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AN UNFITTED HYBRID HIGH-ORDER METHOD
FOR ELLIPTIC INTERFACE PROBLEMS*

ERIK BURMANT AND ALEXANDRE ERNf?

Abstract. We design and analyze a hybrid high-order (HHO) method on unfitted meshes to
approximate elliptic interface problems. The curved interface can cut through the mesh cells in a
very general fashion. As in classical HHO methods, the present unfitted method introduces cell and
face unknowns in uncut cells but doubles the unknowns in the cut cells and on the cut faces. The
main difference with classical HHO methods is that a Nitsche-type formulation is used to devise the
local reconstruction operator. As in classical HHO methods, cell unknowns can be eliminated locally
leading to a global problem coupling only the face unknowns by means of a compact stencil. We prove
stability estimates and optimal error estimates in the Hl-norm. Robustness with respect to cuts is
achieved by a local cell-agglomeration procedure taking full advantage of the fact that HHO methods
support polyhedral meshes. Robustness with respect to the contrast in the material properties from
both sides of the interface is achieved by using material-dependent weights in Nitsche’s formulation.
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1. Introduction. The hybrid high-order (HHO) method has been recently in-
troduced in [15] for linear elasticity problems and in [16] for diffusion problems. The
HHO method is formulated in terms of cell and face unknowns. The cell unknowns
can be eliminated locally by using a Schur complement technique (also known as
static condensation), leading to a global transmission problem coupling only the face
unknowns by means of a compact stencil. The HHO method is devised locally from
two ingredients: a reconstruction operator and a stabilization operator. This leads
to a discretization method that supports general meshes (with possible polyhedral
cells and nonmatching interfaces), is locally conservative, and delivers energy-norm
error estimates of order (k + 1) (and L?-norm error estimates of order (k + 2) under
full elliptic regularity) if polynomials of order k > 0 are used for the face unknowns.
As shown in [12], the HHO method can be fitted into the family of hybridizable dis-
continuous Galerkin (HDG) methods introduced in [13] and is closely related to the
nonconforming virtual element method studied in [1].

The use of polyhedral meshes can greatly simplify the meshing of complicated
geometries. Nevertheless, in some situations, it is still convenient to avoid the meshing
of boundaries and internal interfaces. This is the case when the boundary changes
during the computation, such as in free-boundary and optimization problems, and
when the boundary or the internal interface is curved. In this paper, we are interested
in devising a high-order approximation method for elliptic interface problems. To
handle difficulties with curved interfaces in classical finite element methods, boundary-
penalty methods [2, 3] have been proposed, where the computational mesh does not
need to respect the interface. In order to improve the accuracy, unfitted finite element
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methods were introduced in [23] drawing on the seminal ideas of Nitsche [29] for
the weak imposition of boundary conditions. The key idea is to design the finite
element space so that singularities over the interface can be represented by a pair of
polynomials in the cut cells. Similar approaches were then proposed in the context of
discontinuous Galerkin methods in [4, 28, 25].

A well-known difficulty for unfitted finite element methods is that the conditioning
of the resulting linear system has a strong dependence on how the interface cuts
the mesh cells. This means that for unfavorable cuts, Nitsche’s formulation can be
severely ill-conditioned. This difficulty has been solved in [23] by using weighted
coupling terms with cut-dependent weights. However, there is a lack of robustness
when the material properties (e.g., the diffusivities on each side of the interface)
are highly contrasted. Robustness with respect to the contrast can be achieved by
using material-dependent weights, as proposed in different contexts in [10, 19, §],
and in this case, a different mechanism is needed to handle unfavorable cuts. In the
case of H'-conforming methods, this problem can be overcome by adding a penalty
term that weakly couples the polynomial approximation in adjacent cells as proposed
in [5]. When using a discontinuous Galerkin approximation, another approach was
proposed in [25] for fictitious domain problems where mesh cells with unfavorable
cuts are merged with neighboring elements having a favorable cut. This idea is also
explored in [24] for interface problems approximated by conforming finite elements on
quadrilateral meshes whereby cells with an unfavorable cut are merged with adjacent
quadrilateral cells (thus creating hanging nodes).

