
ESAIM: M2AN 51 (2017) 1367–1385 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016066 www.esaim-m2an.org

FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION ∗
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Abstract. This paper introduces a quasi-interpolation operator for scalar- and vector-valued finite
element spaces constructed on affine, shape-regular meshes with some continuity across mesh inter-
faces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming
regularity in the fractional Sobolev spaces W r,p, where p ∈ [1,∞] and the smoothness index r can be
arbitrarily close to zero. The operator is stable in L1, leaves the corresponding finite element space
point-wise invariant, and can be modified to handle homogeneous boundary conditions. The theory is
illustrated on H1-, H(curl)- and H(div)-conforming spaces.
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1. Introduction

Consider a shape-regular sequence of affine meshes (Th)h>0 approximating a bounded polyhedral Lipschitz
domain D in Rd, and a sequence of finite element spaces (P (Th))h>0 based on this mesh sequence, composed
of either scalar- or vector-valued functions, and conforming in some functional space W where some continuity
across mesh interfaces is enforced. Estimates of the best-approximation error in P (Th) are invariably invoked
in the convergence analysis of finite element approximations. When the exact solution is smooth enough, the
canonical interpolation operator in P (Th) can be used to obtain decay estimates of the best-approximation error
in terms of the mesh-size. However, in many practical situations, the exact solution only sits in a Sobolev space
W r,p(D) (for some p ∈ [1,∞]) where the smoothness index r can be close to zero. In this case, an alternative
quasi-interpolation operator must be invoked to estimate the best-approximation error.

The aim of this paper is the construction of a quasi-interpolation operator that is stable in L1, leaves P (Th)
point-wise invariant, and approximates (quasi-)locally and optimally functions in W r,p(D), for all p ∈ [1,∞] and
r arbitrarily close to zero. Moreover, the construction can be modified to enforce homogeneous boundary condi-
tions that are legitimate in W . The main examples we have in mind are H1-, H(curl)-, and H(div)-conforming
finite element spaces. Let us emphasize that, for vector-valued elements, the present construction is not a sub-
stitute to the notion of commuting bounded cochain projection introduced in the framework of Finite Element
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Exterior Calculus, but instead a vital complement to it. Indeed, as shown in (Arnold et al. [2], Thm. 5.6), the ap-
proximation error for the commuting projection is bounded by the best-approximation error in P (Th), up to a
uniform constant. Therefore, the present quasi-interpolation operator shows that commuting bounded cochain
projections converge optimally for low-regularity solutions. Another important consequence of the present con-
struction in the case of vector-valued elements is that the decay rates of the best-approximation error only
involve the solution seminorm in W r,p(D) without the need to invoke a bound on the curl or the divergence of
the solution.

Let us put our results in perspective with the literature. The construction of quasi-interpolation operators
with the above properties for H1-conforming finite elements is a well-studied field. In two space dimensions
on triangular meshes, we mention the early work of Clément [9]; see also Bernardi and Girault [3] where the
construction is modified so that the resulting operator leaves the finite element space point-wise invariant. In a
landmark paper by Scott and Zhang [23], an alternative construction is proposed in any space dimension for H1-
conforming finite elements with and without homogeneous boundary conditions; see [23], page 491, and Girault
and Lions [15] for a modification leading to L1-stability. The so-called Scott–Zhang interpolation operator leads
to optimal decay estimates of the approximation error for functions in H1(D). The extension of this result to
functions in W r,p(D) with r ∈ ( 1

p , 1) has been studied only recently by Ciarlet [7] using the original Scott–Zhang
operator. To the authors’ best knowledge, in contrast to H1-conforming elements, quasi-interpolation results
for H(curl)- and H(div)-conforming elements are missing in the literature.

The main ingredient for the Clément and Scott–Zhang construction is a regularization of functions based on
macroelements consisting of patches of elements. We adopt here a somewhat different route. The key idea is a
two-step construction, namely a projection onto the (fully discontinuous) broken finite element space followed by
an averaging operator that stitches the result in the spirit of (Oswald [20], Eqs. (25), (26)). This way, patches of
mesh cells are only involved when handling discrete objects, thereby avoiding the delicate question of reference
patches frequently used in the literature. Averaging operators are often invoked in the literature in various
contexts; we mention, in particular, a posteriori error estimates [1, 18, 14], preconditioners [22], stabilization
techniques [5], and discontinuous Galerkin methods with improved stability properties [10,6]. The novel feature
here is the analysis of averaging operators in the vector-valued case and the application to quasi-interpolation.
We emphasize that we devise a unifying framework for the analysis that works irrespective of the nature of the
degrees of freedom, i.e. whether they are nodal values, integrals over edges, faces, or cells. Essentially all the
finite elements that are traditionally used to build H1-, H(curl)-, and H(div)-conforming finite element spaces
match the few assumptions of the unified analysis.

The paper is organized as follows. In Section 2, we introduce the notation and construct a sequence of
abstract finite element spaces conforming in some functional space W . Key assumptions are identified and
listed. A local interpolation operator stable in L1 is constructed in Section 3. An abstract averaging operator
acting only on discrete functions is introduced and analyzed in Section 4. The final quasi-interpolation operator
is constructed in Section 5 without enforcing any boundary condition. The question of enforcing boundary
conditions is addressed in Section 6. Finally, Section 7 contains two technical results on fractional Sobolev
spaces that are of independent interest: a Poincaré inequality and a trace inequality.

2. Finite elements

In this section we introduce some notation and construct a sequence of abstract finite element spaces, con-
forming in some functional space W . In the entire paper the space dimension is denoted by d and the domain
D is a bounded Lipschitz polyhedron in Rd.

2.1. Meshes

Let (Th)h>0 be a mesh sequence that we assume to be affine and shape-regular in the sense of Ciarlet. We
also assume for the sake of simplicity that the meshes cover D exactly, that they are composed of convex cells,
and that they are matching, i.e. for all cells K,K ′ ∈ Th such that K �= K ′ and K ∩K ′ �= ∅, the set K ∩K ′
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is a common vertex, edge, or face of both K and K ′ (with obvious extensions in higher space dimensions). By
convention, given a mesh Th, the elements K ∈ Th are closed sets in Rd.

We assume that there is a reference element K̂ such that for any mesh Th and any cell K ∈ Th, there is
an affine bijective map between K̂ and K, which we henceforth denote TK : K̂ → K. Since TK is affine and
bijective, there is an invertible matrix JK ∈ Rd× d such that

TK(x̂) − TK(ŷ) = JK(x̂− ŷ), ∀x̂, ŷ ∈ K̂. (2.1)

In what follows, we denote points in Rd, Rd-valued functions and Rd-valued maps in boldface type, and we
denote the Euclidean norm in Rd by ‖·‖�2(Rd), or ‖·‖�2 when the context is unambiguous. We abuse the notation
by using the same symbol for the induced matrix norm. Owing to the shape-regularity assumption of the mesh
sequence, there are uniform constants c�, c� such that

|det(JK)| = |K||K̂|−1, ‖JK‖�2 ≤ c�hK , ‖J
−1
K ‖�2 ≤ c�h−1

K , (2.2)

where hK is the diameter of K. Recall that c� = 1
ρ

K̂
and c� = hK

ρK
hK̂ for meshes composed of simplices, where

ρK is the diameter of the largest ball that can be inscribed in K, hK̂ is the diameter of K̂, and ρK̂ is the
diameter of the largest ball that can be inscribed in K̂.

2.2. Finite element generation

We are going to consider various approximation spaces based on the mesh sequence (Th)h>0. Again for
the sake of simplicity, we assume that each approximation space is constructed from a fixed reference finite
element (K̂, P̂ , Σ̂). The reference degrees of freedom are denoted {σ̂1, . . . , σ̂nsh} and the associated reference
shape functions are denoted {θ̂1, . . . , θ̂nsh}; by definition σ̂i(θ̂j) = δij , ∀i, j ∈ {1:nsh}. We denote N := {1:nsh}
to alleviate the notation. The shape functions are Rq-valued for some integer q ≥ 1. We henceforth assume
that P̂ ⊂ W 1,∞(K̂; Rq) (recall that P̂ is typically a space of polynomial functions, but we do not require this
assumption here).

