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BRIDGING THE HYBRID HIGH-ORDER AND HYBRIDIZABLE
DISCONTINUOUS GALERKIN METHODS
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Abstract. We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous
Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the
construction of HHO methods and derive some new variants. Then, by casting the HHO method in
mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods.
In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices
of the local spaces and a new, subtle construction of the numerical flux ensuring optimal orders of
convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments
comparing two of these methods are shown.
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1. Introduction

The Hybrid High-Order (HHO) method has been recently introduced in [16] in the context of quasi-
incompressible linear elasticity. We consider here its application (studied in [17, 18]) to the numerical approxi-
mation of the model problem: find u P H1

0 pΩq such thatż
Ω

κ∇u¨∇v “
ż
Ω

fv @v P H1
0 pΩq, (1.1)

where Ω Ă R
d is a bounded, connected polyhedral domain and κ a bounded, symmetric, uniformly positive-

definite matrix-valued function. We assume, additionally, that κ is piecewise Lipschitz on a partition PΩ of Ω
into polyhedra. An extension to more general singularly-perturbed advection-diffusion problems can be found
in [13].

The HHO method supports general polyhedral meshes and delivers an arbitrary-order accurate approximation
using face-based discrete unknowns that are polynomials of degree at most k on each face. The method encom-
passes the case k “ 0, for which connections exist with the Hybrid Finite Volume method of [23] (see also [21]),
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the Compatible Discrete Operator framework of [4], and the Mimetic Finite Difference methods of [5,6,27]; cf.
also the recent monograph [3]. The HHO method is derived in terms of a primal formulation, and is designed
from two key ingredients:

(i) a potential reconstruction in each mesh cell and
(ii) a face-based stabilization consistent with the high-order provided by the reconstruction.

The design relies on intermediate cell-based discrete unknowns in addition to the face-based ones (hence, the term
hybrid). The cell-based unknowns can be eliminated by static condensation, as already pointed out in [16, 18]
(without giving details). In this work, we derive some new variants of the HHO method resulting from the choice
of cell-based unknowns, allowing us to draw some connections with the recently derived High-Order Mimetic
(HOM) method introduced in [30] for general κ and analyzed for κ “ Id in [2]. We also describe in more details
the static condensation since this operation is particularly important in practice.

Our second important task is to recast the HHO method into an equivalent mixed formulation. This allows us
to identify the corresponding conservative numerical flux and compare to Hybridizable Discontinuous Galerkin
(HDG) methods within the general framework introduced in [9]. Our approach in identifying the flux is different
from the one proposed in [15], where local conservativity was obtained for the HHO method by means of auxiliary
local Neumann problems. The HDG methods were originally devised as discrete versions of a characterization
of the exact solution in terms of solutions of local problems globally matched through transmission conditions.
Following ideas from [12] in the framework of the Stokes equations, we show how the approximate solution
provided by the HHO method can also be characterized as the solution of local problems which are then
matched by a single global equation. We then provide an interpretation of such equation as a discrete version
of a transmission condition. This allows us to uncover the numerical trace of the flux for the HHO method and
then fit the HHO method in the HDG framework. We show that both the local spaces and numerical trace
of the flux are novel, distinctive choices which enrich the family of HDG methods. In particular, the spaces
for the flux are much smaller than the ones previously known, and the stabilization function displays a rich
structure that allows for optimal convergence of both the potential u and its flux q :“ ´κ∇u on quite general
meshes composed of polyhedral cells. We then use the HDG framework to compare several methods including
the LDG-H methods [9] (a subclass of the DG methods proposed in [7]), the HDG methods introduced in [29]
and analyzed in [31], and some new methods. We end by comparing the actual performance of a couple of these
methods.

The organization of the paper is as follows. In Section 2, we recall the definition of the HHO method, its main
convergence properties, and present in more details the static condensation procedure. We also present some
new variants of the HHO method resulting from the choice of cell-based unknowns. In Section 3, we rewrite
the method in the numerical-trace formulation. In Section 4, we use this rewriting to compare it to other HDG
methods theoretically as well as numerically. We end in Section 5 with some concluding remarks.

2. The hybrid high-order method

In this section, we recall the definition of the HHO method and its convergence properties. The exposition
introduces a generalization of the original method proposed in [16, 18] which allows us to cover two variants
corresponding to different choices of the intermediate cell-based unknowns.

2.1. Notation

Denote by H Ă R
`
˚ a countable set of meshsizes having 0 as its unique accumulation point. Following ([14],

Chap. 4), we consider h-refined mesh sequences pThqhPH where, for all h P H, Th is a finite collection of nonempty
disjoint open polyhedral elements T of boundary BT composed of planar faces, such that Ω “

Ť
T PTh

T and
h “ maxT PTh

hT with hT standing for the diameter of the element T .
A face F is defined as a hyperplanar closed connected subset of Ω with positive pd´1q-dimensional Hausdorff

measure and such that (i) either there exist T1, T2 P Th such that F Ă BT1 X BT2 and F is called an interface
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or (ii) there exists T P Th such that F Ă BT X BΩ and F is called a boundary face. Interfaces are collected in
the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of a face F P Fh is denoted by hF .

For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces Ă BT and, for all F P FT , nTF is the unit
normal to F pointing out of T . We also define the piecewise constant vector-valued field nT on BT such that
nT |F “ nTF for all F P FT .

We assume that, for all h P H, Th admits a matching simplicial submesh Th such that any cell and any face
in Th belongs to only one cell and face of Th, respectively, and there exists a real number � ą 0 independent of
h such that (i) for all simplex S P Th of diameter hS and inradius rS , �hS ď rS and (ii) for all element T P Th,
and all simplex S P Th such that S Ă T , �hT ď hS. These assumptions allow one to derive local trace and
inverse inequalities (cf., e.g., [14], Chap. 1) as well as optimal polynomial approximation properties [22]. We
emphasize that the simplicial submesh is a theoretical tool which is not used in the constructions underlying
both HHO and HDG methods. Additionally, we suppose that, for all h P H, Th is compatible with κ, meaning
that, for all T P Th, there exists a unique subdomain Ωi in PΩ containing T . As a result, jumps of κ can occur
at interfaces but not inside elements.

Let l ě 0. For all T P Th, P
l
dpT q is composed of the d-variate polynomial functions of degree ď l restricted to

T , while, for all F P Fh, P
l
d´1pF q is composed of the pd´1q-variate polynomial functions of degree ď l restricted

to F . For all T P Th, we denote by πl
T the L2-orthogonal projector onto P

l
dpT q.

In what follows, we often abbreviate a À b the inequality a ď Cb for positive real numbers a and b and a
generic constant C which can depend on �, d, κ and the considered polynomial degree, but is independent of h.

For a subset X Ă Ω, we denote by p¨, ¨qX and }¨}X the usual L2pXq-inner product and norm, with the
convention that we omit the index if X “ Ω. The same notation is used for the vector space L2pXqd.

