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hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A
POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS∗
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Abstract. We devise and study experimentally adaptive strategies driven by a posteriori error
estimates to select automatically both the space mesh and the polynomial degree in the numerical
approximation of diffusion equations in two space dimensions. The adaptation is based on equili-
brated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann
boundary conditions, for spatially varying polynomial degree, and for mixed rectangular-triangular
grids possibly containing hanging nodes. They deliver a global error upper bound with constant one
and, up to data oscillation, error lower bounds on element patches with a generic constant dependent
only on the mesh regularity and with a computable bound. We numerically assess the estimates and
several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic
exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on
nonnested unstructured triangular grids for a smooth solution and uniform refinement. Exponential
convergence rates are reported on nonmatching triangular grids for the incomplete version on several
benchmarks with a singular solution and adaptive refinement.
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1. Introduction. A posteriori error estimates for elliptic problems have been
studied for several decades. These estimates deliver global upper bounds for the
discretization error as a Hilbertian sum of local (cellwise) error indicators that are
computable solely from the discrete solution. At the same time, they represent local
error lower bounds, up to data oscillation; see, e.g., the recent textbook [44]. They
can be devised under various forms. Among these, equilibrated flux error estimates
offer the salient advantage of delivering error upper bounds with constant one. Such
estimates are typically evaluated by solving local mixed finite element problems on
element patches around mesh vertices; see [6, 16, 22, 28] and the references therein.
Another attractive property of equilibrated flux a posteriori error estimates that was
uncovered recently in the conforming finite element setting (see [6]) is polynomial-
degree-robustness; that is, the generic constant in the local error lower bound turns
out to be uniform with respect to the polynomial degree (it depends only on the
shape-regularity of the underlying meshes). This result stems from nontrivial prop-
erties of mixed finite element spaces, namely from a right inverse of the divergence

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 18,
2015; accepted for publication (in revised form) June 3, 2016; published electronically October 11,
2016.

http://www.siam.org/journals/sisc/38-5/M102668.html
Funding: This work was partly supported by the ERC-CZ project MORE “MOdelling REvisited

+ MOdel REduction” LL1202. The research of the first author was supported by grant 13-00522S
of the Czech Science Foundation. The research of the third author was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(grant 647134 GATIPOR).
†Faculty of Mathematics and Physics, Charles University Prague, 186 75 Prague, Czech Republic

(dolejsi@karlin.mff.cuni.cz).
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operator [11, Corollary 3.4] and from a right inverse of the normal trace [13, Theo-
rem 7.1] on triangular meshes, and from [6, Theorem 5] on rectangular meshes, whose
stability properties are uniform with respect to the polynomial degree. This type of
result is not expected to hold in the more popular setting of residual-based a posteriori
error estimates [30]. The polynomial-degree-robustness of equilibrated flux estimates
was extended recently in [22] to a unified setting encompassing many nonconform-
ing discretizations such as nonconforming finite elements, mixed finite elements, and
interior penalty discontinuous Galerkin methods. Therein, the idea is to introduce,
in addition to the flux reconstruction, a conforming potential reconstruction which is
also built by solving local problems in element patches around vertices.

The recent advances in equilibrated flux a posteriori error estimates have been
presented in the setting of homogeneous Dirichlet boundary conditions, for uniform
polynomial degree, and on matching meshes. The first contribution of this work is
to extend these estimates to the practical setting of inhomogeneous Dirichlet and
Neumann boundary conditions, to cover discretizations with variable polynomial de-
gree, and to allow for mixed rectangular-triangular grids with hanging nodes. These
extensions turn out to be nontrivial: possibly different polynomial degrees need to
be assigned to each patch when reconstructing the flux and the potential, the lo-
cal mixed finite element problems have to be suitably modified on patches touching
the boundary, and the local partition of unity which combines contributions from
all the vertices of a given mesh cell has to be revisited. Additionally, to treat non-
matching grids, we refine in a matching way the patches around each node which is
not a hanging node, but we avoid the matching refinement of the entire grid as well
as triangular subrefinements of rectangular grids, previously used in [21, Appendix]
or [34]. Importantly, we still achieve global error upper bounds with constant one and
polynomial-degree-robust local error lower bounds.

The second contribution of this work is to devise an hp-adaptive strategy driven
by the above polynomial-degree-robust equilibrated flux a posteriori error estimates.
Several criteria for determining whether it is preferable to perform h- (mesh) or p-
(polynomial degree) refinement have been proposed over the years; see, e.g., [1, 5,
15, 19, 23, 24, 25, 26, 29, 30, 38, 39, 40, 42], the survey in [32], and the references
therein. Typically, it is natural to increase the polynomial degree where the solution is
estimated to be sufficiently smooth, and to decrease the mesh size where the solution
is estimated to be rather rough. Therefore, a key ingredient is an estimate of the local
smoothness of the exact solution. In the present setting, we exploit the polynomial-
degree-robustness of the estimate and combine it with three hp-adaptive strategies.
Two of them are adaptations of techniques known from the literature [24, 42]. The
third one is new and is based on the comparison of the error indicator for the current
discrete solution and its local projections onto the discretization space with polynomial
degree minus one and a locally coarser grid. Such an approach is well suited to
discretizations by the discontinuous Galerkin method. We assess the hp-adaptive
strategy using the incomplete interior penalty variant on four benchmark problems
with a locally singular exact solution. Our numerical results show that exponential
convergence rates with respect to degrees of freedom are achieved with the three
strategies, in agreement with the theoretical results from [5, 15, 29, 38, 39].

The paper is organized as follows. In section 2, we briefly describe the setting and
introduce basic notation. In section 3, we devise and analyze equilibrated flux a poste-
riori error estimates for inhomogeneous Dirichlet and Neumann boundary conditions,
varying polynomial degree, and nonmatching mixed rectangular-triangular grids. We
devote section 4 to a brief description of the interior penalty discontinuous Galerkin
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method, a discussion of some implementation aspects, and a numerical illustration of
the asymptotic exactness of our a posteriori error estimators for uniform mesh and
polynomial degree refinement and a smooth solution. In section 5, we present the var-
ious hp-adaptive strategies. Numerical results achieving exponential convergence on
several benchmark problems with singular solutions are finally presented in section 6.

2. Setting. Let Ω ⊂ R2 be a polygonal domain (open, bounded, and connected
set) with unit outward normal nΩ. We suppose that ∂Ω is divided into two simply
connected parts ΓD and ΓN with disjoint interiors, and we assume that |ΓD| > 0. We
consider the Laplace equation: find u : Ω→ R such that

−∆u = f in Ω,(2.1a)

−∇u·nΩ = σN on ΓN,(2.1b)

u = uD on ΓD.(2.1c)

All of what follows can be easily extended to the case where a Neumann condition
is enforced on the whole boundary, by adding a zero-mean value constraint to the
solution and assuming the usual compatibility condition between the data f and σN.

Let H1(Ω) denote the Sobolev space composed of L2(Ω) functions with weak
gradients in [L2(Ω)]2. Then, H1

0,D(Ω) (resp., H1
uD

(Ω)) is composed of all functions

in H1(Ω) with zero trace (resp., with trace equal to uD) on ΓD. The variational
formulation of (2.1) reads as follows: find u ∈ H1

uD
(Ω) such that

(2.2) (∇u,∇v) = (f, v)− 〈σN, v〉ΓN
∀v ∈ H1

0,D(Ω).

Here (·, ·) stands for the L2-inner product on Ω, and ‖·‖ for the associated norm.
Similarly, 〈·, ·〉 stands for the L2-inner product on ∂Ω. We add an index to (·, ·) and
〈·, ·〉 for a (proper) subset of Ω. We suppose that f ∈ L2(Ω), σN ∈ L2(ΓN), and
uD ∈ H1(ΓD), where H1(ΓD) is the one-dimensional Sobolev space on ΓD.

We consider here that a given numerical discretization of (2.2) has been performed
on a partition Th of Ω such that ∪K∈Th = Ω, where each element K ∈ Th is either a
closed triangle or a closed rectangle. We suppose that the intersection of the interiors
of two distinct elements is empty, but we allow for nonmatching meshes; i.e., the
intersection of two different mesh elements can be a node of only one of them, or a
part of an edge of some of them. This gives rise to so-called hanging nodes which are
not vertices of all elements by which they are shared; see Figure 1.

The edges of the mesh Th form the set Eh, with Eext
h the edges lying on the

boundary of Ω. We suppose that the interior of each boundary edge lies entirely in
either ΓD or ΓN, and denote the corresponding subsets of Eext

h by Eext,D
h and Eext,N

h ,
respectively. Similarly, Vh stands for all nonhanging vertices of the mesh Th and
Vext,D
h (Vext,N

h , respectively) for the vertices which lie on some Dirichlet (Neumann)

boundary edge. Note that Vext,D
h ∩ Vext,N

h is not empty unless ΓD = ∂Ω; vertices on

the interface between ΓD and ΓN lie in both Vext,D
h and Vext,N

h in our notation. We

will consider the subset Vext,D
h for the flux reconstruction, and the subset Vext,N

h for
the potential reconstruction. Let Ve stand for the two vertices of the edge e ∈ Eh.
Finally, all edges of an element K ∈ Th are denoted by EK , and those edges that lie
in ΓD (ΓN) are denoted by ED

K (EN
K). The jump operator [[·]] yields the difference of

the traces of the argument from the two mesh elements that share e ∈ E int
h (evaluated

along a fixed unit normal ne of e) and the actual trace on e ∈ Eext
h . Similarly, the

average operator {{·}} yields the mean value of the traces from adjacent mesh elements
on inner edges and the actual trace on boundary edges.
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Fig. 1. Examples of nonmatching triangular (left) and rectangular (right) meshes. For the
element K in gray, we mark by • the nonhanging nodes ai from VK . The patch ωa1 with the values

of the hat function ψa1 is shown, together with the corresponding matching submesh T̂a (left) or all
the patches ωai (right).

Let Rπ
2

:= ( 0 −1
1 0 ) be the matrix of rotation by π

2 . We use the convention Rπ
2
nΩ =

tΩ to link the unit exterior normal and tangential vectors, and similarly on subdomains
of Ω. We let

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K) ∀K ∈ Th}
be the broken Sobolev space with respect to the (nonmatching) mesh Th, and denote
the broken (elementwise) weak gradient by ∇. Similarly, ∇· stands for the broken
weak divergence, and Rπ

2
∇ for the broken weak curl, (Rπ

2
∇v)|K = (−∂yv, ∂xv)t|K for

v ∈ H1(Th) and all K ∈ Th. We will also work with piecewise polynomials: if K is a
triangle, we let Rp(K) := Pp(K) be the space of polynomials of total degree at most
p ≥ 0. If K is a rectangle, we let Rp(K) := Qp(K) be the space of polynomials of
degree at most p in each variable; Qp,p′(K), p, p′ ≥ 0, specifies the degrees separately.
Finally, for a finite-dimensional subspace Vh of L2(Ω), we denote by ΠVh the L2(Ω)-
orthogonal projection onto Vh, and similarly on various subsets of Ω. We will also
denote by Π0

e the L2(e)-orthogonal projection onto constants on a given edge e ∈ Eh.
We make the following assumption covering a large variety of practical meshes.