The so-called cutFEM framework was developed recently in [6] so as to couple
different physical models over unfitted interfaces and to discretize PDEs over unfit-
ted embedded submanifolds. The high-order approximation of the geometry of the
interface was considered recently in [9] using a boundary correction based on local
Taylor expansions and in [26] using an iso-parametric technique, the common objec-
tive being to simplify the numerical integration on domains with curved boundaries
by allowing a piecewise affine representation of the interface. The cutFEM paradigm
has also been applied to a variety of complex flow problems; see, e.g., [27], the recent
Ph.D. thesis [30], and references therein. A conforming finite element method with
local remeshing in subcells, effectively fitting the mesh to the interface, followed by
elimination of the local degrees of freedom, was introduced in [20].

The goal of the present work is to devise and analyze an HHO method using
unfitted meshes. The approach consists of doubling the unknowns in the cut cells and
the cut faces, in a spirit similar to unfitted finite element methods. For brevity, we only
consider elliptic interface problems, but the material can be readily adapted to treat
the (simpler) case of fictitious domain problems; such an adaptation is briefly reported
in [7]. Our approach combines the ideas of HHO methods (and more broadly HDG
methods) with those from [23] concerning Nitsche’s formulation, but with material-
dependent weights rather than cut-dependent weights, and those from [25] to handle
unfavorable cuts by a local cell-agglomeration procedure. The cell-agglomeration
procedure takes full advantage of the fact that the HHO method supports general
meshes with polyhedral cells. The resulting unfitted HHO method is robust with
respect to the cuts and to the material properties. Our stability and error analysis
of the unfitted HHO method sheds some novel light in the analysis of HHO methods.
On the one hand, the local reconstruction operator is based on Nitsche’s formulation
and cannot be related, as in classical HHO methods, to a local elliptic projector. On
the other hand, the error is measured by using some projector that is somewhat more
elaborate than the local L2-orthogonal projector used in classical HHO methods. Our
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main result is an H!-error estimate of order (k + 1) if polynomials of order k > 0
are used for the face unknowns and polynomials of order (k + 1) are used for the
cell unknowns. We observe that we do not consider here cell unknowns of order k
as in classical HHO methods. The overhead induced by this modification is marginal
since, as usual, all the cell unknowns can be eliminated locally. Finally, we mention
the recent numerical work combining the HDG method with the X-FEM technique
for fictitious domain [22] and elliptic interface [21] problems. The main differences
with the present unfitted HHO method are that we do not introduce unknowns at
the interface (but rather double the unknowns at the mesh faces cut by the interface)
and that we provide a thorough analysis including robustness with respect to cuts
and contrast.

This paper is organized as follows. In section 2, we introduce the elliptic inter-
face problem we want to approximate. In section 3, we present the discrete setting,
including our main notation for the cut cells and the two assumptions we require
on the mesh, and we prove two key trace inequalities under these assumptions. In
section 4, we present the unfitted HHO method. In section 5, we present our sta-
bility and error analysis; our main result is Theorem 5.9. Finally, in section 6 we
show how the two mesh properties introduced in section 3 can be satisfied by us-
ing a local cell-agglomeration procedure (under the assumption that the mesh is fine
enough to resolve the interface). Computational results will be reported in a separate
publication.

2. Model problem. Let €2 be a domain in R? (open, bounded, connected, Lip-
schitz subset) and consider a partition of Q into two disjoint subdomains so that
Q = Q1 U 02 with the interface T = Q! N Q2. The unit normal vector nr to T
conventionally points from Q' to Q2. For a smooth enough function defined on 2, we
define its jump across I' as [v]r := vjo1 — v|g2. We consider the following interface
problem:

(2.1a) —V-(kVu) = f in Q' UQ?
(2.1b) [ulr = gp on T
(2.1c) [£Vu]rnr = gn on T,
(2.1d) u=0 on 052,

with f € L*(Q), gp € H? (T'), gx € L?(T). For simplicity we consider a homogeneous
Dirichlet condition on 9. To avoid technicalities, we assume that the diffusion coef-
ficient x is scalar-valued and that k' := k|q: is constant for each i € {1,2}. Without
loss of generality, we assume that the numbering of the two subdomains is such that
k! < k2. In the rest of the paper, we assume that the interface I' is a smooth (d — 1)-
dimensional manifold of class C? that is not self-intersecting. This assumption can
be relaxed at the price of additional technical issues that are not explored herein.

