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ADAPTIVE ANISOTROPIC SPECTRAL STOCHASTIC METHODS
FOR UNCERTAIN SCALAR CONSERVATION LAWS∗

J. TRYOEN† , O. LE MAÎTRE‡ , AND A. ERN§

Abstract. This paper deals with the design of adaptive anisotropic discretization schemes for
conservation laws with stochastic parameters. A finite volume scheme is used for the determinis-
tic discretization, while a piecewise polynomial representation is used at the stochastic level. The
methodology is designed in the context of intrusive Galerkin projection methods with a Roe-type
solver. The adaptation aims at selecting the stochastic resolution level based on the local smoothness
of the solution in the stochastic domain. In addition, the stochastic features of the solution greatly
vary in space and time so that the constructed stochastic approximation space depends on space and
time. The dynamically evolving stochastic discretization uses a tree-structure representation that
allows for the efficient implementation of the various operators needed to perform anisotropic mul-
tiresolution analysis. Efficiency of the overall adaptive scheme is assessed on a stochastic nonlinear
conservation law with uncertain initial conditions and velocity leading to expansion waves and shocks
that propagate with random velocities. Numerical tests highlight the computational savings achieved
as well as the benefit of using anisotropic discretizations in the context of problems involving a large
number of stochastic parameters.
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1. Introduction. Stochastic spectral methods and so-called chaos expansions
provide effective tools for propagating parametric uncertainties in numerical models
and have been applied successfully to different types of models. The determination of
the stochastic spectral solution can be achieved by means of nonintrusive (sampling
based) methods or a stochastic Galerkin projection. In this work, we consider the
application of the Galerkin projection [6, 10] to the resolution of scalar conservation
laws involving uncertain data (such as model parameters, and initial and boundary
conditions) parametrized by N random variables with known distribution functions
and taking values in a stochastic domain Ξ ⊂ RN. Previous applications of Galerkin
projection to conservation laws include [13, 14, 17]. We recall that the Galerkin pro-
jection leads to a system of conservation laws governing the stochastic modes of the
solution. One essential property of deterministic conservation laws is their capacity to
develop nonsmooth solutions in finite time, even for a smooth initial condition. This
property is obviously present in the stochastic version of the model, with the addi-
tional characteristic that the singularity curves are also generally uncertain. We are
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interested in problems where a shock appears almost surely in finite time. In this
case, since the shock speed and/or its location in space can be uncertain, the solu-
tion is discontinuous in space and in the stochastic domain. This feature calls for
specific discretization techniques. In particular, we rely on finite volume schemes for
space discretization and on piecewise polynomial discretizations in the stochastic do-
main [5, 11, 19]. In [17], we designed a Roe-type solver for the Galerkin system, and
an entropy corrector was developed in [18].

The method proposed in [17, 18], while able to deal with complex situations, uses
uniform stochastic discretizations kept fixed in space and in time. This approach is
computationally demanding since a very fine stochastic discretization is needed to
properly represent the solution in the neighborhood of discontinuities. This observa-
tion calls for adaptive strategies. Moreover, since discontinuities are localized in space
and evolve in time, we propose in this work stochastic representations depending on
space and time, meaning that, at a given time, each finite volume cell supports its own
adaptive stochastic discretization. Consequently, the overall discretization does not
rely on a tensorization of stochastic and deterministic approximation spaces, a fea-
ture which, to our knowledge, constitutes an original contribution of the present work.
The above methodology can be formulated within a multiresolution framework based
on the concept of general binary trees to describe the discretization of the stochastic
domain, similarly to previous work in the deterministic context [3, 2]. Restriction and
prediction operators are defined over general binary trees in the context of adaptive
enrichment and coarsening procedures. For multidimensional stochastic domains, two
key features are the use of binary trees and the derivation of (new) directional crite-
ria for the anisotropy of the adaptive procedure, with the computational effort being
concentrated along the stochastic directions where singularities are observed.

The paper is organized as follows. In section 2, we briefly recall the Galerkin
projection of stochastic conservation laws and the Roe-type solver proposed in [17, 18]
in the nonadaptive context. Multiresolution analysis tools are then introduced in
section 3 to describe the stochastic discretization, while the adaptive Roe solver is
presented in section 4. Finally, simulation results are presented in section 5 for a
nonlinear conservation law in five stochastic dimensions, and conclusions are drawn
in section 6.

2. Galerkin projection and stochastic Roe solver.

2.1. Stochastic scalar conservation laws. We are interested in stochastic
nonlinear scalar conservation laws with uncertain input quantities parametrized for
simplicity by N independent identically distributed random variables ξ := {ξ1 . . . ξN}
uniformly distributed in Ξ := [0, 1]N. Let pξ = 1 denote the density function of ξ ∈ Ξ,
and let L2(Ξ) be the space of second-order random variables defined on the probability
space Pξ := (Ξ,BΞ, pξ), where BΞ is the Borel set of Ξ. For any random variable H
defined on Pξ, the expectation operator in Pξ is denoted by 〈H〉 := ∫Ξ H(y)pξ(y)dy.
Let (x, t, ξ) ∈ Ω× [0, tf ] × Ξ, where Ω is the spatial domain and tf is the simulation
time. We seek U(x, t, ξ) solving almost surely the following conservative problem:

(2.1)

⎧⎨⎩
∂

∂t
U(x, t, ξ) +

∂

∂x
F (U(x, t, ξ); ξ) = 0,

U(x, t = 0, ξ) = U IC(x, ξ),

where F is the stochastic flux and U IC is the initial condition. We assume that the
problem (2.1) is well-posed and that, for all (x, t) ∈ Ω× [0, tf ], U(x, t, ·) ∈ L2(Ξ).
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2.2. Stochastic discretization. To approximate the solution in L2(Ξ), we need
a stochastic discretization of the problem. This is obtained by considering a Hilbert
basis of random functionals in ξ spanning L2(Ξ) with inner product 〈·, ·〉,

(2.2) L2(Ξ) = span{Γ1(ξ),Γ2(ξ), . . . }, 〈Γα,Γβ〉 :=
∫
Ξ

Γα(ξ)Γβ(ξ)pξ(ξ)dξ = δαβ ,

where δαβ is the Kronecker delta symbol. The discrete solution is sought in a finite
dimensional subspace SM of dimension M constructed by truncating the Hilbert basis:

(2.3) SM = span{Γ1(ξ),Γ2(ξ), . . . ,ΓM(ξ)} ⊂ L2(Ξ).

We define the setM := {1 . . .M}. We seek an approximate solution UM ∈ SM in the
form

(2.4) UM(x, t, ξ) =
∑
α∈M

uα(x, t)Γα(ξ),

where the deterministic fields uα(x, t) are called the stochastic modes of the solution.

2.3. Galerkin system. Plugging UM into (2.1) and requiring the residual to be
orthogonal to the subspace SM, we obtain the Galerkin system which couples all the
stochastic modes in the form

(2.5)

⎧⎨⎩
∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0,

u(x, t = 0) = uIC(x),

where u(x, t) = (uα(x, t))α∈M ∈ RM and f(u(x, t)) = (fα(u))α∈M ∈ RM are, respec-
tively, the vector of the stochastic modes and the Galerkin flux vector with

(2.6) fα(u) :=
〈
F
(
UM; ·) ,Γα

〉
,

and uIC =
(〈
U IC,Γα

〉)
α∈M. The Galerkin Jacobian matrix ∇uf of order M is

(2.7) (∇uf(u))α,β∈M =
〈∇UF (UM; ·),ΓαΓβ

〉
α,β∈M.

The hyperbolicity of the Galerkin system (2.5), that is, the R-diagonalizability of the
Galerkin Jacobian matrix ∇uf , has been extensively studied in [17] (in fact, in the
more general context of systems of conservation laws). In particular, for scalar prob-
lems as considered in this work, the Galerkin system (2.5) is proven to be hyperbolic.