Assumption 2.1 (nonmatching meshes). For each nonhanging node a ∈ Vh, we
suppose that there exists a unique “hat” function ψa which is such that it is globally
continuous, it belongs to R1(K) on each element K ∈ Th, and it takes the value 1
at the vertex a and the value 0 at all other nonhanging vertices. The values at the
hanging nodes are then obtained by taking the value from the element of which a is
not a vertex. We denote by ωa the support of ψa, and by Ta the set of elements in ωa

that we call patch. We crucially suppose that

(2.3)
∑
a∈VK

ψa|K = 1|K ∀K ∈ Th,

where VK stands for the set of all nonhanging nodes a ∈ Vh of the original mesh Th
such that the element K lies in the patch Ta. For matching meshes, these are simply all
the vertices of the element K, and Ta is the usual patch of all mesh elements sharing
the node a ∈ Vh. Finally, we let T̂a be a matching submesh of Ta, where triangles
can only be refined into triangles, and rectangles into rectangles. We suppose that T̂a
is uniformly shape-regular, i.e., there exists a constant κT̂ such that the ratio ĥK̂/%K̂
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is uniformly bounded by κT̂ for all elements K̂ ∈ T̂a and for all nonhanging nodes

a ∈ Vh. Here ĥK̂ is the diameter of K̂, and %K̂ is the diameter of the largest ball

inscribed in K̂. Note that the union of T̂a over all nonhanging nodes a ∈ Vh does not
need to form a matching refinement of Th; see Figure 1.

3. Equilibrated flux a posteriori error estimates for inhomogeneous
boundary conditions, varying polynomial degree, and nonmatching meshes.
We present in this section a posteriori error estimates of equilibrated flux type which
extend previous results to inhomogeneous boundary conditions, varying polynomial
degree, and nonmatching mixed rectangular-triangular meshes.

3.1. Potential and flux reconstructions. Let uh ∈ H1(Th) be the approxi-
mate solution. Let G(uh) ∈ [L2(Ω)]2 represent its gradient: typically, G(uh) is given
either by the broken weak gradient ∇uh or by a discrete gradient also taking into
account the jumps in uh; see (3.26) below for an example. In practice, uh and G(uh)
are piecewise polynomials; see assumption (3.28) below. They come from a specific
numerical method; cf. section 4.1. In general, uh 6∈ H1(Ω) and −G(uh) 6∈ H(div,Ω),
the space of [L2(Ω)]2 functions with weak divergence in L2(Ω). This leads us to the
following definition.

Definition 3.1 (potential reconstruction). We call a potential reconstruction
any function sĥ constructed from uh which satisfies

sĥ ∈ H1(Ω) ∩ C0(Ω),(3.1a)

sĥ(a) = uD(a) ∀a ∈ Vext,D
h .(3.1b)

Definition 3.2 (equilibrated flux reconstruction). We call an equilibrated flux
reconstruction any function σĥ constructed from G(uh) which satisfies

σĥ ∈ H(div,Ω),(3.2a)

(∇·σĥ, 1)K = (f, 1)K ∀K ∈ Th,(3.2b)

〈σĥ·nΩ, 1〉e = 〈σN, 1〉e ∀e ∈ Eext,N
h .(3.2c)

The continuity of sĥ imposed in (3.1a) is needed in (3.1b) to take point values;
we also notice that (3.2c) requires that 〈σĥ·nΩ, 1〉e be meaningful. In practice, sĥ
and σĥ are piecewise polynomials, so that these requirements are readily met. Notice

that we employ the subscript ĥ to indicate that sĥ and σĥ are constructed using the

refined matching patches T̂a from Assumption 2.1.

3.2. A general a posteriori error estimate. Our first important result is the
generalization of [22, Theorem 3.3] to problem (2.1); cf. also [2, 3, 9, 27, 35, 36] and
the references therein. Recall that if K is a triangle or a rectangle from the mesh Th,
and e is one of its edges, the following trace inequality holds:

(3.3) ‖v −Π0
ev‖e ≤ Ct,K,eh

1
2
e ‖∇v‖K ∀v ∈ H1(K).

It is shown in [33, Lemma 3.5] that C2
t,K,e = Cth

2
K/|K|, where Ct ≈ 0.77708 if K is

a triangle and Ct ≈ 0.31950 if K is a rectangle.

Theorem 3.3 (general a posteriori error estimate). Let u be the weak solution of
(2.2). Let uh ∈ H1(Th) be an arbitrary approximation of u, with G(uh) ∈ [L2(Ω)]2 an
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approximation of ∇u. Let sĥ be a potential reconstruction in the sense of Definition
3.1, and σĥ an equilibrated flux reconstruction in the sense of Definition 3.2. Then,

(3.4a) ‖∇u−G(uh)‖2 ≤ η2:=
∑
K∈Th

η2
K

with

η2
K :=

(
‖G(uh) + σĥ‖K︸ ︷︷ ︸

ηCR,K , constitutive rel.

+
hK
π
‖f −∇·σĥ‖K︸ ︷︷ ︸

ηosc,K , data osc.

+
∑
e∈EN

K

Ct,K,eh
1
2
e ‖σĥ·nΩ − σN‖e

︸ ︷︷ ︸
ηΓN,K

,Neumann BC

)2

+
(
‖G(uh)−∇sĥ‖K︸ ︷︷ ︸

ηNC,K , pot. nonconformity

+ min
v∈H1(K),

v|∂K∩ΓD
=uD−sĥ

v|∂K\ΓD
=0

‖∇v‖K

︸ ︷︷ ︸
ηΓD,K

,Dirichlet BC

)2

.

(3.4b)

Proof. Let ∇s be the projection of G(uh) onto ∇H1
uD

(Ω); i.e., s ∈ H1
uD

(Ω) and
(∇s,∇v) = (G(uh),∇v) for all v ∈ H1

0,D(Ω). This leads to the Pythagorean equality

(3.5) ‖∇u−G(uh)‖2 = ‖∇(u− s)‖2 + ‖∇s−G(uh)‖2.

The first term in (3.5) can be rewritten as follows, since (u− s) ∈ H1
0,D(Ω):

‖∇(u− s)‖ = sup
ϕ∈H1

0,D(Ω); ‖∇ϕ‖=1

(∇(u− s),∇ϕ),

= sup
ϕ∈H1

0,D(Ω); ‖∇ϕ‖=1

(∇u−G(uh),∇ϕ),

= sup
ϕ∈H1

0,D(Ω); ‖∇ϕ‖=1

{(f, ϕ)− 〈σN, ϕ〉ΓN
− (G(uh),∇ϕ)},

where we have used the definition of s and (2.2). Fix ϕ ∈ H1
0,D(Ω) with ‖∇ϕ‖ = 1.

Adding and subtracting (σĥ,∇ϕ), where σĥ is the equilibrated flux reconstruction in
the sense of Definition 3.2, and using the Green theorem, we infer that

(f, ϕ)−〈σN, ϕ〉ΓN
−(G(uh),∇ϕ) = (f−∇·σĥ, ϕ)+〈σĥ·nΩ−σN, ϕ〉ΓN

−(G(uh)+σĥ,∇ϕ).

The first and last terms above are treated exactly as in the proof of [22, Theorem 3.3],
using in particular the equilibration (3.2b). For the middle term, we observe that

〈σĥ·nΩ − σN, ϕ〉ΓN
=
∑
K∈Th

∑
e∈EN

K

〈σĥ·nΩ − σN, ϕ〉e =
∑
K∈Th

∑
e∈EN

K

〈σĥ·nΩ − σN, ϕ−Π0
eϕ〉e

≤
∑
K∈Th

∑
e∈EN

K

{
‖σĥ·nΩ − σN‖eCt,K,eh

1
2
e ‖∇ϕ‖K

}
,

owing to (3.2c), the Cauchy–Schwarz inequality, and (3.3). Note that only those
elements having (at least) one edge located on the Neumann boundary are concerned.
This leads to the terms composing the first line of (3.4b).
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Fig. 2. Notation for the inhomogeneous Dirichlet boundary condition estimate, triangle example.

Consider now the second term in (3.5). Proceeding as in [27, section 4.1], we infer
that

‖∇s−G(uh)‖2 = min
w∈H1

uD
(Ω)
‖∇w −G(uh)‖2

≤ min
w∈H1

uD
(Ω)

∑
K∈Th

(
‖∇sĥ −G(uh)‖K + ‖∇(w − sĥ)‖K

)2
≤
∑
K∈Th

(
‖∇sĥ −G(uh)‖K + min

w∈H1(K),
w|∂K∩ΓD

=uD

w|∂K\ΓD
=sĥ

‖∇(w − sĥ)‖K
)2

,

where the first inequality follows by localization on mesh elements and the triangle
inequality, and the second by restricting the global minimum to elementwise minima
over functions w ∈ H1(K) with values on ∂K fixed to uD or sĥ, respectively, thanks to
conditions (3.1a) and (3.1b). Note that the elements concerned by the minimization
are those having (at least) one edge located on the Dirichlet boundary. This leads to
the terms composing the second line of (3.4b).

The expression for the general Dirichlet boundary condition error from Theo-
rem 3.3 is not computable. We now derive a computable upper bound for this quan-
tity. The proof is skipped since it follows that in [9, Theorem 5.1]; it consists in
bounding the minimum by considering a function given by the Dirichlet boundary
misfit on the concerned edges and extending it linearly to zero at the cell barycenter
using polar coordinates.

Theorem 3.4 (inhomogeneous Dirichlet boundary condition estimate). Let K ∈
Th be such that |∂K ∩ΓD| > 0. Let xK denote the barycenter of K. For each e ∈ ED

K ,
consider the polar coordinates r, θ centered at xK , where the triangle Ke given by
the edge e and the point xK is described by θ ∈ [αe, βe] and r ∈ [0, Re(θ)]; Re(θ) is
thus the distance between xK and xθ ∈ e (see Figure 2 for K being a triangle). Set
ge(θ) := (uD − sĥ)(xθ), and denote by ′ the differentiation with respect to θ. Then

min
v∈H1(K),

v|∂K∩ΓD
=uD−sĥ

v|∂K\ΓD
=0

‖∇v‖K

≤
∑
e∈ED

K

{
1

2

∫ βe

αe

{
[ge(θ)]

2 + [(g′e(θ)Re(θ)− ge(θ)R′e(θ))/Re(θ)]2
}

dθ

} 1
2

.