2.2. Local construction

Let two integers k ě 0 and l P tk ´ 1, k, k ` 1u be fixed; in the case k “ 0, we only consider for simplicity
that l P tk, k` 1u and refer to Remark 2.1 for the modifications required when k “ 0 and l “ k´ 1. The choice
l “ k corresponds to the original HHO method introduced in [16], whereas the choice l “ k´ 1 essentially leads
(up to an equivalent choice of the stabilization) to the HOM method introduced in [30], see Section 2.4 below.
The choice l “ k ` 1 yields, in turn, a novel method (see also Rem. 2.2 below). For all T P Th, we define the
local space of discrete potential unknowns as follows:

Uk,l
T :“ Ul

T ˆ Uk
BT , Ul

T :“ P
l
dpT q, Uk

BT :“
ą

F PFT

P
k
d´1pF q. (2.1)

Elements of the local space Uk,l
T are underlined, and a generic element of Uk,l

T is denoted by vT “
`
vT , pvF qF PFT

˘
or, in more compact form, as vT “ pvT , vBT q, where vBT is the piecewise polynomial function such that vBT |F “ vF

for all F P FT . We can define a higher-order potential reconstruction operator pk`1
T : Uk,l

T Ñ P
k`1
d pT q as follows:

for a given vT P Uk,l
T , pk`1

T vT solves the Neumann problem`
κ ∇pk`1

T vT ,∇w
˘

T
“ pκ∇vT ,∇wqT ` pvBT ´ vT ,κ∇w¨nT qBT @w P P

k`1
d pT q, (2.2)

with closure condition given by ppk`1
T vT , 1qT “ pvT , 1qT . We next introduce the local bilinear form aT : Uk,l

T ˆ
Uk,l

T Ñ R such that
aT pwT , vT q :“

`
κ∇pk`1

T wT ,∇pk`1
T vT

˘
T

` sT pwT , vT q, (2.3)

where the stabilizing bilinear form sT : Uk,l
T ˆ Uk,l

T Ñ R is such that

sT pwT , vT q :“ pτBTπ
k
BT pP k`1,l

T wT ´ wBT q, πk
BT pP k`1,l

T vT ´ vBT qqBT , (2.4)
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where τBT is a piecewise constant function on BT such that τBT |F “ κTF

hF
for all F P FT with κTF “ nF ¨κ|T ¨nF ,

πk
BT is the L2-orthogonal projector on Uk

BT , and P k`1,l
T : Uk,l

T Ñ P
k`1
d pT q is obtained adding to the function vT

a high-order correction inferred from pk`1
T :

P k`1,l
T vT :“ vT ` ppk`1

T vT ´ πl
T p

k`1
T vT q. (2.5)

Let Ik,l
T : H1pT q Ñ Uk,l

T be the reduction map such that, for all T P Th and all v P H1pT q,

Ik,l
T v “ pπl

T v, π
k
BT vq. (2.6)

The potential reconstruction operator pk`1
T and the bilinear form sT are conceived so that they satisfy the

following two key properties:

(i) Stability. There is a real number η ą 0 independent of T and of h such that, for all vT P Uk,l
T ,

η}vT }2
a,T ď }κ∇vT }2

L2pT qd ` jT pvT , vT q ď η´1}vT }2
a,T , (2.7)

with local energy seminorm such that }vT }2
a,T :“ aT pvT , vT q and boundary-jump bilinear form

jT : Uk,l
T ˆ Uk,l

T Ñ R defined as

jT pwT , vT q :“ pτBT pwT ´ wBT q, vT ´ vBT qBT . (2.8)

The dependence of η on κ is specified in ([17], Lem. 3.1).
(ii) Approximation. For all v P Hk`2pT q,!

}∇pv ´ pk`1
T Ik,l

T vq}2
T ` sT pIk,l

T v, Ik,l
T vq

)1{2
À hk`1

T }v}Hk`2pT q. (2.9)

Unlike the bilinear form sT , the bilinear form jT only satisfies, for all v P Hk`1pT q,

jT pIk,l
T v, Ik,l

T vq1{2 À hk}v}Hk`1pT q.

For this reason, it has not been used in the formulation of the method (2.12). Some remarks are of order.

Remark 2.1 (k “ 0 and l “ k ´ 1).
In this case, the following conventions are adopted: (i) in (2.1), element unknowns are not needed in the construc-
tion; (ii) the closure condition for problem (2.2) is modified by prescribing that ppk`1

T vT , 1qT “
ř

F PFT
ωTF vF

with weights pωTF qF PFT defined as in ([30], Appendix A). (iii) in (2.5), it is understood that πl
T p

k`1
T vT “ 0.

This case is closely related (up to an equivalent choice of the stabilization) to Hybrid Finite Volumes [23].
Recalling the equivalence result proved in [21] for Mixed [20] and Hybrid Finite Volumes and Mimetic Finite
Differences [5, 6, 27], the HHO methods with k “ 0 and l “ ´1 or l “ 0 lead in fact to the same family of
methods (up to equivalent choices of stabilization).

Remark 2.2 (l “ k ` 1).
In this case, we have πk`1

T pk`1
T vT “ pk`1

T vT since pk`1
T vT P P

k`1
d pT q, so that P k`1,k`1

T vT “ vT , and the
stabilizing bilinear form sT simply writes

sT pwT , vT q :“ pτBTπ
k
BT pwT ´ wBT q, πk

BT pvT ´ vBT qqBT . (2.10)

A similar stabilization was suggested in ([29], Rem. 1.2.4) in the context of HDG methods; cf. Table 1 for further
details.
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2.3. Definition of the method and error estimates

We define the global spaces

Uk,l
h :“ Ul

Th
ˆ Uk

Fh
, Ul

Th
:“

ą
T PTh

P
l
dpT q, Uk

Fh
:“

ą
F PFh

P
k
d´1pF q,

and we introduce a subspace of Uk,l
h with strongly enforced boundary conditions:

Uk,l
h,0 :“ Ul

Th
ˆ Uk

Fh,0, Uk
Fh,0 :“

�
vFh

P Uk
Fh

| vF ” 0 @F P Fb
h

(
.

For an element T P Th and a function vh “
`
vTh

, vFh

˘
P Uk,l

h , we denote by vT :“
`
vT , vBT

˘
its restriction to

Uk,l
T . The global bilinear form ah : Uk,l

h ˆ Uk,l
h is assembled elementwise from the local contributions (2.3):

ahpwh, vhq :“
ÿ

T PTh

aT pwT , vT q. (2.11)

The discrete problem reads: find uh P Uk,l
h,0 such that

ahpuh, vhq “
ÿ

T PTh

pf, vT qT @vh P Uk,l
h,0. (2.12)

We next recall the a priori error estimates obtained in [18] for the case l “ k. Minor variations in the proofs
yield analogous results for the cases l “ k ˘ 1. Our estimates are stated in terms of quantities we define
next. We denote by Ik,l

h : H1pΩq Ñ Uk,l
h the operator whose restriction to H1pT q is Ik,l

T (cf. (2.6)), and we
define by pk`1

h uh the function whose restriction to T is pk`1
T uT . We also define on Uk,l

h,0 the global energy norm
}vh}2

a,h :“
ř

T PTh
}vT }2

a,T (the fact that }¨}a,h defines a norm on Uk,l
h,0 follows from the strong enforcement of

boundary conditions). We are now ready to state the result. For simplicity, we do not explicitate the dependence
of the constants on the diffusion tensor; see [17] for a more precise result.

