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Numerical study of density functional theory with mean spherical approximation for ionic
condensation in highly charged confined electrolytes
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We investigate numerically a density functional theory (DFT) for strongly confined ionic solutions in the
canonical ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer
configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson-Boltzmann (PB)
approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bulk part includes nonideal terms
accounting for long-range electrostatic and short-range steric correlations between ions and is evaluated with
the mean spherical approximation and the local density approximation. The ion-solid part treats the ion-solid
interactions at the mean-field level through the solution of a Poisson problem. The main findings are that ionic
concentration profiles are generally better described by PB than by DFT, although DFT captures the nonmonotone
co-ion profile missed by PB. Instead, DFT yields more accurate pressure predictions than PB, showing in particular
that nonideal effects are important to describe highly confined ionic solutions. Finally, we present a numerical
methodology capable of handling nonconvex minimization problems so as to explore DFT predictions when the
reduced temperature falls below the critical temperature.
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I. INTRODUCTION

Charged solutes and charged interfaces are encountered in
numerous natural and technological contexts, largely due to the
ability of water to solvate ions and to screen their electrostatic
interactions by its high dielectric permittivity. In this paper we
are interested in the study at the nanometric scale of ionic so-
lutions interacting with (or confined by) solid objects carrying
a surface charge (clay rocks, colloids, DNA, or electrodes, to
name only a few examples). Multivalent ions and electrolytes
near such highly charged objects may depart significantly from
the ideal behavior of infinitely diluted solutions.

In bulk situations, the nonideal behavior of ionic solutions
arises mainly from two types of effects, which both play a
larger role as the ionic concentration increases: long-range
electrostatic interactions and short-range excluded volume
effects. By treating the former at the mean-field level and
ignoring the latter, the pioneering work of Debye and Hückel
(DH) [1] identified screening by counterions as a fundamental
mechanism for nonideality. The DH theory is valid at low
concentrations and high temperature. For more concentrated
solutions, further progress has been accomplished within
the framework of the primitive models of charged hard
spheres in a continuous solvent characterized by its dielectric
constant, whereby structural and thermodynamic properties
are predicted using integral equation theories, such as the mean
spherical approximation (MSA) [2–5]. Liquid-vapor transition
and criticality in bulk ionic solutions have been extensively
investigated over the past decades. The properties of the liquid-
vapor interface have been studied using a density-functional
theory (DFT) within the restricted primitive model (RPM)
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in which the ions are modeled as equisized spheres carrying
opposite charges [6]. Moreover, by combining Bjerrum’s ion
pairing concept [7] with the MSA or the DH theory through
the law of mass action, better descriptions of the critical
point and of the liquid-vapor coexistence curve have been
obtained [8–12].

In the case of confined ionic solutions, electrostatic inter-
actions also control the structure and the phase behavior of the
solution [13–15]. In some cases, such as clay minerals, cement,
ion exchange membranes, or lipid bilayers, the counterions
compensating the charge of the surface may even be the only
ions present in the confined fluid, resulting in a situation similar
to the one-component plasma (see [16] for a review and [17]
for a discussion closer to the present setting). The starting point
for the description of confined ionic solutions is the Poisson-
Boltzmann (PB) theory [18–20]. The PB theory ignores
correlations between ions, and no phase transition exists within
this approach, although quite high counterion densities can
be predicted near charged surfaces in some conditions (e.g.,
cylindrical geometry [21,22]). For highly charged surfaces or
multivalent ions, a large fraction of the counterions appears
condensed near the charged surface, as suggested by Stern to
generalize the Gouy-Chapman description of charged surfaces.
The remaining ions then feel a much weaker effective charge,
which can be described within the PB theory. Nevertheless, the
determination of the fraction of condensed ions and the corre-
sponding renormalized charge is not straightforward; results
in this direction can be found in [23]. Various approaches have
been proposed to incorporate correlations neglected in the PB
theory. In the particular case where counterions are the only
ions present, a perturbative correction to the PB theory has
been established [24]. Correlations for confined ions can also
be included in integral theories, e.g., within the anisotropic
hypernetted chain approximation [25,26]. Furthermore, the
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so-called “strong coupling” theory allows one to investigate
regimes where the interaction with the charged surface is
stronger than that between ions [27–31] and to explain the
origin of the attraction between like-charged surfaces observed
under certain conditions [30,32]. Another successful devel-
opment for the description of the inhomogeneous primitive
model is the use of DFT, which determines structural and
thermodynamic properties of an inhomogeneous fluid from
a Helmholtz free energy and its functional dependence on
the local ionic densities [33–40]. Finally, molecular dynamics
and Monte Carlo (MC) simulations have been used to study
the properties of bulk and confined electrolytes, described
either within the primitive model or with an explicit molecular
solvent, thus providing a more realistic description of these
complex systems [41–45].

This paper’s goal is to investigate numerically DFT
predictions of confined ionic solutions at the nanometric
scale by comparing ionic concentration profiles and pres-
sure predictions to those obtained with MC and with the
simpler PB approach for the double-layer configuration. We
focus here on canonical constraints on the ionic densities
fixing their mean value in the fluid domain while ensuring
global electroneutrality. In the present DFT, the Helmholtz
free energy of the system depends on the ionic densities
and splits into a bulk (ion-ion) and an ion-solid part. The
former incorporates the ideal and nonideal effects in the bulk
solution regardless of the presence of the charged solid object.
The latter is based on a mean-field approach, whereby the
electrostatic potential is evaluated consistently with the ionic
densities as the solution of a Poisson problem with Neumann
boundary condition accounting for the surface charges car-
ried by the solid object. Nonideal effects in the bulk free
energy account for correlations between ions, including both
long-range electrostatic and short-range steric contributions.
These correlations are evaluated with the MSA and the local
density approximation (LDA) [46]. In particular, the screening
length evaluated with the MSA depends on a nondimensional
parameter which can be interpreted as a reduced temperature.
To further understand the features of DFT-MSA predictions,
we perform additional simulations where we consider only
the long-ranged electrostatic contribution or the short-ranged
steric contribution to the bulk free energy, and we also develop
a robust numerical methodology to explore the situation where
the reduced temperature falls below the critical temperature
predicted by DFT-MSA, leading to phase separation.