2.4. Stochastic Roe solver. The Galerkin system (2.5) is discretized in space
and time using a finite volume method in the form

(2.8) un+1
i = un

i −
Δtn

Δx

(
ϕ(un

i ,u
n
i+1)− ϕ(un

i−1,u
n
i )
)
,

where un
i is an approximation to the cell-average in the spatial domain of the solution

u in the cell of center xi := iΔx with width Δx at the discrete time tn, Δtn is the
nth time step, and ϕ(·, ·) is the first-order Galerkin numerical flux chosen in the form

(2.9) ϕ(uL,uR) =
f(uL) + f(uR)

2
− |aRoe

LR |
uR − uL

2
.
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Following [17], aRoe
LR is the Roe-linearized Galerkin Jacobian matrix defined by

(2.10) aRoe
LR :=

〈∇UF (URoe
LR ; ·),ΓαΓβ

〉
α,β∈M,

where URoe
LR ∈ L2(Ξ) is the stochastic Roe state reconstructed from uL and uR.

To avoid the expensive spectral decomposition of the matrix aRoe
LR when computing

its absolute value, we proposed to approximate |aRoe
LR | by a low degree polynomial

transformation applied to aRoe
LR , constructed using an approximation of its spectrum

(see [17] for details). Finally, the time-step Δtn is computed using a CFL-type condi-
tion in the form Δtn = CFL×Δx/Λ, where Λ is the maximum approximate eigenvalue
of aRoe

LR over all LR interfaces and CFL denotes a user-dependent positive parameter
≤ 1.

As motivated in the introduction, since shock velocities and shock location can
be uncertain, the solution is not smooth in the stochastic domain. Consequently,
as in [5, 11, 19], we rely on piecewise polynomial approximations for the stochastic
discretization. Numerical tests presented in [17, 18] on stochastic Burgers and Euler
equations using uniform isotropic partitions of the stochastic domain have demon-
strated the robustness and accuracy of the above stochastic Roe solver. We also
mention that this solver (as any Roe solver) requires a nonlinear entropy corrector in
the presence of sonic points; such a corrector was designed in [18].

3. Stochastic discretization.

3.1. Binary trees. Binary trees provide a convenient representation of non-
uniform, anisotropic partitions of the stochastic domain Ξ = [0, 1]N. In a binary
tree T, every node has either zero or two children and every node, except the root
node denoted n0, has a unique parent. Nodes are collected in the set N (T). Nodes
with no children are called leaves and are collected in the set L(T), while nodes with

two children are collected in the set N̂ (T) := N (T) \L(T). The two children of a node

n ∈ N̂ (T) are called “left” and “right” children (and also “sisters”) and are denoted
by c−(n) and c+(n). The parent of a node n ∈ N (T) \ {n0} is denoted p(n).

To each node n ∈ N (T) we assign a support S(n) ⊂ Ξ constructed as follows.
The supports have the tensor-product form S(n) = [ξ−n,1, ξ

+
n,1]× · · · × [ξ−n,N, ξ

+
n,N]. We

set S(n0) = Ξ. The supports of the other nodes are defined recursively by a dyadic
partition of the support of the parent node. To this purpose, in the multidimensional
case (N > 1), to each node n ∈ N̂ (T), we first assign an indicator, denoted by
d(n) ∈ {1 . . .N}, of the direction along which the dyadic partition of its support
S(n) is performed. Then, the support of the left and right children are, respectively,
S(c−(n)) = [ξ−n,1, ξ

+
n,1] × · · · × [ξ−n,d, (ξ

−
n,d + ξ+n,d)/2] × · · · × [ξ−n,N, x

+
N] and S(c+(n)) =

[ξ−n,1, ξ
+
n,1] × · · · × [(ξ−n,d + ξ+n,d)/2, ξ

+
n,d] × · · · × [ξ−n,N, ξ

+
n,N], where d = d(n). This

construction leads to a partition of the stochastic domain Ξ in the form

(3.1) Ξ =
⋃

l∈L(T)

S(l).

For a node n ∈ N (T), its depth |n| is defined as the number of generations it takes
to reach n from the root node n0. It is readily seen that the support of node n
has measure |S(n)| := 2−|n|. We also define the measure of S(n) in direction d as
|S(n)|d := ξ+n,d − ξ−n,d, its diameter as diam(S(n)) := maxd |S(n)|d, and its volume in
all directions except d as |S(n)|∼d := |S(n)|/|S(n)|d. Finally, for any node n ∈ N (T),
Mn denotes the affine map from S(n) onto the reference stochastic domain Ξ such
that, for all ξ ∈ S(n), Mn(ξ) = ((ξd − ξ−n,d)/(ξ

+
n,d − ξ−n,d))d∈{1...N}.
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In practice, we consider binary trees T with a fixed maximum number of successive
partitions allowed in each direction d ∈ {1 . . .N}. This quantity is called the resolution
level and is denoted by Nr. As a result, there holds, for all n ∈ N (T), |S(n)|d ≥ 2−Nr.
A particular case of a binary tree is the complete binary tree, where |S(l)|d = 2−Nr

for all the leaves and all directions. Thus, there are 2NNr leaves in a complete binary
tree. Such trees, which are associated with uniform isotropic partitions of Ξ, were
(implicitly) considered in [17, 18] for N = 1 and N = 2. Clearly, for large values
of N, the resulting uniform partitions of Ξ are not tractable numerically, so here we
rely on the coarser and anisotropic dyadic partition of Ξ given by (3.1) for a binary
tree T that is not complete. Examples of one-dimensional complete and incomplete
binary trees and their corresponding partitions of Ξ = [0, 1] are shown in the top panel
of Figure 3.1, while a two-dimensional incomplete binary tree and its corresponding
partition of Ξ = [0, 1]2 is shown in the bottom panel of Figure 3.1.

Fig. 3.1. Top: Complete binary tree (left) and incomplete binary tree (right) for N = 1; the
corresponding partitions of Ξ = [0, 1] are shown below the trees. Bottom: Multidimensional binary
tree for N = 2 (left). Dashed (resp., full) segments represent a partition along the first (resp.,
second) direction. Corresponding partition of Ξ = [0, 1]2 (right).

There is an essential difference between one-dimensional and multidimensional
binary trees: for N > 1, there are, in general, more than one tree with the same set
of leaves, i.e., yielding the same partition of Ξ. This is illustrated in Figure 3.2 for
N = 2. Consequently, we say that two trees T and T′ are equivalent if they share the
same set of leaves,

T ≡ T′ ⇔ L(T) = L(T′).(3.2)

Equivalent trees are considered in the coarsening and enrichment procedures of sec-
tion 4.2.

Fig. 3.2. Example of two equivalent trees for N = 2. The solid (resp., dashed) segments
represent a partition along the first (resp., second) direction. The partition of Ξ is shown in the
center.

3.2. Stochastic approximation spaces. Let S(T) be the stochastic approx-
imation space associated with a tree T, spanned by piecewise polynomials on the
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partition of Ξ given by (3.1):

S(T) = {U T : Ξ→ R; ∀l ∈ L(T), U T|S(l) ∈ PN
No[ξ]},(3.3)

where PN
No[ξ] is the N-dimensional polynomial space with (partial or total) order less

than or equal to No. Let P denote the dimension of the polynomial space PN
No[ξ], and

set P := {1 . . .P}. The space S(T) has dimension

(3.4) dim(S(T)) = card(L(T)) × P.