3. Discrete setting. We assume that the domain {2 is a polyhedron with planar
faces in R?. Let (T3)n>0 be a shape-regular family of matching meshes covering
exactly. The meshes can have cells that are polyhedra with planar faces in R%, and
hanging nodes are also possible. The mesh cells are considered to be open subsets of
R?. For a subset S C R, hg denotes the diameter of S, and for a mesh 7y, the index
h refers to the maximal diameter of the mesh cells. The shape-regularity criterion
for polyhedral meshes is that they admit a matching simplicial submesh that satisfies
the usual shape-regularity criterion in the sense of Ciarlet and such that each subcell
(resp., subface) belongs to only one mesh cell (resp., at most one mesh face). The
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shape-regularity of the mesh sequence is quantified by a parameter p € (0,1) (see
section 6 for further insight). In what follows, B(y,a) denotes the open ball with
center y and radius a, d(y, A) denotes the distance of the point y to the set A, and
d(A, A") denotes the Hausdorff distance between the two sets A, A’.

3.1. Main notation for unfitted meshes. Since the meshes are not fitted to
the subsets Q! and 2, there are mesh cells in 7;, that are cut by the interface I'. Let
us define the partition 75, = 7, U T;F U T;2, where the subsets

(3.1a) Ti={TeT|TcCQ} Vie{l,2},
(3.1b) T = {T € T, | measq_1(TNT) > 0},

collect, respectively, the mesh cells inside the subdomain Q¢, i € {1, 2}, and the mesh
cells cut by the interface I'. For any mesh cell T € T,I' cut by the interface, we define

(3.2) T :=TNQ, ' .=TNT.
The boundary of the subcell T* is decomposed as follows:
(3.3) oT" = (0T)' U T",

with the notation (9T)¢ = 0T N Q. For any mesh cell T' € Ty, the set Far collects
the mesh faces located at the boundary 0T of T. Whenever T € 7,0, we consider the
set

(3.4) Flory ={F' = FNQ'| F € For, measq 1 (F') > 0}.

The subfaces in Fory form a partition of (9T)" (but not of 91" since T is not
included in F(sr)i). The notation is illustrated in Figure 3.1. Since the interface I is
not self-intersecting and smooth, there exists a length scale ¢y so that, for all s € T,
the subset 'NB(s, {p) has only one connected component. In what follows, we assume
that the mesh is fine enough so that h < £y. This assumption implies that 7T has a
single connected component and that the subcells T and 72 are connected. We also
assume that d(T",0Q2) > 2h.

Let I € N be a polynomial degree and let S be an m-dimensional affine manifold
in Q (m < d); typically, S is a mesh (sub-)cell (so that m = d) or a mesh (sub-)face
(so that m = d — 1). Then P!(S) denotes the space composed of the restriction to S
of d-variate polynomials of degree at most I.

3.2. Mesh properties. We make the following two assumptions on the mesh.
Assumption 3.1 means that the interface is properly described by the mesh; this as-
sumption is quantified by an interface regularity parameter v € (0,1). Assumption 3.2

FIG. 3.1. Hezagonal cell T cut by the interface I'. The subdomain Q' is located below T', and
the subdomain Q2 is located above T'. (OT)' is shown using solid lines and (0T)? using dashed lines;
the sets J:(aT)l and Fgry2 consist each of four elements, two of which are original faces of T and
two of which are subfaces of the two faces of T cut by the interface.
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i:TQ r

Fi1G. 3.2. Illustration of Assumption 3.1 (left) and of Assumption 3.2 (right) for a hexagonal
cell T cut by the interface I'.

means that all the mesh cells are cut favorably by the interface; this property is quan-
tified by a cut parameter § € (0,1). We will show in section 6 how to produce a
shape-regular (polyhedral) mesh so that Assumptions 3.1 and 3.2 hold true. The idea
is that Assumption 3.1 can be satisfied by refining the mesh, whereas Assumption 3.2
can be satisfied by means of a local cell-agglomeration procedure (Figure 3.2).

ASSUMPTION 3.1 (resolving I'). There is v € (0,1) s.t. for all T € T,F, there is
a point &7 € R? so that, for all s € TT, ||@ — s|l2 <y 'hy and d(&7, TsI') > vhr,
where TsT is the tangent plane to I' at the point s.

ASSUMPTION 3.2 (cut cells). There is § € (0,1) such that, for all T € T,I' and
all i € {1,2}, there is &p: € T* so that

(3.5) B(&7:,0hr) C T".