This computable estimate is of higher order whenever uD has enough regularity;
see the discussions in [27, 9].
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3.3. Reconstructions from local problems with variable polynomial de-
gree on matching patches. In this section, we extend the material of [22, sec-
tion 3.1.3] in two ways. First, we treat meshes with hanging nodes. Our concept does
not require the existence of a global matching refinement of the original mesh Th and
is rather different from the previous approaches in [21, Appendix], [2, 3], and [34]; see
also the references therein. In particular, the present potential and flux reconstruc-
tions are constructed in the individually refined matching patches T̂a around each
nonhanging node a ∈ Vh; see Assumption 2.1. Second, the reconstructions on each
patch T̂a can be assigned a specific polynomial degree pa ≥ 0 (see (3.30) below). Then,
we let Vĥ(ωa) be the Raviart–Thomas mixed finite element space of degree pa on the

mesh T̂a of ωa. Functions in this space belong to [Ppa(K̂)]2 + Ppa(K̂)x if K̂ is a

triangle, and to Qpa+1,pa(K̂)×Qpa,pa+1(K̂) if K̂ is a rectangle in T̂a. Moreover, their

normal trace over the edges inside T̂a is in Ppa(ê) and is continuous [8, 37]. Recalling
the notation of section 2, let Qĥ(ωa) be the space of discontinuous piecewise polyno-

mials on T̂a being in Rpa(K̂) on each K̂ ∈ T̂a. Alternatively, Brezzi–Douglas–Marini
spaces could also be considered; see [22, Remark 3.21].

The reconstruction of an equilibrated flux σĥ according to Definition 3.2, for
varying polynomial degree, general boundary conditions, and nonmatching mixed
meshes, takes the following form.

Definition 3.5 (flux reconstruction σĥ). Assume that G(uh) satisfies the hat-
function orthogonality on the patches ωa around nonhanging nodes of Assumption
2.1:

(3.6) (G(uh),∇ψa)ωa = (f, ψa)ωa − 〈σN, ψa〉ΓN
∀a ∈ Vh \ Vext,D

h .

For each a ∈ Vh, prescribe ςa
ĥ
∈ Va

ĥ,N
and r̄a

ĥ
∈ Qa

ĥ
by solving

(ςa
ĥ
,vĥ)ωa − (r̄a

ĥ
,∇·vĥ)ωa = −(ψaG(uh),vĥ)ωa ∀vĥ ∈ Va

ĥ
,(3.7a)

(∇·ςa
ĥ
, qĥ)ωa = (ψaf −∇ψa·G(uh), qĥ)ωa ∀qĥ ∈ Qa

ĥ
(3.7b)

with the following spaces: for all a ∈ V int
h ,

Va
ĥ,N

:= Va
ĥ

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa = 0},(3.8a)

Qa
ĥ

:= {qĥ ∈ Qĥ(ωa); (qĥ, 1)ωa = 0},(3.8b)

and, for all a ∈ Vext
h , with g̃aN := ΠVĥ(ωa)·n(ψaσN),

Va
ĥ,N

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa\∂Ω = 0, vĥ·nωa |∂ωa∩ΓN
= g̃aN},(3.9a)

Va
ĥ

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa\∂Ω = 0, vĥ·nωa |∂ωa∩ΓN = 0},(3.9b)

while

Qa
ĥ

:= {qĥ ∈ Qĥ(ωa); (qĥ, 1)ωa = 0}, a ∈ Vext
h \ Vext,D

h ,(3.10a)

Qa
ĥ

:= Qĥ(ωa), a ∈ Vext,D
h .(3.10b)

Then, extending ςa
ĥ

by zero outside ωa, set

(3.11) σĥ :=
∑
a∈Vh

ςa
ĥ
.



A3228 V. DOLEJŠÍ, A. ERN, AND M. VOHRALÍK

The above local problems differ from those of [6, equation (9)] or [22, Construc-
tion 3.4] in only two ways. First, whereas the datum G(uh) and the hat function
ψa are linked with the original (nonmatching) mesh Th, the equilibration is being

performed on the refined matching patches T̂a around each nonhanging node a ∈ Vh.
Note that T̂a typically has more elements than just those sharing the (nonhanging)
vertex a. The second difference appears for vertices which lie on the Neumann bound-
ary ΓN, i.e., whenever a lies on ∂Ω and |∂ωa ∩ ΓN| > 0: an inhomogeneous Neumann
boundary condition is encoded in the space Va

ĥ,N
of (3.9a) whereby ςa

ĥ
·nωa |∂ωa∩ΓN

is

enforced to be the polynomial projection of ψaσN onto the space of normal traces of
the local mixed finite element space Vĥ(ωa). Problem (3.7) for a ∈ Vext

h is a pure
Neumann problem when ∂ωa ∩ ΓN = ∂ωa ∩ ∂Ω, i.e., when the whole boundary of ωa

lying on ∂Ω is on the Neumann boundary. This happens if and only if a ∈ Vext
h \Vext,D

h

in our notation. The Neumann compatibility condition then requires that

(ψaf −∇ψa·G(uh), 1)ωa = 〈ΠVĥ(ωa)·n(ψaσN), 1〉∂ωa∩ΓN
.

Noting that 〈ΠVĥ(ωa)·n(ψaσN), 1〉∂ωa∩ΓN
= 〈ψaσN, 1〉ΓN

, this is nothing but (3.6) for

a ∈ Vext
h \ Vext,D

h . Should |∂ωa ∩ ΓD| > 0 for a boundary vertex, we have a local
Neumann–Dirichlet problem, with the normal trace of ςa

ĥ
not prescribed on ∂ωa∩ΓD.

Lemma 3.6 (properties of σĥ). The following holds:

σĥ ∈ H(div,Ω),(3.12a)

(f −∇·σĥ, vh)K = 0 ∀K ∈ Th, ∀vh ∈ Rmina∈VK pa(K),(3.12b)

〈σĥ·nΩ − σN, vh〉e = 0 ∀e ∈ Eext,N
h , ∀vh ∈ Pmina∈Ve pa

(e).(3.12c)

Thus, in particular the three properties in (3.2) are satisfied.

Proof. The fluxes ςa
ĥ
∈ Va

ĥ,N
have a zero normal trace over ∂ωa \ ∂Ω, so that

their extension by zero outside ωa is in H(div,Ω), even though each refined matching

patch T̂a is defined independently from the rest of the domain. Next, the Neumann
compatibility condition (3.6) implies that (3.7b) actually holds for all functions in
Qĥ(ωa). Now fix an element K in the original (nonmatching) partition Th and a

polynomial vh ∈ Rmina∈VK pa(K). As T̂a is a refinement of Ta composed of elements
of the same (triangular/rectangular) type owing to Assumption 2.1, the function vh
is in the space Qĥ(ωa) for all the refined matching patches T̂a such that a ∈ VK .
Employing the fact that σĥ|K =

∑
a∈VK ς

a
ĥ
|K and (3.7b), we find

(f −∇·σĥ, vh)K =
∑
a∈VK

(ψaf −∇·ςaĥ , vh)K =
∑
a∈VK

(∇ψa·G(uh), vh)K = 0,

where one crucially uses the partition of unity (2.3). Finally, let e ∈ Eext,N
h be a Neu-

mann edge, and let vh ∈ Pmina∈Ve pa
(e). Employing the fact that σĥ|e =

∑
a∈Ve ς

a
ĥ

and using the normal trace condition imposed on Va
ĥ,N

in (3.9a), we infer that

〈σĥ·nΩ, vh〉e =
∑

a∈Ve〈ςaĥ ·nΩ, vh〉e =
∑

a∈Ve〈ψaσN, vh〉e = 〈σN, vh〉e.
Remark 3.7 (local flux minimization). Similarly to [22, Remark 3.7], Definition 3.5

can be equivalently stated as

(3.13) ςa
ĥ

:= arg min
vĥ∈V

a
ĥ,N

,∇·vĥ=ΠQa
ĥ

(ψaf−∇ψa·G(uh))

‖ψaG(uh) + vĥ‖ωa ∀a ∈ Vh.
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We now turn to the potential reconstruction. Being in two space dimensions, we
can construct sĥ via the same local problems (3.7), upon merely replacing the right-
hand sides and adjusting the spaces Va

ĥ
and Qa

ĥ
close to the boundary. This turns out

to be equivalent to a primal conforming finite element solve; see Remark 3.10 below.

Definition 3.8 (potential reconstruction sĥ). For each a ∈ Vh, prescribe ςa
ĥ
∈

Va
ĥ,N

and r̄a
ĥ
∈ Qa

ĥ
by solving

(ςa
ĥ
,vĥ)ωa − (r̄a

ĥ
,∇·vĥ)ωa = −(Rπ

2
∇(ψauh),vĥ)ωa ∀vĥ ∈ Va

ĥ
,(3.14a)

(∇·ςa
ĥ
, qĥ)ωa = 0 ∀qĥ ∈ Qa

ĥ
(3.14b)

with the following spaces: for all a ∈ V int
h ,

Va
ĥ,N

:= Va
ĥ

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa = 0},(3.15a)

Qa
ĥ

:= {qĥ ∈ Qĥ(ωa); (qĥ, 1)ωa = 0},(3.15b)

and, for all a ∈ Vext
h , with g̃aD := ΠVĥ(ωa)·n(∇(ψauD)·tΩ),

Va
ĥ,N

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa\∂Ω = 0, vĥ·nωa |∂ωa∩ΓD
= g̃aD},(3.16a)

Va
ĥ

:= {vĥ ∈ Vĥ(ωa); vĥ·nωa |∂ωa\∂Ω = 0, vĥ·nωa |∂ωa∩ΓD = 0},(3.16b)

while

Qa
ĥ

:= {qĥ ∈ Qĥ(ωa); (qĥ, 1)ωa = 0}, a ∈ Vext
h \ Vext,N

h ,(3.17a)

Qa
ĥ

:= Qĥ(ωa), a ∈ Vext,N
h .(3.17b)

Then, there is a continuous, piecewise polynomial function sa
ĥ

on ωa such that

−Rπ
2
∇sa

ĥ
:= ςa

ĥ
,(3.18a)

sa
ĥ
|∂ωa\∂Ω := 0,(3.18b)

and extending sa
ĥ

by zero outside ωa, we set sĥ :=
∑

a∈Vh s
a
ĥ

.

Note that for boundary vertices a ∈ Vext
h \Vext,N

h (which are such that ∂ωa∩ΓD =
∂ωa ∩ ∂Ω, i.e., the whole boundary of ωa lying on ∂Ω is on the Dirichlet boundary),
(3.14) is a pure Neumann problem: the normal trace of ςa

ĥ
on ∂ωa ∩ ΓD is prescribed

by the (polynomial projection of the) tangential trace of ∇(ψauD). The Neumann
compatibility condition then requests that

(3.19) 〈g̃aD, 1〉∂ωa∩ΓD
= 〈ΠVĥ(ωa)·n(∇(ψauD)·tΩ), 1〉∂ωa∩ΓD

= 0.