Theorem 2.3 (Error estimate for HHO). Let u P H1
0 pΩq and uh P Uk,l

h,0 denote the unique solutions to (1.1)
and (2.12), respectively, and assume the additional regularity u P Hk`2pΩq. Then, there exists a real number
C ą 0 depending on �, k, d, and κ, but independent of h, such that

max
`
}pk`1

h uh ´ u}, }uh ´ πl
hu}, }uh ´ Ik,l

h u}a,h

˘
ď Chk`1}u}Hk`2pΩq,

where uh is the broken polynomial function such that uh|T “ uT for all T P Th and πl
h the L2-orthogonal projector

onto the space of broken polynomials of total degree ď l. Additionally, if elliptic regularity holds, and further
assuming f P H1pΩq if k “ 0, we have the improved L2-error estimate

max
`
}pk`1

h uh ´ u}, }uh ´ πl
hu}

˘
ď Chk`2

`
}u}Hk`2pΩq ` }f}Hk`δpΩq

˘
,

with δ “ 1 if k “ 0 and δ “ 0 if k ě 1.

2.4. Link with HOM

It is possible to devise a (minor) extension of the setting considered in [2] for the convergence analysis
of the HOM method in the case κ “ Id. This extension, which consists in considering two, possibly different,
polynomial degrees in the virtual space of [2], allows us to bridge the actual HOM method to HHO with l “ k´1
where the difference appears in an equivalent choice of stabilization, and to offer the possibility of devising new
variants of HOM which can be bridged to the HHO method for l P tk, k` 1u. Another benefit of this extension
is to provide a convergence analysis of HOM in the variable-diffusion case.
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Assume κ “ Id and define, for all T P Th, the local space

V k,l
T :“

�
ϕ P H1pT q | ∇ϕ|BT ¨nT P Uk

BT and �ϕ P P
l
dpT q

(
. (2.13)

The difference with respect to [2] consists in the choice of the space for �ϕ, which now accounts for all the
possible values for the polynomial degree l. It is useful to note, at this point, that the explicit expression of
functions in V k,l

T is, in general, not available.
Consider the map ΦT : Uk,l

T Ñ V k,l
T defined such that, for all vT P Uk,l

T , ϕ :“ ΦT pvT q solves

�ϕ “ vT ´ |T |´1
d tpvT , 1qT ´ pvBT , 1qBT u in T ,

∇ϕ|BT ¨nT “ vBT on BT ,
pϕ, 1qT “ pvT , 1qT ,

(or with closure condition pϕ, 1qT “
ř

F PFT
ωTF vF when k “ 0 and l “ k ´ 1, see Rem. 2.1). Clearly, ΦT is

well-defined and injective. Moreover, a straightforward extension of ([2], Lem. 3.1) shows that Ik,l
T : V k,l

T Ñ Uk,l
T

is injective. Thus, Ik,l
T is an isomorphism between the space of Uk,l

T considered in the HHO method and the space
of virtual functions V k,l

T .
Define now the projection Πk`1

T : V k,l
T Ñ P

k`1
d pT q such that

Πk`1
T ϕ :“ pk`1

T Ik,l
T ϕ. (2.14)

Clearly, for any ϕ P V k,l
T , Πk`1

T ϕ is computable from the function Ik,l
T ϕ P Uk,l

T . To reformulate the penalty term,
we introduce the map δk,l

T : V k,l
T Ñ Uk

BT such that

δk,l
T ϕ :“ πk

BTϕ ´ πk
BTπ

l
Tϕ. (2.15)

When l ď k, we simply have δk,l
T ϕ “ πk

BTϕ ´ πl
Tϕ. For all ϕ P V k,l

T , we infer that

πk
BT pP k`1,l

T Ik,l
T ϕ´ pIk,l

T ϕqBT q “ πk
BT pπl

Tϕ ` pk`1
T Ik,l

T ϕ ´ πl
T p

k`1
T Ik,l

T ϕ ´ πk
BTϕq

“ πk
BT ppk`1

T Ik,l
T ϕ ´ ϕ ´ πl

T ppk`1
T Ik,l

T ϕ ´ ϕqq

“ δk,l
T pΠk`1

T ϕ ´ ϕq,

where we have used the definition (2.5) of P k`1,l
T in the first line, the fact that πk

BT pπk
BTϕq “ πk

BTϕ in the second
line, and the definitions (2.14) and (2.15) of the maps Πk`1

T and δk,l
T to conclude. Then, setting τBT |F “ h´1

F

for all F P FT and defining the following bilinear forms on V k,l
T ˆ V k,l

T :

raT pψ, ϕq “ p∇Πk`1
T ψ,∇Πk`1

T ϕqT ` rsT pψ, ϕq,rsT pψ, ϕq “ pτBT δ
k,l
T pΠk`1

T ψ ´ ψq, δk,l
T pΠk`1

T ϕ ´ ϕqqBT ,

it is a simple matter to realize that

raT pψ, ϕq “ aT pIk,l
T ψ, Ik,l

T ϕq and rsT pψ, ϕq “ sT pIk,l
T ψ, Ik,l

T ϕq.

We can observe, at this point, that, when l “ k ´ 1, the consistent contribution in raT is analogous to ([2],
Eq. (3.17)), whereas the stabilization rsT is a special instance of the one appearing in the right-hand side of ([2],
Eq. (3.21)), and can be interpreted as a (computable) least-squares penalty of the difference between a function
ϕ in the space V k,l

T and its computable projection Πk`1
T ϕ defined by (2.14).
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2.5. Static condensation

We characterize the solution provided by the HHO method by that of a static condensation technique which
allows for an efficient implementation of the method. We use a notation inspired from [9].

We start by noting that the equations (2.12) defining the HHO method can be rewritten as

@T P Th, aT puT , pvT , 0qq “ pf, vT qT @vT P Ul
T , (2.16a)

ahpuh, p0, vFh
qq “ 0 @vFh

P Uk
Fh,0. (2.16b)

Then, we show that the first set of equations define local problems which allow us to express uT in terms of uBT

and fT :“ f |T for all cells T P Th. Finally, we show that the second equation defines a single global problem
whose solution is uFh

. We conclude by providing a characterization of the approximate solution in terms of
these problems.

Let us first introduce the so-called local problems. Given λ P Uk
BT , define Uλ

T P Ul
T as the solution of the local

problem
aT ppUλ

T , 0q, pvT , 0qq “ ´aT pp0, λq, pvT , 0qq @vT P Ul
T ,

which, letting Uλ
T :“ pUλ

T , λq P Uk,l
T and using linearity, rewrites

aT pUλ
T , pvT , 0qq “ 0 @vT P Ul

T . (2.17)

Similarly, given φ P L2pT q, define Uφ
T P Ul

T as the solution of the local problem

aT ppUφ
T , 0q, pvT , 0qq “ pφ, vT qT @vT P Ul

T . (2.18)

Clearly, by the stability property (2.7), both (2.17) and (2.18) are well-posed since }¨}a,T is a norm on the
zero-trace subspace of Uk,l

T . Moreover, by linearity, we can express in each mesh cell T P Th the solution uT in
terms of the local datum fT and of the local face-based components uBT . Indeed, in view of (2.17) with λ “ uBT

and (2.18) with φ “ fT , (2.16a) yields

uT “ pUuBT

T ` UfT

T , uBT q @T P Th.