The material is organized as follows. In Sec. II we present
the DFT-MSA considered herein. In Sec. III we outline the

numerical method for the constrained minimization within
DFT and the more direct molecular approach based on MC
simulations. In Sec. IV we compare and analyze predictions
obtained with DFT, MC, and PB. In Sec. V we present the
numerical methodology to treat phase separation within DFT,
and we discuss a few selected numerical results. Finally, in
Sec. VI we summarize our main findings and discuss further
work.

II. DFT FOR CONFINED IONIC SOLUTIONS

We consider ionic solutions in the presence of solid objects
carrying surface charges. Two typical settings are that of
an ionic solution confined by charged walls and that of an
ionic solution in a periodic setting with elementary cells
containing a charged inclusion, see Fig. 1. While most of our
results focus on the first setting, we briefly consider the more
complex geometric setting of charged inclusions to illustrate
the capabilities of the present numerical method. The length
scale associated with the confinement is denoted by L∗ and is
typically of the order of a nanometer. The domain occupied by
the ionic solution is denoted by �, and the domain occupied
by the solid object is denoted by �S. We assume that the
solid object carries negative charges with surface density −�S

(�S > 0) on its boundary ∂�S.
For simplicity we consider at most two dissolved ionic

species, a counterion (cation) and a co-ion (anion). Ions are
modeled within the primitive model as equisized spheres of
diameter σ . The valences of the ionic species are denoted
by Z±, and the case where Z+ + Z− = 0 is referred to
as symmetric electrolyte (corresponding to the RPM). The
ionic solution is described by the ionic (number) densities
ρ = (ρ+,ρ−) in the fluid domain �, while the solvent enters
the model only by means of its relative dielectric permittivity.
In what follows, we consider canonical constraints prescribing
the mean value of the ionic densities in the form

〈ρ±〉� = ρmean
± , (1)

where 〈·〉� denotes the mean value of a function in the fluid
domain �. The prescribed quantities ρmean

± must satisfy the
global electroneutrality condition

∑
i=±

Ziρ
mean
i = 1

e|�|
∫

∂�S

�S, (2)

where e is the elementary charge. A simple way of ensuring
the global electroneutrality condition (2) is to choose a density
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FIG. 1. Geometric setting: Elementary cell with charged inclusion (left) and channel with charged walls (right).
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of added salt ρsalt and to set

ρmean
+ = ρ

�S+ + ρsalt, ρmean
− = −(Z+/Z−)ρsalt, (3)

where ρ
�S+ = (Z+e|�|)−1

∫
∂�S

�S is the density of neutralizing
counterions. In the vanishing limit of added salt, ρsalt → 0, we
obtain an ionic solution with only compensating counterions.

The free energy functional of the ionic solution takes the
form

F(ρ) = Fbulk(ρ) + Fi-s(ρ). (4)

The bulk free energy functional Fbulk accounts for ideal
and nonideal ion-ion interactions, while the functional Fi-s

accounts for ion-solid interactions owing to the surface charges
carried by the solid object. The functionals Fbulk and Fi-s are
detailed in Secs. II A and II B, respectively.

A. Bulk free energy functional

Within the LDA, the bulk free energy is obtained by
integrating over the fluid domain � the bulk free energy density
f , so that

Fbulk(ρ) =
∫

�

f (ρ). (5)

The bulk free energy density splits into an ideal part fid and a
nonideal part fcorr in the form

f (ρ) = fid(ρ) +fcorr(ρ), fcorr(ρ) = fCoul(ρ) +fHS(ρ), (6)

where fcorr accounts for Coulomb electrostatic interactions
(through fCoul) and hard-sphere steric exclusion effects
(through fHS). The ideal part reads

fid(ρ) = 1

βσ 3

∑
i=±

ρ̂i[log(ρ̂i) − 1], (7)

with nondimensional ionic densities ρ̂± = σ 3ρ±, while β =
(kBT )−1 where kB is the Boltzmann constant and T is the
temperature. The Coulomb contribution is considered to be of
the MSA form [2–5]

fCoul(ρ) = − 1

4πβσ 3

[
ρ̂α − 4
MSA(ρ̂α)2 − 16

3

MSA(ρ̂α)3

]
,

(8)

with ρ̂α = (ρ̂+/α+) + (ρ̂−/α−) and the nondimensional pa-
rameters

α± = σ

4πLBZ2±
. (9)

Here LB stands for the Bjerrum length given by LB =
(4πε)−1βe2, with ε = ε0εr where ε0 is the vacuum dielectric
permittivity and εr is the solvent relative dielectric permittivity.
The parameters α± are related to nondimensional temperatures
T ∗

± such that

T ∗
± = 4πα± = kBT

σ (4πε)

Z2±e2
, (10)

while the inverse Debye length κ is such that

κσ = ρ̂1/2
α . (11)