This is immediate from developing the above right-hand side since

〈g̃aD, 1〉∂ωa∩ΓD
=− 〈Rπ

2
∇(ψauD)·nΩ, 1〉∂ωa∩ΓD

= −〈Rπ
2
∇(ψauD)·nωa , 1〉∂ωa

=− (∇·(Rπ
2
∇(ψauD)), 1)ωa − (Rπ

2
∇(ψauD),∇1)ωa = 0(3.20)

for any smooth enough extension uD of the Dirichlet boundary condition uD. Should
|∂ωa ∩ ΓN| > 0, (3.14) is a local Neumann–Dirichlet problem, with the normal trace
of ςa

ĥ
not prescribed on ∂ωa ∩ ΓN.
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Lemma 3.9 (properties of sĥ). Conditions (3.1a) and (3.1b) are satisfied. More-

over, the following holds for all e ∈ Eext,D
h :

(3.21) (∇sĥ·tΩ)|ΓD
= ΠPmina∈Ve pa

(e)(∇uD·tΩ)|ΓD
.

Proof. Condition (3.1a) is met by construction, since all sa
ĥ

are continuous and

zero on the part of the boundary of ωa lying inside Ω. We next show (3.21). Let

e ∈ Eext,D
h and let vh ∈ Pmina∈Ve pa

(e). Since −Rπ
2
∇sĥ =

∑
a∈Vh ς

a
ĥ

, using the normal

trace condition imposed on Va
ĥ,N

in (3.16a), we infer that

〈−Rπ
2
∇sĥ·nΩ, vh〉e =

∑
a∈Ve

〈ςa
ĥ
·nΩ, vh〉e =

∑
a∈Ve

〈∇(ψauD)·tΩ, vh〉e = 〈∇uD·tΩ, vh〉e,

and (3.21) follows from −Rπ
2
∇sĥ·nΩ = ∇sĥ·tΩ. To show (3.1b), we reason as follows:

for each a ∈ Vext,D
h , ∇sa

ĥ
·tΩ preserves edgewise mean values of ∇(ψauD)·tΩ for all

e ∈ Eext,D
h contained in ∂ωa. This follows as above from (3.18a) and (3.16a). Moreover,

by (3.18b), sa
ĥ
(a′) = 0 = (ψauD)(a′) for the other vertices a′ of ωa lying on ∂ωa ∩ΓD.

Thus, sa
ĥ
(a) = (ψauD)(a) = uD(a), and the conclusion follows from the definition of

sĥ.

Remark 3.10 (local potential minimization). As in [22, Remark 3.10], Defini-
tion 3.8 can be equivalently stated as ςa

ĥ
:= arg minvĥ∈V

a
ĥ,N

,∇·vĥ=0‖Rπ
2
∇(ψauh) +

vĥ‖ωa for all a ∈ Vh. Then, a discrete primal formulation is

(3.22) sa
ĥ

:= arg min
vh∈V a

h,D

‖∇(ψauh − vh)‖ωa ∀a ∈ Vh,

where V a
h,D denotes continuous piecewise polynomials on T̂a such that Rπ

2
∇V a

h,D =
Va
ĥ,N

. Functions in V a
h,D are polynomials of total degree pa + 1 on each triangle from

T̂a, and of degree at most pa + 1 in each variable on each rectangle from T̂a. They are
zero on the whole boundary ∂ωa for a ∈ V int

h , and zero on ∂ωa\∂Ω for a ∈ Vext
h \Vext,D

h ,

and, for a ∈ Vext,D
h , the Dirichlet boundary condition on ∂ωa \ ΓN is given by

(∇vh·tΩ)|e = ΠVĥ(ωa)·nωa
(∇(ψauD)·tΩ)|e ∀e ∈ Eext,D

h , e ⊂ ∂ωa,

vh(a) = uD(a), vh|∂ωa\∂Ω = 0.

Let V a
h be as V a

h,D, with a homogeneous Dirichlet boundary condition everywhere on
∂ωa \ ΓN. Then, (3.22) is further equivalent to finding sa

ĥ
∈ V a

h,D such that

(∇sa
ĥ
,∇vh) = (∇(ψauh),∇vh) ∀vh ∈ V a

h .

Remark 3.11 (reconstruction on a matching refinement of Th). When ∪a∈Vh T̂a
is a matching refinement of Th (this often happens on triangular meshes but typically
not on rectangular meshes), it is possible to use reconstructions on the patches ωâ

of all vertices sharing the given refinement node â instead of the larger patches ωa.
For the potential, there is indeed no problem, as the source term and Neumann
data in (3.14) are both homogeneous, so that the Neumann compatibility holds. For
the flux, we set σĥ := σ1,ĥ + σ2,ĥ, σ1,ĥ :=

∑
a∈Vh ς

a
1,ĥ

, and σ2,ĥ :=
∑

a∈Vh ς
a
2,ĥ

from the proof of Theorem 3.12 below, for which Lemma 3.6 still holds, so that we
can easily evaluate ηosc,K and ηΓN,K in (3.4b), whereas we estimate ‖G(uh) + σĥ‖ ≤
‖G(uh)+σ1,ĥ‖+‖σ2,ĥ‖ and bound ‖σ2,ĥ‖ as in (3.39) to avoid its actual construction.
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3.4. Local efficiency. In this section, we extend the polynomial-degree-robust,
local error lower bound from [22, Theorem 3.17] to inhomogeneous boundary con-
ditions, variable polynomial degree, and nonmatching mixed meshes under Assump-
tion 2.1. This last extension turns out to be rather involved, as the refined matching
patches T̂a are not necessarily composed of elements sharing the vertex a. For each
nonhanging node a ∈ Vh, denote the set of vertices of T̂a where the hat function ψa

is nonzero by V̂a. For each â ∈ V̂a, define the spaces

H1
∗ (ωâ) := {v ∈ H1(ωâ); (v, 1)ωâ

= 0}, â 6∈ ΓD,(3.23a)

H1
∗ (ωâ) := {v ∈ H1(ωâ); v = 0 on ∂ωâ ∩ ∂ΓD}, a ∈ ΓD,(3.23b)

where the subdomains ωâ are composed of the elements K̂ of the refined matching
patch T̂a which share the fine vertex â. Then, the Poincaré–Friedrichs inequality gives

(3.24) ‖v‖ωâ
≤ CPF,ωâ

hωâ
‖∇v‖ωâ

∀v ∈ H1
∗ (ωâ);

cf. Veeser and Verfürth [43] and the references therein. Similarly, the broken Poincaré–
Friedrichs inequality states that

(3.25) ‖v‖ωâ
≤ CbPF,ωâ

hωâ

(
‖∇v‖ωâ

+

{ ∑
ê 6⊂ΓN, â∈Vê

h−1
ê ‖Π0

ê[[v]]‖2ê

} 1
2
)

for any piecewise (with respect to T̂a) H1 function v on ωâ; the condition (v, 1)ωâ
= 0

needs to be imposed when â lies in the interior of the domain Ω or in the interior
of the Neumann boundary ΓN; see Brenner [7, Corollary 6.3 and Remark 1.1] and
the references therein. Use the notation ψâ for the usual hat function on ωâ, and
define Ccont,PF := maxa∈Vh maxâ∈V̂a{1 + CPF,ωâ

hωâ
‖∇ψâ‖∞,ωâ

} and Ccont,bPF :=

maxa∈Vh maxâ∈V̂a{1+CbPF,ωâ
hωâ
‖∇ψâ‖∞,ωâ

}. The constants Ccont,PF and Ccont,bPF

depend only on the mesh regularity parameter κT̂ of Assumption 2.1 and can be
estimated from above; see the discussion in [22, proofs of Lemmas 3.12 and 3.13 and
section 4.3.2].

To state our local efficiency result, we need some more assumptions. First, we
link the discrete gradient G(uh) to the broken gradient ∇uh and the jumps of uh via

(3.26) G(uh) = ∇uh − ϑ
∑
e∈Eh

le([[uh]]),

where ϑ ∈ {−1, 0, 1} is a parameter (cf. (4.2) below), and the lifting operator le :
L2(e)→ [P0(Te)]2 is such that (cf. [17, section 4.3])

(3.27) (le([[uh]]),vh)Te = 〈{{vh}}·ne, [[uh]]〉e ∀vh ∈ [P0(Te)]2,

where Te denotes the elements of the nonmatching mesh Th sharing the edge e. More-
over, we assume henceforth that uh and G(uh) are piecewise polynomials in the sense

(3.28) uh ∈ Sh,p, G(uh) ∈ ∇Sh,p,

where p := {pK ∈ N, K ∈ Th} denotes the elementwise polynomial degree and

(3.29) Sh,p := {vh ∈ H1(Th); vh|K ∈ RpK (K) ∀K ∈ Th}.
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Then the polynomial degrees pa assigned to nonhanging vertices of section 3.3 are

(3.30) pa := max
K∈Ta

pK ∀a ∈ Vh.

Below we will crucially use polynomial-degree stability of mixed finite element meth-
ods in the form of [6, Theorem 7], based on [11, 13], which we employ on the fine
matching patches sharing the vertex â partitioning ωâ; we let Cst be the constant
of [22, inequality (3.40)], depending only on κT̂ .

Note added in proof. When extending slightly the equilibration patches ωa

and proceeding as in [20], the factor hωa maxâ∈V̂a‖∇ψâ‖∞,ωâ
can actually be removed

in the statement below, leading to full robustness of (3.31) with respect to the number
of levels of hanging nodes. Details can be found in [20, Appendix A].

Theorem 3.12 (polynomial-degree-robust local efficiency for varying polynomial
degree, inhomogeneous boundary conditions, mixed rectangular-triangular meshes,
and meshes with hanging nodes). Let u be the weak solution of (2.2), let uh ∈ Sh,p, and
let G(uh) ∈ ∇Sh,p. Assume that the local hat-function orthogonality on the original
patch domains ωa (3.6) holds, and define by (3.30) the reconstruction polynomial
degrees. Then, for σĥ given by Definition 3.5, there holds, for all K ∈ Th,

‖G(uh) + σĥ‖K ≤
∑
a∈VK

{
4(2CstCcont,PF + CbPF,ωahωa max

â∈V̂a
‖∇ψâ‖∞,ωâ

)

× ‖∇u−G(uh)‖ωa + 2Cst(∆f,ωa + ∆N,ωa)

}
,

(3.31)

with the oscillation of the source term/inhomogeneous Neumann condition given by

∆f,ωâ
:=

{ ∑
K̂∈T̂a

(hK̂
π
‖ψâf −ΠQĥ(ωâ)(ψâf)‖K̂

)2
} 1

2

, ∆f,ωa :=

{∑
â∈V̂a

∆2
f,ωâ

} 1
2

,

∆N,ωâ
:=

{ ∑
K̂∈T̂a

{ ∑
ê∈EK̂ , ê⊂ΓN

(
Ct,K̂,êh

1
2

ê ‖(I −ΠVĥ(ωa)·n)(ψâσN)‖ê
)}2} 1

2

,

and ∆N,ωa := {∑â∈V̂a ∆2
N,ωâ
} 1

2 .