With obvious notation, we infer that uh “ pUuFh

h ` Uf
h, uFh

q, which we rewrite in the form

uh “ U
uFh

h ` Uf
h, U

uFh

h :“ pUuFh

h , uFh
q, Uf

h :“ pUf
h, 0q. (2.19)

Now we turn to the global problem defining uFh
. In view of (2.16b) and (2.19), we have that, for all vFh

P
Uk
Fh,0, setting U

vFh

h :“ pUvFh

h , vFh
q P Uk,l

h,0,

0 “ ahpuh, p0, vFh
qq

“ ahpuh,U
vFh

h q ´ ahpuh, pU
vFh

h , 0qq

“ ahpuh,U
vFh

h q ´ ahpUuFh

h , pUvFh

h , 0qq ´ ahpUf
h, pU

vFh

h , 0qq.

(2.20)

But, using the definition (2.11) of ah followed by the local problems (2.17) with λ “ uBT and vT “ UvBT

T

and (2.18) with φ “ fT and vT “ UvBT

T , we infer that

ahpUuFh

h , pUvFh

h , 0qq “
ÿ

T PTh

aT pUuBT

T , pUvBT

T , 0qq “ 0,

ahpUf
h, pU

vFh

h , 0qq “
ÿ

T PTh

aT ppUfT

T , 0q, pUvBT

T , 0qq “
ÿ

T PTh

pf,UvBT

T qT .
(2.21)
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Moreover, exploiting the symmetry of the bilinear form ah, recalling (2.11), and using the local problem (2.17)
with λ “ vBT and vT “ UfT

T , we infer that

ahpUf
h,U

vFh

h q “ ahpUvFh

h ,Uf
hq “

ÿ
T PTh

aT pUvBT

T , pUfT

T , 0qq “ 0,

so that, recalling the decomposition (2.19) of uh, we conclude that

ahpuh,U
vFh

h q “ ahpUuFh

h ` Uf
h,U

vFh

h q “ ahpUuFh

h ,U
vFh

h q. (2.22)

Plugging (2.21) and (2.22) into the last line of (2.20), the global problem (2.16b) rewrites: Find uFh
P Uk

Fh,0

such that
ahppUuFh

h , uFh
q, pUvFh

h , vFh
qq “

ÿ
T PTh

pf,UvBT

T qT @vFh
P Uk

Fh,0. (2.23)

The well-posedness of this problem follows from the stability of ah together with the well-posedness of the local
problems (2.17). We can now summarize our results on the static condensation procedure.

Proposition 2.4 (Characterization of the approximate solution). The solution uh P Uk,l
h given by the HHO

method (2.12) can be expressed as (2.19), where U
uFh

h and Uf
h are defined cellwise as the solutions of the local

problems (2.17) and (2.18), and uFh
P Uk

Fh,0 is the only solution of the problem (2.23).

3. Numerical-trace formulation of HHO method

In this section, we provide a reinterpretation of the global problem

ahpuh, p0, vFh
qq “ 0 @vFh

P Uk
Fh,0.

as a transmission condition. In this way, we identify the numerical trace of the flux and show, in a different
way from the one proposed in [15], that the method is locally conservative. Finally, we use this information to
suitably rewrite the equations defining the local problems, namely,

aT puT , pvT , 0qq “ pf, vT qT @vT P Ul
T , @T P Th.

3.1. The global problem as a transmission condition

Our goal is to rewrite the bilinear form of the global problem in such a way that the numerical traces can be
easily identified. Since ah is assembled cellwise, see (2.11), we can work on a single mesh cell T P Th. Thus we
have, using the definition (2.3) of aT and (2.2) of pk`1

T vT with vT “ p0, vBT q,

aT puT , p0, vBT qq

“ pκ ∇pk`1
T uT ,∇pk`1

T p0, vBT qqT ` pτBTπ
k
BT pP k`1,l

T uT ´ uBT q, πk
BT pP k`1,l

T p0, vBT q ´ vBT qqBT

“ pκ ∇pk`1
T uT ¨nT , vBT qBT ` pτBTπ

k
BT pP k`1,l

T uT ´ uBT q, πk
BT pP k`1,l

T p0, vBT q ´ vBT qqBT .

(3.1)

Next, we note that, by definition of P k`1,l
T , we have that

P k`1,l
T uT ´ uBT “ uT ` pk`1

T uT ´ πl
T p

k`1
T uT ´ uBT

“ uT ` pk`1
T puT , uBT q ´ πl

T p
k`1
T puT , uBT q ´ uBT

“ uT ` pk`1
T puT , uT q ` pk`1

T p0, uBT ´ uT q
´ πl

T p
k`1
T puT , uT q ´ πl

T p
k`1
T p0, uBT ´ uT q ´ uBT

“ uT ` pk`1
T p0, uBT ´ uT q ´ πl

T p
k`1
T p0, uBT ´ uT q ´ uBT

“ uT ´ uBT ` pk`1
T p0, uBT ´ uT q ´ πl

T p
k`1
T p0, uBT ´ uT q,

(3.2)
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where, to pass to the fourth line, we have used the fact that pk`1
T puT , uT q “ πl

T p
k`1
T puT , uT q (cf. (2.2) and

Rem. 2.1 for the case k “ 0 and l “ k ´ 1). Then for any λ P Uk
BT , we define rk

BT pλq as the element of Uk
BT such

that
rk

BT pλq :“ πk
BT pλ´ pk`1

T p0, λq ` πl
T p

k`1
T p0, λqq.

In this way, accounting for (3.2), we can write

πk
BT pP k`1,l

T uT ´ uBT q “ rk
BT puT ´ uBT q, (3.3)

and so, plugging this expression into (3.1), we obtain

aT puT , p0, vBT qq “ pκ ∇pk`1
T uT ¨nT , vBT qBT ´ pτBT r

k
BT puT ´ uBT q, rk

BT pvBT qqBT . (3.4)

Defining the adjoint rk ˚
BT of rk

BT , as the unique element of Uk
BT such that

@λ P Uk
BT , prk ˚

BT pλq, μqBT “ pλ, rk
BT pμqqBT @μ P Uk

BT , (3.5)

we finally obtain from (3.4),

aT puT , p0, vBT qq “ pκ ∇pk`1
T uT ¨nT ´ rk ˚

BT pτBT r
k
BT puT ´ uBT qq, vBT qBT ,

so that the global problem can be expressed as follows:ÿ
T PTh

ppquT
¨nT , vFh

qBT “ 0 @vFh
P Uk

Fh,0,

where pquT
¨nT :“ ´κ∇pk`1

T uT ¨nT ` rk ˚
BT pτBT r

k
BT puT ´ uBT qq,

is nothing but the numerical approximation of the normal trace of the exact flux q :“ ´κ∇u we sought. The
global problem can thus be interpreted as a discrete version of a transmission condition since it enforces the
single-valuedness of the normal component of the numerical trace of the flux.

3.2. Rewriting the equations defining the local problems

We can now rewrite the equation (2.16a) by using the numerical trace just uncovered. Indeed, for all T P Th,
using the definition (2.3) of aT , accounting for (3.3) and (3.5), and concluding with the definition (2.2) of pk`1

T

with vT “ pvT , 0q and w “ pk`1
T uT , we have

aT puT , pvT , 0qq “ pκ ∇pk`1
T uT ,∇pk`1

T pvT , 0qqT ` pτBTπ
k
BT pP k`1,l

T uT ´ uBT q, πk
BT pP k`1,l

T pvT , 0qqqBT

“ pκ ∇pk`1
T uT ,∇pk`1

T pvT , 0qqT ` prk ˚
BT pτBT r

k
BT puT ´ uBT qq, vT qBT

“ pκ ∇pk`1
T uT ,∇vT qT ` p´κ∇pk`1

T uT ¨nT ` rk ˚
BT pτBT r

k
BT puT ´ uBT qq, vT qBT .