3.3. Trace inequalities. The purpose of Assumption 3.1 is to prove a multi-
plicative trace inequality that is needed to establish optimal approximation properties
for the unfitted HHO method, whereas the purpose of Assumption 3.2 is to prove a
discrete trace inequality that is needed in the stability analysis of the unfitted HHO
method. Let us now prove these two trace inequalities.

LEMMA 3.3 (multiplicative trace inequality). There are real numbers cpty > 0
and Oy > 1, depending on the mesh regularity parameter p € (0,1) and the interface
regularity parameter v € (0,1), such that, for all T € 'ELF, there s €7 € T so that,
for alli € {1,2} and all v € HY(T") with T = B(g&7, Omichr),

_1 1 1
(3.6) lollzzorsy < emir (27 [0llzary + 0l Fagn IV 0l o ) -

Proof. The proof is inspired by the ideas from, e.g., [31, section 6]. Let T € T,F
and i € {1,2}, and recall that 9T = (OT)" UT". We prove (3.6) for v € C}(T)
and then extend this bound to H'(TT) by a density argument. Let us first bound
[v]|2(7r). Integrating, for all s € T*, along the segment {p(s, t) := (1—t)&p+1ts Vt €
[0,1]}, where the point &7 is given by Assumption 3.1, we obtain

v2(s) = /01 % (t*v(p(s,1)?) dt Vs e T'.

Integrating over s € TT and developing the derivative with respect to t, we infer that

2 _ Lo 2 4d (s _ 4
[0llZ2(7ry .y (@t to(p(s,t))* + t"u(p(s, 1)) Vo(p(s,t))-(s — &r)) dt ds.
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Let us introduce the cone C(T) = {p(s,t), Vt € [0,1], Vs € T'}. Since d(&7,TsT) >
vhr (see Assumption 3.1), the change of variable d(&7, TsI')t?"'dtds = dp is legiti-
mate. We then obtain that

ol Z2 ey = /C(T) (dv(p(s. 1) + tv(p(s,1))Vou(p(s,1))(s — &7)) d(@r,TsT) " dp.
Since Assumption 3.1 implies that C(T) C Ty := B(dp,y~*hr), we conclude that

lol3aczry < co (a0l rg, + 100 2z IVl pacayy )

where ¢y depends on the interface regularity parameter v € (0,1). Let us now bound
llvl|L2(oryiy- Proceeding as in [14, Lemma 1.49] using mesh regularity, we infer that
there is a point &p € T and positive real numbers c¢1,6; depending on the mesh-
regularity parameter p € (0, 1) so that

1ol 0ry < €1 (B2 N0l i, + 100 ey IVl o)

with TlT = B(&r,01hr). To conclude, we combine the two above bounds using that
Ty UT! = B(@r,v 'hy) U B(@r,01hr) C B, Omhr) = TT with hpl||lér —
7|2 +max(y101) <1+~ +max(y71,01) =: Oyr (since |27 — 7|2 < ||@7 —
llgz +||s — @72 <1+~ forall s € TT), and we set i = max(co,cl)%. O

LEMMA 3.4 (discrete trace inequality). Letl € N, 1 > 0. There is cqsr, depending

on the polynomial degree 1, the mesh reqularity parameter p € (0,1), and the cut
parameter & € (0,1), such that, for all T € T}Y, all i € {1,2}, and all v € PY(T?),

(3.7) vl 2 ori) < caw hp? o]l L2 (piy-

Proof. Let T € T,X. Let i € {1,2}, and let v € PY(T%). Since 9T* C B(&:,hr)
and B(&r:,5hr) C T* owing to (3.5), we observe that

i L Es
[vll2a1e) < 10T 2 [|v]| Lo orey < [OT|Z ||| oo (B(2pi 1))
< é|0T"|2 | B(&r:, 6hr)| "2 vl L2(B (&, 5h7))
N - . il _d
< NOT' 2 hy? vl L2(B (@, ohry) < € |OT[2hy? ||v] L2 (1),

where the factor ¢ results from the inverse inequality ||9]| L (B(0,1)) < ¢[|9]|L2(B(0,5))
for all & € P{(B(0,1)) and the pullback using the bijective affine map from B(Z:, hr)
to B(0,1). We conclude by observing that |9T?| < ch%! (with ¢ depending on p). O

Remark 3.1 (Lemma 3.4). For conforming finite elements on unfitted meshes, the
discrete trace inequality (3.7) is invoked only on T'. Here, this inequality needs also
to be invoked on (9T)" since the HHO method involves unknowns attached to the
mesh faces; see the proofs of Lemmas 5.2 and 5.8 below.