Consider now Definition 3.8 of sĥ. Then, for all K ∈ Th, with the constant C
depending only on κT̂ (see [22, section 4.3.2]), the following holds:

‖G(uh)−∇sĥ‖K ≤ 4CstCcont,bPF

∑
a∈VK

‖∇u−G(uh)‖ωa +
∑
a∈VK

2Cst∆D,ωa

+ C
∑
a∈VK

{∑
â∈V̂a

∑
ê 6⊂ΓN, â∈Vê

h−1
ê ‖Π0

ê[[u− uh]]‖2ê

} 1
2

,

(3.32)

with the inhomogeneous Dirichlet condition oscillation ∆D,ωa := {∑â∈V̂a ∆2
D,ωâ
} 1

2 ,

∆D,ωâ
:=

{ ∑
K̂∈T̂a

{ ∑
ê∈EK̂ , ê⊂ΓD

(
Ct,K̂,êh

1
2

ê ‖(I −ΠVĥ(ωa)·n)(∇(ψâuD)·tΩ)‖ê
)}2} 1

2

.
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Proof. Fix an element K of the original nonmatching mesh Th. Employing the
fact that σĥ|K =

∑
a∈VK ς

a
ĥ
|K from Definition 3.5, the partition of unity (2.3), and

the triangle inequality, we infer that

(3.33) ‖G(uh) + σĥ‖K =

∥∥∥∥ ∑
a∈VK

(ψaG(uh) + ςa
ĥ

)|K
∥∥∥∥
K

≤
∑
a∈VK

‖ψaG(uh) + ςa
ĥ
‖ωa .

Similarly, for the potential reconstruction, it is enough to bound ‖Rπ
2
∇(ψauh)+ςa

ĥ
‖ωa

with ςa
ĥ

given by Definition 3.8. We reason in several steps:

Step 1. The polynomial degree pa of the reconstructions σĥ and sĥ on the refined

matching patch T̂a is fixed by (3.30). This choice ensures that pa is high enough for
the conditions (3.41) and (3.43) of [22] to hold, so that we can rely on previous results
of [6, 22] in this respect.

Step 2. For interior vertices a ∈ V int
h on matching triangular or rectangular

meshes, taking into account the previous point and the fact that the contributions on
boundary edges e ∈ EN

K and e ∈ ED
K in (3.31) and (3.32), respectively, are discarded

by the hat function ψa, the assertions follow from [22, Theorem 3.17]. Indeed, now

T̂a = Ta is formed only by (one-type) elements sharing the vertex a, the set V̂a defined
above contains only the vertex a, so that ωâ = ωa at all occurrences, and κT̂ = κT .

Step 3. For interior vertices a ∈ V int
h on matching mixed rectangular-triangular

meshes, a careful inspection of the proof of [6, Theorem 7] implies (3.31) and (3.32) as
in [22, Theorem 3.17]. The key is that the constructive proof goes over the individual
elements and that the normal traces of Raviart–Thomas elements on both triangular
and rectangular elements are polynomials of degree pa on each edge (see section 3.3),
so that they can easily be matched.

Step 4. For boundary vertices a ∈ Vext
h on matching meshes, the inhomogeneous

Neumann and Dirichlet boundary conditions can be treated as we show below in the
general setting of nonmatching meshes.

Step 5. We now move to treating the general situation for fluxes. Let a ∈ VK ; i.e.,
a is a nonhanging node of the original partition Th such that the element K lies in the
patch Ta (see Assumption 2.1). Recall that Ta is possibly nonmatching, with elements

that do not share a. As the mesh T̂a of ωa is matching and respects the element type
upon refinement, the hat function ψa on the original patch Ta of the domain ωa can
be expressed in terms of the fine hat functions ψâ in the form ψa =

∑
â∈V̂a câψâ

with coefficients 0 < câ ≤ 1. There is no orthogonality with respect to the fine hat
functions ψâ on the fine patch domains ωâ, in contrast to (3.6), so that we are led to
define the corresponding hat-orthogonality misfits on ωâ by

(3.34) %â := {(fψâ −G(uh)·∇ψâ, 1)ωâ
− 〈ψâσN, 1〉∂ωâ∩ΓN

}|ωâ|−1.

Step 6. For each â ∈ V̂a, we now identify a local problem posed in the space
H1
∗ (ωâ) (see (3.23)) and show that its solution is a lower bound on the energy error

and data oscillation. It differs from that of [22, Lemma 3.12] by %â defined in (3.34)
and by the inhomogeneous Neumann boundary condition. It reads as follows: find
râ ∈ H1

∗ (ωâ) such that

(3.35) (∇râ,∇v)ωâ
= −(τ â

h ,∇v)ωâ
+(gâ, v)ωâ

−〈ΠVĥ(ωâ)·nψâσN, v〉∂ωâ∩ΓN
−(%â, v)ωâ
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for all v ∈ H1
∗ (ωâ), where we define τ â

h := ψâG(uh) and gâ := ΠQĥ(ωâ)(ψâf) −
∇ψâ·G(uh). Note that the Neumann compatibility condition of this problem is sat-
isfied owing to the definition (3.34) of %â and owing to the use of L2(Ω)-projections.
Note also that ‖∇râ‖ωâ

= supv∈H1
∗(ωâ); ‖∇v‖ωâ

=1(∇râ,∇v)ωâ
, and recall the inequality

‖∇(ψâv)‖ωâ
≤ Ccont,PF‖∇v‖ωâ

; cf. the beginning of this subsection. Then, proceed-
ing as in [22, Lemma 3.12 and Theorem 3.17] and using the definition (2.2) of the
weak solution, we infer that the contribution to ‖∇râ‖ωâ

by the first three terms on
the right-hand side of (3.35) can be bounded by, with the above notation,

Ccont,PF‖∇u−G(uh)‖ωâ
+ ∆f,ωâ

+ ∆N,ωâ
;

in particular, the Neumann boundary term is estimated as in the proof of Theorem 3.3.
Finally, fix v ∈ H1

∗ (ωâ) with ‖∇v‖ωâ
= 1, employ the Cauchy–Schwarz inequality

|(%â, v)ωâ
| ≤ ‖%â‖ωâ

‖v‖ωâ
, and estimate, using (3.24),

‖%â‖ωâ
≤ |(∇u−G(uh),∇ψâ)ωâ

||ωâ|−1|ωâ|
1
2 ≤ ‖∇u−G(uh)‖ωâ

‖∇ψâ‖∞,ωâ
,

‖v‖ωâ
≤ CPF,ωâ

hωâ
,

so that supv∈H1
∗(ωâ); ‖∇v‖ωâ

=1(%â, v)ωâ
≤ Ccont,PF‖∇u − G(uh)‖ωâ

. Collecting these

bounds, we arrive at

(3.36) ‖∇râ‖ωâ
≤ 2Ccont,PF‖∇u−G(uh)‖ωâ

+ ∆f,ωâ
+ ∆N,ωâ

.

Step 7. Define the mixed finite approximations of problems (3.35) for each â ∈ V̂a:

ς â
1,ĥ

:= arg min
vĥ∈V

â
ĥ,N

,∇·vĥ=Π
Qâ
ĥ

(ψâf−∇ψâ·G(uh)−%â)

‖ψâG(uh) + vĥ‖ωâ
,

similarly to (3.13), but on the fine patch domains ωâ. As all the data of (3.35) are
piecewise polynomials, the stability of [6, Theorem 7] (see also [22, Corollary 3.16])
and Step 3 immediately yield

(3.37) ‖ψâG(uh) + ς â
1,ĥ
‖ωâ
≤ Cst‖∇râ‖ωâ

.

Step 8. Define ςa
1,ĥ

:=
∑

â∈V̂a câς
â
1,ĥ

. Using ψa =
∑

â∈V̂a câψâ, summing as in [22,

Lemma 3.22] (the considered elements have at most four edges), and employing câ ≤ 1,

‖ψaG(uh) + ςa
1,ĥ
‖2ωa

=
∑
K̂∈T̂a

∥∥∥∥ ∑
â∈VK̂

câ(ψâG(uh) + ς â
1,ĥ

)|K̂
∥∥∥∥2

K̂

≤ 4
∑
â∈V̂a

‖ψâG(uh) + ς â
1,ĥ
‖2ωâ

;

here VK̂ simply stands for the vertices of the fine element K̂. Combining this estimate
with the bounds (3.37) and (3.36), we arrive at

‖ψaG(uh) + ςa
1,ĥ
‖ωa(3.38)

≤ 2Cst

{∑
â∈V̂a

(2Ccont,PF‖∇u−G(uh)‖ωâ
+ ∆f,ωâ

+ ∆N,ωâ
)2

} 1
2

≤ 2Cst

(
4Ccont,PF‖∇u−G(uh)‖ωa + ∆f,ωa + ∆N,ωa

)
.
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Step 9. Because of its divergence, the function ςa
1,ĥ

cannot be used as the func-

tion vĥ in (3.13). To fix this, we now construct a convenient ςa
2,ĥ

. First define

a function %a :=
∑

â∈V̂a câ%â1|ωâ
piecewise constant on T̂a. We check that, from

(3.34), ψa =
∑

â∈V̂a câψâ, and (crucially) (3.6), (%a, 1)ωa =
∑

â∈V̂a câ%â|ωâ| = (fψa−
G(uh)·∇ψa, 1)ωa − 〈ψaσN, 1〉∂ωa∩ΓN

= 0. Thus the constrained minimization (mixed
finite element local Neumann problem)

ςa
2,ĥ

:= arg min
vĥ∈V

0
ĥ

(ωa);vĥ·nωa=0,∇·vĥ=%a

‖vĥ‖ωa

is well-posed (here we importantly use only the lowest order space V0
ĥ
(ωa) as %a is

piecewise constant). Its stability (cf., e.g., [45, Theorem 5.9]) gives

(3.39) ‖ςa
2,ĥ
‖ωa ≤ CbPF,ωahωa‖%a‖ωa .

Proceeding as in Steps 8 and 6, we infer that

‖%a‖2ωa
≤ 4

∑
â∈V̂a

‖%â‖2ωâ
≤ 4 max

â∈V̂a
‖∇ψâ‖2∞,ωâ

∑
â∈V̂a

‖∇u−G(uh)‖2ωâ
,

so that altogether

(3.40) ‖ςa
2,ĥ
‖ωa ≤ 4CbPF,ωahωa max

â∈V̂a
‖∇ψâ‖∞,ωâ

‖∇u−G(uh)‖ωa .

Step 10. We now notice that ςa
1,ĥ

+ ςa
2,ĥ

is an admissible function vĥ in (3.13), so

that ‖ψaG(uh)+ςa
1,ĥ

+ςa
2,ĥ
‖ωa ≤ ‖ψaG(uh)+ςa

1,ĥ
‖ωa +‖ςa

2,ĥ
‖ωa , and the bounds (3.38)

and (3.40) together with (3.33) yield the assertion (3.31).