We assume that there exists a Banach space V (K̂) ⊂ L1(K̂; Rq) such that the linear forms {σ̂1, . . . , σ̂nsh}
can be extended to L(V (K̂); R), i.e. V (K̂) is the domain of the degrees of freedom (see [13], p. 39). Then, we
define IK̂ : V (K̂) → P̂ , the interpolation operator associated with the reference finite element (K̂, P̂ , Σ̂), by

IK̂(v̂)(x̂) =
∑
i∈N

σ̂i(v)θ̂i(x̂), ∀x̂ ∈ K̂, ∀v̂ ∈ V (K̂). (2.3)

By construction, IK̂ ∈ L(V (K̂); P̂ ), and P̂ is point-wise invariant under IK̂ .
We now address the question of constructing finite elements for any mesh cell K ∈ Th. We assume that there

exists a Banach space V (K) ⊂ L1(K; Rq) and a bounded, bijective, linear map between V (K) and V (K̂):

ψK : V (K) 
 v �−→ ψK(v) ∈ V (K̂). (2.4)

We then set

PK := {p = ψ−1
K (p̂) | p̂ ∈ P̂}, (2.5a)

ΣK := {σK,i}i∈N s.t. σK,i = σ̂i ◦ ψK . (2.5b)
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Proposition 2.1 (Finite element). The triple (K,PK , ΣK) is a finite element.

Proof. Note first that dim(PK) = dim(P̂ ) = nsh since ψK is bijective. Moreover, a function p ∈ PK such that
σK,i(p) = 0 for all i ∈ N is such that ψK(p) = 0 by the unisolvence property of the reference finite element; hence,
p = 0. Finally, the linear forms σK,i are in L(V (K); R) since |σK,i(v)| ≤ ‖σ̂i‖L(V (K̂);R)‖ψK‖L(V (K);V (K̂))‖v‖V (K),
for all v ∈ V (K). �

The above definitions lead us to consider the canonical interpolation operator associated with the finite
element (K,PK , ΣK):

IK(v)(x) =
∑
i∈N

σK,i(v)θK,i(x), ∀x ∈ K, ∀v ∈ V (K), (2.6)

where we have set θK,i := ψ−1
K (θ̂i). Note that IK ∈ L(V (K);PK) and that PK is point-wise invariant under IK .

Since the mesh is affine, we assume that ψK has a simple structure; more precisely, we assume that there is
a q× q invertible matrix AK such that

ψK(v) = AK(v ◦ TK), (2.7)

which implies that ψK can be extended as a map from L1(K; Rq) to L1(K̂; Rq). The following classical result
shows that ψK maps W l,p(K; Rq) to W l,p(K̂; Rq) for all l ∈ N and all p ∈ [1,∞]. In particular, this implies that

PK ⊂ W 1,∞(K; Rq). We use the notation |ψK |L(W l,p(K;Rq);W l,p(K̂;Rq)) := supv∈W l,p(K;Rq)

|ψK(v)|
Wl,p(K̂;Rq)

|v|
Wl,p(K;Rq)

and

similar notation for |ψ−1
K |L(W l,p(K̂;Rq);W l,p(K;Rq)), where it henceforth implicitly understood the denominator is

not zero.

Lemma 2.2 (Bound in Sobolev norms). Let l ∈ N. There is a uniform constant c depending on the shape-
regularity of the mesh sequence (Th)h>0 and on l such that the following holds:

|ψK |L(W l,p(K;Rq);W l,p(K̂;Rq)) ≤ c ‖AK‖�2 ‖JK‖l�2 |det(JK)|− 1
p , (2.8a)

|ψ−1
K |L(W l,p(K̂;Rq);W l,p(K;Rq)) ≤ c ‖A

−1
K ‖�2 ‖J

−1
K ‖l�2 |det(JK)|

1
p , (2.8b)

for all K ∈ Th and all p ∈ [1,∞] (with z±
1
p = 1, ∀z > 0 if p = ∞).

Proof. For any multilinear map A ∈ Ml(Rd, . . . ,Rd; Rq), let us set

‖A‖Ml(Rd,...,Rd;Rq) := sup
(y1,...,yl)∈Rd × ...×Rd

‖A(y1, . . . ,yl)‖�2
‖y1‖�2 . . . ‖yl‖�2

·

Then, denoting by DlψK(v) the l-order Frechet derivative of ψK at v, the assumption (2.7) implies that
‖DlψK(v)‖Ml(Rd,...,Rd;Rq) ≤ ‖AK‖�2‖Dl(v ◦ TK)‖Ml(Rd,...,Rd;Rq) for all l ∈ N. Then, standard results about
the transformation of seminorms in the Sobolev space W l,p using the pullback by TK lead to (2.8), see e.g.
(Ciarlet [8], Thm. 3.1.2 or Ern and Guermond [13], Lem. 1.101). �

Corollary 2.3 (Bound on AK). Assume that there is a uniform constant c so that

‖AK‖�2‖A
−1
K ‖�2 ≤ c ‖JK‖�2‖J

−1
K ‖�2. (2.9)

Then the following holds for all s,m ∈ N, all K ∈ Th and all p ∈ [1,∞]:

|ψ−1
K |L(Wm,p(K̂);Wm,p(K))|ψK |L(W s,p(K);W s,p(K̂)) ≤ c hs−mK . (2.10)

Proof. Combine (2.8) with (2.2) and (2.9). �
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Lemma 2.4 (Norm equivalence). There exists a uniform constant c such that

‖v‖L∞(K;Rq) ≤ c ‖A
−1
K ‖�2

∑
i∈N

|σK,i(v)|, (2.11)∑
i∈N

|σK,i(v)| ≤ c ‖AK‖�2‖v‖L∞(K;Rq), (2.12)

for all v ∈ PK and all K ∈ Th.

Proof. We prove (2.11); the proof for the other bound is similar. We observe that

‖v‖L∞(K;Rq) = ‖ψ−1
K (ψK(v))‖L∞(K;Rq) ≤ ‖A

−1
K ‖�2‖ψK(v)‖L∞(K̂;Rq)

≤ c ‖A
−1
K ‖�2

∑
i∈N

|σ̂i(ψK(v))| = c ‖A
−1
K ‖�2

∑
i∈N

|σK,i(v)|,

using the definition of ψK , norm equivalence in P̂ , and (2.5b). �

2.3. Abstract finite element spaces

Let {(K,PK , ΣK)}K∈Th
be a Th-based family of finite elements constructed as in Proposition 2.1. We consider

the broken Sobolev spaces W 1,p(Th; Rq) := {v ∈ Lp(D; Rq) | v|K ∈ W 1,p(K; Rq), ∀K ∈ Th}, p ∈ [1,∞], and
introduce the broken finite element space

P b(Th) =
{
vh ∈ L1(D; Rq) | vh|K ∈ PK , ∀K ∈ Th

}
. (2.13)

Since PK ⊂W 1,∞(K; Rq), we infer that P b(Th) ⊂W 1,∞(Th; Rq).
Our aim is to define a subspace of P b(Th) by means of some zero-jump condition across the interfaces

separating the elements. We say that a subset F ⊂ D is an interface if it has positive (d−1)-dimensional
measure and if there are distinct mesh cells Kl,Kr ∈ Th such that F = ∂Kl ∩ ∂Kr. The numbering of the two
mesh cells is arbitrary, but kept fixed once and for all, and we let nF be the unit normal vector to F pointing
from Kl to Kr. This defines a global orientation of the interfaces. We denote by nKl

and nKr the outward unit
normal of Kl and Kr, i.e. nF = nKl

= −nKr . We say that a subset F ⊂ D is a boundary face if it has positive
(d−1)-dimensional measure and if there is a mesh cell K ∈ Th such that F = ∂K ∩ ∂D, and we let nF be the
unit normal vector to F pointing outward D. The interfaces are collected in the set F◦

h , the boundary faces in
the set F∂

h , and we let Fh = F◦
h ∪ F∂

h . We now define a notion of jump across the interfaces. Recalling that
functions in W 1,1(Th; Rq) have traces in L1(∂K; Rq) for all K ∈ Th, let F ∈ F◦

h be a mesh interface, and let
Kl,Kr be the two cells such that F = ∂Kl ∩ ∂Kr; the jump of v ∈ W 1,1(Th; Rq) across F is defined to be

[[v]]F (x) = v|Kl
(x) − v|Kr

(x) a.e. x ∈ F. (2.14)

In what follows, we need to consider the jump of only some components of v across F ; we formalize this by
introducing bounded linear operators γK,F : W 1,1(K; Rq) → L1(F ; Rt), for all K ∈ Th, all face F ∈ Fh that is
a subset of ∂K, and some t ≥ 1, as follows:

[[v]]γF (x) = γKl,F (v|Kl
)(x) − γKr,F (v|Kr

)(x) a.e. x ∈ F. (2.15)

We assume that |[[v]]γF (x)| ≤ |[[v]]F (x)|, a.e. x ∈ F , for all v ∈ W 1,1(Th; Rq). Since functions in W 1,1(D; Rq)
have zero jump across interfaces (see, e.g. [11], Lem. 1.23), we infer that

v ∈ W 1,1(D; Rq) =⇒ [[v]]γF = 0, ∀F ∈ F◦
h . (2.16)

With this setting, we introduce the

P (Th) =
{
vh ∈ P b(Th) | [[vh]]