4. The unfitted HHO method. In this section, we describe the unfitted HHO
method for the interface problem. Let k > 0 be the polynomial degree.
4.1. Uncut cells. Let 771\F = 77} U 7',? be the collection of the uncut cells. Let

T e ’7'h\F and set kp = k' if T € T}, i € {1,2}. We define the following local bilinear
form for all v,w € H*(T):

(4.1) aT(v,w):/THTVUVw.
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Fic. 4.1. Uncut hexagonal cell. Left: k = 0; right: k = 1. Each dot attached to a geometric
entity (face or cell) symbolizes one degree of freedom (not necessarily a pointwise evaluation).

The classical HHO method is defined locally on each uncut cell T € E\F from a
pair of local unknowns which consist of one polynomial of order (k+ 1) in 7" and a
piecewise polynomial of order k on 9T (that is, one polynomial of order k£ on each
face F' € For). The local unknowns are generically denoted

(4.2) b = (vr,vor) € PPTHT) x P*(For) = X,)F

with the piecewise polynomial space P*(Fyr) = Xpez,,P*(F). The placement of the
discrete unknowns for the uncut cells is illustrated in Figure 4.1.

There are two key ingredients to devise the local HHO bilinear form. The first
one is a reconstruction operator. Let o = (UT,UaT) € .)E’%F Then, we reconstruct a
polynomial 75 (47) € P*+1(T) by requiring that, for all z € P¥*1(T), the following
holds true:

(4.3) ar(rit (7)), 2) = ar(vr, 2) — / krVznr(vr — var),

or
where np is the unit outward-pointing normal to T'. Tt is readily seen that r?ﬂ(@T) is
uniquely defined by (4.3) up to an additive constant; one way to fix the constant is to

prescribe [, R (op) = Jvr (this choice is irrelevant in what follows). The second

ingredient is the stabilization bilinear form defined so that, for all op,wr € /'?%F,

(44) ST(@T, Zf}T) = IiTh;l / HgT(UT — U{)T)(’wT — U}aT),
oT

where HgT denotes the L2-orthogonal projector onto the piecewise polynomial space
P*(Far). Finally, the local HHO bilinear and linear forms to be used when assembling

the global discrete problem (see section 4.3) are as follows: For all 7, dr € /?%F,

(4.52) ay (br, i) = ap (! (or), i (dr)) + s1(or, i),
(4.5b) O (r) = / fwr.
T

Remark 4.1 (cell unknowns). In the classical HHO method, there is some flexi-
bility in the choice of the cell unknowns since one can take them to be polynomials
of order [ € {k —1,k,k+ 1}. In the present context, we will need to work with poly-
nomials of order (k+ 1) in the cut cells to achieve optimal approximation properties
(see section 5.2); for simplicity, we consider polynomials of order (k+ 1) in the uncut
cells as well. Taking polynomials of order I € {k — 1,k} in the uncut cells leads to
slightly smaller matrices to be inverted when computing the reconstruction operator
from (4.3) but requires a somewhat more involved design of the stabilization operator
than in (4.4) (see [16, 15]).
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4.2. Cut cells. Let T € 7;?. We use capital letters to denote a generic pair
V = (v}, v?) € HY(T') x HY(T?). We define the following Nitsche-mortaring bilinear
form for all V,W € H*(T"') x H(T?), s > 3:

(4.62)  np(V,W)= Y /_miinanTp(v, w),
ic{1,2} 71"

(o) nre(v.w) = - [

Tp(nw)l.nrﬂvv]]p + (kVw) ' nr[V]r — n,:“;ﬂV]]rﬂW]]r,

where the user-specified parameter 7 is such that n > 4c%, | where cqi, results from
the discrete trace inequality (3.7) with polynomial degree | = k. Note also that the
jump-penalty term is weighted by the lowest value of the diffusion coefficient.