Thus, (2.16a) is equivalent to

@T P Th, pκ∇pk`1
T uT ,∇vT qT ` ppquT

¨nT , vT qBT “ pf, vT qT @vT P Ul
T ,

which, since the numerical trace of the flux is single-valued, expresses a local conservation condition. We have
thus proven that the HHO method has the following equivalent formulation.

Proposition 3.1 (Numerical-trace formulation). The solution uh P Uk,l
h,0 provided by the HHO method (2.12)

satisfies the following local problems: for all T P Th,

pκ ∇pk`1
T uT ,∇wqT ` puT ,∇¨pκ ∇wqqT “ puBT ,κ∇w¨nT qBT @w P P

k`1
d pT q,

pκ ∇pk`1
T uT ,∇vT qT ` ppquT

¨nT , vT qBT “ pf, vT qT @vT P Ul
T ,
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where the numerical trace of the flux is given by

pquT
¨nT :“ ´κ∇pk`1

T uT ¨nT ` rk ˚
BT pτBT r

k
BT puT ´ uBT qq,

and satisfies the transmission conditionÿ
T PTh

ppquT
¨nT , vFh

qBT “ 0 @vFh
P Uk

Fh,0.

4. Comparison with HDG methods

In this section, we show that the numerical-trace formulation of the HHO methods fits in the framework of
HDG methods introduced in [9]. This allows us to compare the HHO method with other HDG methods. It also
allows us to incorporate into the family of HDG methods the subtle way of defining the HHO numerical trace
for the flux, giving thus rise to new HDG methods.

4.1. The HDG framework

We begin by recalling the general framework defining the HDG methods. We define the spaces

Vh :“
ą
T PTh

VpT q, Wh ˆMh :“

#ą
T PTh

W pT q

+
ˆ

# ą
F PFh

MpF q

+
, (4.1)

and Mh,0 :“ t pw P Mh : pw “ 0 on BΩu. The HDG discretization of problem (1.1) consists in seeking
pqh, uh, puhq P Vh ˆWh ˆMh,0 as the solution of the local problems

pκ´1qh, vqT ´ puh,∇¨vqT ` ppuh, v¨nT qBT “ 0 @ v P VpT q,
´pqh,∇wqT ` ppqh¨nT , wqBT “ pf, wqT @w P W pT q,pqh¨nT :“ qh¨nT ` αpuh ´ puhq on BT ,ÿ

T PTh

ppqh¨nT , pwqBT “ 0 @ pw P Mh,0,

(4.2)

where the last equation is the transmission condition. To complete this framework, a new approximation of the
potential, u˚

h, is defined in a suitable manner; see the examples in [10, 11].
The above formulation is usually considered to be a mixed formulation. A small variation, which has been

called the extended form of the mixed formulation, see [1, 8, 26], can be trivially used to define HDG methods.
Roughly speaking, it avoids using the tensor κ´1 and only uses the tensor κ by discretizing the equation
q “ ´κ∇u instead of the equation κ´1q “ ´∇u. In linear elasticity, κ corresponds to the standard constitutive
tensor whereas κ´1 to the so-called compliance tensor. To work with the constitutive tensor is usually preferred
in the case of nonlinear elasticity. This formulation has been used, for example, for the HDG method for linear
and nonlinear elasticity in [25, 34, 35].

The local spaces VpT q, W pT q, MpF q and the stabilization function α, as well as the post-processing u˚
h,

determine the different HDG methods. In particular, the HHO methods of Section 2.2 are obtained for the
choice

V pT q :“ κ∇P
k`1
d pT q, W pT q :“ P

l
dpT q, MpF q :“ P

k
d´1pF q and α :“ rk,˚

BT pτBT r
k
BT q,

and the postprocessing u˚
h :“ pk`1

h puh, puhq, in the HDG notation.
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Table 1. Comparison of various methods fitting in the HDG framework (4.2) with MpF q :“
P

k
d´1pF q. The methods are defined by the local spaces VpT q, W pT q (cf. (4.1)), and u˚

h which
determines the numerical trace of the flux which is of the form (4.3). The notation HHO(l)
corresponds to the value of the integer l in (2.1). The corresponding orders of convergence are
provided for the L2pΩq-norm of the error in the approximate flux qh and in the approximate
potential u˚

h.

Ref. VpT q W pT q u˚
h τBT |F flux potential

LDG-H [7,9] P
k
dpT qd

P
k
dpT q uh

#
κTF {h
κTF

k

k ` 1{2
k ` 1

k ` 1

(A) [29,31] P
k
dpT qd

P
k`1
d pT q uh κTF {h k ` 1 k ` 2

(B) new P
k
dpT qd

P
k
dpT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

(C) new P
k
dpT qd

P
k´1
d pT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

HHO(k ` 1) new κ∇P
k`1
d pT q P

k`1
d pT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

HHO(k) [16,18] κ∇P
k`1
d pT q P

k
dpT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

HHO(k ´ 1) [30] κ∇P
k`1
d pT q P

k´1
d pT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

4.2. Comparison with other HDG methods

We compare several HDG methods with the HHO method in Table 1, where we display the local spaces, the
numerical trace of the flux and the theoretical orders of convergence of error in the flux, }q ´ qh}, and in the
potential, }u´ u˚

h}. The orders of convergence for the methods (B), (C), and HHO(l) with l P tk´ 1, k` 1u can
be established by (minor) adaptations of the proofs for the HHO(k) variant; cf. [17,18]. Details are omitted for
the sake of conciseness. In all the cases considered the numerical flux is of the form

pqh¨n :“ qh¨n ` rk˚
BT pτBT r

k
BT puh ´ puhqq,

rk
BT puh ´ puhq :“ πk

BT

`
uh ` u˚

h ´ πW pT qu
˚
h ´ puh

˘
,

(4.3)

where πW pT q denotes is the L2-orthogonal projection onto W pT q.
For the methods (B) and (C), the post-processing u˚

h is given by the function pk`1
h puh, puhq P P

k`1
d pT q defined

as the solution of

p∇pk`1
h puh, puhq,∇zqT “ ´puh, ΔzqT ` ppuh,∇z¨nqBT @z P P

k`1
d pT qK, (4.4a)

ppk`1
h puh, puhq, wqT “ puh, wqT @w P W pT q. (4.4b)

where P
k`1
d pT qK :“ tz P P

k`1
d pT q | pz, wqT “ 0 @w P W pT qu. Note that the operator pk`1

h is a small variation of
the post-processings used in [10,11], where a proper subspace ofW pT q is used instead ofW pT q. Note also that, for
the method (A), we have thatW pT q “ P

k`1
d pT q so that P

k`1
d pT qK “ t0u and, therefore, u˚

h :“ pk`1
h puh, puhq “ uh.

For the methods (A), (B) and (C), we have πW pT qu
˚
h “ πW pT qp

k`1
h puh, puhq “ uh, and so

rk
BT puh ´ puhq “ πk

BT pu˚
h ´ puhq “ πk

BTu
˚
h ´ puh.