The (nondimensional) screening parameter 
MSA is given by


MSA(ρ̂α) = 1
2

[(
2ρ̂1/2

α + 1
)1/2 − 1

]
. (12)

Moreover, the hard-sphere contribution, which hinges on the
Carnahan-Starling (CS) expression, is given by

fHS(ρ) =
{

− 6
πβσ 3

{
ξ (ρ̂tot)2(3ξ (ρ̂tot)−4)

[1−ξ (ρ̂tot)]2

}
, ξ (ρ̂tot) < 1,

+∞, ξ (ρ̂tot) � 1,
(13)

with reduced total ionic density ρ̂tot = ρ̂+ + ρ̂− and packing
number ξ (ρ̂tot) = 1

6πρ̂tot. In the dilute limit of low ionic
densities, the CS expression can the linearized in the form
(CS1)

fHS(ρ) = 1

βσ 3

24

π
ξ (ρ̂tot)

2. (14)

A simplification occurs for symmetric electrolytes, since,
in this case, α+ = α− = α and T ∗

+ = T ∗
− = T ∗. Moreover,

ρ̂α = α−1ρ̂tot. As a result, fcorr(ρ) only depends on ρ̂tot and
its properties can be described in terms of a single reduced
temperature T ∗.

B. Ion-solid free energy functional

The electrostatic interactions between ions and the solid
object (as those between ions) are treated at the mean-field
level. The electrostatic potential is computed consistently with
the ionic densities by solving a Poisson problem in the fluid
domain � with source term given by the charge density q(ρ) =∑

i=± Zieρi and a Neumann boundary condition accounting
for the surface charge carried by the solid object on ∂�S.
Specifically, the electrostatic potential ψ(ρ) solves

−ε�ψ(ρ) = q(ρ) in �,

−ε∇ψ(ρ) · n = �S on ∂�S, (15)

ψ(ρ) periodic on ∂� \ ∂�S, 〈ψ(ρ)〉� = 0,

where n denotes the unit outward normal to �. The global
electroneutrality condition (2) ensures that problem (15)
admits a solution, while the zero mean condition on ψ(ρ)
is just one possibility to fix the arbitrariness of ψ(ρ) up to an
additive constant. Finally, the functional Fi-s(ρ) is given by

Fi-s(ρ) = 1

2

[∫
�

q(ρ)ψ(ρ) −
∫

∂�S

�Sψ(ρ)

]
= ε

2

∫
�

|∇ψ(ρ)|2,

(16)

the second equality being a direct consequence of (15) and
integration by parts. Letting G�S denote the Green function
of (15) with Dirac function as source term in �, the boundary
conditions remaining unchanged, the electrostatic potential
can be rewritten as a convolution product in the form

ψ(ρ)(x) =
∫

�

G�S (x,y)q(ρ)(y) dy. (17)

III. NUMERICAL METHODS

This section briefly describes the two numerical methods
used in this work, namely the minimization of the free energy
described in Sec. II and a more direct molecular approach
based on MC simulations.
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A. Minimizing the free energy functional

Within the DFT, the equilibrium state of the ionic solution
is determined by the following constrained minimization
problem:

ρ minimizes F(ρ) defined by (4),
(18)

ρ satisfies the canonical constraint (1),

A (sufficient) well-posedness condition for (18) to have a
unique solution hinges on the strict convexity of the bulk
free energy density f with respect to the ionic densities. This
situation, which has been studied mathematically in [47] [using
the linearized hard-sphere term (14)], is encountered when the
reduced temperatures T ∗

± are high enough (typically, above the
critical temperature) so that the nonconvexity of the Coulomb
interaction term fCoul is compensated by the convexity of the
ideal and hard-sphere terms fid and fHS. For a symmetric
electrolyte where the function f is univariate, a study of the
convexity of this function shows that the critical temperature
and (total) density are T ∗

crit ≈ 0.0785 and ρ̂tot,crit ≈ 0.0145 (see
Fig. 7 below), in agreement with the result previously derived
in [6]. As is well known, the MSA overpredicts the critical
temperature, which is about T ∗

crit = 0.05 according to MC
simulations [48]. For nonsymmetric electrolytes, a study of
the convexity of the bulk free energy functional can be found
in [49].

The Euler-Lagrange equations associated with (18) are
formulated in mixed form by introducing as an additional
unknown the electrostatic potential ψ = ψ(ρ) solving (15).
The constraints to be taken into account are the canonical
constraint (1) on the ionic densities ρ and the fact that
ψ has zero mean value in �. In view of finite element
discretization, we write the Euler-Lagrange equations in
variational form using test functions. Thus, we seek ionic
densities ρ, electrostatic potential ψ , and real numbers λ and
μbulk

± such that∫
�

ε∇ψ · ∇ϕ + λ〈ϕ〉� =
∫

�

q(ρ)ϕ −
∫

∂�S

�Sϕ,

∫
�

μel
±(ρ,ψ)v± = μbulk

± |�|〈v〉�, (19)

r〈ψ〉� = 0, s±(〈ρη,±〉� − ρbulk
± ) = 0,

for all test functions ϕ and v± and for all real numbers r and
s±. The electrochemical potential μel

±(ρ,ψ) is such that

μel
±(ρ,ψ) = μ±(ρ) + Z±eψ, (20)

with chemical potential

μ±(ρ) = ∂ρ±f (ρ). (21)

The second equation in (19) expresses the fact that the
electrochemical potentials are constant in � (with constant
value equal to μbulk