Any function U T ∈ S(T) can be written as

(3.5) U T(ξ) =
∑

l∈L(T)

(∑
α∈P

ul
αΦ

l
α(ξ)

)
,

where the deterministic coefficients ul
α ∈ R are called the stochastic element (SE)

coefficients of U T in S(T), and the family {Φl
α}l∈L(T),α∈P forms the SE basis. Letting

{Φ∗
α}α∈{1...No+1} be the set of normalized Legendre polynomials on [0, 1] with degree

less than or equal to No, let {Φn0
α }α∈P be the basis of PN

No[ξ] obtained by (partial or
full) tensorization of the polynomials Φ∗

α. Relying on the affine maps Mn : S(n)→ Ξ
defined above for every node n ∈ N (T), the piecewise polynomials Φl

α are expressed
as

Φl
α(ξ) =

{
|S(l)|−1/2

Φn0
α (Ml(ξ)), ξ ∈ S(l),

0, otherwise.
(3.6)

The SE basis is orthonormal, that is,〈
Φl

α,Φ
l′
β

〉
= δl,l′δα,β ∀l, l′ ∈ L(T), ∀α, β ∈ P .(3.7)

The SE expansion (3.5) can be rewritten as

(3.8) U T(ξ) =
∑

j∈E(T)
ujΦj(ξ),

where E(T) is the multi-index set of the SE expansion whose cardinality is equal to
the dimension of S(T) given by (3.4).

Alternatively, any function U T ∈ S(T) can be expressed in terms of hierarchical

details over the nodes n ∈ N̂ (T) as

U T(ξ) =
∑
α∈P

un0
α Φn0

α (ξ) +
∑

n∈ ̂N (T)

(∑
α∈P

ũn
αΨ

n,d(n)
α (ξ)

)
.(3.9)

The functions Ψ
n,d(n)
α , called multiwavelets (MW), are supported in S(n). They can

be conveniently defined from N sets of P mother functions {Ψn0,d
α }α∈P , d ∈ {1 . . .N},

that are piecewise polynomials on Ξ such that

(3.10) spanα{Φc−
d
(n0)

α ,Φ
c+
d
(n0)

α } = spanα{Φn0
α }

⊥⊕ spanα{Ψn0,d
α },

where c±d (n0) result from the dyadic partition of n0 in the direction d; see [11, 16] for

more details (see also [1] in one dimension). Then, for all n ∈ N̂ (T) and all α ∈ P ,
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the piecewise polynomials Ψ
n,d(n)
α are expressed as

Ψn,d(n)
α (ξ) =

{
|S(n)|−1/2

Ψ
n0,d(n)
α (Mn(ξ)), ξ ∈ S(n),

0, otherwise
(3.11)

so that, owing to (3.10), for all n ∈ N̂ (T),

(3.12) spanα{Φc−d (n)
α ,Φ

c+d (n)
α } = spanα{Φn

α}
⊥⊕ spanα{Ψn,d(n)

α }.

Finally, the MW expansion (3.9) can be rewritten as

(3.13) U T(ξ) =
∑

j∈W(T)

ũjΨj(ξ),

where W(T) is the multi-index set of the MW expansion.

3.3. Restriction and prediction operators. Restriction and prediction op-
erators are useful tools in the adaptive context. Let T1 and T2 be two binary trees.
We say that T1 ⊂ T2 if

∀l2 ∈ L(T2), ∃!l1 ∈ L(T1) such that S(l2) ⊂ S(l1).(3.14)

Clearly, if T1 ⊂ T2, then S(T1) ⊂ S(T2).

3.3.1. Restriction operator. Let T1 and T2 be two binary trees such that T1 ⊂
T2. Given U T2 ∈ S(T2), we define the restriction of U T2 to S(T1), denoted by R↓T1U

T2 ,
as the orthogonal L2(Ξ)-projection of U T2 onto S(T1), i.e., (U T2 −R↓T1U T2) ⊥ S(T1).
In terms of MW coefficients, the restriction operation is straightforward. Letting ũn

α

be the MW coefficients of U T2 and using the orthonormality of the MW basis yields,
for all n ∈ N̂ (T1) and all α ∈ P , (

R̃↓T1U T2

)n
α
= ũn

α.(3.15)

The computation of the SE coefficients of the restriction is not as immediate. As-
suming that the SE expansion of U T2 is known, we construct a sequence of trees T(i)
such that T2 = T(0) ⊃ · · · ⊃ T(i) ⊃ · · · ⊃ T(l) = T1, where two consecutive trees
differ from one generation only; i.e., a leaf of T(i+1) is either a leaf or a node with
leaf children in T(i). Therefore, the transition from T(i) to T(i+1) consists of removing
pairs of sister leaves. Focusing on the removal of a (left-right ordered) pair of sister
leaves {l−, l+}, the SE coefficients of the restriction of U T(i) associated with the new
leaf l = p(l−) = p(l+) ∈ L(T(i+1)) in direction d(l) are

ul
α =

∑
β∈P

[
R

−,d(l)
α,β ul−

β +R
+,d(l)
α,β ul+

β

]
,(3.16)

where, for all d ∈ {1 . . .N}, the transition matrices R±,d of order P have entries given

by R±,d
α,β = 〈Φn0

α ,Φ
c±d (n0)

β 〉.
3.3.2. Prediction operator. Let T1 and T2 be two binary trees such that T1 ⊂

T2. The prediction operation consists of extending U T1 ∈ S(T1) to the larger stochastic
space S(T2). We denote this prediction by P↑T2U T1 . Different predictions can be
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used (see [3, 2]); here we have considered the simplest one, where no information is
generated by the prediction. As for the restriction operation, the MW expansion of
the prediction is immediately obtained from the MW coefficients of U T1 . We obtain,
for all n ∈ N̂ (T2) and all α ∈ P ,(

˜P↑T2U T1

)n
α
=

{
ũn
α, n ∈ N̂ (T1),

0, otherwise.
(3.17)

For the SE coefficients of the prediction, we can again proceed iteratively using a
series of increasing intermediate trees, differing by only one generation from one to
the other. This time, the elementary operation consists of adding children to some
leaf of the current tree in a chosen direction d. The SE coefficients associated with
the new leaves of a node n are given by

uc−(n)
α =

∑
β∈P

R−,d
α,βu

n
β , uc+(n)

α =
∑
β∈P

R+,d
α,βu

n
β,(3.18)

with the same transition coefficients as those used in (3.16). For two trees T1 ⊂ T2,
we observe that R↓T1 ◦P↑T2 = IT1 , while in general P↑T2 ◦R↓T1 �= IT2 (with I denoting
the identity).

4. Adaptive stochastic Roe solver. Singularities in the solution of stochastic
conservation laws remain localized both in the deterministic domain Ω × [0, tf ] for
each ξ ∈ Ξ and in the stochastic domain Ξ for each (x, t) ∈ Ω× [0, tf ]. In other words,
the solution is almost everywhere smooth on Ω× [0, tf ]×Ξ. This observation strongly
advocates the use of adaptive strategies where the computational effort is concentrated
along the singularity curves, while coarser discretizations are used where the solution
is smooth. In what follows, we consider only adaptation of the stochastic discretization
by relying on a fixed spatial mesh (the time-step being adapted to satisfy a global
CFL condition). However, the adapted stochastic discretization depends on the spatial
variable x and the time t. In the context of the stochastic discretization framework
introduced in the previous section, this amounts to an indexation with both x and t
of the trees T defining the stochastic approximation space S(T). Specifically, we now
denote by Tni the tree associated with the ith cell of the spatial mesh at the discrete
time tn such that the approximate stochastic solution on the ith cell at time tn has
for expansions

Un
i (ξ) =

∑
j∈E(Tni )

(un
i )j Φj(ξ) =

∑
j∈W(Tni )

(ũn
i )jΨj(ξ) ∈ S(Tni ).(4.1)

4.1. Algorithm. In this section, we present an overview of the adaptive stochas-
tic Roe-type solver used for the time-integration of the stochastic conservation law.
The structure of the solver is outlined in Algorithm 1. The algorithm starts with
the definition of the initial data consisting, for each spatial cell, of a tree T0i and
the approximation of the cell-averaged initial condition yielding U0

i ∈ S(T0i ). The
accuracy parameter η (to be used in section 4.2) and the resolution level Nr are also
required before proceeding with the time-iterations that constitute the core of the
algorithm. A time-iteration consists of four main steps: an enrichment of the current
stochastic approximation spaces, the computation of the fluxes at the interfaces, the
time-advancement of the solution, and finally the coarsening of the underlying trees.
We remark that in Algorithm 1, the time-integration and coarsening steps have been
distinguished for clarity, but in fact the coarsening can be applied to each spatial cell
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Algorithm 1. Structure of the adaptive stochastic Roe-type solver.