For the methods (A) and HHO(k ` 1), we have, on the other hand, that u˚
h P W pT q “ P

k`1
d pT q, and so the

penalty term in (4.3) takes a simpler expression (cf. also Rem. 2.2):

rk
BT puh ´ puhq “ πk

BT puh ´ puhq “ πk
BTuh ´ puh.
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Table 2. Size of the local problem to solve to locally eliminate the flux variable for the HDG
(rows 1–4) and HHO (rows 5–7) methods listed in Table 1.

k d “ 1 d “ 2 d “ 3

0 1 2 3

1 2 6 12

2 3 12 30

3 4 20 60

(a) HDG methods

k d “ 1 d “ 2 d “ 3

0 1 2 3

1 2 5 9

2 3 9 19

3 4 14 34

(b) HHO methods

As defined in [9], the LDG-H methods are the HDG methods obtained when the local discontinuous Galerkin
(LDG) method is used to define the local problems. It is actually the particular case of discontinuous Galerkin
methods proposed in [7] for which we have, at each interior face F P F i

h such that F “ BT` X BT´, letting
τ˘
F :“ τBT ˘ |F ,

puh “
ˆ

τ`
F

τ´
F ` τ`

F

˙
u`

h `
ˆ

τ´
F

τ´
F ` τ`

F

˙
u´

h `
ˆ

1
τ`
F ` τ´

F

˙
pq`

h ¨n` ` q´
h ¨n´q,

pqh “
ˆ

τ´
F

τ´
F ` τ`

F

˙
q`

h `
ˆ

τ`
F

τ´
F ` τ`

F

˙
q´

h `
ˆ

τ`
F τ

´
F

τ´
F ` τ`

F

˙
pu`

h n` ` u´
h n´q.

Here the superscript ˘ indicates the traces from both sides of the face. For this choice of numerical traces, we
have that pqh¨n˘ “ q˘

h ¨n ` τ˘
F pu˘

h ´ puhq.

The orders of convergence of this method were obtained in [7] for general, shape-regular polygonal meshes. The
suboptimal order of k ` 1{2 is obtained for the approximate flux for τF of order one.

The method (A), whose stabilization function we could call the Lehrenfeld/Schöberl stabilization, was sug-
gested in ([29], Rem. 1.2.4) and was recently analyzed in [31]. Extensions to convection-diffusion and linear
elasticity can be found in [32, 33], respectively. This method uses polynomials of one higher degree for uh, and
achieves optimal order for the approximate flux, k` 1, and for the potential, k` 2, by stabilizing using only the
lowest-order part of the difference between cell and face unknowns. The methods (B) and (C) can be considered
as novel HHO-inspired variations of this method.

The HHO(k) method uses the same space for uh as the LDG-H method, but is built upon a reconstruction
u˚

h which uses polynomials of one higher degree. The method achieves optimal orders of convergence for the
approximate flux and potential with significantly smaller spaces for the fluxes, namely, κ∇P

k`1
d pT q instead

of P
k
dpT qd. The order of the matrix we need to invert to eliminate the flux variable (when solving the local

problems) is only
`
k`1`d

d

˘
´ 1 instead of d

`
k`d

d

˘
, cf. Table 2. Similar considerations apply for the methods

HHO(k ˘ 1).

4.3. Numerical experiments

Here, we compare the original HHO(k) method of (2.12) with the novel HHO(k ` 1) variant, cf. Table 1. As
pointed out in Remark 2.2, the stabilizing bilinear form takes a very simple expression for HHO(k`1), cf. (2.10),
although this comes at the price of slightly increasing the cost of both the potential reconstruction (2.2) (the
number of right-hand sides increases) and of the local problems to be solved for static condensation. For
Ω “ p0, 1q2, we consider the Dirichlet problem corresponding to the exact solution u “ sinpπx1q sinpπx2q for
two values of the diffusion tensors

κ1 “ Id, κ2 “
ˆ

px2 ´ x2q2 ` εpx1 ´ x1q2 ´p1 ´ εqpx1 ´ x1qpx2 ´ x2q
´p1 ´ εqpx1 ´ x1qpx2 ´ x2q px1 ´ x1q2 ` εpx2 ´ x2q2

˙
,
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Figure 1. Triangular and (predominantly) hexagonal meshes.

Table 3. Triangular mesh family (isotropic homogeneous test case κ “ κ1).

HHO(k) HHO(k ` 1)
h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

3.07 ˆ 10´2 0.14 – 0.11 – 0.14 – 0.15 –
1.54 ˆ 10´2 7.06 ˆ 10´2 1.00 2.84 ˆ 10´2 2.01 7.04 ˆ 10´2 0.99 3.67 ˆ 10´2 2.00
7.68 ˆ 10´3 3.53 ˆ 10´2 1.00 7.10 ˆ 10´3 1.99 3.53 ˆ 10´2 0.99 9.19 ˆ 10´3 1.99
3.84 ˆ 10´3 1.77 ˆ 10´2 1.00 1.78 ˆ 10´3 2.00 1.77 ˆ 10´2 1.00 2.30 ˆ 10´3 2.00
1.92 ˆ 10´3 8.83 ˆ 10´3 1.00 4.44 ˆ 10´4 2.00 8.83 ˆ 10´3 1.00 5.75 ˆ 10´4 2.00

k “ 1

3.07 ˆ 10´2 1.36 ˆ 10´2 – 1.16 ˆ 10´2 – 1.40 ˆ 10´2 – 1.21 ˆ 10´2 –

1.54 ˆ 10´2 3.28 ˆ 10´3 2.06 1.46 ˆ 10´3 3.00 3.40 ˆ 10´3 2.05 1.52 ˆ 10´3 3.01
7.68 ˆ 10´3 8.10 ˆ 10´4 2.01 1.83 ˆ 10´4 2.98 8.40 ˆ 10´4 2.01 1.90 ˆ 10´4 2.99
3.84 ˆ 10´3 2.02 ˆ 10´4 2.00 2.28 ˆ 10´5 3.00 2.09 ˆ 10´4 2.01 2.37 ˆ 10´5 3.00
1.92 ˆ 10´3 5.04 ˆ 10´5 2.00 2.86 ˆ 10´6 2.99 5.23 ˆ 10´5 2.00 2.97 ˆ 10´6 3.00

k “ 2

3.07 ˆ 10´2 1.01 ˆ 10´3 – 9.53 ˆ 10´4 – 1.04 ˆ 10´3 – 1.02 ˆ10´3 –
1.54 ˆ 10´2 1.22 ˆ 10´4 3.06 6.03 ˆ 10´5 4.00 1.27 ˆ 10´4 3.05 6.48 ˆ 10´5 4.00
7.68 ˆ 10´3 1.50 ˆ 10´5 3.01 3.78 ˆ 10´6 3.98 1.57 ˆ 10´5 3.00 4.06 ˆ 10´6 3.98
3.84 ˆ 10´3 1.87 ˆ 10´6 3.00 2.37 ˆ 10´7 4.00 1.95 ˆ 10´6 3.01 2.54 ˆ 10´7 4.00
1.92 ˆ 10´3 2.33 ˆ 10´7 3.00 1.48 ˆ 10´8 4.00 2.42 ˆ 10´7 3.01 1.59 ˆ 10´8 4.00