± ).
The Euler-Lagrange equations (19) are discretized using

finite elements. The electrostatic potential and the ionic
densities are approximated using continuous, piecewise affine
functions over a mesh of the fluid domain �. This leads to
a (large) system of nonlinear algebraic equations which is
solved iteratively using a Newton-Raphson algorithm. Each

Newton-Raphson iteration consists in assembling a linear
system whose solution provides an update for the discrete
solution vector. By linearity, at each iteration, the electrostatic
potential is evaluated consistently with the ionic densities, and
the constraints on the mean value of both the electrostatic
potential and the ionic densities are satisfied. A clipping
is applied to the update vector resetting to the interval
[ε,6/π − ε] with small ε any ionic density that may have
fallen outside this interval during the convergence process,
while the ionic densities at the other mesh nodes are rescaled in
agreement with the canonical constraint (1). The convergence
of the Newton-Raphson algorithm is monitored by checking
the Euclidean norm of the discrete residual vector and that of
the update vector at each iteration. Typically, convergence is
achieved after 15 to 20 iterations, and the clipping is usually
needed only at (very) few iterations. More details on the
algorithmic aspects can be found in [50].

B. Monte Carlo simulations

Monte Carlo simulations are performed in the canonical
ensemble to determine the equilibrium distribution of the di-
and trivalent ions confined between two charged planes. In
each case, the simulation cell is maintained electrically neutral,
a condition necessary to reach the thermodynamic limit, i.e.,
to obtain results independent of the size of the simulation cell.
The limiting charged lamellae are structureless and infinite,
with a uniform surface charge density. In the framework of the
primitive model, ion-ion and ion-lamella interactions include
short-ranged contact repulsion and long-ranged Coulomb
potential. The solvent is replaced by a continuum characterized
by its relative dielectric permittivity εr, equal to the relative
lamellar dielectric permittivity.

The simulation cell is an asymmetric slit pore, limited in the
longitudinal direction by the charged lamellae, while periodic
boundary conditions are applied in the lateral direction.
Since two-dimensional (2D) minimum image convention is
applied in the transverse directions, the ion-ion, ion-lamella,
and lamella-lamella electrostatic interactions are cut at the
half-width of the simulation cell. In order to reproduce the
long range of the Coulomb potential, an external potential is
introduced in a self-consistent manner [51–53]. This external
electrostatic potential is generated by a supplementary set of
infinite planes parallel to the two confining charged lamellae.
The uniform surface charge density of these supplementary
lamellae is evaluated in a self-consistent manner from the
ionic local densities in the simulation cell. A square hole,
corresponding to the lateral section of the simulation cell,
is cut within each supplementary lamella to remove the
contribution from the simulation cell. The convergence of
that approximation is carefully checked by doubling the
lateral extent of the simulation cell [53]. In the present case,

lateral extents of 200 and 400
◦
A are used successfully for

charged interfaces neutralized by divalent and trivalent ions,
respectively. Furthermore, three independent and consecutive
sets of, at least, 5×108 iterations are performed in order to
ensure the convergence of the self-consistent procedure. This
method has been applied in the literature to investigate the
stability of a large class of charged interfaces [54–56].

To evaluate the pressure, we proceed as follows. Af-
ter thermalization of the ionic concentration profiles, the
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longitudinal component of the pressure tensor is evaluated
locally at half separation between the charged limiting sur-
faces. Such a procedure is valid since, at equilibrium, the
longitudinal component of the pressure is constant along the
whole interfacial system. In addition to the repulsive entropic
contribution evaluated from the local densities of the confined
ions, the primitive model includes two additional contributions
resulting from the long-range electrostatic couplings and the
short-range ion-ion steric repulsions. These two additional
contributions result from the ionic correlations leading respec-
tively to antagonistic contributions, i.e., a net attraction for the
electrostatic coupling and, obviously, a net repulsion for the
ion-ion contact forces. These two components are evaluated
by summing the longitudinal component of the net forces
transmitted across a fictitious plane surface [55,56].

IV. RESULTS AND DISCUSSION

In this section we investigate the predictions of DFT-
MSA for the ionic density profiles and the pressure, under

severe confinement conditions. The results are compared to
the reference Monte Carlo (MC) simulations, as well as to
the simpler Poisson-Boltzmann (PB) model. In what follows,
we consider a confining distance L∗ = 1 nm (determining the
accessible volume) and discuss the influence of the surface
charge density �S, the ion diameter σ , and salt concentration
ρsalt on the ionic profiles and the pressure. We also consider
the effect of the relative permittivity εr and of the valences
Z± for a symmetric electrolyte. In all cases, the reduced
temperature T ∗ defined by (10) is in the range [0.08,0.16],
i.e., above the critical point (but not too far from it). In order to
understand the origin of the features observed with DFT-MSA,
we finally consider separately the effects of the hard sphere
and electrostatic correlation contributions to the functional.

A. Divalent ions: Density profiles

We first examine ionic density profiles for divalent ions
(Z± = ±2), for fixed relative permittivity εr = 78.5 and salt
concentration ρsalt = 0.5 mol L−1. Figure 2(a) reports the

(a) (b)

(c) (d)

FIG. 2. (Color online) Density profiles for divalent ions (Z± = ±2), relative permittivity εr = 78.5, and salt concentration ρsalt =
0.5 mol L−1. (a) Surface charge density �S = 0.2 C m−2 and ion diameter σ = 2.55

◦
A (T ∗ = 0.09). (b) �S = 0.6 C m−2 and σ = 2.55

◦
A

(T ∗ = 0.09). (c) �S = 0.2 C m−2 and σ = 4.54
◦
A (T ∗ = 0.16). (d) �S = 0.2 C m−2 and σ = 2.27

◦
A (T ∗ = 0.08). Solid lines and + indicate

counterion profiles, while dashed lines and × correspond to co-ions. DFT-MSA (blue) is compared to Poisson-Boltzmann (black) and Monte
Carlo (symbols) results.
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counter- and co-ions density profiles for a surface charge

density �S = 0.2 C m−2 and ion diameter σ = 2.55
◦
A

(T ∗ = 0.09). For both profiles, the MC results are better
described by PB than by DFT-MSA, in particular near the
charged surface where DFT-MSA overestimates the densities.
However, the co-ion density is nonmonotonous and displays
a secondary minimum at the center of the pore. This feature
is not reproduced by PB, while DFT-MSA is able to do so.
The position of the maximum is nevertheless too close to the
surface.