γ
F = 0, ∀F ∈ F◦

h

}
. (2.17)
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2.4. Finite element examples

The present theory is quite general and covers a large class of scalar- and vector-valued finite elements.
For instance, it covers finite elements of Lagrange, Nédélec, and Raviart−Thomas type. To remain general, we
denote the three reference elements corresponding to these three classes as follows: (K̂, P̂ g, Σ̂g), (K̂, P̂

c
, Σ̂c) and

(K̂, P̂
d
, Σ̂d). We think of (K̂, P̂ g, Σ̂g) as a scalar-valued finite element (q = 1) that has some degrees of freedom

which require point evaluation, for instance (K̂, P̂ g, Σ̂g) could be a Lagrange element. We assume that the finite
element (K̂, P̂

c
, Σ̂c) is vector-valued (q = d) and some of its degrees of freedom require to evaluate integrals

over edges. Typically, (K̂, P̂
c
, Σ̂c) is a Nédélec-type or edge element. Likewise, the finite element (K̂, P̂

d
, Σ̂d)

is assumed to be vector-valued (q = d) and some of its degrees of freedom are assumed to require evaluation

of integrals over faces. Typically, (K̂, P̂
d
, Σ̂d) is a Raviart–Thomas-type element. It is not necessary to know

the exact nature of the element that we are handling at the moment. We denote by V g(K̂), V c(K̂), V d(K̂)
admissible domains of the degrees of freedom in the three cases. Let p ∈ [1,∞]. The above assumptions imply
that we can choose V g(K̂) = W s,p(K̂) with s > d

p , V
c(K̂) = W s,p(K̂) with s > d−1

p , and V d(K̂) = W s,p(K̂)

with s > 1
p . Actually, when p = 1 we can choose V g(K̂) = W d,1(K̂) (since W d,1(K̂) ↪→ C0(K̂), see e.g. Ponce

and Van Schaftingen [21]), V d(K̂) = W 1,1(K̂) (since functions in W 1,1(K̂) have a trace in L1(∂K̂)), and
V c(K̂) =W d−1,1(K̂) (since functions in W d−1,1(K̂) have traces in L1 on the one-dimensional edges of K̂).

Let Th be a mesh in the sequence (Th)h>0 and let K be a cell in Th. We denote by ψg
K , ψc

K , ψd
K the linear

maps that are classically used to generate the above finite elements, i.e. ψg
K is the pullback by TK , and ψc

K and
ψd
K are the contravariant and covariant Piola transformations, respectively. All of these maps fit the general

form (2.7), i.e.

A
g
K = 1, ψg

K(v) = v ◦ TK , (2.18a)

A
c
K = J

T
K , ψc

K(v) = J
T
K(v ◦ TK), (2.18b)

A
d
K = det(JK) J

−1
K , ψd

K(v) = det(JK) J
−1
K (v ◦ TK). (2.18c)

Note that c = 1 in (2.9) for the above examples.
The corresponding broken finite element spaces are:

P g,b(Th) = {vh ∈ L1(D) | ψg
K(vh|K) ∈ P̂ g, ∀K ∈ Th}, (2.19a)

P c,b(Th) = {vh ∈ L1(D) | ψc
K(vh|K) ∈ P̂

c
, ∀K ∈ Th}, (2.19b)

P d,b(Th) = {vh ∈ L1(D) | ψd
K(vh|K) ∈ P̂

d
, ∀K ∈ Th}. (2.19c)

This leads us to consider the following γ-traces:

γg
K,F (v|K)(x) = v|K(x), ∀x ∈ F, (2.20a)

γc
K,F (v|K)(x) = v|K(x)×nF , ∀x ∈ F, (2.20b)

γd
K,F (v|K)(x) = v|K(x)·nF , ∀x ∈ F, (2.20c)

and the following conforming finite element spaces:

P g(Th) = {vh ∈ P g,b(Th) | [[vh]]
g
F = 0, ∀F ∈ F◦

h}, (2.21a)

P c(Th) = {vh ∈ P c,b(Th) | [[vh]]cF = 0, ∀F ∈ F◦
h}, (2.21b)

P d(Th) = {vh ∈ P d,b(Th) | [[vh]]dF = 0, ∀F ∈ F◦
h}, (2.21c)

where we slightly simplified the notation by using [[vh]]
g
F instead of [[vh]]

γg

F , etc. Upon introducing the spaces
V g := {v ∈ L1(D) | ∇v ∈ L1(D)}, V c := {v ∈ L1(D) | ∇×v ∈ L1(D)}, V d := {v ∈ L1(D) | ∇·v ∈ L1(D)},



FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION 1373

we have P g(Th) := P g,b(Th)∩ V g, P c(Th) := P c,b(Th)∩V c, P d(Th) := P d,b(Th)∩V d; that is to say, the finite
element spaces P g(Th), P c(Th), P d(Th) are conforming in V g, V c, V d, respectively.

Let us introduce the canonical interpolation operators Ig
h, Id

h , Ic
h such that Ig

h(v)|K = Ig
K(v|K), Ic

h(v)|K =
Ic
K(v|K), Id

h(v)|K = Id
K(v|K). The considerations in Section 2.4 show that it is legitimate to take W s,p(D),

s > d
p , for the domain of Ig

h, W
s,p(D), s > d−1

p , for the domain of Ic
h, and W s,p(D), s > 1

p , for the domain
of Id

h , i.e. the canonical interpolation operators Ig
h, Ic

h and Id
h are not stable in any Lp(D) space (or Lp(D)). The

objective of this paper is to construct quasi-interpolation operators mapping onto the spaces P g(Th), P c(Th)
and P d(Th) that are stable in L1(D) (or L1(D)) and have optimal approximation properties with and without
boundary conditions.

2.5. Summary of the assumptions

Let us now summarize the assumptions that will be used in the rest of the paper. Henceforth (Th)h>0 is a
shape-regular sequence of affine, matching meshes so that (2.1) and (2.2) hold. We also assume that the map
ψK satisfies (2.7) and (2.9). {(K,PK , ΣK)}K∈Th

is a Th-based sequence of finite elements constructed as in
Proposition 2.1. In view of approximation, we define k to be the largest natural number such that [Pk,d]q ⊂ P̂ ,
where Pk,d is the real vector space of d-variate polynomials functions of degree at most k, and we assume that
P̂ ⊂W k+1,∞(K̂; Rq).

We assume that we have at hand a notion of γ-jump across mesh interfaces as described in Section 2.3.
The finite element space P (Th) is the subspace of the broken finite element space P b(Th) characterized by zero
γ-jumps across interfaces, see (2.17). Finally, two important assumptions relating the degrees of freedom to the
γ-jump and γ-trace are the estimates (4.2) and (6.6) below.

In what follows, c denotes a generic positive constant whose value may depend on the shape-regularity of the
mesh sequence (Th)h>0 and on the reference finite element (K̂, P̂ , Σ̂). The value of this constant may vary from
one occurrence to the other.

3. L1
-stable local interpolation

In this section we extend the degrees of freedom in order to be able to approximate functions that are only
integrable.

3.1. Extension of degrees of freedom

Let us consider ρ̂i ∈ P̂ , i ∈ N , be such that
1

|K̂|

∫
K̂

(ρ̂i, p̂)�2(Rq) dx̂ = σ̂i(p̂), ∀p̂ ∈ P̂ . (3.1)

Note that ρ̂i is well defined since it is the Riesz representative of σ̂i in P̂ when P̂ is equipped with the L2-scalar
product weighted by 1/|K̂|. This leads us to define

σ̂�i (v̂) :=
1

|K̂|

∫
K̂

(ρ̂i, v̂)�2(Rq) dx̂, ∀v̂ ∈ L1(K̂; Rq). (3.2)

Note that the assumption P̂ ⊂ L∞(K̂; Rq) implies that ρ̂i ∈ L∞(K̂; Rq), which in turn implies that all
the extended degrees of freedom {σ̂�i}i∈N are indeed bounded over L1(K̂; Rq) since ‖σ̂�i‖L(L1(K̂;Rq);R) ≤
|K̂|−1‖ρ̂i‖L∞(K̂;Rq). In passing we have also proved that ‖σ̂�i‖L(Lp(K̂;Rq);R) ≤ |K̂|−1‖ρ̂i‖Lp′(K̂;Rq) for all p ∈ [1,∞],
where 1

p + 1
p′ = 1. We then define

I�
K̂

(v̂) :=
∑
i∈N

σ̂�i (v̂)θ̂i, ∀v̂ ∈ L1(K̂; Rq). (3.3)

P̂ is point-wise invariant under I�
K̂

since σ̂�i (p̂) = σ̂i(p̂) for all p̂ ∈ P̂ and all i ∈ N .
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Let K ∈ Th and let (K,PK , ΣK) be a finite element constructed as in (2.5). Note that the assumption (2.7)
implies that ψK(L1(K; Rq)) = L1(K̂; Rq). We then extend the degrees of freedom in ΣK to L1(K; Rq) by setting

σ�K,i(v) := σ̂�i (ψK(v)). (3.4)

The above definition leads us to define

I�K(v) :=
∑
i∈N

σ�K,i(v)θK,i, ∀v ∈ L1(K; Rq). (3.5)

Proposition 3.1 (Stability, commutation, invariance). (i) There exists a uniform constant c such that
‖I�K‖L(Lp(K;Rq);Lp(K;Rq)) ≤ c, for all p ∈ [1,∞] and all K ∈ Th; (ii) I�K commutes with ψK ; (iii) PK is
point-wise invariant under I�K .