Step 11. As for (3.33) from the beginning of the proof, we now need to estimate
‖Rπ

2
∇(ψauh) + ςa

ĥ
‖ωa for a nonhanging vertex a ∈ Vh of the original mesh Th on the

patch ωa defined in Assumption 2.1. Note in particular that the Dirichlet bound-
ary condition on ΓD appears here as a Neumann boundary condition on ∂ωa ∩ ΓD;
see (3.16). Following [22, Lemma 3.13], for each vertex â ∈ V̂a of the refined matching

patch T̂a where ψa is nonzero, we introduce the following problem: find râ ∈ H1
[ (T̂a)

such that

(∇râ,∇v)ωâ
= −(τ â

h ,∇v)ωâ
+ (gâ, v)ωâ

− 〈gaD, v〉∂ωâ∩ΓD
∀v ∈ H1

[ (T̂a),

with gaD := ∇(ψâuD)·tΩ, τ â
h := Rπ

2
∇(ψâuh), and gâ := 0, and with

H1
[ (T̂a) := {v ∈ H1(ωâ); (v, 1)ωâ

= 0}, â 6∈ ΓN,

H1
[ (T̂a) := {v ∈ H1(ωâ); v = 0 on ∂ωâ ∩ ΓN}, â ∈ ΓN.

We are again led to study the above problem with a polynomial Neumann term given
by g̃aD := ΠVĥ(ωâ)·n(∇(ψâuD)·tΩ). We denote its solution by r̃â and need to bound
the misfit ‖∇(râ − r̃â)‖ωâ

= supv∈H1
[
(T̂a); ‖∇v‖ωâ

=1〈gaD − g̃aD, v〉∂ωâ∩ΓD
. Using (3.25)

and proceeding as in [22, section 4.3.2], we obtain altogether

‖∇r̃â‖ωâ
≤ Ccont,bPF

(
‖∇(u− uh)‖ωâ

+

{ ∑
ê 6⊂ΓN, â∈Vê

h−1
ê ‖Π0

ê[[u− uh]]‖2ê

} 1
2
)

+ ∆D,ωâ
,
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whereas [6, Theorem 7] again implies ‖Rπ
2
∇(ψâuh) + ς â

ĥ
‖ωâ
≤ Cst‖∇r̃â‖ωâ

for the

reconstruction ς â
ĥ

on the fine usual patch domain ωâ. Proceeding as in (3.38) and

employing (3.26) allows us to conclude that (3.32) holds, as in [22, section 4.3.2].

4. Discretization, implementation, and asymptotic exactness under uni-
form refinement. This section briefly outlines the interior penalty discontinuous
Galerkin method, discusses some implementation aspects of the local Raviart–Thomas
spaces, and presents a numerical illustration of asymptotic exactness under uniform
refinement for a smooth solution.

4.1. Discretization by the interior penalty discontinuous Galerkin me-
thod. Consider the interior penalty discontinuous Galerkin (IPDG) method: find
uh ∈ Sh,p (defined by (3.29)) such that

ah(uh, vh) = lh(vh) ∀vh ∈ Sh,p,(4.1)

where

ah(uh, vh) :=
∑
K∈Th

(∇uh,∇vh)K +
∑

e∈Eint
h ∪E

ext,D
h

〈αh−1
e [[uh]], [[vh]]〉e

(4.2)

−
∑

e∈Eint
h ∪E

ext,D
h

{〈{{∇uh}}·ne, [[vh]]〉e + ϑ〈{{∇vh}}·ne, [[uh]]〉e} ,

lh(vh) := (f, vh) +
∑

e∈Eext,D
h

(
〈αh−1

e uD, vh〉e − ϑ〈∇vh·ne, uD〉e
)
− 〈σN, vh〉ΓN

,

{{·}} and [[·]] denote the mean value and jump operator, respectively (see section 2),
α is a positive penalty parameter, and ϑ ∈ {−1, 0, 1} corresponds, respectively, to
the nonsymmetric (NIPG), incomplete (IIPG), and symmetric (SIPG) versions of the
method, where ϑ is the parameter considered in (3.26). Taking ψa ∈ Sh,p as the test

function in (4.2) for the vertices a ∈ Vh \ Vext,D
h and using the definition (3.26) of the

discrete gradient, we infer the hat-function orthogonality condition (3.6).
An important issue with IPDG methods is the choice of the penalty parameter

α. Typical choices, supported theoretically and numerically, are α = O(p2) for the
symmetric variant and a p-independent choice, α > 0, for the nonsymmetric one.
Numerical evidence indicates that a p-independent choice for α is also possible for the
incomplete version.

The IPDG discretization leads to a linear algebraic system which can be written
in the block-matrix form (one block-row for each K ∈ Th)

AK,KuK +
∑

K′∈N(K)

AK,K′uK′ = fK ∀K ∈ Th,(4.3)

where AK,K are diagonal blocks of size mK ×mK , with mK the number of degrees
of freedom attached to the element K ∈ Th given by mK = (pK + 1)(pK + 2)/2 on
triangles. Moreover, N(K) is the set of neighboring elements sharing an edge with
K, and AK,K′ , for all K ′ ∈ N(K), are the corresponding off-diagonal blocks. Finally,
uK ∈ RmK is the vector of the basis coefficients of the approximate solution uh|K ,
K ∈ Th, and fK ∈ RmK , K ∈ Th, are the corresponding blocks of the right-hand side.
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Table 1
Mass matrix condition number for the local mixed finite element problems with various choices

of the basis functions as a function of polynomial degree p, a generic shape-regular triangular patch.

p Original Cell orth. Cell and edge orth.
1 2.24E+01 2.77E+01 3.60E+01
2 1.78E+02 1.09E+02 1.07E+02
3 4.74E+03 2.44E+02 2.02E+02
4 1.42E+05 5.41E+02 3.93E+02
5 4.66E+06 1.10E+03 6.24E+02
6 1.46E+08 2.34E+03 9.63E+02
7 4.43E+09 5.18E+03 1.16E+03

4.2. Implementation of the mixed finite element solves. The patchwise
mixed finite element problems (3.7) and (3.14) are solved using the Schur comple-
ment and a direct solver. When the polynomial degree grows, the choice of basis
functions is important so as to tame the growth of the condition number of the local
Raviart–Thomas mass matrices. Starting with the usual shape functions that con-
stitute the dual basis of the canonical degrees of freedom, significant improvements
in the condition number of the mass matrix are observed if a Gram–Schmidt process
is applied to L2-orthogonalize the shape functions attached to cell-based degrees of
freedom. A further marginal reduction of the condition number is achieved if ad-
ditional linear combinations are formed to orthogonalize cell- and edge-based shape
functions. Elemental results are presented in Table 1. We observe that the cell-based
L2-orthogonalization already leads to a reasonable conditioning.

4.3. Uniform mesh and polynomial degree refinement for a smooth
solution. We first illustrate the behavior of the derived estimates for a smooth solu-
tion and matching triangular grids. We consider Ω = (0, 1) × (0, 1) and u(x1, x2) =
sin(2πx1) sin(2πx2). Here a given sequence of four unstructured nonnested grids is
considered, with SIPG and NIPG methods and polynomial approximations up to
order 6 (similar results on uniformly refined nested grids in the IIPG case were al-
ready presented in [22, section 5]). The penalty parameter was chosen as α = 5p2

for SIPG and α = 1 for NIPG. The results are presented in Tables 2–3, where
‖u − uh‖2J :=

∑
e∈Eh h

−1
e ‖Π0

e[[u − uh]]‖2e is the jump seminorm and ‖u − uh‖2DG :=

‖∇u−G(uh)‖2 + ‖u−uh‖2J is the DG norm. The estimator η and its components are
given by Theorem 3.3; the full DG estimator is η2

DG := η2 +‖u−uh‖2J. The tables also
report the effectivity indices Ieff := η

‖∇u−G(uh)‖ and Ieff
DG := ηDG

‖u−uh‖DG
. Asymptotic

exactness is observed for SIPG, as well as for NIPG with odd polynomial degrees,
similarly to [22, section 5]. Even polynomial degrees for NIPG lead to effectivity
indices close to 1, the more so as the polynomial degree is increased.

5. hp-adaptive strategies. Theoretical and numerical results (e.g., [1, 5, 15,
19, 23, 24, 25, 26, 29, 30, 32, 38, 39, 40]) show that hp-adaptivity can lead to an
exponential rate of the convergence with respect to the number of degrees of freedom
(DoF) in the sense that, in two dimensions,

‖∇(u− uh)‖ ≈ C exp
(
−bDoF1/3

)
,(5.1)

where C > 0 and b > 0 are constants independent of DoF. In the context of the
IPDG method from section 4.1, DoF is the dimension of the space Sh,p. The hp-
adaptive algorithm that we consider reads as follows, where $ > 0 is a user-prescribed
tolerance:
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Table 2
Errors and estimates for a smooth solution and matching triangular grids, SIPG method.

h p ‖∇u−G(uh)‖ ‖u−uh‖J ‖u−uh‖DG ηCR ηosc ηNC ηBC η ηDG Ieff Ieff
DG

h0 1 1.07E-00 1.92E-01 1.09E-00 1.12E-00 5.55E-02 4.16E-01 1.09E-09 1.25E-00 1.26E-00 1.17 1.16
≈h0/2 1 5.56E-01 7.28E-02 5.61E-01 5.71E-01 7.42E-03 1.82E-01 2.20E-10 6.07E-01 6.11E-01 1.09 1.09
≈h0/4 1 2.92E-01 2.82E-02 2.93E-01 2.96E-01 1.04E-03 8.77E-02 4.54E-11 3.10E-01 3.11E-01 1.06 1.06
≈h0/8 1 1.39E-01 9.19E-03 1.39E-01 1.40E-01 1.10E-04 3.85E-02 7.45E-12 1.45E-01 1.45E-01 1.04 1.04

h0 2 1.54E-01 1.76E-02 1.55E-01 1.55E-01 5.10E-03 3.05E-02 1.41E-10 1.63E-01 1.64E-01 1.06 1.06
≈h0/2 2 4.07E-02 4.66E-03 4.09E-02 4.13E-02 3.53E-04 7.55E-03 2.20E-11 4.23E-02 4.26E-02 1.04 1.04
≈h0/4 2 1.10E-02 1.26E-03 1.11E-02 1.12E-02 2.51E-05 1.97E-03 2.11E-12 1.14E-02 1.15E-02 1.03 1.03
≈h0/8 2 2.50E-03 2.90E-04 2.52E-03 2.54E-03 1.30E-06 4.21E-04 1.57E-13 2.57E-03 2.59E-03 1.03 1.03

h0 3 1.37E-02 3.96E-04 1.37E-02 1.37E-02 3.58E-04 1.74E-03 1.35E-11 1.41E-02 1.41E-02 1.03 1.03
≈h0/2 3 1.85E-03 4.53E-05 1.85E-03 1.85E-03 1.26E-05 2.10E-04 8.24E-13 1.88E-03 1.88E-03 1.01 1.01
≈h0/4 3 2.60E-04 4.79E-06 2.60E-04 2.60E-04 4.73E-07 2.54E-05 4.23E-14 2.62E-04 2.62E-04 1.01 1.01
≈h0/8 3 2.75E-05 3.75E-07 2.75E-05 2.75E-05 1.15E-08 2.55E-06 8.51E-15 2.76E-05 2.76E-05 1.01 1.01