1. Set η > 0 and Nr > 0 [Set precision and resolution level]

2. for all cells i of the spatial mesh do
3. Construct T0i and U0

i

4. end for
5. n← 0, t← 0
6. while t < tf do
7. Step I: enrichment
8. for all cells i of the spatial mesh do
9. (Tni , U

n
i )← Enrich (Tni , U

n
i , η,Nr) [Enrich the approximation spaces]

10. end for
11. Step II: computation of the fluxes
12. for all interfaces i− 1/2 of the spatial mesh do
13. Ti−1/2 ← Union

(
Tni−1, T

n
i

)
[Construct flux space]

14. UL ← Predict(Ti−1/2, U
n
i−1), UR ← Predict(Ti−1/2, U

n
i ) [Predict states]

15. Φi−1/2 ← 0 [Initialize flux]

16. for all l ∈ L(Ti−1/2) do
17. Φi−1/2 ← Φi−1/2 + Roeflux(l, UL, UR) [Add leaf’s contribution to the flux]

18. end for
19. end for
20. Select the time-step Δtn

21. Step III: time integration
22. for all cells i of the spatial mesh do
23. T∗i ← Union

(
Ti−1/2, Ti+1/2

)
[Construct integration space]

24. δΦ← Predict(T∗i ,Φi−1/2)− Predict(T∗i ,Φi+1/2) [Compute flux difference]

25. Un+1
i ← Predict(T∗i , U

n
i ) +

Δtn

Δx δΦ [Integrate in time]

26. end for
27. Step IV: Coarsening
28. for all cells i of the spatial mesh do
29. (Tn+1

i , Un+1
i )← Coarsen(T∗i , U

n+1
i , η,Nr) [Threshold the solution]

30. end for
31. t← t+Δtn, n← n+ 1 [Increment time]

32. end while

immediately after its time-advancement, resulting in a more efficient implementation.
We briefly outline the role of the different procedures appearing in Algorithm 1.

Step I. The purpose of this step is to enrich the stochastic approximation spaces
in order to anticipate the emergence during the time-step of additional local stochastic
features in the solution requiring more resolution. The procedure Enrich extends the
current tree by refining some of its leaves using one of the two enrichment strategies
described in section 4.2.

Step II. In this step, the numerical fluxes at all cell interfaces are evaluated.
The first procedure, Union(T1, T2), constructs the minimal tree encompassing both T1
and T2. This union is needed because, in general, Tni−1 �= Tni for two neighboring cells
i− 1 and i sharing an interface. Since the solutions over the two cells are not defined
with respect to the same stochastic basis, we first construct a common stochastic
approximation space defined by the union of the two cells trees. The formal definition
of the union of trees is as follows: Given two generic trees T1 and T2, we define their
union-tree T1∪2 := T1 ∪ T2 as (one of) the minimal tree(s) (in terms of number of
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Fig. 4.1. Example of union of two trees for N = 2: T1 (left), T2 (center), and T1∪2 = T1 ∪ T2
(right). For each tree the corresponding partition is also shown.

leaves) such that, for all l ∈ L(T1∪2),

∃!l1 ∈ L(T1), ∃!l2 ∈ L(T2), S(l) = S(l1) ∩ S(l2).(4.2)

The union of two trees is illustrated in Figure 4.1 for N = 2. The union-tree is
not unique whenever N > 1, since different minimal trees can be constructed to
satisfy (4.2), but these union-trees are equivalent and yield the same stochastic space
S(T1∪2). Moreover, S(T1) and S(T2) are subspaces of S(T1∪2) since T1 ⊂ T1∪2 and
T2 ⊂ T1∪2. Thus, we can compute the SE coefficients in S(T1∪2) of the stochastic
quantities U T1 and U T2 by means of the prediction operators introduced previously.
The procedure Predict in Algorithm 1 precisely implements the recursive prediction
described in section 3.3. The solutions of the left and right cells being now defined in
S(Ti−1/2), the numerical flux Φi−1/2 at the interface can be computed. Following [17],
the flux is computed in terms of its SE expansion coefficients, and we exploit the
decoupling of the flux evaluation for distinct leaves to perform the calculation in
parallel. The procedure Roeflux implements the computation of the local numerical
flux at the level of a leaf l. We have briefly described in section 2.4 the computation
of the expansion coefficients of the numerical flux in a generic stochastic basis, given
the expansion coefficients of the left and right states (uL and uR) in this basis. We
can readily reuse this method with the basis functions {Φn0

α }α∈P , relying on the affine
maps Ml and a scaling of the SE coefficients. In addition, although this is not made
explicit in Algorithm 1, Roeflux also returns the maximal velocity over the leaf, and
this quantity is used in the CFL-based selection of the time-step Δtn.

Step III. In this step, we advance in time the solution of each cell by integration
of the difference in the Galerkin fluxes of its interfaces according to (2.8). The proce-
dures Union and Predict are used to define all the relevant quantities in a common
stochastic space.

Step IV. The purpose of this step is to control, in each cell of the stochastic mesh,
the growth of its tree resulting from the enrichment and union operations, by perform-
ing a coarsening of the tree. The procedure Coarsen, applied to each cell (possibly
in parallel), performs this coarsening by means of thresholding, where nonsignificant
details in the solution are removed to achieve minimal resolution for a target accuracy
fixed by η. Details on the procedure Coarsen are provided in section 4.2.

4.2. Adaptivity. In this section, we detail the essential adaptivity tools needed
for the control of the local stochastic resolution, with the objective of efficiently reduc-
ing the complexity of the computations. There are two essential tools: the coarsening
and enrichment procedures.

4.2.1. Coarsening. Let T be a binary tree and let U T ∈ S(T). The coarsen-
ing procedure aims at constructing a subtree T− ⊂ T (or, equivalently, a stochastic
approximation subspace S(T−) ⊂ S(T)) through a thresholding of the MW expansion
coefficients of U T.
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Thresholding error. Let η > 0 be the tolerance fixed in Algorithm 1 and recall
that Nr denotes the resolution level. Let ũn

α denote the MW expansion coefficients of

U T; see (3.9). We define D(η,Nr) as the subset of N̂ (T) such that

D(η,Nr) :=
{
n ∈ N̂ (T); ‖ũn‖�2 ≤ 2−|n|/2(NNr)−1/2η

}
,(4.3)

where ũn := (ũn
α)α∈P and ‖ũn‖2�2 =

∑
α∈P (ũn

α)
2
. The motivation for (4.3) is that,

letting Û T be the thresholded approximation of U T obtained by omitting, in the second
sum of (3.9), the nodes n ∈ D(η,Nr), there holds

‖Û T − U T‖2L2(Ξ) =
∑

n∈D(η,Nr)

‖ũn‖2�2 ≤
∑

n∈D(η,Nr)

2−|n|(NNr)−1η2 ≤ η2,(4.4)

since
∑

n∈D(η,Nr) 2
−|n| =

∑NNr−1
j=0 #{n ∈ D(η,Nr); |n| = j}2−j ≤∑NNr−1

j=0 1 = NNr.