Proof. Using the triangle inequality in (3.5), the fact that θK,i := ψ−1
K (θ̂i) and σ�K,i := σ̂�i ◦ ψK (see (3.4)), and

finally using (2.8) with l = 0 and the assumption (2.9), we infer that

‖I�K‖L(Lp(K;Rq);Lp(K;Rq)) ≤
∑
i∈N

‖σ̂�i‖L(Lp(K̂;Rq);R)|ψK |L(Lp(K;Rq);Lp(K̂;Rq))‖ψ
−1
K (θ̂i)‖Lp(K;Rq)

≤ |ψK |L(Lp(K;Rq);Lp(K̂;Rq))|ψ
−1
K |L(Lp(K̂;Rq);Lp(K;Rq))

∑
i∈N

‖σ̂�i‖L(Lp(K̂;Rq);R)‖θ̂i‖Lp(K̂;Rq)

≤ c ‖AK‖�2‖A
−1
K ‖�2

∑
i∈N

‖σ̂�i‖L(Lp(K̂;Rq);R)‖θ̂i‖Lp(K̂;Rq)

≤ c ‖JK‖�2‖J
−1
K ‖�2 |K̂|−1

∑
i∈N

‖ρ̂i‖Lp′(K̂;Rq).

The conclusion readily follows from the shape-regularity assumptions. To prove the second statement, we use
again that θK,i = ψ−1

K (θ̂i) to infer that

ψK

(
I�K(v)

)
:= ψK

(∑
i∈N

σ�K,i(v)ψ
−1
K (θ̂i)

)
=
∑
i∈N

σ̂�i (ψK(v))θ̂i = I�
K̂

(ψK(v)),

for all v ∈ L1(K; Rq). To prove the third statement, let us consider any g ∈ PK = ψK(P̂ ); then using the above
definitions we have

σ�K,i(g) = σ̂�i (ψK(g)) =
1

|K̂|

∫
K̂

(ρ̂i, ψK(g))�2(Rq) dx̂ = σ̂i(ψK(g)) = σK,i(g).

This proves that I�K(g) = IK(g), hence I�K(g) = g. �

Remark 3.2. The construction of I�K is similar to that used in (Girault and Lions [15], Appendix) to extend
the Scott–Zhang quasi-interpolation operator and make it stable in L1(D) for scalar-valued functions.

3.2. Error estimates for I�
K

We establish in this section error estimates for the operator I�K .

Theorem 3.3 (Local interpolation). There exists a uniform constant c such that the following local error esti-
mate holds:

|v − I�Kv|Wm,p(K;Rq) ≤ c hl−mK |v|W l,p(K;Rq), (3.6)

for all l ∈ {0:k + 1}, all m ∈ {0: l}, all p ∈ [1,∞], all v ∈W l,p(K; Rq), and all K ∈ Th.
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Proof. Let l ∈ {0:k + 1} and m ∈ {0:l}.

(1) Let us set G(ŵ) := ŵ−I�
K̂

(ŵ) for all ŵ ∈W l,p(K̂; Rq). The operator G is well-defined since W l,p(K̂; Rq) ↪→
L1(K̂; Rq). Since all the norms are equivalent in P̂ and P̂ ⊂W k+1,p(K̂; Rq) ↪→ Wm,p(K̂; Rq), there exists c
depending only on nsh and K̂ such that ‖I�

K̂
(ŵ)‖Wm,p(K̂;Rq) ≤ c‖I�

K̂
(ŵ)‖L1(K̂;Rq), which in turns implies

that ‖I�
K̂

(ŵ)‖Wm,p(K̂;Rq) ≤ c‖ŵ‖L1(K̂;Rq), since we have already established that I�
K̂

is uniformly bounded

over L1(K̂; Rq); hence, G ∈ L(W l,p(K̂; Rq);Wm,p(K̂; Rq)). Assume first that l ≥ 1, then [Pl−1]q is point-
wise invariant under I�

K̂
since l − 1 ≤ k and [Pl−1]q ⊂ [Pk]q ⊂ P̂ ; this in turn implies that the operator G

vanishes on [Pl−1]q. As a consequence, we infer that

|ŵ − I�
K̂
ŵ|Wm,p(K̂;Rq) = |G(ŵ)|Wm,p(K̂;Rq) = inf

p̂∈[Pl−1]q
|G(ŵ + p̂)|Wm,p(K̂;Rq)

≤ ‖G‖L(W l,p(K̂;Rq);Wm,p(K̂;Rq)) inf
p̂∈[Pl−1]q

‖ŵ + p̂‖W l,p(K̂;Rq)

≤ c inf
p̂∈[Pl−1]q

‖ŵ + p̂‖W l,p(K̂;Rq) ≤ c |ŵ|W l,p(K̂;Rq),

for all ŵ ∈ W l,p(K̂; Rq), where the last estimate is a consequence of the Bramble–Hilbert/Deny–Lions
Lemma. Finally, the above inequality is trivial if l = m = 0.

(2) Now let v ∈ W l,p(K; Rq). Using the above argument together with the fact that I�K commutes with ψK
(see Prop. 3.1), we have

|v − I�Kv|Wm,p(K;Rq) ≤ |ψ−1
K |L(Wm,p(K̂;Rq);Wm,p(K;Rq)) |ψK(v) − ψK(I�Kv)|Wm,p(K̂;Rq)

≤ |ψ−1
K |L(Wm,p(K̂;Rq);Wm,p(K;Rq)) |ψK(v) − I�

K̂
(ψK(v))|Wm,p(K̂;Rq)

≤ c |ψ−1
K |L(Wm,p(K̂;Rq);Wm,p(K;Rq)) |ψK(v)|W l,p(K̂;Rq)

≤ c |ψ−1
K |L(Wm,p(K̂;Rq);Wm,p(K;Rq))|ψK |L(W l,p(K;Rq);W l,p(K̂;Rq))|v|W l,p(K;Rq).

The estimate (3.6) follows by using (2.10). �

4. Averaging operator

In this section, we introduce a bounded linear operator J av
h : P b(Th) → P (Th) based on averaging.

4.1. Connectivity array

Let {ϕa}a∈Ah
be a basis of P (Th); the functions ϕa are called global shape functions. We assume that

this basis is constructed so that for any K ∈ Th, either int(K) ∩ supp(ϕa) = ∅ or there is a unique i ∈ N
such that ϕa|K = θK,i. (Recall that this is the usual way of constructing finite element bases.) We denote by
a : Th×N → Ah the map such that ϕa(K,i)|K = θK,i; this map is henceforth called connectivity array. Note
that a is surjective by definition, but in general a is not injective. Denoting by a−1(a) the preimage of a ∈ Ah,
we define the connectivity set Ca ⊂ Th×N for any a ∈ Ah such that

Ca := a−1(a) = {(K, i) ∈ Th×N | a = a(K, i)}. (4.1)

Remark 4.1 (Particular case card(Ca) = 1). Assume that card(Ca) = 1, i.e. Ca = {(K0, i0)}. Let K �= K0,
then it is not possible to find an index i ∈ N such that a = a(K, i) since card(Ca) = 1; this in turn implies that
int(K) ∩ supp(ϕa) = ∅, hence ϕa| int(K) = 0. This means that ϕa is supported on one element only, i.e. ϕa is
the zero extension of θK0,i0 . Given the characterization of P (Th) assumed in (2.17), this means that the γ-trace
of ϕa on the interior faces of K is zero.
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For any a ∈ Ah, we set F◦
a = ∅ if card(Ca) = 1. If card(Ca) ≥ 2 we define F◦

a ⊂ F◦
h to be the set of the

interfaces F such that there are (K, i), (K ′, i′) ∈ Ca so that F = ∂K ∩ ∂K ′. We now relate the γ-traces to
the degrees of freedom by making the following assumption: there exists a uniform constant c such that the
following holds for all v in P b(Th) and all a ∈ Ah such that card(Ca) ≥ 2:∣∣σK,i(v|K) − σK′,i′(v|K′)