h0 4 9.87E-04 2.95E-05 9.87E-04 9.84E-04 2.12E-05 1.11E-04 5.61E-13 1.01E-03 1.01E-03 1.02 1.02
≈h0/2 4 6.92E-05 2.06E-06 6.93E-05 6.92E-05 3.96E-07 7.44E-06 2.09E-13 7.00E-05 7.00E-05 1.01 1.01
≈h0/4 4 5.04E-06 1.42E-07 5.04E-06 5.04E-06 7.58E-09 4.98E-07 1.36E-13 5.07E-06 5.07E-06 1.01 1.01
≈h0/8 4 2.58E-07 7.61E-09 2.59E-07 2.58E-07 8.96E-11 2.47E-08 7.63E-14 2.60E-07 2.60E-07 1.01 1.01

h0 5 5.64E-05 6.76E-07 5.64E-05 5.63E-05 1.06E-06 4.50E-06 1.76E-12 5.75E-05 5.75E-05 1.02 1.02
≈h0/2 5 2.01E-06 2.18E-08 2.01E-06 2.01E-06 9.88E-09 1.46E-07 1.61E-12 2.03E-06 2.03E-06 1.01 1.01
≈h0/4 5 7.74E-08 6.04E-10 7.74E-08 7.73E-08 1.01E-10 4.35E-09 1.64E-12 7.76E-08 7.76E-08 1.00 1.00
≈h0/8 5 1.86E-09 1.18E-11 1.86E-09 1.86E-09 1.70E-12 1.00E-10 7.51E-13 1.86E-09 1.86E-09 1.00 1.00

h0 6 2.85E-06 3.70E-08 2.85E-06 2.85E-06 4.70E-08 2.18E-07 3.04E-11 2.90E-06 2.90E-06 1.02 1.02
≈h0/2 6 5.42E-08 6.78E-10 5.42E-08 5.42E-08 2.40E-10 4.02E-09 3.29E-11 5.46E-08 5.46E-08 1.01 1.01
≈h0/4 6 1.07E-09 1.20E-11 1.07E-09 1.07E-09 1.03E-11 6.90E-11 2.16E-11 1.08E-09 1.08E-09 1.01 1.01

Table 3
Errors and estimates for a smooth solution and matching triangular grids, NIPG method.

h p ‖∇u−G(uh)‖ ‖u−uh‖J ‖u−uh‖DG ηCR ηosc ηNC ηBC η ηDG Ieff Ieff
DG

h0 1 1.08E-00 1.69E-01 1.09E-00 8.05E-01 5.55E-02 7.98E-01 1.09E-09 1.17E-00 1.18E-00 1.09 1.09
≈h0/2 1 5.50E-01 7.52E-02 5.55E-01 4.18E-01 7.42E-03 3.75E-01 2.20E-10 5.66E-01 5.71E-01 1.03 1.03
≈h0/4 1 2.84E-01 3.34E-02 2.86E-01 2.18E-01 1.04E-03 1.86E-01 4.54E-11 2.87E-01 2.89E-01 1.01 1.01
≈h0/8 1 1.34E-01 1.19E-02 1.35E-01 1.04E-01 1.10E-04 8.64E-02 7.45E-12 1.36E-01 1.36E-01 1.01 1.01

h0 2 1.65E-01 4.82E-02 1.72E-01 1.41E-01 5.10E-03 1.71E-01 1.41E-10 2.24E-01 2.30E-01 1.36 1.33
≈h0/2 2 4.28E-02 1.25E-02 4.46E-02 3.67E-02 3.53E-04 4.74E-02 2.20E-11 6.01E-02 6.14E-02 1.41 1.38
≈h0/4 2 1.14E-02 3.37E-03 1.19E-02 9.86E-03 2.51E-05 1.29E-02 2.11E-12 1.63E-02 1.66E-02 1.43 1.40
≈h0/8 2 2.58E-03 7.93E-04 2.70E-03 2.24E-03 1.30E-06 2.99E-03 1.56E-13 3.74E-03 3.82E-03 1.45 1.42

h0 3 1.53E-02 1.25E-03 1.54E-02 1.34E-02 3.58E-04 9.19E-03 1.35E-11 1.65E-02 1.66E-02 1.08 1.08
≈h0/2 3 2.07E-03 1.66E-04 2.07E-03 1.79E-03 1.26E-05 1.22E-03 8.24E-13 2.18E-03 2.18E-03 1.05 1.05
≈h0/4 3 2.99E-04 2.00E-05 2.99E-04 2.64E-04 4.73E-07 1.59E-04 4.26E-14 3.08E-04 3.09E-04 1.03 1.03
≈h0/8 3 3.16E-05 1.68E-06 3.17E-05 2.82E-05 1.15E-08 1.60E-05 8.38E-15 3.24E-05 3.25E-05 1.02 1.02

h0 4 1.11E-03 1.22E-04 1.12E-03 9.80E-04 2.12E-05 7.21E-04 5.19E-13 1.23E-03 1.24E-03 1.11 1.11
≈h0/2 4 7.71E-05 8.21E-06 7.75E-05 6.89E-05 3.96E-07 5.08E-05 2.27E-13 8.59E-05 8.63E-05 1.11 1.11
≈h0/4 4 5.66E-06 5.94E-07 5.69E-06 5.05E-06 7.58E-09 3.76E-06 1.38E-13 6.30E-06 6.33E-06 1.11 1.11
≈h0/8 4 2.89E-07 3.19E-08 2.91E-07 2.58E-07 8.96E-11 1.96E-07 7.45E-14 3.24E-07 3.26E-07 1.12 1.12

h0 5 6.23E-05 3.08E-06 6.24E-05 5.62E-05 1.06E-06 3.23E-05 1.92E-12 6.57E-05 6.58E-05 1.05 1.05
≈h0/2 5 2.26E-06 1.01E-07 2.27E-06 2.04E-06 9.88E-09 1.17E-06 1.71E-12 2.36E-06 2.36E-06 1.04 1.04
≈h0/4 5 8.86E-08 3.15E-09 8.87E-08 8.17E-08 1.01E-10 3.90E-08 1.59E-12 9.06E-08 9.06E-08 1.02 1.02
≈h0/8 5 2.11E-09 6.47E-11 2.12E-09 1.96E-09 1.70E-12 9.02E-10 7.13E-13 2.16E-09 2.16E-09 1.02 1.02

h0 6 3.18E-06 1.90E-07 3.18E-06 2.91E-06 4.70E-08 1.66E-06 2.96E-11 3.39E-06 3.39E-06 1.07 1.07
≈h0/2 6 6.00E-08 3.27E-09 6.01E-08 5.57E-08 2.40E-10 3.07E-08 2.85E-11 6.38E-08 6.39E-08 1.06 1.06
≈h0/4 6 1.20E-09 6.34E-11 1.20E-09 1.12E-09 1.03E-11 6.01E-10 2.06E-11 1.28E-09 1.28E-09 1.07 1.07

Step 1. Compute uh ∈ Shp and evaluate the equilibrated flux a posteriori error
estimates ηK of Theorem 3.3 for all the elements K of the current mesh Th.

Step 2. If η2 =
∑
K∈Th η

2
K ≤ $2, then stop computation; else sort 10% of the

elements having the largest ηK and mark them for refinement.

Step 3. For each marked element, decide between h- and p-refinement; for p-
refinement increase pK by 1, and for h-refinement split K into four similar subelements
(hanging nodes typically arise) and go back to Step 1.

An hp-adaptive algorithm thus combines an hp-a posteriori error estimate (Step 1),
a marking strategy (Step 2), and an hp-decision criterion (Step 3). The rest of this
section is devoted to the description of three hp-decision criteria to be compared in
our numerical experiments in section 6. Two are essentially drawn from the literature,
and one is novel. Before we do this, we present a common ingredient to all of them,
namely a projection of the discrete solution onto the lower-polynomial-degree space
Sh,p−1.

5.1. Projection onto the lower-polynomial-degree space. We define the
projection up−1

h of uh onto the lower-polynomial-degree space Sh,p−1 by solving a
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local problem in each element K ∈ Th. For each K ∈ Th, we set up−1
h |K := ũK |K ,

where ũK |K′ := uh|K′ for all K ′ ∈ Th with K ′ 6= K, while ũK |K ∈ RpK−1(K) is
determined by solving ah(ũK , vh) = lh(vh) for all vh ∈ RpK−1(K), where ah and lh
are the forms defined in (4.2). In practice, we consider local hierarchical orthogonal
polynomials bases of Sh,p. Let ΠpK−1

K denote the matrix of the orthogonal projection
from RpK (K) onto RpK−1(K); on triangular meshes, the action of this matrix on a
vector consists in keeping the first pK(pK + 1)/2 components of the vector. Then,
owing to (4.3), the function ũK , for each K ∈ Th, results from the components of the
vector ũK ∈ RpK(pK+1)/2 such that

ũK = (ApK−1
K,K )−1ΠpK−1

K AK,KuK ∀K ∈ Th,(5.2)

where ApK−1
K,K = ΠpK−1

K AK,K(ΠpK−1
K )t is obtained simply from AK,K by removing

rows and columns corresponding to the basis functions of degree equal to pK .
Finally, we define the error estimate for the projection up−1

h by

ηp−1
K = ‖∇(uh − up−1

h )‖K .(5.3)

5.2. Two classical hp-decision criteria. We recall two classical hp-decision
criteria for which we use the same names as in the survey paper [32].

• PARAM: this criterion [24] hinges on the following local smoothness indicator:

gK :=
ηK

ηp−1
K

∀K ∈ Th.(5.4)

One expects that if the solution is not smooth in K, then uh|K is only slightly
more accurate than up−1

h so that gK ≈ 1. On the other hand, if the solution
is smooth in K, one expects that gK � 1. Letting γ ∈ (0, 1), this leads
to the following criterion: if gK ≤ γ, apply p-refinement; otherwise apply
h-refinement. The presence of the user-defined parameter γ is a drawback of
this technique. In our numerical experiments, we use the two values γ = 0.3
and γ = 0.6.

• PRIOR: this criterion, which is closely inspired by [42], hinges on the smooth-
ness indicator

sK := 1− log(ηK/η
p−1
K )

log(pK/(pK − 1))
.(5.5)

If pK ≤ sK−1, we apply p-refinement; otherwise we apply h-refinement. The
motivation is that one expects that the error indicators behave according to
ηK/η

p−1
K ≈ (pK/pK − 1)−sK−1, which follows from the a priori error bound

‖∇(u− uh)‖ ≤ chmin(p,s−1)p1−s‖u‖Hs(Ω), provided that u ∈ Hs(Ω); cf. [4].