k “ 3

3.07 ˆ 10´2 8.49 ˆ 10´5 – 5.91 ˆ 10´5 – 8.95 ˆ 10´5 – 6.49 ˆ 10´5 –
1.54 ˆ 10´2 5.39 ˆ 10´6 4.00 1.87 ˆ 10´6 5.01 5.70 ˆ 10´6 3.99 2.05 ˆ 10´6 5.01
7.68 ˆ 10´3 3.38 ˆ 10´7 3.98 5.85 ˆ 10´8 4.98 3.58 ˆ 10´7 3.98 6.41 ˆ 10´8 4.98
3.84 ˆ 10´3 2.11 ˆ 10´8 4.00 1.83 ˆ 10´9 5.00 2.24 ˆ 10´8 4.00 2.01 ˆ 10´9 5.00
1.92 ˆ 10´3 1.33 ˆ 10´9 3.99 5.73 ˆ 10´11 5.00 1.40 ˆ 10´9 4.00 6.29 ˆ 10´11 5.00

with px1, x2q “ ´p0.1, 0.1q, ε “ 1 ˆ 1´2, and right-hand side f computed accordingly. The choice κ “ κ1

corresponds to an isotropic problem and is used to assess the performance of the method in the simplest possible
setting. The choice κ “ κ2, originally proposed by Le Potier [28], corresponds to an anisotropic, heterogeneous
problem where the principal axes of the diffusion tensor vary at each point of the domain. For both choices, we
solve the corresponding problem on both the triangular and (predominantly) hexagonal mesh families depicted
in Figure 1 which correspond, respectively, to the mesh family 1 of the FVCA5 benchmark [24], and to the
mesh used in the numerical examples of [19]. The convergence results are reported in Tables 3–6. There, we
show the history of convergence of }q ´ qh}, see the label H1, and of }u´u˚

h}, see the label L2, and provide the
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Table 4. Hexagonal mesh family (isotropic homogeneous test case κ “ κ1).

HHO(k) HHO(k ` 1)

h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

6.30 ˆ 10´2 0.16 – 0.18 – 0.16 – 0.25 –

3.42 ˆ 10´2 8.83 ˆ 10´2 1.00 5.36 ˆ 10´2 2.01 8.98 ˆ 10´2 0.97 7.49 ˆ 10´2 1.95

1.72 ˆ 10´2 3.68 ˆ 10´2 1.27 1.46 ˆ 10´2 1.89 3.72 ˆ 10´2 1.28 2.05 ˆ 10´2 1.89

8.59 ˆ 10´3 1.38 ˆ 10´2 1.41 3.82 ˆ 10´3 1.93 1.40 ˆ 10´2 1.41 5.36 ˆ 10´3 1.93

4.30 ˆ 10´3 5.00 ˆ 10´3 1.47 9.72 ˆ 10´4 1.98 5.04 ˆ 10´3 1.48 1.37 ˆ 10´3 1.97

k “ 1

6.30 ˆ 10´2 3.99 ˆ 10´2 – 3.27 ˆ 10´2 – 4.31 ˆ 10´2 – 3.66 ˆ 10´2 –

3.42 ˆ 10´2 6.53 ˆ 10´3 2.96 4.59 ˆ 10´3 3.21 6.82 ˆ 10´3 3.02 4.74 ˆ 10´3 3.35

1.72 ˆ 10´2 1.11 ˆ 10´3 2.58 6.11 ˆ 10´4 2.93 1.13 ˆ 10´3 2.62 6.12 ˆ 10´4 2.98

8.59 ˆ 10´3 1.90 ˆ 10´4 2.54 7.85 ˆ 10´5 2.96 1.91 ˆ 10´4 2.56 7.75 ˆ 10´5 2.98

4.30 ˆ 10´3 3.28 ˆ 10´5 2.54 9.93 ˆ 10´6 2.99 3.28 ˆ 10´5 2.55 9.74 ˆ 10´6 3.00

k “ 2

6.30 ˆ 10´2 3.26 ˆ 10´3 – 4.02 ˆ 10´3 – 3.26 ˆ 10´3 – 4.06 ˆ 10´3 –

3.42 ˆ 10´2 4.35 ˆ 10´4 3.30 2.86 ˆ 10´4 4.33 4.31 ˆ 10´4 3.31 2.88 ˆ 10´4 4.33

1.72 ˆ 10´2 5.15 ˆ 10´5 3.10 1.89 ˆ 10´5 3.95 5.14 ˆ 10´5 3.09 1.89 ˆ 10´5 3.96

8.59 ˆ 10´3 6.20 ˆ 10´6 3.05 1.22 ˆ 10´6 3.95 6.19 ˆ 10´6 3.05 1.21 ˆ 10´6 3.96

4.30 ˆ 10´3 7.61 ˆ 10´7 3.03 7.70 ˆ 10´8 3.99 7.60 ˆ 10´7 3.03 7.63 ˆ 10´8 3.99

k “ 3

6.30 ˆ 10´2 5.69 ˆ 10´4 – 4.26 ˆ 10´4 – 5.89 ˆ 10´4 – 4.42 ˆ 10´4 –

3.42 ˆ 10´2 3.46 ˆ 10´5 4.58 1.73 ˆ 10´5 5.24 3.47 ˆ 10´5 4.64 1.74 ˆ 10´5 5.30

1.72 ˆ 10´2 2.22 ˆ 10´6 4.00 5.90 ˆ 10´7 4.92 2.23 ˆ 10´6 3.99 5.89 ˆ 10´7 4.93

8.59 ˆ 10´3 1.41 ˆ 10´7 3.97 1.91 ˆ 10´8 4.94 1.41 ˆ 10´7 3.98 1.90 ˆ 10´8 4.95

4.30 ˆ 10´3 8.88 ˆ 10´9 4.00 6.09 ˆ 10´10 4.98 8.89 ˆ 10´9 3.99 6.05 ˆ 10´10 4.98

Table 5. Triangular mesh family (anisotropic, heterogeneous test case κ “ κ2).

HHO(k) HHO(k ` 1)