∣∣ ≤ c min(‖AK‖�2 , ‖AK′‖�2)‖[[v]]γF ‖L∞(F ;Rt), (4.2)

for all F ∈ F◦
a and all pairs (K, i), (K ′, i′) ∈ Ca such that F = ∂K ∩ ∂K ′. The estimate (4.2) is natural since

the degrees of freedom of finite elements providing some conformity in H1, H(curl), or H(div) are devised
to coincide across interfaces when the γ-jump is zero and when the degrees of freedom in question belong to
the same connectivity class. In particular, the estimate (4.2) holds true for all the finite elements considered in
Section 2.4. Owing to (2.17), the assumption (4.2) immediately implies that∣∣σK,i(v|K) − σK′,i′(v|K′)

∣∣ = 0, ∀v ∈ P (Th), ∀a ∈ Ah, ∀(K, i), (K ′, i′) ∈ Ca. (4.3)

4.2. Averaging operator

We define the operator J av
h : P b(Th) → P (Th) by

J av
h (v) =

∑
a∈Ah

⎛⎝ 1
card(Ca)

∑
(K,i)∈Ca

σK,i(v|K)

⎞⎠ϕa. (4.4)

For any K ∈ Th, we introduce the notation

TK := ∪i∈N {K ′ ∈ Th | ∃i′ ∈ N , (K ′, i′) ∈ Ca(K,i)}, (4.5a)
DK := int{∪K′∈TKK

′}. (4.5b)

The set TK is the union of all the cells that share global shape functions with K and DK is the interior of the
collection of the points composing the cells in TK .

Lemma 4.2 (Lp-stability). There exists a uniform constant c such that

‖J av
h (v)‖Lp(K;Rq) ≤ c ‖v‖Lp(DK ;Rq), (4.6)

for all p ∈ [1,∞], all v ∈ P b(Th), and all K ∈ Th.

Proof. We prove the result for p = ∞; the other cases are obtained by using local inverse inequalities in P b(Th).
Using the triangle inequality and the shape-regularity of the mesh sequence (Th)h>0, we infer that

‖J av
h (v)‖L∞(K;Rq) ≤

∑
i∈N

‖θK,i‖L∞(K;Rq)

card(Ca(K,i))

∑
(K′,i′)∈Ca(K,i)

∣∣σK′,i′(v|K′)
∣∣

≤ c
∑
i∈N

‖A
−1
K ‖�2

card(Ca(K,i))

∑
(K′,i′)∈Ca(K,i)

∣∣σK′,i′(v|K′)
∣∣

≤ c
∑

K′∈TK

‖A
−1
K ‖�2

∑
i′∈N

∣∣σK′,i′(v|K′)
∣∣ ≤ c ‖v‖L∞(DK ;Rq),

where the last estimate results from |σK′,i′(v|K′)| ≤ |σK′,i′(v|K′)−σK,i(v|K)|+ |σK,i(v|K)|, the assumption (4.2),
the inequality |[[v]]γF |L∞(F ;Rt) ≤ |[[v]]F |L∞(F ;Rt) ≤ ‖v‖L∞(DK ;Rq) and (2.12). �
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Lemma 4.3 (Approximation by averaging). There exists a uniform constant c such that the following holds
with the notation F◦

K := ∪i∈NF◦
a(K,i):

|v − J av
h (v)|Wm,p(K;Rq) ≤ ch

d
(

1
p−

1
r

)
+

1
r−m

K

∑
F∈F◦

K

‖[[v]]γF ‖Lr(F ;Rt), (4.7)

for all m ∈ {0:k + 1}, all p, r ∈ [1,∞], all v ∈ P b(Th), and all K ∈ Th.

Proof. We only prove the bound for m = 0 and p = r = ∞, the other cases follow by invoking standard inverse
inequalities. Let v ∈ P b(Th), set e = v − J av

h (v) and observe that e ∈ P b(Th). Let K ∈ Th. The bound (2.11)
implies that

‖e‖L∞(K;Rq) ≤ c ‖A
−1
K ‖�2

∑
i∈N

|σK,i(e|K)|.

Owing to the definition of J av
h in (4.4), we first observe that

σK,i(e|K) =
1

card(Ca(K,i))

∑
(K′,i′)∈Ca(K,i)

(
σK,i(v|K) − σK′,i′(v|K′)

)
. (4.8)

Note that σK,i(e|K) = 0 if card(Ca(K,i)) = 1 (see Rem. 4.1). Let us now consider the case card(Ca(K,i)) ≥ 2.
For all (K ′, i′) ∈ Ca(K,i), there is a path of mesh cells in TK linking K to K ′ so that any two consecutive
mesh cells in the path share a common face F ∈ F◦

a(K,i), and each face is crossed only once. Furthermore, if
(Kl, il), (Kr, ir) ∈ Ca(K,i) are such that ∂Kl ∩ ∂Kr = F ∈ F◦

a(K,i), then (4.2) implies that

|σKl,il(v|Kl
) − σKr ,ir (v|Kr

)| ≤ cmin(‖AKl
‖�2, ‖AKr‖�2)‖[[v]]

γ
F ‖L∞(F ;Rt).

As a result,
‖e‖L∞(K;Rq) ≤ c ‖A

−1
K ‖�2‖AK‖�2

∑
F∈F◦

a(K,i)

‖[[v]]γF ‖L∞(F ;Rt),

whence the estimate (4.7) readily follows since F◦
K := ∪i∈NF◦

a(K,i), card(N ) is uniformly bounded, and the
mesh sequence (Th)h>0 is shape-regular. �

5. Quasi-interpolation operator

Let I�h : L1(D; Rq) → P b(Th) be such that I�h(v)|K = I�K(v|K) for all K ∈ Th. We now construct the global
quasi-interpolation operator Iav

h : L1(D; Rq) → P (Th) by setting

Iav
h := J av

h ◦ I�h. (5.1)

Note that P (Th) is point-wise invariant under Iav
h since P (Th) is point-wise invariant under J av

h and I�h. Hence,
Iav
h is a projection, i.e. (Iav

h )2 = Iav
h .

Lemma 5.1 (Wm,p-stability). There exists a uniform constant c such that

|Iav
h (v)|Wm,p(K;Rq) ≤ c |v|Wm,p(DK ;Rq), (5.2)

for all p ∈ [1,∞], all m ∈ {0:k + 1}, all v ∈ Wm,p(DK ; Rq), and all K ∈ Th.
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Proof. For m = 0, the estimate follows by combining Proposition 3.1 with Lemma 4.2. For m ≥ 1, the triangle
inequality implies that

|Iav
h (v)|Wm,p(K;Rq) ≤ |I�K(v)|Wm,p(K;Rq) + |I�K(v) − J av

h (I�K(v))|Wm,p(K;Rq).

Let T1 and T2 be the two terms on the right-hand side of the above inequality. T1 is estimated using The-
orem 3.3 with l = m, yielding |T1| ≤ c|v|Wm,p(K;Rq). T2 is estimated using Lemma 4.3 and the fact that
v ∈Wm,p(DK ; Rq) ⊂W 1,1(DK ; Rq) has zero γ-jumps across interfaces (see (2.16)). More precisely, we have

hmK |T2| ≤ ch
1
p
K

∑
F∈F◦

K

‖[[I�K(v)]]γF ‖Lp(F ;Rt) = ch
1
p
K

∑
F∈F◦

K

‖[[v − I�K(v)]]γF ‖Lp(F ;Rt)

≤ ch
1
p
K

∑
K′∈TK

∑
F⊂∂K′∩F◦

K

‖(v − I�K(v))|K′‖Lp(F ;Rq) ≤ chmK
∑

K′∈TK

|v|Wm,p(K′;Rq),

where we have used the triangle inequality to bound the jump by the values over the two adjacent mesh cells, the
trace inequality from Lemma 7.2 with s = 1, the approximation result of Theorem 3.3, and the shape regularity
of the mesh sequence. Combining the bounds on T1 and T2 gives (5.2). �

Let us now estimate the approximation properties of Iav
h . Since we are going to establish error estimates

in fractional Sobolev spaces, in the rest of the paper all the results that are stated in fractional Sobolev
spaces assume that p ∈ [1,∞), whereas the results with integer degree of smoothness hold for p ∈ [1,∞].
Assuming that r �∈ N and denoting by �r� the largest integer less than or equal to r, we consider the so-called
Sobolev–Slobodeckij norm defined as ‖v‖W r,p(D;Rq) = (‖v‖p

W �r�,p(D;Rq)
+ |v|pW r,p(D;Rq))

1
p with

|v|W r,p(D;Rq) =

⎛⎝ ∑
|α|=�r	

∫
D

∫
D

‖∂αv(x) − ∂αv(y)‖p�2(Rq)

‖x− y‖(r−�r	)p+d
�2(Rd)

dxdy

⎞⎠
1
p

· (5.3)

Theorem 5.2 (Local approximation). There exists a uniform constant c such that

|v − Iav
h (v)|Wm,p(K;Rq) ≤ c hr−mK |v|W r,p(DK ;Rq), (5.4)

for all r ∈ [0, k + 1], all m ∈ {0:�r�}, all p ∈ [1,∞) if r �∈ N or all p ∈ [1,∞] if r ∈ N, all v ∈ W r,p(DK ; Rq),
and all K ∈ Th.