5.3. A novel hp-decision criterion: DECAY. Let K ∈ Th. Let ηpKhK denote
the (estimate of) the error in K, where hK stands for the diameter of K and pK for
the polynomial degree in K. Considering triangular meshes, the number of degrees
of freedom in K is DoFpKhK = 1

2 (pK + 1)(pK + 2). Now, let us apply either p- or

h-refinement to K. The corresponding (estimates of the) errors are denoted by ηpK+1
hK

and ηpKhK/2, while the number of degrees of freedom becomes DoFpK+1
hK

= 1
2 (pK +

2)(pK +3) and DoFpKhK/2 = 2(pK +1)(pK +2), respectively. The idea is then to choose

that refinement which leads to the steepest decrease of the error with respect to the
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number of degrees of freedom. Recalling (5.1), we evaluate the decay factors for h-
and p-refinements as follows:

βp =
ln
(
ηpKhK/η

pK+1
hK

)
(

DoFpK+1
hK

) 1
3 −

(
DoFpKhK

) 1
3

, βh =
ln
(
ηpKhK/η

pK
hK/2

)
(

DoFpKhK/2

) 1
3 −

(
DoFpKhK

) 1
3

.(5.6)

Then, if βp > βh, we apply p-refinement; otherwise we apply h-refinement.

The difficulty lies in evaluating ηpK+1
hK

and ηpKhK/2. One possibility is to solve

the problem on a globally hp-refined mesh, as in [12, 14, 41], but this is quite time-
consuming, as shown in [32]. Another possibility is the use of a higher-order recon-
struction; see [18] for one example. Here we use a different idea in that the decay fac-
tors βp and βh are estimated using p- and h-coarsening. The corresponding (estimates

of the) errors are then denoted by ηpK−1
hK

and ηpK2hK
, and the corresponding numbers of

degrees of freedom become DoFpK−1
hK

= 1
2pK(pK+1) and DoFpK2hK

= 1
8 (pK+1)(pK+2).

Then, instead of (5.6), we use

βp =
ln
(
ηpKhK/η

pK−1
hK

)
(

DoFpK−1
hK

) 1
3 −

(
DoFpKhK

) 1
3

, βh =
ln
(
ηpKhK/η

pK
2hK

)
(
DoFpK2hK

) 1
3 −

(
DoFpKhK

) 1
3

.(5.7)

In our numerical experiments, the quantity ηpK−1
hK

is evaluated as ηpK−1
hK

= ‖∇(uh −
up−1
h )‖K with the projection up−1

h devised in section 5.1, while the quantity ηpK2hK

is evaluated as ηpK2hK
= ‖∇(uh − ūK)‖K , where ūK is the projection of uh in the

H1(D(K))-norm, where D(K) = {K ′ ∈ Th; K ′ ∩K 6= ∅}. Notice that the evaluation
of ūK is less time-consuming than that of ηK .

6. Numerical results. In this section we assess the computational performance
of our hp-adaptive algorithms on four benchmark problems from [31]. For the first
three, we consider (2.1) with ΓD = ∂Ω, whilef and uD are evaluated from the known
exact solution. The fourth problem involves a piecewise constant, anisotropic diffu-
sion tensor and has no known exact solution. We extend our estimates to this case
following [10]. We illustrate the asymptotic exponential order of convergence (5.1)
of the hp-decision criteria PARAM for γ = 0.3, 0.6, PRIOR, and DECAY. For the first
two benchmark problems, we also include a comparison with the criterion IDEAL,
which exploits a priori knowledge of the singularities of the exact solution; namely,
h-refinement is used for all the marked elements which touch the (corner or line) sin-
gularities of the exact solution, while p-refinement is used for all the other marked
elements. In all cases, we consider the incomplete IPDG method (ϑ = 0) on triangular
meshes, with the penalty parameter α = 20; notice that ‖∇u−G(uh)‖ = ‖∇(u−uh)‖
in this case; cf. (3.26). The effectivity index of the a posteriori estimate is defined
as Ieff := η

‖∇(u−uh)‖ . Our adaptive algorithm produces sequences of (nonnested) tri-

angular grids with hanging nodes, where the flux and potential reconstructions are
evaluated on a global matching refinement of Th as discussed in Remark 3.11.

6.1. Case 1: Re-entrant corner singularity. Here Ω := (−1, 1)2 \ [0, 1]
2
,

f = 0, and u(r, ϕ) = r2/3 sin(2ϕ/3), where (r, ϕ) are the polar coordinates. Owing
to the re-entrant corner, this problem features a singularity at the origin such that
u ∈ H5/3−ε(Ω), ε > 0. The presence of the singularity does not allow for convergence
faster than O(h2/3) on uniformly refined grids. We carried out computations with
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Fig. 3. Case 1: Error decay with respect to DoF1/3 in logarithmic-linear scale for several hp-
adaptive methods, with global (left) and detailed (center) views, and effectivity indices Ieff (right).
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Fig. 4. Case 1: Final hp-grids with details around the origin obtained using DECAY.

the stopping criterion $ = 10−4. The left and central panels of Figure 3 show the
error decay with respect to DoF1/3 in logarithmic-linear scale for the various hp-
decision criteria. For completeness, we include a comparison with pure h-refinement,
keeping pK = 2 fixed (h-ADAPT). We observe that all hp-decision criteria lead to an
asymptotic exponential convergence rate with minor differences. Moreover, the right
panel of Figure 3 indicates that effectivity indices Ieff approach 1 (or a close value)
with refinement. Figure 4 shows the final hp-grid obtained using DECAY with some
details around the singularity. The final hp-grids obtained by all the methods are
very similar for all the numerical examples.

6.2. Case 2: Interior line singularity. The setting is Ω = (−1, 1)2, and

u(x1, x2) =

{
cos(πx2/2) for x1 ≤ β(x2 − 1),
cos(πx2/2) + (x1 − β(x2 − 1))α for x1 > β(x2 − 1),

(6.1)

with α = 2 and β = 0.6. The solution satisfies u ∈ H5/2−ε(Ω), ε > 0, and features a
mild singularity along the line x1 − β(x2 − 1) = 0. This example is more challenging
than Case 1 since the line singularity is milder (u ∈ H2(Ω)). The left panel of Figure 5
shows the isolines of the exact solution.

We carried out computations with $ = 10−4. Figure 6 shows the error decay
with respect to DoF1/3 in logarithmic-linear scale for the various hp-decision criteria
and the corresponding effectivity indices. We observe that all the hp-decision criteria
lead to an asymptotic exponential convergence rate with small minor differences;
the convergence of the method PRIOR is slightly slower. The effectivity indices are
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-1

 0

 1

-1  0  1

-1

 0

 1

-1  0  1

corner singularity

peak

interior wave

exponential layer

Fig. 5. Isolines of the exact solution for Case 2 (left) and Case 3 (right).
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Fig. 6. Case 2: Error decay with respect to DoF1/3 in logarithmic-linear scale for several hp-
adaptive methods, with global (left) and detailed (center) views, and effectivity indices Ieff (right).
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Fig. 7. Case 2: Final hp-grids with details around the origin obtained with DECAY.

between 1 and 3. Figure 7 shows the final hp-grid obtained using DECAY, with some
details around the singularity.

6.3. Case 3: Multiple difficulties. This test case combines a point singularity
due to a re-entrant corner, a circular wave front (which might include a singularity
at the center of the circle), a sharp peak, and a boundary layer. The setting is
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adaptive methods, with global (left) and detailed (center) views, and effectivity indices Ieff (right).
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Fig. 9. Case 3: Final hp-grids (left) with details around the peak (center) and the intersection
of interior and boundary layers (right) obtained using DECAY.

Ω := (−1, 1)2 \ [0, 1]× [−1, 1] and

u = rπ/σ sin(ϕπ/σ) + tan−1{αw[((x1 − xw
2 )2 + (x2 − xw

2 )2)1/2 − rw]}(6.2)

+ exp[−αp((x1 − xp
2)2 + (x2 − xp

2)2)] + exp[−αe(1 + x2)],

where the re-entrant angle is σ = 3π/2. The interior wave is defined by xw
1 = 0,

xw
2 = −3/4, rw = 3/4, and αw = 200. The peak is centered at xp

1 = −
√

5/4,
xp

2 = −1/4 with strength αp = 1000. The boundary layer is given by αe = 100.
The right panel of Figure 5 shows the isolines of the exact solution together with a
description of its main features. The salient difficulties are the steep interior wave
and the exponential boundary layer, which behave like singularities on a coarse grid.

We carried out computations with $ = 10−1. Figure 8 shows the error decay
with respect to DoF1/3 in logarithmic-linear scale for the various hp-decision criteria.
We observe that all the hp-decision criteria lead to an asymptotic exponential con-
vergence rate with small minor differences; here, DECAY and PARAM with γ = 0.6
lead to somewhat faster convergence. The behavior of the effectivity indices indicates
asymptotic exactness for all methods. Figure 9 shows the final hp-grid obtained using
DECAY with some details around the difficulties.

6.4. Case 4: Battery. This example comes from [12]. We consider the elliptic
problem −∇· (D∇u) = f in Ω, where the right-hand side f and the diagonal diffusion
matrix D = diag(d1, d2) are piecewise constant on Ω. The values of the triple (f, d1, d2)
for the colored subdomains from Figure 10 (left) are (0, 25, 25) (red), (1, 7, 0.8) (green),
(1, 5, 0.0001) (violet), (0, 0.2, 0.2) (yellow), and (0, 0.05, 0.05) (blue) (color available
online). On the left part of the boundary, we prescribe a homogeneous Neumann
boundary condition, and on the top, right, and bottom parts of the boundary, we
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Fig. 10. Case 4: Partition of the computational domain (left), final approximate solution
(center), and final hp-grid obtained using DECAY(right).
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Fig. 11. Case 4: Error decay with respect to DoF1/3 in logarithmic-linear scale for several
hp-adaptive methods, with global (left) and detailed (right) views.

prescribe the Dirichlet boundary condition uD = 1. For the exact location of the line
segments, we refer the reader to [31, section 2.5]. Since the right-hand side and the
diffusion tensor are piecewise constant, the solution exhibits various singularities in
the computational domain. The (approximate) solution of this problem is shown in
the central panel of Figure 10.

We carried out computations with $ = 1.75. Figure 11 shows the error decay with
respect to DoF1/3 in logarithmic-linear scale for the various hp-decision criteria. All
the criteria (including h-ADAPT) lead to an almost identical convergence behavior.
This can be explained by the fact that interior singularities are dominant, so that
h-refinement is essentially required everywhere. The right panel of Figure 10 shows
the final hp-grid obtained using DECAY.

6.5. Summary. The selected cases indicate that all the tested hp-decision cri-
teria lead to asymptotic exponential convergence rates. For the criterion PARAM,
the disadvantage is the necessity to choose the parameter γ; a careful choice of γ can
produce superior convergence, but it is unclear how to find it. The criteria PRIOR and
DECAY are parameter-free, and the second one turns out to perform slightly better.
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[5] I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles
and properties, SIAM Rev., 36 (1994), pp. 578–632, https://doi.org/10.1137/1036141.
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