Increasing the surface charge density to �S = 0.6 C m−2, as
shown in Fig. 2(b), we find that DFT-MSA now underestimates
the counterion density at contact. However, DFT-MSA still
predicts the observed nonmonotonous co-ion profile missed
by PB. Comparing the MC co-ion concentration profiles
between Figs. 2(a) and 2(b), we observe that the position
of the maximum slightly changes, while the peak is more
pronounced; the density near the surface and in the center of
the pore are reduced accordingly. With DFT-MSA, the position
of the peak shifts away from the surface, thereby approaching
the MC results. The overestimation of the co-ion density near
the surface has now disappeared, and the DFT-MSA prediction
is now in closer agreement with the MC results, while a sizable
difference remains at the center of the pore.

We now consider, for �S = 0.2 C m−2, an increase in the ion
diameter to σ = 4.54

◦
A (T ∗ = 0.16), as shown in Fig. 2(c).

While the counterion profile is still better described by PB,
DFT-MSA slightly better reproduces the co-ion density. In this
regime, the profile increases monotonically from the surface
to the center. Compared to PB, DFT-MSA predicts a lower
density near the surface and a slightly higher density near
the center, i.e., moving in the direction of the MC results.
Finally, Fig. 2(d) reports the results for the same surface charge

density and σ = 2.27
◦
A (T ∗ = 0.08). In this case, the failure

of DFT-MSA is dramatic, with a large density of both counter-
and co-ions near the surface and accordingly low densities
near the center. This behavior is likely due to an incipient

phase transition as we approach the critical point. This aspect
is further examined in Sec. V.

B. Divalent ions: Pressure

We now turn to the study of the pressure. The pressure from
MC calculations is evaluated as described in Sec. III B. The
pressure from DFT-MSA and PB calculations is evaluated at
the center of the pore using the Gibbs-Duhem rules

p(ρ) = ρ+μ+(ρ) + ρ−μ−(ρ) − f (ρ). (22)

For completeness we also evaluate the pressure in the bulk
reservoir in thermodynamic equilibrium with the confined
system by evaluating the bulk concentration corresponding
to a system at the same chemical potentials μbulk

± . As the ionic
densities in the bulk have to be equal, we introduce a shift ζ

(consistently with our approach for the confined system where
we have fixed the mean of the electrostatic potential arbitrarily
to 0), so that the two equations satisfied by the densities in the
bulk are

μ±(ρbulk) + Z±ζ = μbulk
± . (23)

These equations can be solved by a Newton-Raphson algo-
rithm for each value of the shift parameter ζ , and the actual
value of this parameter, which is such that the solution to (23)
verifies ρbulk

+ = ρbulk
− , is found by dichotomy.

Starting from the same system as in Fig. 2(a), namely
Z± = ±2, εr = 78.5, ρsalt = 0.5 mol L−1, �S = 0.2 C m−2,

and σ = 2.55
◦
A (T ∗ = 0.09), we change T ∗ by increasing σ

up to 4.54
◦
A (T ∗ = 0.16). Results are reported in Fig. 3(a). MC

simulations indicate that the pressure increases quadratically
with T ∗. PB does not capture the evolution with respect to
the ion diameter and overestimates the pressure in this range.
In contrast, DFT-MSA accurately describes the change in
pressure with T ∗ even though its predictions are shifted (by
an almost constant value in this range) from the MC results.
The PB and DFT-MSA pressures for bulk electrolytes in

(a) (b)

FIG. 3. (Color online) Pressure for divalent ions (Z± = ±2), relative permittivity εr = 78.5, and salt concentration ρsalt = 0.5 mol L−1, as
a function of reduced temperature T ∗ changed by increasing the ion diameter σ from left to right, for a surface charge density �S = 0.2 (a)
and 0.4 C m−2 (b). DFT-MSA (blue) is compared to Poisson-Boltzmann (black) and Monte Carlo (symbols) results. Dashed lines indicate the
DFT-MSA and PB results in the bulk in thermodynamic equilibrium with the system.

062302-6



NUMERICAL STUDY OF DENSITY FUNCTIONAL THEORY . . . PHYSICAL REVIEW E 89, 062302 (2014)

(a) (b)

FIG. 4. (Color online) Pressure for divalent ions (Z± = ±2), surface charge density �S = 0.2 C m−2, and ion diameter σ = 2.27
◦
A, as a

function of reduced temperature T ∗ changed by increasing the relative permittivity εr from left to right, for salt concentration ρsalt = 0.5 (a)
and 0 mol L−1 (b). DFT-MSA (blue) is compared to Poisson-Boltzmann (black) and Monte Carlo (symbols) results. Dashed lines indicate the
DFT-MSA and PB results in the bulk in thermodynamic equilibrium with the system.

thermodynamic equilibrium with the confined system are also
displayed and found to be almost identical to the pressures
under confinement. The effect of the surface charge density
can be seen in Fig. 3(b). Increasing �S to 0.4 C m−2, we
observe that the MC pressure decreases at low T ∗, down to
negative values for T ∗ � 0.11, and increases for the largest
values of T ∗. While the constant PB result increases with �S,
DFT-MSA better reproduces the quadratic variation predicted
by MC simulations.