We consider a quadruple of discrete HHO unknown&iT = (Vr,Var), where both
Vr and Vyr are pairs associated with the partition Q = Q! U2, so that

(4.7) Vr = (vp1,vp2) € PFFLTT) x PEHI(T2)
and
(4.8) Vor = (vory, vory2) € PM(Forn) x PM(Fory?),

where PF (Fory) = XFG-F(@qw)i]Pk(F) is the piecewise polynomial space of order k on
(0T)" based on the (sub-)faces in Fioryi. (Recall that, by definition, all the elements
F of Fory: are subsets of (9T)" = 9T N Q'.) Note that we do not introduce any
discrete unknown on TT. We use the concise notation Vy € X% with

(4.9) XL = (PMHTY) x PFYYT?)) x (PH(Foryr) x P¥(Fory2)) -

The placement of the discrete HHO unknowns in the cut cells for the interface problem
is illustrated in Figure 4.2.

As above, there are two key ingredients to devise the local HHO bilinear form:
reconstruction and stabilization. Let Vi € /’%TF . We reconstruct a pair of polynomials
REFL(Vr) € PRHL(TY) x PR+1(T?) by requiring that, for all Z = (2!, 22) € P*1(T1) x
P*+1(T?2), the following holds true:

(410) TLT(R];«JFI(VT), Z) = nT(VT, Z) - Z / ‘ /ﬁini-nT(UTi — U(@T)i).
ic{1,2) 7/ (OT)

It follows from Lemma 5.1 below that R%™ (V) is uniquely defined by (4.10) up to
the same additive constant for both of its components; one way to fix the constant is

Fi1G. 4.2. Cut hexagonal cell for the interface problem. The subdomain Q' is located below
T' with the corresponding HHO unknowns shown by filled circles, and the subdomain Q2 is located
above I' with the corresponding HHO unknowns shown by empty circles. Left: k = 0; right: k = 1.
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to prescribe 3¢ (g o Jri (REFY(V))t = Dic(1,2) Joi v (this choice is irrelevant in

what follows). Concerning stabilization, we set for all Vi, Wr e /f'% ,

(4.11) ST(VT,WT) = Z /ﬂih;l/ .Hl(caT)K’UTi — ’U(aT)i)(wTi — w(aT)z‘),
i€{1,2} (1)

where H’(CQT),, denotes the L2-orthogonal projector onto the piecewise polynomial space

Pk(]:(aT)i). Finally, the local HHO bilinear and linear forms are as follows: For all
VT, WT c )E‘TI;,

(4.12a) b (Vp, Wr) = np(REFY (Vp), REFY (W) + sp(Ve, W),
(4.12D) 5(Wr) = fwri+ | (gxwre + gpoér(Wr))
! ie§2} /T ! /TF '

with ¢7(Wr) = —k'Vwr nr +nethy! [Wr]r (the definition of the integral over T
follows from consistency arguments; see the proof of Lemma 5.8 below).

4.3. The global discrete problem. The mesh faces are collected in the set Fj,
which is partitioned into F;, = F} U F, U F?, where F}, i € {1,2}, collect the mesh
faces inside the subdomain Q° and F} collects the mesh faces cut by the interface.
We also define for all i € {1, 2},

(4.13a) Ti=Tiu{T'=TnQ" | TeTl},
(4.13Db) Fi=FU{F=FnQ' |FeF},

ie., 72}; (resp., .7:"}2) is the collection of all the mesh cells (resp., faces) inside Q¢ plus
the collection of the subcells (resp., subfaces) of the cut cells (resp., cut faces) inside
Q*. Let us set

(4.14) X = XTeﬁZPk“(T) X xFeﬁ;Pk(F).

The global discrete space is &), := X} x X2. Let F{ be the collection of the mesh
faces located at the boundary 92 (note that the faces in F; ,? are in one and only one
of the subsets 7} but not in F} since the interface I is located in the interior of €2).
We enforce the homogeneous Dirichlet condition on 02 by zeroing out the discrete
HHO unknowns attached to the mesh faces in F2. Let i® € {1,2} be the index of the
subdomain touching the boundary 9. Let /f’flz be the subspace of ?3,1;6 composed of
all the discrete HHO unknowns such that their component attached to a mesh face is
zero if this face lies on the boundary 99Q. If i% = 1, we set X := /'?,}0 X )2,3, otherwise,
we set Ao i= XjF x A2,

Let Vi, € Xpo. For all T € 7;L\F = T} U T2, we denote o7 = (vr,var)) € /'\A,’%F
(see (4.2)) the components of V}, attached to the cell T. For all T' € T, we denote
Vr = (Vp, Vor) € X (see (4.9)) the components of Vj, attached to the cell T. The
discrete problem we want to solve reads as follows: Find Uh € /fho s.t.