Coarsening procedure. Two points deserve particular attention. The first is
that N (T) \ D(η,Nr) does not have a binary tree structure in general, so that a
procedure is needed to maintain this structure when removing nodes of T. Here, we
choose a conservative approach where the resulting subtree T− may still contain some
nodes in the set D(η,Nr). Specifically, we construct a sequence of imbricated trees,
obtained through the removal of pairs of sister leaves from one tree to the next: a
couple of sister leaves having node n for a parent is removed if n ∈ D(η,Nr). The
coarsening sequence is stopped whenever no couple of sister leaves can be removed, and
this yields the desired subtree T−. The second point is that the above algorithm only
generates trees such that, along the sequence, the successive (coarser and coarser)
partitions of Ξ follow, in backward order, the partition directions d(n) prescribed
by T. This is unsatisfying because for N > 1, there are many trees equivalent to T,
and we would like the coarsened tree to be independent of any particular choice in this
equivalence class. To avoid arbitrariness, the trees of the sequence are periodically
substituted by equivalent ones, generated by searching in the current tree the pattern
of a node n whose children c−(n) and c+(n) are not leaves and are subsequently
partitioned along the same direction d(c+(n)) = d(c−(n)) which differs from d(n);
when such a pattern is found, partition directions are exchanged, d(n)↔ d(c−(n)) =
d(c+(n)), together with the corresponding permutation of the descendants of the
children nodes. This operation, illustrated in Figure 4.2, is applied periodically and
randomly along the coarsening procedure, as further detailed in section 5.2.

c (n)+ c (n)+c (n)−c (n)−

Tc Td Ta Tc Tb Td

n n

TbTa

Fig. 4.2. Illustration of the elementary operation to generate equivalent trees: the pattern of a
node with its children divided along the same direction (left) is replaced by the same pattern but with
an exchange of the partition directions (right) plus the corresponding permutation of the descendants
of the children.

4.2.2. Anisotropic enrichment. Let T be a binary tree and let U T ∈ S(T). The
purpose of the enrichment is to increase the dimension of S(T) by adding descendants
to some of its leaves. Enrichment of the stochastic space is made necessary by the
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possible emergence in time of new features in the stochastic solution, such as shocks,
that require more resolution. The underlying assumption is that the time-step is
small enough that a tree containing significant details at both times tn and tn+1 can
be constructed from the details at tn; see [7]. In what follows, the enrichment is
limited to at most one partition along each direction.

The simplest enrichment procedure consists of systematically partitioning all the
leaves l ∈ L(T) once for all d ∈ {1 . . .N} provided |S(l)|d > 2−Nr. This procedure
generates a tree T+ that typically has 2Ncard(L(T)) leaves, which is practical only
when N is small. More economical strategies are based on the analysis of the MW
coefficients in U T to decide which leaves of T need to be partitioned and along which
direction (see, for instance, [11, 12]). We derive below two new directional enrichment
criteria in the context of N-dimensional binary trees.

MultiD enrichment criterion. Classically, the theoretical decay rate of the
MW coefficients with resolution level is used to decide the partition of a leaf from the
norm of MW coefficients of its parent (see, for instance, [7, 3] in the deterministic
case).

We first recall some background in the one-dimensional case (N = 1). Let U ∈
L2(Ξ) with Ξ = [0, 1]. Let T1D be a one-dimensional binary tree, and let U T1D be the
L2(Ξ)-orthogonal projection of U onto S(T1D). Let ũn

α denote the MW coefficients of
U T1D . Then, if U is locally smooth enough, the magnitude of the MW coefficients ũn

α

of a generic node n ∈ N̂ (T1D) can be bounded as

|ũn
α| = inf

P∈PNo[ξ]
|〈(U − P ),Ψn

α〉| ≤ C|S(n)|No+1‖U‖HNo+1(S(n)),(4.5)

where HNo+1(S(n)) is the usual Sobolev space of order (No + 1) on S(n). Recalling
that |S(n)| = 2−|n|, the bound (4.5) shows that the norm of the MW coefficients decays
roughly as O(2−|n|(No+1)) for smooth U . Therefore, the norm of the (unknown) MW
coefficients of a leaf l ∈ L(T1D) can be estimated from the norm of the (known) MW
coefficients of its parent as ‖ũl‖�2 ∼ 2−(No+1)‖ũp(l)‖�2 . This estimate can, in turn,
be used to derive an enrichment criterion; specifically, a leaf l is partitioned if the
estimation of ‖ũl‖�2 does not match the thresholding criterion (4.3), that is, if

‖ũp(l)‖�2 ≥ 2No+12−|l|/2Nr−1/2η and |S(l)| > 2−Nr.(4.6)

The extension to N > 1 of the enrichment criterion (4.6) is not straightforward
in the context of binary trees. Indeed, the MW coefficients associated with a node n
carry information essentially related to the splitting direction d(n). Thus, for a leaf
l ∈ L(T), they cannot be used for an enrichment criterion in a direction d �= d(p(l)). To
address this issue, we define, for any leaf l ∈ L(T) and any direction d ∈ {1 . . .N}, its
virtual parent pd(l) as the (virtual) node that would have l as a child after a dyadic
partition along the dth direction. Consistently, sd(l) denotes the virtual sister of l
along direction d. Note that pd(l) ∈ N (T) only for d = d(p(l)); moreover, in general
sd(l) /∈ N (T). These definitions are illustrated in Figure 4.3, which shows for N = 2
the partition associated with a tree T (left plot), and the virtual sisters of two leaves.
The SE coefficients of the virtual sisters,

usd(l)
α :=

〈
U T,Φsd(l)

α

〉
, α ∈ P ,(4.7)

are efficiently computed by exploiting the binary structure of T and relying on the
elementary restriction and prediction operators defined in section 3.3. Without go-
ing into too many details, let us mention that the computation of the SE coeffi-
cients in (4.7) amounts to (i) finding the subset of leaves in L(T) whose supports
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Fig. 4.3. Illustration of the virtual sisters of a leaf l of a tree T whose partition is shown in the
left plot. In the center plot, the leaf l is hatched diagonally in blue and its two virtual sisters for
d = 1 and 2 (hatched horizontally and vertically, respectively) are leaves of T, both being c+(pd(l)).
In the right plot, a different leaf l is considered (still hatched diagonally in blue) with virtual sisters
sd(l) which for d = 1 (hatched horizontally) is a node of T but not a leaf, and which for d = 2
(hatched vertically) is not a node of T.

overlap with S(sd(l)), (ii) constructing the subtree having this subset as its leaves,
and (iii) restricting the solution over this subtree up to sd. In practice, one can reuse
the restriction operator defined in section 3.3 to compute the usual details in the
{Ψn,d

α }α∈P basis for a chosen direction d.
We now return to the design of a multiD enrichment criterion. A natural extension

of (4.6) is that a leaf l is partitioned in the direction d if

‖ũpd(l)‖�2 ≥
(
diam(S(pd(l)))

diam(S(l))

)No+1

2−|l|/2(NNr)−1/2η and |S(l)|d > 2−Nr.(4.8)

This criterion is motivated by the following multiD extension of the bound (4.5) for
the magnitude of the MW coefficients ũn

α in the direction d for a generic node n:

|ũn
α| = inf

P∈P
N
No[ξ]

∣∣〈(U − P ),Ψn,d
α

〉∣∣ ≤ Cdiam(S(n))No+1‖U‖HNo+1(S(n)).(4.9)

