3 6.2·10−3 6.1·10−3 6.2·10−3

P90 2.1·10−5 2.1·10−5 2.2·10−5 1.1·10−5 4.2·10−5 4.2·10−5 4.3·10−5 4.3·10−5 4.3·10−5 4.3·10−5

3.8·10−4 3.8·10−4 1.8·10−4 2.3·10−6 8.9·10−3 8.8·10−3 7.8·10−3 7.4·10−3 7.3·10−3 7.3·10−3

Table 5: �Three-�eld� test case: mean µ = Ê[Qmax], standard deviation σ =

q
V̂ (Qmax), coe�cient of

variation cov = σ/µ, median P50, and 90th percentile P90 for the peak runo� rate Qmax (white rows) and
the runo� coe�cient RC (grey rows).
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Figure 8: �Three-�eld� test case: probability density function of the peak runo� rate Qmax estimated with
a bandwidth η = 0.05 with standardized output samples; linear scale (top) and logarithmic scale (bottom);
(a) Short Rainfall Event (SRE); (b) Long Rainfall Event (LRE).

in Figure 5 (the ones where the least in�ltrating �eld is downslope), generate a spread pdf
looking like a rectangular function. The pdf resulting from the con�guration [−+o] has a
marked peak owing to the numerous null discharges observed. This marked peak does not
have the expected form on the left part because it is di�cult to approximate accurately
such a pdf (resembling a Dirac function) by a Gaussian kernel. Concerning LRE, the six
curves on Figure 8(b) are very close and have the form of a �at bell on top and are almost
symmetrical with respect to zero (i.e, with respect to the mean because the output samples
are standardized). So, contrary to SRE, the spatial distribution of Ks does not in�uence
the distribution of Qmax for LRE. The estimated pdf's for RC lead to the same conclusions.
We can conclude that the dispersions calculated in Table 5 for SRE are con�rmed by the
non-uniform distribution obtained in the pdf curves.

Figures 9(a) and 9(b) present the �rst-order sensitivity indices estimated from the 100,000
13
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Figure 9: �Three-�eld� test case: sensitivity indices of the peak runo� rate Qmax; (a) Short Rainfall Event
(SRE); (b) Long Rainfall Event (LRE).

output samples and for the two rainfall events. The sensitivity indices related to Ks,+, Ks,o,
and Ks,− are respectively denoted by S+, So, and S−. The white top in Figure 9(a) ac-
tually refers to S+ together with all the high order sensitivity indices. Concerning SRE
(Figure 9(a)), the highest index corresponds to the parameter Ks located downslope, thus
corroborating the previous conclusions on the most in�uent Ks. For instance, in Figure 5,
for the spatial localizations where the least in�ltrating �eld is located downslope, the clouds
of points are similar. SwitchingKs,o andKs,+ does not impact the outlet discharge, meaning
that only Ks,− in�uences this quantity, and indeed the indices S− are equal to 1. Concerning
LRE, since the rainfall duration is longer, more runo� is generated in the most in�ltrating
�eld because of the decreasing of the in�ltration capacity. In Figure 9(b), the most in�uent
parameter is either Ks,+ (with S+ ≈ 72%) or Ks,o (with So ≈ 70%) when the most in�ltrat-
ing �eld is located upslope. Moreover, Ks,− is not very in�uent, and contrary to Figure 5,
the three parameters Ks are not negligible in the sensitivity analysis. Moreover, the to-
tal sensitivity indices are equal to the corresponding �rst-order indices, that is, ST,i ≈ Si.
These equalities mean that there is no signi�cant interaction between the input parameters.
Concerning the runo� coe�cient RC, the sensitivity analysis leads to the same conclusions.
In practice, in case of soils with low levels of saturation (for SRE), it is important to focus
the measurements on the �eld closer to the outlet. For more saturated soils (e.g., for LRE),
the measurements should focus on the most in�ltrating �eld.

To study the e�ect of the length L of the domain, we have also tested the case where
L = 48 m with LRE. It is interesting to notice that the length of the domain does not a�ect
the results. The clouds of points and the pdf's have the same shape, and the most in�uent
sensitivity index is the same, i.e, Ks,o in cases where the most in�ltrating �eld is located
upslope or Ks,+ in other cases. The only signi�cant di�erence is that the sensitivity index
for Ks,+ vanishes when the most in�ltrating �eld is located upslope. This result can be
explained by the fact that longer domains lead to an augmentation of the distance between
the upslope �eld and the outlet.

We have also veri�ed that our conclusions do not depend on the chosen pdf for Ks.
To this purpose, we re-ran the same test cases using a log-normal distribution for Ks with
mean value and variance selected in such a way that Ks belongs to the interval prescribed
for the uniform distribution with probability 0.9958. Figures 10(a) and 10(b) compare the
�rst-order sensitivity indices obtained with the two distributions (uniform and log-normal)
and for the two rainfall events. Very close agreement is observed.