(415) &h(Uha Wh) = gh(Wh) VWh S .)eh(),
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with

(4.16&) flh(f/h,Wh) = Z d}r(f)T,’LZ)T>+ Z &;(VT,WT),
TETh\F TeT,

(4.16b) W)= > i wr)+ > (W),
TeT, " TeT,

where d}r(-, -) and é\TF() are defined by (4.5) for all T € E\F and a%.(-,-) and 25.(-)
are defined by (4.12) for all T € T;!'.

The discrete problem (4.15) can be solved efficiently by eliminating locally all
the cell unknowns using static condensation. This local elimination leads to a global
transmission problem on the mesh skeleton involving only the face unknowns with a
stencil that couples unknowns attached to neighboring faces (in the sense of cells).
Once this global transmission problem is solved, the cell unknowns are recovered by
local solves. We refer the reader, e.g., to [11] for more details in the case of classical
HHO methods.

5. Analysis. In this section we analyze the convergence of the unfitted HHO
method for the interface problem. The proof consists in establishing stability, consis-
tency, and boundedness properties for the discrete forms a; and ¢;, and in devising
a local approximation operator related to the local reconstruction operators réﬁ“
(see (4.3)) and REM! (see (4.10)). The mesh T;, is assumed to satisfy Assumptions 3.1
and 3.2 so as to invoke the trace inequalities from Lemmas 3.3 and 3.4.

In what follows, we often abbreviate A < B the inequality A < CB for positive
real numbers A and B, where the constant C' does not depend on x nor on the way
the interface cuts the mesh cells but only depends on the polynomial degree k > 0,
the mesh regularity parameter p € (0, 1), the interface regularity parameter v € (0, 1)
from Assumption 3.1, and the cut parameter 6 € (0,1) from Assumption 3.2.

5.1. Stability and well-posedness. We start with the following stability and
boundedness results on the Nitsche-mortaring bilinear form ny defined by (4.6) for all
T € T,X'. We define the following stability seminorm for all V = (v!,v?) € HY(T") x
HYT?):

1
i i K
(5.1) VIR, = > &V +77E”[[V]]F”2TF‘

ie{1,2}

Recall our assumption on the penalty parameter n > 4C§tr.

LEMMA 5.1 (stability and boundedness of nr). Let T € T,F. The following holds
true for all V € PETL(T1) x PF+1(T2);

1
(5:2) np(V,V) = §|V|$LT-

Moreover, the following holds true for all V,W € P*+1(T1) x PF+1(T2):
(5-3) Inz(V, W)L S IV lnp Wy s
and for all V € H*(TY) x HY(T?), s > 2, and all W € P*+1(T1) x PF+1(T2),

27

(54)  Inr(V.W) S WVlarglWhar, VI = VIR, + KAl VO .
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Proof. The proof is classical; we sketch it for completeness. Let V € P*+1(T1) x
. . 1 Kl 1
P*+1(T2), and let us set & = (Xieqr,zy £ IVY° 2.)2 and ¢ = (UE”HVHFH%F)Q S0
that [V|2 = & + ¢?. The definition (4.6) of ny followed by the Cauchy-Schwarz
inequality and the discrete trace inequality (3.7) (applied on T' with [ = k) yields

ne(V.V) = €2 — 2/ (V) [V + 2 > € — 2eaun 3¢+ 2,
Tr

so that np(V, V) > 1(£2+¢?) (i.e., (5.2)) follows from the assumption that n > 4¢3, .
Moreover, using the Cauchy—Schwarz inequality, we infer that

g (V, W) < Ve Wy + 65 V0 e [[W]ellze + 6 [Vt 7o [[VIE[l7e,

so that (5.3) and (5.4) follow from the discrete trace inequality (3.7). d

We can now address the stability of the local HHO bilinear forms d}r and 5.