Directional enrichment criterion. We want to improve the criterion (4.8)
since the isotropic factor diam(S(pd(l)))/diam(S(l)) can take the value 1 in the context
of anisotropic refinement. We would like to devise a criterion with the factor 2No+1,
since this will lead to smaller enriched trees. To this purpose, we derive an alternative
criterion that is fully directional. For any direction d ∈ {1 . . .N} and any node n ∈ T,

we define the directional detail coefficients ūn,d
β∈{1...No+1} through

ūn,d
β :=

〈
U, Ψ̄n,d

β

〉
, Ψ̄n,d

β (ξ) =

⎧⎨⎩|S(n)|−1/2Ψ∗
β

(
ξd−ξ−n,d

ξ+n,d−ξ−n,d

)
, ξ ∈ S(n),

0, otherwise,
(4.10)

where {Ψ∗
β}β∈{1...No+1} is the set of one-dimensional wavelet functions defined on

[0, 1]. The vector of coefficients ūn,d measures details in U at the scale |S(n)|d, in
direction d only, by averaging out any variability in U along the other directions. The
estimate for the directional details magnitude is now (see Appendix A)

|ūn,d
β | = inf

P (ξ)∈PNo[ξd]

∣∣∣〈(U − P ), Ψ̄n,d
β

〉∣∣∣ ≤ C|S(n)|No+1
d ‖U‖L2(S∼d(n),HNo+1(Sd(n))).

(4.11)

Proceeding as previously, the enrichment criterion states that a leaf l is partitioned
along direction d if

‖ūpd(l)‖�2 ≥ 2No+12−|l|/2(NNr)−1/2η and |S(l)|d > 2−Nr.(4.12)
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The details norm associated with the basis {Ψ̄n,d
β }β∈P can be obtained directly from

the vector of MW coefficients ũn,d by averaging it in all but the dth direction.

5. Results. The effectiveness of the proposed method is assessed on a nonlinear
conservation law with stochastic flux F (U ; ξ) = A(ξ)U(ξ)(1−U(ξ)), with A(ξ) almost
surely positive. This flux is representative of simple traffic flow models where U is
the normalized density of vehicles and A is a reference velocity.

5.1. Problem definition. We consider a spatial domain Ω = [0, 1] with periodic
boundary conditions. The considered uncertainties are on the initial data U IC(x, ξ)
(1-periodic in x) and on the velocity A(ξ). Specifically, the uncertain initial condition
consists of four piecewise constant uncertain states in x, parametrized using four
independent random variables ξ1, ξ2, ξ3, and ξ4, with uniform distributions in [0, 1]:

(5.1) U IC(x, ξ) = U(ξ1)− U−(ξ2)I[0.1,0.3] + U+(ξ3)I[0.3,0.5] − U−(ξ4)I[0.5,0.7],

where U(ξ1) = 0.25 + 0.01ξ1 ∼ U [0.25, 0.26], U−(ξd) = 0.2 + 0.015ξd ∼ U [0.2, 0.215],
d ∈ {2, 4}, and U+(ξ3) = 0.1 + 0.015ξ3 ∼ U [0.1, 0.115] (here, IZ denotes the charac-
teristic function of the set Z). In addition, the uncertain velocity is parametrized by
one random variable ξ5 with uniform distribution in [0, 1]:

(5.2) A(ξ5) = 1 + 0.05(2ξ5 − 1) ∼ U [0.95, 1.05].
This problem has therefore five stochastic dimensions (N = 5). The space PN

No[ξ] is
spanned by the partially tensorized Legendre polynomials with degree ≤ No, so that

P = (N+No)!
N!No! .

5.2. Numerical results. We fix η = 10−4, No = 3, and Nc = 200 uniform cells
for the spatial discretization. The resolution level is set to Nr = 6. In the coarsening
procedure (see the discussion at the end of section 4.2.1), we consider sequences of
coarsening of the current tree followed by its substitution with another equivalent
tree. This coarsening is stopped whenever the number of leaves has not changed for
five successive sequences, or if no equivalent tree has been generated. To generate
an equivalent tree, we travel through the tree from the root to the leaves and detect
exchange patterns as illustrated in Figure 4.2; when a possible exchange is found, it
is applied with probability 0.5. The travel through the tree is repeated 10 times.

The initial condition is illustrated in the left panel of Figure 5.1, where 20 real-
izations of U IC(ξ) are shown. In the middle and right panels of Figure 5.1, we show
20 realizations of the solution at times t = 0.4 and 0.9, respectively, reconstructed
from the adaptive expansion and corresponding to the realizations of the initial data
from the left panel. We observe the generation of two expansion waves from x = 0.1
and x = 0.5, and of two shock waves from x = 0.3 and x = 0.7. As time evolves, the
first expansion wave reaches the first shock, while the second expansion wave reaches
the second shock. Because of uncertainties in the wave velocities, the instants where
the waves catch up are uncertain. The dynamics and the impact of uncertainties
can be better appreciated on the space-time diagram of the solution expectation and
standard deviation plotted for t ∈ [0, 1] in the left and right panels of Figure 5.2. We
observe the smooth nature of the solution expectation and the steep variations in the
solution standard deviation, with maxima reached along the paths of the two shocks.

Although the stochastic solution appears to have qualitatively a simple structure,
similar for all the realizations, the dependencies of the solution with respect to ξ
is not so simple. To illustrate this point, the respective contribution of each input
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Fig. 5.1. Stochastic nonlinear conservation law: sample set of 20 realizations of the initial
condition (left) and computed solution at t = 0.4 (middle) and t = 0.9 (right).
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Fig. 5.2. Space-time diagrams of the solution expectation (left) and standard deviation (right).
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Fig. 5.3. Space-time diagrams (x, t) ∈ [0, 1] × [0, 1] of the first-order sensitivity indices and
contribution of sensitivity indices of higher order.

parameter on the variance of the solution is represented by the first-order sensitivity
indices Sd in Figure 5.3 (see Appendix B for the definition and computation of the
sensitivity indices). Before the merging of the expansion and shock waves (t < 0.4),
significant values are observed for S1, S2, S3, and S4 over portions of the computational
domain corresponding to the three dependence cones between the waves, where the
solution takes one of the three initial uncertain states. The portions of the spatial
domain, where S1−4 take significant values, reduce as time increases, indicating the
emergence of more and more interactions between the random parameters. On the
contrary, because ξ5 parametrizes the uncertain velocity A, the significant values of
S5 appear along paths of the different waves and affect a portion of the spatial domain
that increases with time. The emergence of interactions between parameters can be
appreciated from the rightmost panel of Figure 5.3, where the quantity 1−∑N

d=1 Sd,
i.e., the fraction of the variance due to higher-order sensitivity indices, is plotted. This
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Fig. 5.4. Total and first-order sensitivity indices as a function of x ∈ [0, 1] at t = 0.4 (left) and
t = 0.9 (right).

figure shows that interactions primarily take place along the shock paths. We also
present the total sensitivity indices Td which measure the total sensitivity of the
solution with respect to the parameter ξd. These total sensitivity indices are displayed
in Figure 5.4 as a function of x at the same times as in Figure 5.1. To highlight the
effect of interactions, we also report the first-order sensitivity indices Sd at the same
times. We recall that Td ≤ 1, while

∑
d Td > 1 in general. We observe that T2 and T3

(resp., T4) take significant values over supports that are compact in the neighborhood
of the first (resp., second) shock wave, and that their magnitude tends to decay with
time. However, the decay rates of T2−4 are much slower than those for S2−4. The
portion of the spatial domain where T5 reaches a value close to 1 becomes on the
contrary larger as time increases, indicating the extension of the domain of influence
of the uncertainty in A. For instance, for t = 0.9, the set {T5 ≈ 0} is included in
x ∈ [0.4, 0.5], that is, the only remaining part of the domain where the stochastic
solution is spatially constant (see the right plot of Figure 5.1). Furthermore, while S5
and T5 are very close for all x at t = 0.4, T5 becomes much larger than S5 at later
times and in the neighborhood of the stochastic shocks, denoting interactions with
other variables. Finally, the dynamics of T1, which is related to an uncertainty in the
initial data that is nonlocal, is much more complex. Specifically, T1 continues to be
significant in areas where the stochastic solution is piecewise constant in space and
along the shocks (where T1 � S1), while in rarefaction waves, T1 becomes quickly
insignificant.