Proof. Using that Iav
h (g) = g for all g ∈ [Pk,d]q together with the stability of Iav

h in the Wm,p-seminorm and
the triangle inequality, we infer that

|v − Iav
h (v)|Wm,p(K;Rq) = |v − g − Iav

h (v − g)|Wm,p(K;Rq)

≤ |v − g|Wm,p(K;Rq) + |Iav
h (v − g)|Wm,p(K;Rq)

≤ c |v − g|Wm,p(DK ;Rq).

That is to say, |v − Iav
h (v)|Wm,p(K;Rq) ≤ c infg∈[Pk,d]q |v − g|Wm,p(DK ;Rq). We conclude by applying Lemma 5.6

below componentwise. �

Corollary 5.3 (Global best approximation in Lp). There exists a uniform constant c such that

inf
wh∈P (Th)

‖v − wh‖Lp(D;Rq) ≤ c hr|v|W r,p(D;Rq), (5.5)

for all r ∈ [0, k + 1], all p ∈ [1,∞) if r �∈ N or all p ∈ [1,∞] if r ∈ N, and all v ∈ W r,p(D; Rq).
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Remark 5.4 (Interpolation). Corollary 5.3 can also be proved using (5.4) for r ∈ N and the real interpolation
method (i.e. the K-method), see e.g. (Tartar [24], Chap. 22).

Remark 5.5 (Approximation for I�K). Note in passing that Theorem 3.3, which states the approximation
properties of I�K , can be re-written with fractional Sobolev norms, i.e. the following also holds:

|v − I�K(v)|Wm,p(K;Rq) ≤ chr−mK |v|W r,p(K;Rq), (5.6)

for all r ∈ [0, k + 1], all m ∈ {0:�r�}, all p ∈ [1,∞) if r �∈ N or all p ∈ [1,∞] if r ∈ N, all v ∈ W r,p(K; Rq), and
all K ∈ Th.

Lemma 5.6 (Polynomial approximation in DK). The following holds:

inf
g∈Pk,d

|v − g|Wm,p(DK) ≤ c hr−mK |v|W r,p(DK), (5.7)

for all r ∈ [0, k + 1], all m ∈ {0:�r�}, all p ∈ [1,∞) if r �∈ N or all p ∈ [1,∞] if r ∈ N, all v ∈ W r,p(DK), and
all K ∈ Th.

Proof. We proceed as in (Bramble and Hilbert [4], Thm. 1), but instead of invoking (Morrey [19], Thm. 3.6.11),
where the constants may depend on DK , we are going to track the constants to make sure that they are
independent of DK . If m = r, there is nothing to prove. Let us assume that m < r. Let � ∈ N be such that
� = r − 1 if r is a natural number or � = �r� otherwise (note that 1 ≤ r if r is a natural number since we
assumed that 0 ≤ m < r). In both cases the integer � is such that m ≤ � ≤ k. Let A�,d = {α ∈ Nd | |α| :=
α1 + . . . + αd ≤ �}. Note that card(A�,d) = dim(P�,d) =

(
�+d
d

)
=: N�,d. Since the mapping Φ�,d : P�,d → RN�,d

such that Φ�,d(q) = (
∫
DK

∂αq dx)α∈A�,d
is an isomorphism, there is a unique polynomial π�(v) ∈ P�,d such that

Φ�,d(π�(v)) = (
∫
DK

∂αv dx)α∈A�,d
, i.e.

∫
DK

∂α(v − π�(v)) dx = 0 for all α ∈ A�,d (this result is actually stated
in (Morrey [19], Thm. 3.6.10).

Since by definition
∫
DK

∂α(v−π�(v)) dx = 0 for all |α| = m ≤ �, we can apply Lemma 5.7 below, i.e. there is
a uniform constant c such that |v − π�(v)|Wm,p(DK) ≤ chK |v − π�(v)|Wm+1,p(DK). We can repeat the argument
if m + 1 ≤ � since in this case we also have

∫
DK

∂α(v − π�(v)) dx = 0 for all |α| = m + 1 ≤ �. Eventually, we
obtain

|v − π�(v)|Wm,p(DK) ≤ ch�−mK |v − π�(v)|W �,p(DK).

If r is a natural number, then �+1 = r, and we can apply the above argument one last time since
∫
DK

∂α(v−
π�(v)) dx = 0 for all |α| = �, which then gives (5.7) because ∂απ�(v) = 0 for all |α| = �+ 1. Otherwise, � = �r�
and we apply Lemma 7.1 to all the partial derivatives ∂α(v − π�(v)) with |α| = �, s = r − �r� ∈ (0, 1) and
O := DK ; this is legitimate since all these partial derivatives have zero average over DK . We infer that there is
c uniform with respect to s, p, K, and v such that

|v − π�(v)|Wm,p(DK ;Rq) ≤ c h
�r	−m
K h

r−�r	
DK

(
hdDK

|DK |

) 1
p

|v − π�(v)|W r,p(DK ;Rq).

Note that |v − π�(v)|W r,p(DK ;Rq) = |v|W r,p(DK ;Rq) since ∂απ�(v) is a constant in Rq for all |α| = �. We conclude
that (5.7) holds owing to the shape-regularity of the mesh sequence. �

Lemma 5.7 (Poincaré inequality in DK). Let wDK
be the average of w over DK . There exists a uniform

constant c such that
‖v − vDK

‖Lp(DK) ≤ c hK |v|W 1,p(DK), (5.8)

for all p ∈ [1,∞], all v ∈W 1,p(DK), and all K ∈ Th.
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Proof. Let K ∈ Th. Let Kl,Kr ∈ TK sharing an interface F = ∂Kl ∩ ∂Kr. We observe that

|vKl
− vKr

| = |F |− 1
p ‖vKl

− v|Kl
+ v|Kr

− vKr
‖Lp(F ),

since v|Kl
= v|Kr

on F . By using the triangle inequality, estimating the two norms in Lp(F ) with the trace
inequality (7.2) (with s = 1), and by applying the Poincaré inequality in Kl and Kr separately (both with

constant π−1 since the mesh cells are convex sets), we obtain |vKl
−vKr

| ≤ c(h
1− 1

p

Kl
|v|W 1,p(Kl)+h

1− 1
p

Kr
|v|W 1,p(Kr)).

After invoking the shape regularity of the mesh sequence, we infer that

|K| 1p |vKl
− vKr

| ≤ c hK |v|W 1,p(Kl∪Kr). (5.9)

Observing that vDK
− vK′ =

∑
K′′∈TK

|K′′|
|DK | (vK′′ − vK′) for any K ′ ∈ TK , we infer that

‖v − vDK
‖Lp(K′) ≤ ‖v − vK′‖Lp(K′) +

∑
K′′∈TK

|K ′′|
|DK | |K

′|
1
p |vK′′ − vK′ |.

For any K ′′ ∈ TK , we can find a path of mesh cells in TK linking K ′ to K ′′ so that any consecutive mesh cells in
the path share a common face and this face is crossed only once. Using (5.9) together with the shape regularity
of the mesh sequence, we infer that ‖v − vK′‖Lp(K′) ≤ chK |v|W 1,p(DK), and the conclusion follows by summing
over K ′ ∈ Th and using the fact that card(TK) is uniformly bounded. �

6. Quasi-interpolation with boundary prescription

Our goal in this section is to construct a variant of the quasi-interpolation operator Iav
h that prescribes

homogeneous boundary values.

6.1. Trace operator

Let F ∈ F∂
h be a boundary face. We denote by KF the unique cell such that F ⊂ ∂KF . We consider the

global trace operator γ : W 1,1(D; Rq) → L1(∂D; Rt) such that

γ(v)|F = γKF ,F (v|KF
), ∀F ∈ F∂

h . (6.1)

We define for all p ∈ [1,∞] the functional space

W 1,p
0,γ (D; Rq) := {v ∈ W 1,p(D; Rq) | γ(v) = 0}. (6.2)

We then set
P0(Th) := {vh ∈ P (Th) | γ(vh) = 0}. (6.3)

The typical examples we have in mind are

P g
0 (Th) := {vh ∈ P g(Th) | vh|∂D = 0}, (6.4a)
P c

0(Th) := {vh ∈ P c(Th) | vh×n|∂D = 0}, (6.4b)

P d
0(Th) := {vh ∈ P d(Th) | vh·n|∂D = 0}. (6.4c)

Upon setting V g
0 = {v ∈ V g | v|∂D = 0}, V c

0 = {v ∈ V c | v×n|∂D = 0}, and V d
0 = {v ∈ V d | v·n|∂D = 0}, we

have P g
0 (Th) = P g(Th)∩ V g

0 , P c
0(Th) = P c(Th)∩V c

0, and P d
0(Th) = P d(Th)∩V d

0 , i.e. the finite element spaces
P g

0 (Th),P c
0(Th),P d

0(Th) are conforming in V g
0 , V c

0, V
d
0 , respectively.