h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

3.07 ˆ 10´2 0.14 – 0.11 – 0.14 – 0.15 –

1.54 ˆ 10´2 7.06 ˆ 10´2 1.00 2.84 ˆ 10´2 2.01 7.04 ˆ 10´2 0.99 3.67 ˆ 10´2 2.00

7.68 ˆ 10´3 3.53 ˆ 10´2 1.00 7.10 ˆ 10´3 1.99 3.53 ˆ 10´2 0.99 9.19 ˆ 10´3 1.99

3.84 ˆ 10´3 1.77 ˆ 10´2 1.00 1.78 ˆ 10´3 2.00 1.77 ˆ 10´2 1.00 2.30 ˆ 10´3 2.00

1.92 ˆ 10´3 8.83 ˆ 10´3 1.00 4.44 ˆ 10´4 2.00 8.83 ˆ 10´3 1.00 5.75 ˆ 10´4 2.00

k “ 1

3.07 ˆ 10´2 1.36 ˆ 10´2 – 1.16 ˆ 10´2 – 1.40 ˆ 10´2 – 1.21 ˆ 10´2 –

1.54 ˆ 10´2 3.28 ˆ 10´3 2.06 1.46 ˆ 10´3 3.00 3.40 ˆ 10´3 2.05 1.52 ˆ 10´3 3.01

7.68 ˆ 10´3 8.10 ˆ 10´4 2.01 1.83 ˆ 10´4 2.98 8.40 ˆ 10´4 2.01 1.90 ˆ 10´4 2.99

3.84 ˆ 10´3 2.02 ˆ 10´4 2.00 2.28 ˆ 10´5 3.00 2.09 ˆ 10´4 2.01 2.37 ˆ 10´5 3.00

1.92 ˆ 10´3 5.04 ˆ 10´5 2.00 2.86 ˆ 10´6 2.99 5.23 ˆ 10´5 2.00 2.97 ˆ 10´6 3.00

k “ 2

3.07 ˆ 10´2 1.01 ˆ 10´3 – 9.53 ˆ 10´4 – 1.04 ˆ 10´3 – 1.02 ˆ 10´3 –

1.54 ˆ 10´2 1.22 ˆ 10´4 3.06 6.03 ˆ 10´5 4.00 1.27 ˆ 10´4 3.05 6.48 ˆ 10´5 4.00

7.68 ˆ 10´3 1.50 ˆ 10´5 3.01 3.78 ˆ 10´6 3.98 1.57 ˆ 10´5 3.00 4.06 ˆ 10´6 3.98

3.84 ˆ 10´3 1.87 ˆ 10´6 3.00 2.37 ˆ 10´7 4.00 1.95 ˆ 10´6 3.01 2.54 ˆ 10´7 4.00

1.92 ˆ 10´3 2.33 ˆ 10´7 3.00 1.48 ˆ 10´8 4.00 2.42 ˆ 10´7 3.01 1.59 ˆ 10´8 4.00

k “ 3

3.07 ˆ 10´2 8.49 ˆ 10´5 – 5.91 ˆ 10´5 – 8.95 ˆ 10´5 – 6.49 ˆ 10´5 –

1.54 ˆ 10´2 5.39 ˆ 10´6 4.00 1.87 ˆ 10´6 5.01 5.70 ˆ 10´6 3.99 2.05 ˆ 10´6 5.01

7.68 ˆ 10´3 3.38 ˆ 10´7 3.98 5.85 ˆ 10´8 4.98 3.58 ˆ 10´7 3.98 6.41 ˆ 10´8 4.98

3.84 ˆ 10´3 2.11 ˆ 10´8 4.00 1.83 ˆ 10´9 5.00 2.24 ˆ 10´8 4.00 2.01 ˆ 10´9 5.00

1.92 ˆ 10´3 1.33 ˆ 10´9 3.99 5.73 ˆ 10´11 5.00 1.40 ˆ 10´9 4.00 6.29 ˆ 10´11 5.00
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Table 6. Hexagonal mesh family (anisotropic, heterogeneous test case κ “ κ2).

HHO(k) HHO(k ` 1)

h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

6.30 ˆ 10´2 1.26 – 0.18 – 0.16 – 0.25 –

3.42 ˆ 10´2 0.58 1.26 5.80 ˆ 10´2 1.86 8.98 ˆ 10´2 0.97 7.49 ˆ 10´2 1.95

1.72 ˆ 10´2 0.22 1.40 1.84 ˆ 10´2 1.67 3.72 ˆ 10´2 1.28 2.05 ˆ 10´2 1.89

8.59 ˆ 10´3 8.34 ˆ 10´2 1.41 4.98 ˆ 10´3 1.88 1.40 ˆ 10´2 1.41 5.36 ˆ 10´3 1.93

4.30 ˆ 10´3 3.09 ˆ 10´2 1.43 1.35 ˆ 10´3 1.89 5.04 ˆ 10´3 1.48 1.37 ˆ 10´3 1.97

k “ 1

6.30 ˆ 1´2 0.15 – 2.56 ˆ 1´2 – 4.31 ˆ 1´2 – 3.66 ˆ 1´2 –

3.42 ˆ 10´2 3.65 ˆ 10´2 2.30 4.98 ˆ 10´3 2.68 6.82 ˆ 1´3 3.02 4.74 ˆ 1´3 3.35

1.72 ˆ 1´2 8.30 ˆ 1´3 2.15 6.68 ˆ 1´4 2.92 1.13 ˆ 10´3 2.62 6.12 ˆ 10´4 2.98

8.59 ˆ 10´3 1.63 ˆ 10´3 2.34 8.54 ˆ 10´5 2.96 1.91 ˆ 10´4 2.56 7.75 ˆ 10´5 2.98

4.30 ˆ 10´3 2.82 ˆ 10´4 2.54 1.09 ˆ 10´5 2.97 3.28 ˆ 1´5 2.55 9.74 ˆ 1´6 3.00

k “ 2

6.30 ˆ 1´2 2.13 ˆ 1´2 – 4.02 ˆ 1´3 – 3.26 ˆ 10´3 – 4.06 ˆ 10´3 –

3.42 ˆ 10´2 2.09 ˆ 10´3 3.80 3.09 ˆ 10´4 4.20 4.31 ˆ 10´4 3.31 2.88 ˆ 10´4 4.33

1.72 ˆ 1´2 2.08 ˆ 1´4 3.36 2.15 ˆ 1´5 3.88 5.14 ˆ 10´5 3.09 1.89 ˆ 10´5 3.96

8.59 ˆ 10´3 2.26 ˆ 10´5 3.20 1.40 ˆ 10´6 3.93 6.19 ˆ 10´6 3.05 1.21 ˆ 10´6 3.96

4.30 ˆ 1´3 2.55 ˆ 1´6 3.15 8.91 ˆ 1´8 3.98 7.60 ˆ 10´7 3.03 7.63 ˆ 10´8 3.99

k “ 3

6.30 ˆ 10´2 4.59 ˆ 10´3 – 4.29 ˆ 10´4 – 5.89 ˆ 10´4 – 4.42 ˆ 10´4 –

3.42 ˆ 10´2 1.43 ˆ 10´4 5.68 1.70 ˆ 10´5 5.28 3.47 ˆ 10´5 4.64 1.74 ˆ 10´5 5.30

1.72 ˆ 10´2 8.77 ˆ 10´6 4.06 6.01 ˆ 10´7 4.86 2.23 ˆ 10´6 3.99 5.89 ˆ 10´7 4.93

8.59 ˆ 10´3 4.82 ˆ 10´7 4.18 1.95 ˆ 10´8 4.94 1.41 ˆ 10´7 3.98 1.90 ˆ 10´8 4.95

4.30 ˆ 10´3 2.52 ˆ 10´8 4.26 6.13 ˆ 10´10 5.00 8.89 ˆ 10´9 3.99 6.05 ˆ 10´10 4.98

corresponding estimated convergence rate (ECR). The error is normalized with respect to the corresponding
norm of the exact solution. We can observe that both methods yield very similar results for the homogeneous
isotropic test case (cf. Tabs. 3 and 4), whereas a clear advantage of the HHO(k ` 1) method is observed in the
anisotropic, heterogeneous test case (cf. Tabs. 5 and 6) when it comes to the H1 norm. The difference is less
pronounced on the hexagonal mesh than on the triangular mesh.

5. Concluding remarks

We have established a bridge between the HHO method and the general framework of HDG methods where
the key step has been the identification of the numerical trace associated with HHO methods. The bridge
between HHO and HDG methods has allowed us to incorporate into the HDG methods the new, subtle way of
defining the numerical trace for the flux in HHO methods. The present approach can be carried out for many
other partial differential equations for which HDG methods have been already defined.
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traces of the HHO and HDG methods considered here. The third author acknowledges partial support from CEA/DAM.
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