5.3. Refinement analysis.We have tested the two enrichment criteria (multiD
(4.8) and directional (4.12)) using different values for η and No. The results of these
experiments indicate that, at fixed η and No, the multiD criterion leads to more re-
fined stochastic discretizations. However, the finer stochastic discretizations resulting
from the multiD criterion achieve only a marginal reduction of the approximation
error (as measured by the stochastic approximation error εsd defined by (5.3) below)
compared to the directional criterion. This is illustrated in Figure 5.5, where we re-
port the evolution in time of the total number of SEs for the two enrichment criteria,
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Fig. 5.5. Comparison of the two enrichment criteria for No = 3 and different values of η
as indicated. Evolution in time of the total number of SEs in the discretization for the multiD
criterion (4.8) (left plot) and the directional criterion (4.12) (center plot). Right plot: corresponding
error measures εsd at t = 0.5 as a function of the total number of SEs for the two enrichment criteria.
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Fig. 5.6. Space-time diagrams of the averaged depth of local trees in log2 scale (left) and
evolution in time of the total number of stochastic elements (right).

different values of η, and No = 3. The rightmost plot shows εsd as a function of the
total number of SEs at t = 0.5. Because the two enrichment criteria have a similar
computational complexity for their evaluation, the results presented in what follows
all use the directional criterion (4.12).

The left plot in Figure 5.6 displays the space-time diagram of the averaged depths
of the trees measured as log2 card(L(Tni )) for each (xi, t

n) and with η = 10−4 and
No = 3. This plot shows the adaptation of the stochastic resolution in space and
time to the local stochastic smoothness; as expected, a finer stochastic discretiza-
tion along the path of the shock waves is necessary, while a coarser discretization
suffices in the expansion waves and in the regions where the solution is spatially con-
stant. The right plot in Figure 5.6 shows the time evolution of the total number
of leaves in the stochastic discretization. We observe a monotone increase in the
number of leaves, with higher rates when additional wave interactions occur and, sub-
sequently, with a roughly constant rate since the stochastic shocks, where most of the
discretization effort concentrates, affect a portion of the spatial domain growing lin-
early in time. To analyze the anisotropy of the refinement procedure, we present
in Figure 5.7 the space-time diagrams of the averaged directional depths defined
for d ∈ {1 . . . 5} by Dd := − log2(

∑
l∈L(Tni )

|S(l)|d/card(L(Tni ))) and the aspect ra-

tio ρ := maxl∈L(Tni )
(maxd |S(l)|d/mind |S(l)|d) in the rightmost panel. Because ξ1

parametrizes the uncertain initial condition on the whole domain, this variable affects
the velocity of the two shock waves, so that the discretization is finer in the neigh-
borhood of the two shocks. Then, ξ2 and ξ3 (resp., ξ4) affect the velocity of the first
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Fig. 5.7. Space-time diagrams (x, t) ∈ [0, 1] × [0, 1] of the averaged directional depths and of
the aspect ratio.

(resp., the second) shock wave, so that the discretization is finer in the neighborhood
of the first (resp., the second) shock. Finally, ξ5, which parametrizes the velocity A
and therefore affects the velocity of the two shocks, is observed to be the most influent
parameter, so that the trees are deeper in the fifth direction; this fact explains the
high values of the aspect ratio near the shocks.

5.4. Convergence and computational time analysis. The convergence of
the adaptive stochastic method is numerically investigated in a first series of experi-
ments. We fix the number of spatial cells to Nc = 200 and compute the solution at
tn = 0.5 for different values of η and No. We characterize the approximation error in
the semidiscrete solution by the measure

ε2sd = Δx

Nc∑
i=1

∫
Ξ

(
Un
i (ξ)− Un

ex,i(ξ)
)2

dξ,(5.3)

where Un
ex,i denotes the exact stochastic semidiscrete solution. This error measure

is approximated by means of a Monte Carlo simulation, consisting of (a) sampling
uniformly ξ ∈ Ξ, (b) solving the corresponding discrete deterministic problems with
a deterministic Roe solver, (c) computing the difference with the computed adapted
solution, and (d) averaging over samples to get an empirical estimate of εsd. In
practice, 10,000 Monte Carlo samples suffice to obtain a well converged error measure.
In all these experiments, a fixed time-step Δt = 1/200 is used. Figure 5.8 shows the
decay of ε2sd when the tolerance η in the adaptive algorithm is decreased. The different
curves correspond to polynomial orders No ∈ {2 . . .5}. The left plot depicts the
error measure as a function of the total number of elements (leaves) in the adaptive
stochastic discretization at tn = 0.5, namely the sum over all cells i of card(L(Tni )).
The convergence of the semidiscrete solution as η is lowered is first observed for all
polynomial orders tested. In addition, the higher No is, the lower the error and
the faster the convergence rate, owing to richer approximation spaces for equivalent
number of stochastic elements. However, if the error measure εsd is plotted as a
function of the total number of degrees of freedom in the stochastic approximation
spaces, i.e., the total number of leaves times P, as shown in the right plot of Figure 5.8,
we observe that for low resolution (largest η), low polynomial orders are more efficient
than larger ones. On the contrary, for highly resolved computations (lowest values of
η), high polynomial orders achieve a more accurate approximation for a lower number
of degrees of freedom. This behavior can be linked to the diffusivity of the Roe solver
that (slightly) smooths the solution at the stochastic level, even if steep dependencies
with respect to ξ are observed, in particular, along the shocks.
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Fig. 5.9. Dependence of the CPU time (per time iteration) on the stochastic discretization
measured by the total number of leaves. Left: No = 2 and η = 10−3. Right: No = 3 and η = 10−4.
The contributions of the various steps of the adaptive algorithm are also shown.

To complete the analysis of the adaptive method, we briefly discuss its compu-
tational efficiency. Our main purpose is to demonstrate that the overhead due to
the adapted stochastic discretization in space and time is limited. We first observe
that because our Roe scheme is explicit in time, parallelization by spatial domain
decomposition is immediate. However, a dynamical partition of the spatial domain
would be necessary to balance the computational loads as the stochastic discretiza-
tion evolves in time. A second level of parallelism concerns the flux computations
using the procedure Roeflux, which can be applied to different sets of leaves in par-
allel. Therefore, we are mostly concerned with the efficiency of the procedures Union,
Predict, Enrich, and Coarsen, in particular the scaling of their computational times
with the size of the stochastic discretization. The two plots in Figure 5.9 report the
CPU times (in arbitrary units) for the advancement of the solution over a time-step
using the discretization parameters No = 2, η = 10−3 and No = 3, η = 10−4, respec-
tively. The CPU times are given as a function of the total number of leaves involved
in the flux evaluation (number of calls to Roeflux). These numerical experiments
show that, owing to the representation of the stochastic approximation spaces using
binary tree structures, an asymptotically linear computational time in the number
of leaves is achieved. The contributions of the different parts of the algorithms are
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also detailed. For the two discretization parameters, the most time consuming part of
the algorithm is the flux evaluation, which significantly dominates the computational
times for enrichment and coarsening.