In Fig. 4, T ∗ is changed by increasing the relative permittiv-
ity εr for a fixed ion diameter σ . The pressure increases almost
linearly with T ∗. The PB pressure now also increases, but
with too small a slope and starting from a much larger value.
Instead, DFT-MSA is almost in quantitative agreement with
MC for a salt concentration ρsalt = 0.5 mol L−1. Here again,

the pressure in the confined system is almost identical to that in
the bulk reservoir with which it is in equilibrium. In the absence
of salt, the pressure decreases for MC, DFT-MSA, and PB. MC
simulations indicate that it even becomes negative for T ∗ �
0.11, a feature that is not reproduced by either PB or DFT-
MSA. The deviations of DFT-MSA from MC results are much
larger than in the presence of salt, but decrease as T ∗ increases.

C. Trivalent ions

We consider now trivalent ions (Z± = ±3) at the same
ionic strength as for the above divalent ions, leading to a salt
concentration ρsalt = 0.2222 mol L−1, in a solvent with relative

permittivity εr = 78.5 and ion diameter σ = 5.1
◦
A [T ∗ ≈ 0.08

(slightly) above the critical point]. The surface charge density

(a) (b)

FIG. 5. (Color online) Trivalent ions (Z± = ±3) with ion diameter σ = 5.1
◦
A, salt concentration ρsalt = 0.2222 mol L−1, and surface

charge density �S = 0.2 C m−2. (a) Ionic density profiles for a relative permittivity εr = 78.5 (T ∗ ≈ 0.08); see Fig. 2 for legends. (b) Pressure
as a function of reduced temperature T ∗ changed by increasing the relative permittivity εr from left to right; see Fig. 3 for legends.
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is �S = 0.2 C m−2. The ionic density profiles are reported in
Fig. 5(a). The MC results are qualitatively similar to the ones
for divalent ions in this regime [see Fig. 2(c)]. The predictions
of DFT-MSA are worse than those of PB for both counter- and
co-ions, except for the stronger exclusion of co-ions very close
to the surface. The pressure, reported in Fig. 5(b) as a function
of T ∗ (changed by increasing εr), behaves as in the divalent
case. Despite its poorer prediction of the ionic profiles, DFT-
MSA reproduces much better than PB the pressure predicted
by MC.

D. Hard sphere and electrostatic contributions

We finally investigate the origin of the features observed
on the ionic density profiles within DFT-MSA. Compared to
PB, the MSA free energy functional includes two additional
contributions: the hard sphere (hs) volume exclusion term
defined in (8) and the electrostatic correlation (el) term defined
in (13). In order to assess their effects on the full MSA
solution, we consider two additional cases, where we include
only one or the other term in the functional. Results for
counter- and co-ions are reported in Figs. 6(a) and 6(b), respec-
tively, for divalent ions (Z± = ±2), �S = 0.2 C m−2, ρsalt =
0.5 mol L−1, σ = 2.55

◦
A, and εr = 78.5 (T ∗ = 0.09), i.e., the

same situation as Fig. 2(a).
Adding only the hard sphere term to PB has almost no

effect on the co-ions, but slightly decreases the counterion
concentration near the surface, as expected, thereby providing
a better agreement with the MC results. On the contrary,
adding only the electrostatic correlations (at the MSA level)
results under the present conditions in a wild overestimate of
both densities near the surface. In the absence of hard core
repulsion, the chosen T ∗ probably corresponds in the bulk
to a phase coexistence, and the separation between a high
density (close to the surface) and a low density (near the center)
region is reminiscent of this transition. Even though this pure

electrostatic correction is not relevant to the description of the
real system, it suggests that the full DFT-MSA overestimate of
the counterion density near the surface can be traced back to
this contribution. In addition, these electrostatic correlations
are at the origin of the nonmonotonous behavior of the
co-ion density (when it occurs). Finally, since the hard sphere
contribution can only increase the pressure, the electrostatic
correlation term is responsible for the smaller pressure with
DFT-MSA than with PB, resulting in the better agreement with
MC results.

V. PHASE SEPARATION WITHIN DFT-MSA

This section briefly examines the present DFT-MSA when
the bulk free energy density is no longer convex with respect
to the ionic densities. We recall that in the case of bulk
ionic solutions, this regime leads to liquid-vapor transition.
We emphasize that the present DFT-MSA results substantially
differ from MC predictions.

A. The constrained minimization problem

In confined ionic solutions, the presence of the charged
solid object induces gradients in the ionic densities and,
thereby, departures from local electroneutrality condition∑

i=± Zieρi = 0. As a result, the whole state space K := {ρ ∈
R2; ρ± � 0; ξ (ρ̂) < 1} can potentially be explored by the ionic
densities at different points in �. Letting f ∗∗ be the convex
hull of f , we introduce the subset

K∗∗ = {ρ ∈ K; f (ρ) = f ∗∗(ρ)}, (24)

and we supplement the constrained minimization problem (18)
with the additional constraint that, everywhere in �, the
ionic densities take values in the subset K∗∗. This constraint
hinges on the assumption that the bulk system should be
thermodynamically stable regardless of confinement; this is

(a) (b)

FIG. 6. (Color online) Counterion (a) and co-ion (b) density profiles for divalent ions (Z± = ±2), surface charge density �S = 0.2 C m−2,

salt concentration ρsalt = 0.5 mol L−1, ion diameter σ = 2.55
◦
A, and relative permittivity εr = 78.5 (T ∗ = 0.09). Monte Carlo results (red ×)

are compared to PB (dotted black line), full DFT-MSA (solid blue line), and DFT with only the hard-sphere contribution (hs, black dashed
line).
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why the convexification is performed only on the bulk part
of the free energy functional. The constrained minimization
problem can be stated as follows:

ρ minimizes F(ρ) defined by (4),

ρ satisfies the canonical constraint (1), (25)

for all x ∈ �,ρ(x) takes values in K∗∗ defined by (24).