In the rest of the paper, we slightly abuse the terminology by calling global degrees of freedom the elements
of Ah. We say that a global degree of freedom a ∈ Ah is an internal degree of freedom if γ(ϕa) = 0. The collection
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of all the internal degrees of freedom is denoted A◦
h; the degrees of freedom in A∂

h = Ah\A◦
h are called boundary

degrees of freedom. Let a ∈ A∂
h, then there is a face F ∈ F∂

h such that γ(ϕa)|F �= 0. Let KF be the unique
cell such that F ⊂ ∂KF , then supp(ϕa) ∩ KF �= ∅. This means that there is a unique iF ∈ N such that
ϕa|KF

= θKF ,i. For all a ∈ A∂
h, we define F∂

a to be the collection of all the boundary faces F ∈ F∂
h such that

there is (KF , iF ) ∈ Ca and F ⊂ ∂KF ; we set F∂
a = ∅ if a ∈ A◦

h. We abuse the notation by setting

[[v]]γF (x) = γKF ,F (v|KF
)(x), and [[v]]F (x) = v|F (x), a.e. x ∈ F, ∀F ∈ F∂

h , (6.5)

and assume that |[[v]]γF (x)| ≤ |[[v]]F (x)|, a.e. x ∈ F , for all F ∈ F∂
h . In coherence with the assumption (4.2), we

assume that there is a uniform constant c such that the following holds for all the boundary degrees of freedom
a ∈ A∂

h, all F ∈ F∂
a , all iF ∈ N such that (KF , iF ) ∈ Ca, and all v ∈ P b(Th):

|σKF ,iF (v)| ≤ c ‖AKF ‖�2‖γKF ,F (v|KF
)‖L∞(F ;Rt), (6.6)

Note that this assumption is satisfied by all the finite elements considered in Section 2.4.

6.2. Averaging and quasi-interpolation operators revisited

We are going to modify the averaging operator J av
h to prescribe homogeneous boundary conditions. We define

J av
h0 : P b(Th) → P0(Th) by setting for all v ∈ P b(Th),

J av
h0 (v) =

∑
a∈A◦

h

⎛⎝ 1
card(Ca)

∑
(K,i)∈Ca

σK,i(v|K)

⎞⎠ϕa. (6.7)

Lemma 6.1 (Lp-stability). There exists a uniform constant c such that

‖J av
h0 (v)‖Lp(K;Rq) ≤ c ‖v‖Lp(DK ;Rq), (6.8)

for all p ∈ [1,∞], all v ∈ P b(Th), and all K ∈ Th.
Proof. Proceed as in the proof of Lemma 4.2. �
Lemma 6.2 (Approximation by averaging). There exists a uniform constant c such that the following holds:

|w − J av
h0 (w)|Wm,p(K;Rq) ≤ c h

d
(

1
p−

1
r

)
+

1
r−m

K

∑
F∈F◦

K∪F∂
K

‖[[w]]γF ‖Lr(F ;Rt), (6.9)

for all m ∈ {0:k+1}, all p, r ∈ [1,∞], all w ∈ P b(Th), and all K ∈ Th, with F∂
K = ∪i∈NF∂

a(K,i) and F◦
K defined

in Lemma 4.3.

Proof. This is a straightforward adaptation of the proof of Lemma 4.3. Letting e = v−J av
h0 (v), we observe that

σK,i(e|K) is still given by (4.8) if a(K, i) ∈ A◦
h, while σK,i(e|K) = σK,i(w) if a(K, i) ∈ A∂

h, and this term is
bounded using (6.6). �

A global quasi-interpolation operator Iav
h0 : L1(D; Rq) → P0(Th) is then defined by setting

Iav
h0 = J av

h0 ◦ I�h. (6.10)

Note that P0(Th) is point-wise invariant under Iav
h0 since (6.9) implies that P0(Th) is point-wise invariant under

J av
h0 . Hence, Iav

h0 is a projection, i.e. (Iav
h0)

2 = Iav
h0.

Lemma 6.3 (Lp-stability of Iav
h0). There is a uniform constant c such that

‖Iav
h0(v)‖Lp(K;Rq) ≤ c ‖v‖Lp(DK ;Rq), (6.11)

for all p ∈ [1,∞], all v ∈ Lp(D; Rq), and all K ∈ Th.

Proof. Proceed as for the proof of Lemma 5.1. �
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6.3. Error estimates

The purpose of this section is to establish error estimates for the quasi-interpolation operator Iav
h0 in the

W r,p-norm (either integer or fractional). Let r ∈ [0, k+1] and p ∈ [1,∞) if r �∈ N or p ∈ [1,∞] if r ∈ N. If r > 1
p ,

then functions in W r,p(D; Rq) have traces on ∂D, and therefore it makes sense to define

W r,p
0,γ (D; Rq) := {v ∈ W r,p(D; Rq) | γ(v) = 0}. (6.12)

We are going to use the following notation

T ◦
h := {K ∈ Th | ∀i ∈ N , a(K, i) ∈ A◦

h}, (6.13a)

T ∂
h := Th \ T ◦

h = {K ∈ Th | ∃i ∈ N , a(K, i) ∈ A∂
h}, (6.13b)

D∂ := int(∪K∈T ∂
h
K). (6.13c)

T ◦
h is the set of the cells whose degrees of freedom are all internal. T ∂

h is the set of the cells that have at least
one boundary degree of freedom. D∂ is the collection of the points in D that belong to at least one cell in T ∂

h .

Theorem 6.4 (Approximation). There exists a uniform constant c such that the following estimate holds for
all r ∈ [0, k + 1], all m ∈ {0:�r�}, all p ∈ [1,∞) if r �∈ N or all p ∈ [1,∞] if r ∈ N, all v ∈ W r,p(DK ; Rq), and
all K ∈ T ◦

h :
|v − Iav

h0(v)|Wm,p(K;Rq) ≤ c hr−mK |v|W r,p(DK ;Rq). (6.14)

Moreover, (6.14) also holds if rp > 1 with c depending on |rp − 1| for all v ∈ W r,p
0,γ (D; Rq) and all K ∈ T ∂

h .
Finally, if rp < 1 (i.e. r ∈ (0, 1) and m = 0), we have

‖v − Iav
h0(v)‖Lp(D∂ ;Rq) ≤ c hr‖v‖W r,p(D;Rq), ∀v ∈W r,p(D; Rq). (6.15)

Proof. Let K be a cell in Th. If K ∈ T ◦
h , then Iav

h0(v)|K = Iav
h (v)|K ; this proves (6.14) in this case. Let us now

consider K ∈ T ∂
h . The triangle inequality implies that

|Iav
h0(v) − v|Wm,p(K;Rq) ≤ |Iav

h (v) − v|Wm,p(K;Rq) + |Iav
h0(v) − Iav

h (v)|Wm,p(K;Rq).

Since we have already established that |Iav
h (v) − v|Wm,p(K;Rq) ≤ chr−mK |v|W r,p(DK ;Rq) in Theorem 5.2, we just

need to estimate |Iav
h0(v) − Iav

h (v)|Wm,p(K;Rq). Let us define the set of the boundary degrees of freedom with
nonempty support on K, A∂

K := {a ∈ A∂
h | ∃i ∈ N , a(K, i) ∈ Ca}. Then

(Iav
h0(v) − Iav

h (v))|K = −
∑
a∈A∂

K

⎛⎝ 1
card(Ca)

∑
(K′,i′)∈Ca

σ(K′,i′)(I�K′(v|K′ ))

⎞⎠ θK,i.