6. Conclusion. We have proposed an adaptive anisotropic strategy in the con-
text of multiresolution analysis for uncertain conservation laws with locally refined
stochastic approximation spaces depending on space and time. The binary tree struc-
ture used to represent the stochastic discretization permits efficient implementation
of the operators needed to deal with anisotropic adaptation, in particular the en-
richment and coarsening procedures, but also for the postprocessing of the numerical
solution to determine complex information such as sensitivity indices. Two anisotropic
criteria have been derived to decide the enrichment along the different stochastic di-
mensions of the problem. The present results illustrate the ability of the method to
deal with multidimensional stochastic nonlinear scalar conservation laws, including
shocks with significant computational savings owing to the adapted anisotropic dis-
cretization. Future work can aim at further improvements of the present adaptive
strategy, in particular, by considering adaptive spatial discretization or higher-order
numerical fluxes.

Appendix A. Derivation of the directional indicator. Let d ∈ {1 . . .N},
and let ∼d denote all the directions except d. Let n be a node of a binary tree T. Let
U ∈ L2(Ξ). We recall that Ψ̄n,d

β , β ∈ {1 . . .No+ 1}, is a function of ξd only such that

‖Ψ̄n,d
β ‖L2(Ξ) = 1. Therefore,

|ūn,d
β | = inf

P∈PNo[ξd]

∣∣∣〈U − P, Ψ̄n,d
β

〉∣∣∣
= inf

P∈PNo[ξd]

∣∣∣∣∣
∫
S(n)

(U(ξ∼d, ξd)− P (ξd)) Ψ̄
n,d
β (ξd)dξ

∣∣∣∣∣
= inf

P∈PNo[ξd]
|S(n)|∼d

∣∣∣∣∣
∫
Sd(n)

(
Ūn
∼d(ξd)− P (ξd)

)
Ψ̄n,d

β (ξd)dξd

∣∣∣∣∣
≤ C|S(n)|∼d|S(n)|No+1

d ‖Ūn
∼d‖HNo+1(Sd(n))‖Ψ̄n,d

β ‖L2(Sd(n))

= C|S(n)|1/2∼d |S(n)|No+1
d ‖Ūn

∼d‖HNo+1(Sd(n)),(A.1)

where Ūn
∼d(ξd) = |S(n)|−1

∼d

∫
S∼d(n)

U(ξ∼d, ξd)dξ∼d is the marginalization of U(ξ) over

the support S(n) in all the directions ∼d. Furthermore (omitting the reference to the
node n),

‖Ū∼d‖2HNo+1(Sd)
=

∫
Sd

∣∣∣∣∂No+1

∂ξd

1

|S|∼d

(∫
S∼d

U(ξ∼d, ξd)dξ∼d

)∣∣∣∣2 dξd
=

1

|S|2∼d

∫
Sd

∣∣∣∣∫
S∼d

∂No+1

∂ξd
U(ξ∼d, ξd)dξ∼d

∣∣∣∣2 dξd ≤ |S|−1
∼d

∫
S

∣∣∣∣∂No+1

∂ξd
U

∣∣∣∣2 dξ,
whence we infer

‖Ū∼d‖HNo+1(Sd) ≤ |S|−1/2
∼d ‖U‖L2(S∼d,HNo+1(Sd)),(A.2)

with anisotropic Sobolev norm ‖U‖2L2(S∼d,HNo+1(Sd))
=
∫
S∼d
‖U(ξ∼d, ·)‖2HNo+1(Sd)

dξ∼d.

Combining (A.1) with (A.2) yields (4.11).
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Appendix B. Sensitivity indices. Let U ∈ L2(Ξ) with Ξ = [0, 1]N. The
random functional U admits a unique hierarchical orthogonal decomposition, called
Hoeffding or Sobol decomposition, of the form [4, 8, 15]

U(ξ) =
∑

v⊆{1...N}
Uv(ξv),(B.1)

where v is a (possibly empty) set of ordered integers v = (v1 . . . vm) with m =
card(v) =: |v|, ξv = (ξv1 . . . ξvm), and such that∫

[0,1]

Uv(ξv)dξd = 0 ∀d ∈ v, ∀v ⊆ {1 . . .N},(B.2) ∫
Ξ

Uv(ξv)Uv′(ξv′)dξ = 0 ∀v, v′ ⊆ {1 . . .N}, v �= v′.(B.3)

Each function Uv in the decomposition (B.1) can be explicitly expressed in terms of
marginals, namely

U∅ = 〈U〉 , U{d}(ξd) = 〈U〉∼{d} − 〈U〉 , Uv(ξv) = 〈U〉∼v −
∑
v′⊂v

Uv′ , |v| ≥ 2,

(B.4)

where, for all v ⊆ {1 . . .N}, ∼v := {1 . . .N} \ v and 〈U〉∼v =
∫
[0,1]|∼v| U(ξ∼v, ξv)dξ∼v

denotes the marginalization of U over Ξ with respect to all variables ξd, d ∈ ∼v.
The Sobol decomposition is very useful for sensitivity analysis. Denoting by

Var(U) the variance of U , we infer, owing to the orthogonality property (B.3),

Var(U) =
∑

v⊆{1...N}
Var(Uv).(B.5)

Of particular importance [9] in characterizing the relative influence of the uncertain
parameters ξd on the variability of U are the first-order sensitivity indices Sd and total
sensitivity indices Td defined, respectively, by

Sd =
Var(U{d})
Var(U)

, Td =
1

Var(U)

∑
v⊆{1...N}

v�d

Var(Uv).(B.6)

If both Sd and Td are small, ξd is deemed noninfluent. If Sd is small and Td is not
small, then ξd is influent only through its interaction with other random parameters.

Consider now a binary tree T and a functional U T ∈ S(T). The tree data structure
and local restriction operators can be exploited to efficiently compute the marginals
of U T. For instance, to compute 〈U T〉v for some set v ⊆ {1 . . .N}, we construct an
N-dimensional tree Tv which is sufficiently rich to exactly represent 〈U T〉v. Because

Tv � T in general, we first assemble the set of leaf centers {ξ̃l, l ∈ L(T)} such that, for
all l ∈ L(T),

ξ̃l,d =

{
(ξ−l,d + ξ+l,d)/2, d ∈ v,

1/2, d /∈ v.
(B.7)
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Fig. B.1. Construction principle for T{1} from a tree T and N = 2. The initial tree T is shown
in the left plot, with the leaf centers plotted as circles. The right plot shows the set of distinct leaf
centers {ξ̃l}, as triangles, and the resulting tree T{1}.

We then build Tv as the minimal tree such that the interior of the support of each
leaf contains one point ξ̃l. The procedure is schematically illustrated in Figure B.1.
This construction yields |S(l)|d = 1 for all l ∈ L(Tv) and d ∈ ∼v. The next step
consists of projecting U T ∈ S(T) onto S(Tv), an operation which amounts to performing
restrictions along the directions d /∈ v and predictions (injections) in directions d ∈ v.
Finally, the projection of U T in S(Tv) is marginalized, locally over each leaf l ∈ L(Tv),
along every direction d ∈ ∼v. In fact, for any v′ ⊂ v, the procedure can be applied
recursively to construct Tv′ from Tv and to compute 〈U T〉v′ from 〈U T〉v.

REFERENCES

[1] B. Alpert, A class of bases in L2 for the sparse representation of integral operators, J. Math.
Anal., 24 (1993), pp. 246–262.

[2] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet techniques in numerical simula-
tion, in Encyclopedia of Computational Mechanics. Volume 1: Fundamentals, E. Stein, R.
De Borst, and T. J. R. Hughes, eds., John Wiley & Sons, New York, 2004, pp. 157–197.

[3] A. Cohen, S. Müller, M. Postel, and S. Kaber, Fully adaptive multiresolution schemes for
conservation laws, Math. Comp., 72 (2002), pp. 183–225.
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