The mathematical analysis of (25) goes beyond the present
scope. There is an extensive mathematical (and numerical) bib-
liography on phase separation in other settings than confined
electrolytes. In general, the functional used in such phase-field
theory is a double-well potential inducing a partition of the
state space into two phases. Most of the studies have been
performed in bulk situations where the state variable (here
the ionic densities) is constant in each phase. The key idea
is to regularize the problem by minimizing a regularized
functional where a least-squares penalty on the gradient of
the state variable is added to the double-well potential. For
the mathematical analysis showing that the limit minimization
problem as the regularization parameter tends to zero involves
the convex hull of the double-well potential and that this limit
represents a choice criterion among minimizers of the original
nonconvex variational problem so as to minimize interfaces
by sampling states where the potential and its convex hull
coincide, we refer, e.g., to the seminal work in [57]; further
references and links to 
 convergence can be found in [58].
The situation where the double-well potential is perturbed
by, e.g., a nonlocal operator is more delicate to analyze; we
mention [59,60], and, more recently, [61] where a nonlocal
operator accounting for Coulomb interaction is added.

In the case of symmetric electrolytes, it is possible to
approximate with very good accuracy the subset K∗∗. To
this purpose we write f (ρ) = fid(ρ) + fcorr(ρtot) exploiting
the fact that fcorr only depends on ρtot. Rearranging the ideal
part leads to f (ρ) = ftot(ρtot) + frel(ρ), where

ftot(ρtot) = 1

βσ 3
ρ̂tot[log(ρ̂tot) − 1] + fcorr(ρtot) (26)

and

frel(ρ) = 1

βσ 3

∑
i=±

ρ̂i log

(
ρ̂i

ρ̂tot

)
. (27)

The bivariate function frel is convex in the ionic densities,
and the subset K∗∗ is approximated by studying the convexity
properties of the univariate function ftot (i.e., we assume that
f ∗∗ ∼ frel + f ∗∗

tot ).
The convexity properties of ftot are deduced from the

phase diagram of Fig. 7: For a given reduced temperature
T ∗ below the critical temperature T ∗

crit, the binodal points
of ftot, denoted by ρ̂

�
tot and ρ̂

�
tot, are determined from the

liquid-vapor coexistence curves of Fig. 7. The approximate
subsetK∗∗ of the two-dimensional phase space then consists of
two connected components (associated with the dilute and con-
densed phases) separated by the stripe {ρ̂�

tot � ρ̂+ + ρ̂− � ρ̂
�
tot}

whose boundary are two parallel lines in the (ρ+,ρ−) plane. A
comparison with the exact subset K∗∗ determined numerically
by computing the double Legendre-Fenchel transform of
f (see [49]) shows relative differences in predicted ionic

0.04

0.05

0.06

0.07

0.08

T ∗

0.0 0.1 0.2 0.3
ρ̂tot

FIG. 7. Phase diagram for a bulk symmetric electrolyte. For each
T ∗ below the critical temperature, the curves provide the two binodal
values for the reduced total density.

densities below 10−4 away from the interface and 10−2 near
the interface.

B. Numerical method

Assuming (25) to be well-posed, we devise a numerical
method to approximate its solution. Following the above
discussion, we introduce the following regularization of the
free energy functional:

Fη(ρ) = F(ρ) + η2L5
∗

β

∑
i=±

∫
�

1

2
|∇ρi |2, (28)

with nondimensional regularization parameter η > 0. The
constrained minimization problem (25) is then replaced by
seeking ionic densities ρη such that

ρη minimizes Fη(ρη) defined by (28),

ρη satisfies the canonical constraint (1). (29)

This problem is solved numerically using the techniques out-
lined in Sec. III A, where, in the Newton-Raphson iterations,
the chemical potentials are evaluated using the convex hull f ∗∗
of the bulk free energy density.

We assume that, similarly to the simpler setting analyzed
in [58], the singularly perturbed limit η → 0+ represents a
choice criterion between all minimizers of the nonconvex
minimization problem (18) by sampling thermodynamically
stable states where f and f ∗∗ coincide. Solving (29) with a
fixed positive value of the regularization parameter η typically
leads to a diffuse interface between the two phases, that is, the
set I := {x ∈ �; ρ(x) �∈ K∗∗} has positive measure. The sharp
interface approximation η → 0+ leads to two distinct phases
occupying the whole fluid domain �, while the measure of
I tends to zero. The quantity η plays herein the role of a
numerical parameter; from a physical viewpoint, a diffuse
interface with a fixed value of η can be more appropriate.
We refer to [50] for further insight concerning the numerical
methodology.