5.2. Grass strip(s) test case

Figure 11 presents the couples (Qmax,RC) corresponding to the 100,000 model responses
for the four con�gurations (1 or 3 GS; SRE or LRE). In each con�guration, the clouds
of points are well correlated and, as previously, the values of Qmax and RC are larger for
LRE than for SRE. Concerning Qmax, for both SRE and LRE, the values are contained
approximately in the same intervals whatever the spatial localization of the GS. Concerning
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Figure 10: �Three-�eld� test case: sensitivity indices of the peak runo� rate Qmax for the two distributions
(uniform and log-normal); (a) Short Rainfall Event (SRE); (b) Long Rainfall Event (LRE). For each spatial
localization, results with the uniform distribution are represented on the left and those with the log-normal
distribution on the right.

RC, its values are slightly higher for the spatial con�guration with 1 GS, and this e�ect is
more signi�cant for SRE. We conclude that the spatial localization of the GS has very little
in�uence on the variability of the runo�, and almost none on that of the �ow at the outlet.

Figure 11: �Grass strip(s)� test case with Short and Long Rainfall Events (resp. SRE and LRE): peak runo�
rates Qmax and runo� coe�cients RC for the two con�gurations (one large grass strip downslope (1 GS), or
three narrow grass strips (3 GS)).

Figure 12 presents the con�dence interval (for the 100,000 model responses) of the ratio
Ic/Ks at �nal time, as a function of spatial position. As expected, because of the duration
of the rainfall events, the ratios are closer to 1 for LRE. Besides, compared to Figure 7, the
values taken by the ratio are very close to 1, meaning that the soil is almost saturated. For
each rainfall event, the values taken by Ic/Ks for the two spatial con�gurations (1 GS and
3 GS) are very close. Furthermore, we observe that for SRE, the variability of the ratio
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Ic/Ks is between 2 and 4 times higher for the GS than for the �eld. Conversely, for LRE,
the variability is approximately 3 times more important for the �eld than for the GS. An
interesting result concerning SRE is that the e�ect of having 3 GS instead of 1 GS downslope
is to somehow homogenize the level of variability of Ic/Ks along the �eld.
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Figure 12: �Grass strip(s)� test case: con�dence interval of the ratio Ic/Ks at �nal time as a function of
spatial position for the two con�gurations (one large grass strip downslope (1 GS), or three narrow grass
strips (3 GS)); Short Rainfall Event (in grey) and Long Rainfall Event (in black).

Statistical values (µ, σ, cov,P50, and P90), not presented here, con�rm that the spatial
con�gurations with 1 GS and 3 GS are similar regarding Qmax for LRE, and very close
for SRE. Concerning LRE, in agreement with the almost essentially �at shape of the pdf's
(Figure 13), we obtain the same values for the model outputs with the mean values of the
parameters, the mean estimation, and the median. Concerning SRE, highly marked peaks
are observed with signi�cantly di�erent values (4.2 for 1 GS versus 3.1 for 3 GS). These peaks
explain the di�erence between the mean and the median. Moreover, the mean values of the
model outputs di�er from the model outputs with the mean parameters. This underlines
the importance of non-linear processes. The statistical values and the estimated pdf's for
RC lead to the same conclusions.

Figures 14 and 15 present the three statistic estimators µ, P50, and P90 for the peak
runo� rate maxtQ(x, t) as a function of spatial position, and the two deterministic values
of this quantity (taking Ks = Kmin

s and Kmax
s ). The curves for P50 almost coincide with

those for maxtQ(x, t) calculated with the value Ks = Kmean
s . Contrary to LRE where

equality is obtained, the median is inferior to the mean for SRE. Both for the 1 GS and 3
GS con�gurations, the distribution is not uniform in space. Moreover, for both SRE and
LRE, RC is slightly higher with the 3 GS con�guration. Although the runo� volumes are
comparable for 1 GS and 3 GS, the spatial distribution of maximal discharges varies. Indeed,
both in Figures 14 and 15, the discharges along the spatial domain are weaker for 3 GS,
owing to the presence of the three GS which slow down the �ow. Moreover, this e�ect is
more signi�cant for the SRE because of the saturation of the soil. Therefore, for processes
like soil erosion, which are in�uenced by the maximal discharge, the main result of Figure 14
is that the 3 GS con�guration reduces (especially for SRE) the occurrence of high values for
maxtQ. Moreover a relevant information obtained with the stochastic approach is that, for
SRE, (resp. LRE) the 90th percentile is 33% (resp. 11%) lower with the 3 GS con�guration
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Figure 13: �Grass strip(s)� test case: probability density function of the peak runo� rate Qmax with standard-
ized output samples for the Short and Long Rainfall Events (SRE and LRE), estimated with a bandwidth
η = 0.05; linear scale (top) and logarithmic scale (bottom).

than with the 1 GS con�guration.
Concerning the sensitivity analysis, for the four con�gurations (1 GS or 3 GS; SRE or

LRE), the �rst-order sensitivity indices related to the �eld (in the range 92% to 96%) are
much higher than those related to the GS. This shows that only the Ks of the �eld is an
in�uent parameter, owing to the very important in�ltration capacity of the GS.