For any a ∈ A∂
K and any (K ′, i′) ∈ Ca, there is a face F ∈ F∂

a and a pair (KF , iF ) ∈ Ca such that there is a
path of mesh cells in TK linking K ′ to KF so that any two consecutive mesh cells in the path share a common
face in F◦

a , and each face is crossed only once. This observation implies that

|σ(K′,i′)(g)| ≤
∑
F∈F◦

a

|σa(Kl,il)(g|Kl
) − σa(Kr,ir)(g|Kr

)| +
∑
F∈F∂

a

|σa(KF ,iF )(g|KF
)|

for all g ∈ P b(Th). By proceeding as in the proof of Lemma 4.3, we infer that

|Iav
h0(v) − Iav

h (v)|Wm,p(K;Rq) ≤ ch
−m+ 1

p

K

∑
a∈A∂

K

[ ∑
F∈F◦

a

‖[[I�(v)]]γF ‖Lp(F ;Rt) +
∑
F∈F∂

a

‖γ(I�(v))|F ‖Lp(F ;Rt)

]
.
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Case 1, rp > 1: Let us assume that v ∈ W r,p
0,γ (D; Rq). The boundary condition γ(v)F = 0, for all F ∈ F∂

h , and
the continuity condition [[v]]γF = 0, for all F ∈ F◦

h , imply that

|Iav
h0(v) − Iav

h (v)|Wm,p(K;Rq) ≤ c h
−m+

1
p

K

∑
F∈F◦

K∪F∂
K

‖I�K(v) − v‖Lp(F ;Rt).

The conclusion follows by invoking the trace inequality from Lemma 7.2, either with s = 1 if r ∈ N or with
s = r − �r� otherwise, and the approximation properties of I�K stated either in Theorem 3.3 or in Remark 5.5.

Case 2, rp < 1: Assume now that rp < 1. Norm equivalence implies that

‖Iav
h0(v) − Iav

h (v)‖p
Lp(D∂ ;Rq)

≤ c ‖I�h(v))‖
p
Lp(D∂ ;Rq)

.

Let ρ be the distance to ∂D; then there is c uniform with respect to the mesh sequence such that ‖ρ‖L∞(D∂ ) ≤ ch
and

‖Iav
h0(v) − Iav

h (v)‖Lp(D∂ ;Rq) ≤ c
(
‖I�h(v) − v‖Lp(D∂ ;Rq) + ‖v‖Lp(D∂ ;Rq)

)
≤ c

(
hr|v|W r,p(D;Rq) + ‖ρrρ−rv‖Lp(D∂ ;Rq)

)
≤ c

(
hr|v|W r,p(D;Rq) + ‖ρ‖rL∞(D∂)‖ρ−rv‖Lp(D∂ ;Rq)

)
.

Since rp < 1, we infer that (see Grisvard [16], Cor. 1.4.4.5)

‖ρ−rv‖Lp(D∂ ;Rq) ≤ ‖ρ−rv‖Lp(D;Rq) ≤ c‖v‖W r,p(D;Rq).

In conclusion, ‖Iav
h0(v)−Iav

h (v)‖Lp(D∂ ;Rq) ≤ chr‖v‖W r,p(D;Rq). Note that the constant c scales like �−rD where �D
is the diameter of D. �
Corollary 6.5 (Global best approximation in Lp). There exists a uniform constant c, additionally depending
on |rp− 1|, such that

inf
wh∈P0(Th)

‖v − wh‖Lp(D;Rq)≤
{
chr|v|W r,p(D;Rq), ∀v ∈W r,p

0,γ (D; Rq) if rp > 1
chr‖v‖W r,p(D;Rq), ∀v ∈W r,p(D; Rq) if rp < 1.

(6.16)

Remark 6.6 (Theorem 6.4). For rp > 1, a similar estimate has been obtained in the scalar-valued case for
the Scott–Zhang interpolation operator by Ciarlet [7]. Furthermore, the estimate for rp < 1 in Theorem 6.4
essentially says that the difference v − Iav

h0(v) does not blow up too fast close to the boundary. A better result
is not expected since Iav

h0(v) is forced to be zero at ∂D whereas v can blow up like ρ−sw where w is a function
in Lp(D; Rq).

Remark 6.7 (rp = 1). Let r ∈ (0, 1). Using the notation from the real interpolation theory, it is known that
W r,p(D) = [Lp(D),W 1,p(D)]r,p since D is Lipschitz, (see Tartar [24], Lem. 36.1). Let us define

W r,p
00,γ(D; Rq) := [Lp(D; Rq),W 1,p

0,γ (D; Rq)]r,p. (6.17)

Then, using Theorem 6.4 with l ∈ {0, 1} and m = 0, the real interpolation theory implies that

‖v − Iav
h0(v)‖Lp(D;Rq) ≤ c hr‖v‖W r,p

00,γ(D;Rq), (6.18)

for all p ∈ [1,∞) and all v ∈ W r,p
00,γ(D; Rq). This estimate is not fully satisfactory for two reasons. First it is not

local. Second it is not really clear what W
1
p ,p

00,γ(D; Rq) is. For instance, let us define

W 1,p
0 (D) := {v ∈W 1,p(D) | v|∂D = 0}, (6.19a)

W 1,p
T (D) := {v ∈W 1,p(D) | v×n|∂D = 0}, (6.19b)

W 1,p
N (D) := {v ∈W 1,p(D) | v·n|∂D = 0}. (6.19c)
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One then realizes that characterizing [Lp(D),W 1,p
T (D)] 1

p ,p
and [Lp(D),W 1,p

N (D)] 1
p ,p

in terms of Sobolev reg-
ularity is (possible but) not straightforward, and to the best of our knowledge, a full characterization of these
spaces is not yet available.

7. Technical results in fractional Sobolev spaces

This section contains two technical results in fractional Sobolev spaces: a Poincaré inequality and a trace
inequality.

Lemma 7.1 (Poincaré inequality). Let O be an open set in Rd and let vO be the average of v over O, for any
v ∈ L1(O). Let hO := diam(O). Then, for all v ∈ W s,p(O) with s ∈ (0, 1) and p ∈ [1,∞), the following holds:

‖v − vO‖Lp(O) ≤ hsO

(
hdO
|O|

) 1
p

|v|W s,p(O). (7.1)

Proof. This result is essentially Proposition 6.1 from Dupont and Scott [12], see also Heuer [17]. We nevertheless
give a proof since the computation gives us the constant in the right-hand side of (7.1), and this in turn allows
us to apply the result locally on shape-regular meshes. Using the definitions, we have∫

O

|v(x) − vO|pdx =
∫
O

|O|−p
∣∣∣∣∫
O

(v(x) − v(y)) dy
∣∣∣∣pdx

≤
∫
O

|O|−p
⎛⎝∫

O

|v(x) − v(y)|

‖x− y‖s+
d
p

�2

‖x− y‖s+
d
p

�2 dy

⎞⎠p

dx

≤
∫
O

|O|−p
∫
O

|v(x) − v(y)|p

‖x− y‖sp+d�2

dy
(∫

O

‖x− y‖(s+d
p )p′

�2 dy
) p

p′
dx,

where p′ := p
p−1 . Then using that ‖x− y‖�2 ≤ hO for all x,y ∈ O, we infer that

‖v − vO‖
p
Lp(O) ≤

∫
O

|O|−p
∫
O

|v(x) − v(y)|p

‖x− y‖sp+d�2

dy dx
(

max
x∈O

∫
O

‖x− y‖(s+ d
p )p′

�2 dy
) p

p′

≤ |v|pW s,p(O)|O|
−p
(∫

O

h
(s+ d

p )p′

O dy
) p

p′

≤ |v|pW s,p(O)|O|
−p|O|

p

p′ hsp+dO ≤ |v|pW s,p(O)h
sp+d
O |O|−1.

Hence ‖v − vO‖Lp(O) ≤ hsO( h
d
O

|O|)
1
p |v|W s,p(O). �

Lemma 7.2 (Trace inequality). Assume s ∈ (0, 1) and sp > 1 with p ∈ [1,∞) or s = 1 with p ∈ [1,∞]. There
exists c, uniform with respect to the mesh sequence but depending on |sp−1| if s ∈ (0, 1), such that the following
holds for all v ∈ W s,p(K) and all K ∈ Th:

‖v‖Lp(F ) ≤ c

(
h
− 1

p

K ‖v‖Lp(K) + h
s− 1

p

K |v|W s,p(K)

)
. (7.2)

Proof. Let v ∈W s,p(D). Let K ∈ Th be a cell and F be a face of K. Since the map TK is affine, using a trace
inequality in W s,p(K̂) (recall that s ∈ (0, 1) and sp > 1 or s = 1 and p ≥ 1), we infer that

‖v‖Lp(F ) =
|F | 1p

|F̂ |
1
p

‖ψg
K(v)‖Lp(F̂ ) ≤ cs,p|F |

1
p

(
‖ψg

K(v)‖Lp(K̂) + |ψg
K(v)|W s,p(K̂)

)
,
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where cs,p depends on |sp− 1| if s ∈ (0, 1). Upon changing variables, this inequality is re-written

‖v‖Lp(F ) ≤ cs,p|F |
1
p |K|− 1

p
(
‖v‖Lp(K) + ‖JK‖−s�2 |v|W s,p(K)

)
.

The conclusion follows from the shape-regularity of the mesh sequence, see (2.2). �
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