For all T € E\F, we consider the local seminorm used in the analysis of classical HHO
methods: For all o7 = (v, var) € X;F,

(5:5)  |orl3, = srlVorlF + srhg (T (vr — vor)l3r = lvrl2, + s(or, 07),

where we have set [vp|2 := kr||[Vur 3. Forall T € T;', we define the following local
seminorm: For all Vi = (Vip, Var) = ((vp1, vg2), (varyr, vary2)) € /’\?%

|‘7T ?LT = Z ’fiHVUTi|

1
K
7t TI,TII[[VT]]FHQTF
T

ie{1,2}
(5.6) + Y Ky (v — vory) fory: = Vel + so(Ve, V).
ic{1,2)

LEMMA 5.2 (stability). The following holds true:

(5.7a) ay (bp,or) 2 1002, VT €T, Vor € &),
(5.7b) ar(Ve,Vr) 2 |Vel3, VT €Ty, VWi e A7,

Proof. The proof of (5.7a) follows from [16, Lemma 4]. Let us now prove (5.7b).
Let T € T}F and let Vi € XL. Taking Z = Vp = (vr1, vg2) in the definition (4.10) of
the reconstruction operator and using the stability of np from Lemma 5.1, we infer
that
\Vrl2, < ne(Ve, Vi)
= nT(RI;j_l(VT), VT) + Z / . HiV’UTi-’n,T(UTi — 'U(aT)i).
ic{1,2y 7 OT)"

The first term on the right-hand side is controlled using the boundedness prop-
erty (5.3) of npy and Young’s inequality to hide |Vr|,, on the left-hand side. For the
second term, we use the Cauchy—Schwarz inequality, the fact that (k*Vuvp: “nr)ory €
P*(F(or)i), and the definition (4.11) of sp(-,-) to obtain

1

. . 1 A A 1
/( . K'NVvpi-np(vpi — ’U(aT)i) < (Iil)fh%HVUTi (aT)iST(VT, Vr)z.
oT)?
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Then, we invoke the discrete trace inequality (3.7) on (0T)* C 9T for alli € {1,2} and
Young’s inequality to hide (k%)% ||V
together, we infer that

i on the left-hand side. Putting everything

|VT RkJrl(VT) + ST(VT, VT),

TLTN|

so that using (5.6) and the stability of np from Lemma 5.1, we conclude that

|VT\§T =|Vr|Z, + st(Vr, Vr)
SIRET (V)2 + sr(Vr, Vi)
< np(RETH (Vr), RET (V) + so(Ve, Vi) = ar (Vi V),

which is the expected estimate. 0

Summing the local seminorms over the mesh cells, we define, for all Vi, € X,

TeT,\" TET,

Note that | |a, defines a norm on the subspace Xj,. Indeed, assume that |Vh|ah =0
for some Vj, € Xyo. Then, for all T € 7', we have |Vr|,, = 0 and s (Vr, Vz) = 0.
The nullity of the first term implies that v1 and vp2 are constant functions that take
the same value, and the nullity of the second term implies that v(s7y1 and v(gr)2 are
also constant functions that take the same value as v and vp2. Moreover, for all

T e Th\r, |07 |ar = 0 implies that vy and vgr take the same constant value. We can
then propagate this constant value up to the boundary 02 where the components of
V}, attached to the boundary faces vanish. Thus, all the components of V}, are zero.

COROLLARY 5.3 (well-posedness). The discrete problem (4.15) is well-posed.

Proof. We apply the Lax—Milgram lemma. |

5.2. Approximation. Let u be the exact solution with u’ := ujg: for all i €
{1,2}. We set U™ = (ul,u?) € HY(Q!) x HY(Q?).

5.2.1. Uncut cells. Let T € ,7;\1“' We set upt = u‘iT, where i € {1,2} is

s.t. T € T}, and we consider the approximation of u$* in 7' defined by
(5.9) g () = 1 (uf),
where TI%T! stands for the L?-orthogonal projector onto P*+1(T) (we use a specific

notation jé,“fl for similarity with cut cells; see below). We introduce the following
local norm: For all v € H¥(T), s > 3,

(5.10) [vliZr = sz (IVVl7 + hrl Vol + bzt lvl3e)-

LEMMA 5.4 (approximation by ij). Assume U € HM2(QY) x HFM2(Q?).
The following holds true for oll T € 7;

(5.11) 1 () = uFller S mPRE UF e (-
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Proof. The approximation properties of the L?-orthogonal projector are classi-
cal on meshes where all the cells can be mapped to a reference cell; see, e.g., [17].
On meshes with polyhedral cells which can be split into a finite number of shape-
regular simplices, one can proceed as in the proof of [18, Lemma 5.4] by combin-
ing the Poincaré—Steklov inequality in each subsimplex and the multiplicative trace
inequality. a

Let us now define
(5.12) PR (uSX) = PRI (uSX)) € PRHY(T),

where 75" is the reconstruction operator defined by (4.3) and

(5.13) ) = G (us), T (us)) = (I (u), T (u)) € &)
where