To study the e�ect of the minimal and maximal values considered in Table 4, we have
also tested the �Grass strip(s)� test case with less in�ltrating GS. The obtained results
corroborate the previous observations. There is no signi�cant di�erence in terms of runo�
and discharge at the outlet, but the presence of three GS slows down the �ow and diminishes
the occurrence of extreme values for the �ow rates.

To verify that our conclusions do not depend on the chosen pdf for Ks, we re-ran the
same test cases using a log-normal distribution forKs, with mean value and variance selected
in such a way that Ks belongs to the interval prescribed for the uniform distribution with
probability 0.9958. The statistical estimations of the peak runo� rate are similar to those
reported in Figures 14 and 15 for the uniform distribution, with relative changes of 10 to
20%. The median P50 is higher for the log-normal distribution, and the 90th percentile P90 is
smaller. These relative changes are expected since the log-normal distribution assigns more
weight to lower values for Ks, which yield larger values for the runo� rate. However, the
main point of our conclusions remains unchanged, that is, the presence of 3 GS diminishes
the occurrence of extreme values for the �ow rates.

6. Conclusion

In this work, we have studied the impact of the variability in soil properties on overland
�ows caused by rainfall events. We have considered the soil saturated hydraulic conductivity
Ks as the most uncertain input parameter in the framework of the Green�Ampt in�ltration
model. To model uncertainties, the �ow domain has been split into �elds re�ecting the
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Figure 14: �Grass strip(s)� test case (3 GS left, 1 GS right): statistical estimations of the peak runo� rate

maxt Q(x, t) as a function of spatial position (mean µ = Ê[maxt Q(x, t)]), median P50, and 90th percentile
P90), and some deterministic values of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Short Rainfall

Event.

spatial organization of the landscape (e.g., agricultural �elds, grass strips), and the satu-
rated hydraulic conductivity has been described by statistically independent and uniformly
distributed random variables, with one random variable assigned to each �eld. Concerning
output quantities, we have focused on the discharges at the outlet (peak runo� rate and
runo� coe�cient) as well as on peak discharges locally in space. Two test cases, named
�Three-�eld� and �Grass strip(s)�, have been investigated.

The �Three-�eld� test case investigates the role of spatial organization in uncertainty
propagation. The conclusions depend on the level of soil saturation. For long rainfall
events leading to highly saturated soils, the variability of model outputs remains moderate.
Moreover, the most in�uent input parameter is the Ks taking the highest values, except
when the most in�ltrating �eld is located upslope, in which case the most in�uent input
parameter is the Ks taking intermediate values. For short rainfall events with moderately
saturated soils, the most in�uent input parameter, regardless of its relative value, is the Ks

located downslope, that is, closest to the outlet.
The �Grass strip(s)� test case compares runo� uncertainties obtained with two possible

spatial localizations of grass strips within a single �eld, namely three narrow, equally-spaced
grass strips versus one large grass strip located at the �eld outlet. The �rst conclusion is
that the duration of the rainfall event substantially impacts the shape of the probability
density function (pdf) of model outputs. Speci�cally, highly peaked pdf's are obtained
for short rainfall events (and moderately saturated soils), while relatively �at pdf's are
obtained for long rainfall events (and highly saturated soils). The second conclusion is that
the localization of the grass strips does not impact the variability of model outputs. However,
one important di�erence concerns the spatial distribution of maximal discharges since the
con�guration with three grass strips leads to less probable extreme values, as re�ected by the
lower values taking by the 90th percentile. This observation is relevant in view of assessing
erosion risks, since the detachment of soil particles is very sensitive to the peak discharge.
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Figure 15: �Grass strip(s)� test case (3 GS left, 1 GS right): statistical estimations of the peak runo� rate

maxt Q(x, t) as a function of spatial position (mean µ = Ê[maxt Q(x, t)]), median P50, and 90th percentile
P90), and some deterministic values of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Long Rainfall

Event.

Practical aplications of this work are twofold. The �rst application is to determine where
e�orts should be concentrated when collecting input parameters to reduce output uncertain-
ties when modelling a sloped �eld composed of several types of soils with di�erent in�ltration
capacities. This work shows that the conclusion depends on the soil saturation state. If the
soil is slightly saturated, it is relevant to focus the measurements near the outlet. At the
opposite, if the soil is highly saturated, the measurements should concentrate on the most
in�ltrating parts of the �eld. The second application concerns land management. Deciding
on the spatial repartition of grass strips in a �eld with uncertain in�ltration capacities de-
pends on the goal to reach. When the aim is to reduce runo�, the repartition of the grass
strips is of little importance because of the moderate output variability. On the contrary,
when the aim is to reduce erosion risks, equally�spaced grass strips are more e�ective to
decrease the probable of extreme values for the peak runo� rate.

Finally, the present methodology can be applied to other problems, e.g., the e�ect of
erosion input parameters (sediment size, detachability. . . ) on suitable output quantities
(erosion rate, sediment concentration, . . . ) in a sediment transport model [13], or the impact
of contamination input parameters (initial pollutant concentration, di�usivity coe�cient,
. . . ) on contamination levels in a pollutant transport model [18].
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