C. Results and discussion

Figure 8 presents concentration profiles of counterions
and co-ions as a function of the distance to the wall in
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(a) (b)

FIG. 8. (Color online) Concentration of counterions (black) and co-ions (blue) as a function of the distance to the wall for the double-layer

configuration (L∗ = 1 nm) with �S = 0.2, 0.4, and 0.6 C m−2; (a) divalent electrolyte with ρsalt = 0.5 mol L−1 and σ = 2.27
◦
A (T ∗ = 0.0775)

and (b) trivalent electrolyte with ρsalt = 0.2222 mol L−1 and σ = 4.5
◦
A (T ∗ = 0.0705).

the double-layer configuration (L∗ = 1 nm). We consider
a symmetric divalent (left panel) or trivalent (right panel)
electrolyte with �S = 0.2, 0.4, and 0.6 C m−2, ρsalt =
0.5 mol L−1, and σ = 2.27

◦
A (T ∗ = 0.0775). We observe

that a single phase-transition occurs within the pore, and that
the position of the interface shifts toward the center as the
surface charge density is increased. In all cases, the condensed
phase contains most of the counterions and co-ions. In the
divalent case with moderate ion diameter, the co-ion profile
is nonmonotone in the condensed phase, a feature that almost
disappears in the trivalent case with large diameter. Figure 9
presents the cloud of points (ρ+,ρ−) in the state space for
the same parameters as in Fig. 8(a). Each point corresponds
to the value obtained at a node of the finite element mesh.
For fixed �S, moving from right to left along a set of points
corresponds to moving away from the charged wall. The two
parallel oblique lines indicate the boundary of the subset K∗∗
in which the ionic densities are sought. We notice that the

FIG. 9. Double-layer configuration (L∗ = 1 nm) for a symmetric
divalent electrolyte with �S = 0.2 and 0.6 C m−2, and ρsalt =
0.5 mol L−1. Each point corresponds to ionic densities obtained at
a certain node of the finite element mesh. The two parallel oblique
lines indicate the boundary of the subset K∗∗.

constraint that the ionic densities take values in the subset K∗∗
is very well satisfied by the present numerical method, up to
very few mesh nodes (less than 0.1%).

Finally, to illustrate the capabilities of the numerical
method to handle more complex geometries, Fig. 10 presents
isocontours of counterion and co-ion concentrations for the
configuration with circular inclusions with L∗ = 1 nm, �S =
0.2 C m−2, and ρsalt = 0.5 mol L−1. We observe again the
formation of a single interface whose shape closely follows
that of the circular inclusion, and that the condensed phase
contains most of the counterions and co-ions.

VI. CONCLUSIONS

The main findings of the present study can be summarized
as follows. Ionic concentration profiles are generally better de-
scribed by PB than by DFT-MSA under the conditions investi-
gated here, namely multivalent ions under strong confinement,
although DFT-MSA is able to capture the nonmonotonicity
of co-ion profiles missed by PB. The relatively accurate
predictions obtained with PB in some situations can be partly
attributed to the presence of added salt which tempers the

FIG. 10. Circular inclusion within symmetric divalent electrolyte
for L∗ = 1 nm, �S = 0.2 C m−2, and ρsalt = 0.5 mol L−1; con-
centration isocontours for (a) counterions (values between 0.27 and
25.3 mol L−1) and (b) co-ions (values between 0.09 and 1.82 mol L−1).
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effects of the confining double layer. Furthermore, the failure
of DFT-MSA for the lowest reduced temperatures considered
herein is related to an incipient phase separation predicted
by DFT-MSA at too high a critical temperature in the bulk.
The conclusions regarding the pressure are quite different.
Pressure predictions with DFT-MSA are more accurate than
with PB, since DFT-MSA reproduces pressure variations
with the reduced temperature and, at the same time, yields
values closer to those predicted by MC. These results con-
firm that nonideal effects are important to describe highly
confined ionic solutions in thermodynamic equilibrium with a
reservoir.

More elaborate models for nonideality can be incorporated
into the present DFT in future work. Improved free energy
functionals can be handled within the present numerical
methodology if they are known in closed analytic form or in
tabulated form on a sufficiently fine set of values for the ionic
densities allowing for reasonably accurate data interpolation.
These can include improvements in the description of electro-
static correlations near the critical point, of excluded volume
effects near the solid surface (which can lead to attraction
between like-charged surfaces), and of ion-solvent interactions
especially for multivalent ions and very small confinements.
In isotropic media, accounting for Bjerrum’s ion pairing
improves the description of the coexistence curve and the value
of the critical point. To better describe the strong electrostatic
interactions between the ions and charged surfaces at low
temperature, a formulation of the strong coupling theory has
been obtained from the Wigner crystal [31]. An interpolation

at short distance between the strong coupling and Poisson-
Boltzmann theories should provide a better account of the
correlations in the condensed ion profiles. Another interesting
approach is to resort to a weighted density approximation
(WDA) instead of the LDA, whereby a coarse-grained density
obtained by convolution of the local density is used in the free
energy, see, e.g., [40].

The present methodology, which is applicable to multidi-
mensional geometries, can be of interest to study counterion
condensation in confined ionic solutions in other applicative
settings. As natural extensions of this work, one could now
include the effect of nonideality in multiscale approaches
which currently use the PB theory as a starting point [62–65].
Ionic fluids in the presence of random confinement can also
be studied by sampling realizations of the geometric configu-
ration of the nanopores and the results compared to previous
work, e.g., [66]. Another important issue is that of dynamical
properties, in particular the coupling of ion dynamics with fluid
flows resulting in electrokinetic effects [67]. The present DFT
formulation can be used to include nonideality in numerical
approaches which couple hydrodynamic flows to ionic fluxes
via time-dependent DFT [68].
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